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Abstract Identifying the set of available alternatives in a choice process after consid-

ering an individual’s bounds or thresholds is a complex process that, in practice, is

commonly simplified by assuming exogenous rules in the choice set formation. The

Constrained Multinomial Logit (CMNL) model incorporates thresholds in several attri-

butes as a key endogenous process to define the alternatives choice/rejection mechanism.

The model allows for the inclusion of multiple constraints and has a closed form. In this

paper, we study the estimation of the CMNL model using the maximum likelihood

function, develop a methodology to estimate the model overcoming identification problems

by an endogenous partition of the sample, and test the model estimation with both synthetic

and real data. The CMNL model appears to be suitable for general applications as it

presents a significantly better fit than the MNL model under constrained behaviour and

replicates the MNL estimates in the unconstrained case. Using mode choice real data, we

found significant differences in the values of times and elasticities between compensatory

MNL and semi-compensatory CMNL models, which increase as the thresholds on attri-

butes become active.

Keywords Discrete choice � Choice set � Thresholds � Semi-compensatory behaviour

Introduction

Within the framework of discrete choice models, one of the main tools used in predicting

the transportation demand are random utility maximization (RUM) models (McFadden
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1968). These models are usually applied assuming that individuals exhibit a compensatory

behaviour regarding attributes and that the set of alternatives is known and fixed. An

important problem arises when the value of one or more attributes are excessively high or

low, lying out of the domain in which choices are considered to be feasible by the

consumer. This problem is present whenever there are bounds (upper or lower) on attri-

butes, representing either individuals’ self-imposed thresholds or exogenous constraints

(e.g., income, time or physical limitations), which are not explicitly represented in the

model. For example, in a residential choice context, individuals cannot choose units which

price is greater than their income (that is an exogenous constraint), but they can also limit

their choices to units with a minimum square footage (self-imposed threshold), based on

their personal preferences or unobserved limitations or requirements. Models that ignore

the presence of bounds can lead to inconsistent parameter estimation and, thus, forecasting

errors (Swait 2001). In the transportation field, models that account for thresholds on

attributes, called semi-compensatory models, have gain great interest in the last decade,

being applied to modal (Cantillo and de Ortúzar 2005), location (Martı́nez and Hurtubia

2006, Kaplan et al. 2012), destination (Zheng and Guo 2008) and route choice (Kaplan and

Prato 2010).

The microeconomic theory recognizes that the consumers’ choice domain should be

explicitly defined by all the constraints, such as income and time budgets, but also physical

and psychological constraints. Once these constraints are introduced into the utility

function, the theory defines the so-called indirect utility function (IUF). However, the

standard theory provides little information to modellers about the actual functional form of

the IUF. This function is usually inferred from observed behaviour by applying econo-

metric methods, in too many cases using a linear utility function due to limited data.

Hence, while the theoretical IUF must be a complex non-linear function able to encap-

sulate constraints, the scarcity of data and the difficulty in identifying the full set of

constraints complicate the estimation of appropriate utility functions; the result is that

constraints are largely ignored. Thus, the compensatory (non-constrained utility) model

may predict demands outside of the consumer’s domain, even if the point estimates of the

model parameters are sufficiently accurate.

The role of domains has been emphasized by the elimination-by-aspects approach

(Tversky 1972), which focuses on thresholds of attributes to describe individuals’ choices.

In the search for a practical solution to obtain a realistic representation of the choice

process under constrained domains, a handful of models have been proposed that include

an explicit definition of the set of alternatives available to each individual (see, for

instance, Swait 2009). For example, in transportation demand, constraints may be activated

when the travel time is too long, making an activity at a given destination infeasible

(e.g. walking a long distance), or when the travel cost is so high that the user cannot finance

the trip.

Two approaches are found in the literature attempting to reconcile the advantages of

RUM models with the need to model choice-set formation. First, the two-stages approach

(Manski 1977) proposes that the choice probability of a given alternative is the joint

probability of choosing that alternative conditional on the choice set, summed over all

choice sets. Applications of this approach are in Cantillo and de Ortúzar (2005) and in

Kaplan et al. (2012). The main problem with this approach is the great computing costs

involved in enumerating the usually very large number of choice sets (Swait and Ben-

Akiva 1987). The second approach is a single-stage (or implicit) method that includes the

availability of alternatives implicitly in the IUF by reflecting disutility when attributes

violate thresholds, so they are not chosen. This approach has the advantage of higher
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efficiency by avoiding the combinatorial number of choice sets; see applications in

Cascetta and Papola (2001) and Swait (2001). However, Cascetta and Papola’s model is

difficult to estimate particularly in complex specifications with multiple constraints, while

Swait’s model does not allow randomness in penalizations, nor is the utility function

derivable at the threshold, which may create instability when the model is used in equi-

librium analysis.

The Constrained Multinomial Logit (CMNL) model (Martı́nez et al. 2009) is a one-

stage closed-form model with utility penalizations, which allows the modeller to represent

multiple constraints on individuals’ choices. The penalizations (also referred as cut-offs)

are specified as binomial Logit functions, which may indistinctively represent the two

sources affecting choice-set formation: exogenous constraints on attributes faced by

individuals and endogenous (self-imposed) thresholds on attributes. Given its potential

benefits, the CMNL has attracted some attention to applications and some preliminary

estimations have been made, e.g. for location choice (Martı́nez and Hurtubia 2006), mode

choice (Bierlaire et al. 2010), school choice (Martı́nez et al. 2010) and hunter site choice

(Truong 2010). However, these applications are limited to the case where a variable

represent only a threshold without playing a role in the compensatory utility.

In this paper we study the more general case where the constrained attribute is also a

variable in the compensatory utility, raising problems of identification between the com-

pensatory parameters and those of the cut-offs. The nature of this problem is of more

general interest as it is likely to appear whenever behaviour adapts to different contexts,

therefore, for a given individual, a different utility function applies depending on the

context. To overcome this problem we developed a novel endogenous method to partition

the data affected by compensatory and constrained behaviour, so we estimate parameters

using the relevant sub-set of data where the correct behaviour applies. This method avoids

the exogenous partition, based on the modeller’s intervention in revealed preference data,

or on declared bounds as proposed by Swait (2001) in a case of a stated preference study.

The relevance of studying the estimation of the CMNL’s model is that the probability

functional form differs from traditional Logit models, and its complexity prevents us from

extrapolating conclusions from previous studies. Therefore, in this paper, the log-likeli-

hood function is specified and the optimal conditions are derived and interpreted, the

identification conditions of parameters are discussed, and the method to partition the

estimation sample is tested. The model parameters are estimated using synthetic data, as a

way to build up experience on estimating this new model in a controlled environment, as

well as using real databases to analyse empirically the implications on the parameter

estimates and prediction capabilities.

The paper is organized as follows. In ‘‘The CMNL model’’ section, we describe the

model; in ‘‘Estimation method’’ section we discuss the estimation method and analyse

identification issues; in ‘‘Empirical analysis and results’’ section, we present estimation

results using simulated and real data; and we present the endogenous method to partition

the estimation sample using a maximum likelihood procedure; we finalize with a

‘‘Conclusions and final comments’’ section.

The CMNL model

The model is based on the RUM approach, which assumes that the indirect utility, Uni,

provided by an alternative i, to the individual n, is known by the decision-maker but not by

the modeller. This is represented in the choice model by the sum of two components: a
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deterministic component, Vni; known by the modeller and represented by a function of the

vector of attributes of the alternative, and a random component eni; that represents the

analyst’s inability to appreciate all attributes and variations in tastes that govern the actual

behaviour of individuals, as well as errors in measurement and imperfections in the

information available. Therefore, the indirect utility function is as follows:

Uni ¼ Vni þ eni ð1Þ
Within the RUM approach, one of the most frequently used models is the Multinomial

Logit (MNL) (McFadden 1974). The MNL model, assumes that the random component eni

follows an identical and independent (iid) Gumbel distribution, offering a closed form for

the choice probabilities. The MNL probability that individual n, chooses alternative i
within the set of alternatives available, denoted by Cn; is given by

Pni ¼
elVni

P

j2Cn

elVnj
ð2Þ

where l is the scale parameter of the Gumbel distribution.

The Constrained Multinomial Logit (CMNL) model is proposed by Martı́nez et al.

(2009) as a generalization of the above formulation that combines, in a one-stage model, a

traditional compensatory deterministic component (called V) plus a non-compensatory

component; this is termed a semi-compensatory approach. The non-compensatory com-

ponent is activated when one or more attributes of the relevant choice alternative approach

their respective threshold values. In this model, the utility function is defined as

UniðxiÞ ¼ VniðxiÞ þ
1

l
ln /niðxiÞð Þ þ eni ð3Þ

where xi is the vector of attributes of alternative i, and /ni is a deterministic penalization

function or cut-off for alternative i. An attribute cut-off is the minimum/maximum

acceptable level that an individual sets for an attribute. In Martı́nez et al. (2009) this utility

function is not derived from a theoretical argument; instead, the inclusion of a cut-off

factor and its functional form is instrumental, and several convenient features for mod-

elling purposes justify the specific formulation given above. We also remark, following

Swait (2001), that making different assumptions on the stochastic term in Eq. (3) would

lead to a family of extreme value models with cut-off, including Nested Logit, Mixed Logit

and other discrete choice models. The analysis that follows is developed for the iid Gumbel

case, but it can be extended to a wider family of constrained models.

Multiple constraints are allowed in the CMNL model, allowing for upper and lower

bounds on one or more attributes. For that purpose and assuming that elementary cut-offs

are independent both within and between constraints, the aggregated cut-off is defined by

the multiplication of the set of upper restrictions, /U
nik; and lower restrictions, /L

nik, on the

corresponding attribute, k, as follows:

/ni ¼
YK

k¼1

/L
nik � /U

nik ð4Þ

Each elementary cut-off in Eq. (4) is defined as a binomial Logit on a given attribute k
and alternative i, thus representing a ‘‘soft’’ restriction, meaning that it may be trespassed

by the decision-maker at the cost of a penalization in the utility function. The elementary

cut-offs on attribute k for individual n on alternative i are:
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/U
nik ¼

1

1þ exp xk xik � bnk þ qkð Þ½ � ð5Þ

/L
nik ¼

1

1þ exp xk ank � xik þ qkð Þ½ � ð6Þ

where bnk and ank are the upper and lower bounds, respectively, that restrict the choice; xk is

the scale parameter of the binomial Logit xk [ 0ð Þ; qk is a position parameter defined below

and xik is the value of the restricted attribute for the corresponding choice. For notation

simplicity, we have omitted the superscript U and L in the upper and lower bound for the scale

and position parameters, x and q. We note that the binomial Logit model [Eqs. (5), (6)]

cannot completely eliminate the choice probability when a constrained attribute is beyond its

bounds. Instead, the CMNL model considers a soft constraint imposing a limit on the proba-

bility of violating the bounds, which is expressed by an implicit condition /nikðankÞ ¼ gk

(similarly for the upper bound), with a model parameter gk 2 ð0; 1Þ: This condition is

equivalently and more conveniently expressed by the definition of a position parameter qk as:

qk ¼
1

xk
ln

1� gk

gk

� �

ð7Þ

As stated above, both parameters ðq; gÞ may be different for the upper and lower

bounds.1

Note that the elementary binomial Logit cut-offs defined by Eqs. (5) and (6) and the

composite cut-off defined by Eqn. (4) belong to (0,1); if the constrained attribute takes

values beyond the upper or lower bounds, then /� g; 0ð Þ and utilities decrease by factor

ln(/ni) in Eq. (3); consequently, the choice probability of alternative i vanishes. For

realistic values of attributes, i.e., x� j1j; the cut-off does not reproduce a deterministic

behaviour, that is, /niðxÞ 6¼ f0; 1g:
Figure 1 shows the behaviour of the upper cut-off function with xk and gk for the

particular case of a linear utility function V. Observe that ln(/ni) approximates a bilinear

function, similar to Swait (2001) linear penalization term, but instead of having a kink at

the threshold (point bnk - xnk = 0 in the figure), the CMNL cut-off is differentiable at that

point. The functional form defined for the cut-off reaches its maximum /nik� 1ð Þ when the
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Fig. 1 Penalization of the utility function

1 Empirical evidence shows that, although cutoffs are part of the decision-making process, some individuals
chose alternatives that are outside their feasible domain (see Huber and Klein 1991). This effect is allowed
in the CMNL by the introduction of the parameter g.
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attribute moves away from the bound towards the interior of the feasible domain; con-

versely, when the value of the constrained attribute exceeds the threshold, the cut-off value

tends to zero, penalizing the utility function in a non-linear way. Therefore, /nik may be

understood as the probability that individuals consider alternative i within their choice sets.

By assuming that the random component in the utility function follows an iid Gumbel

distribution, the choice probability of alternative i is as follows:

Pni ¼
exp lVni þ ln /nið Þ

P
j2C0n

exp lVnj þ ln /nj

� � ¼ /ni exp lVnið Þ
P

jeC0n
/nj exp lVnj

� � ð8aÞ

which is a closed functional form similar to that of the MNL. This form differs, however,

on the set of alternatives C0n; which is individual specific only due to unfeasible options

(like no car in the house); otherwise considers all alternatives. It is also convenient to write

the probability as:

Pni ¼
1

1þ
P

j 6¼i2C0n
exp l Vnj � Vni

� �
þ lnð/nj=/niÞ

� � ð8bÞ

This expression highlights that choice probabilities depend on the difference between

utilities and the ratio between cut-offs. The dependence on utilities differences is relevant

for the identification of parameters, just like in the case of the MNL model. The depen-

dence on the cut-offs ratio is relevant when the cut-offs tend to zero, because their loga-

rithm is undefined but their ratio may be defined. Identification considerations are

discussed in detail in ‘‘Estimation method’’ section.

One property of Eq. (8a), highlighted by Martı́nez et al. (2009), is that in equilibrium it

preserves the convenient convergence properties of the MNL model under choice exter-

nalities or consumer interactions such as congestion or mutual attraction between con-

sumers. In this case, the utility function contains endogenous attributes that depend on

other consumers’ choices, either in the compensatory part or in the cut-off of the utility

function; thus, a fixed-point problem is generated to predict demand. The authors prove

that this fixed-point problem under the CMNL model has a unique solution and that the

fixed-point iteration algorithm converges to that solution. This property, highly useful in

forecasting equilibrium, is not proven to exist by Cascetta and Papola (2001) and Swait

(2001) in their respective models; hence, the performance of these models in finding stable

equilibrium is unknown.

The cut-off function may be defined for an exogenous constraint, where ank and bnk are

known by the modeller, as well as for endogenous thresholds self-imposed by the choice

maker, where these parameters are unknown. For the latter case, we discuss below whether

these parameters can be identified in the estimation process. To simplify the analysis, in

what follows only upper bounds, bnk, will be imposed on the attributes because they are

most commonly found in transportation studies (for example, time and cost upper bounds).

Estimation method

The method proposed for the estimation of the CMNL model is the maximum likelihood

method. The likelihood of each observation is built considering the probability function of

Eq. (8a). The parameter estimates are determined from the solution of the following

maximum likelihood problem:
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max L hn; xk; qk; bnkð Þ ¼
Y

n

Y

i

Pdni
ni ð9Þ

where dni ¼ 1 if individual n chooses alternative i, 0 if not, Pni is the probability of Eq.

(8a), and hn is the vector of parameters of the compensatory utility function such that

hn ¼ hnk 2 <; k ¼ 1. . .Kð Þ: Hereafter, for simplicity in the exposition, utility is assumed to

be linear in attributes x: Vni ¼ hn0 þ
P

k

hnk � xik: We use the logarithm of Eq. (9), i.e.

l = ln(L), to simplify calculations and we consider only upper bounds for simplicity. It is

worth noting that Eq. (9) assumes endogenous bounds, b, although it can be simplified by

assuming exogenous bounds. More generally, the estimation problem could combine both

types of bounds in the same choice problem.

The first-order conditions (FOC) of Eq. (9) for each hn; xk; bnk and qk parameters are

the following:

hnk
ol

ohnk
¼
X

n

X

i

dni � xik �
X

j

Pnj � xjk

 !

¼ 0 ð10Þ

Only for endogenous bnk
ol

obnk
¼ �

X

i

dni � /nik �
X

j

/njk � Pnj

 !

¼ 0 ð11Þ

qk

ol

oqk

¼
X

n

X

i

dni � /nik �
X

j

/nik � Pnj

 !

¼ 0 ð12Þ

xk
ol

oxk
¼
X

n

X

i

dni � Unik �
X

j

Unik � Pnj

 !

¼ 0 ð13Þ

with /nik ¼ 1� /nik as the constraint compliance probability and Unik ¼ 1� /nikð Þ �
xnik � bnikð Þ as the expected magnitude of the constraint compliance.

These FOC have interpretations that are consistent with the theory on which the CMNL

model is founded. Equation (10) verifies the FOC for the MNL model in the linear utility

case,2 and the alternative specific constants, hn0, reproduce the market shares in the esti-

mation sample; as in the MNL model, all but one of them are identifiable. The rest of the

parameters guarantee that the expected (predicted) average values of attributes are equal to

the average values observed in the sample. As in the case of MNL, the scale parameter, l,

is not identifiable but this fact does not affect the cut-off parameters. Equation (11) states

that the estimation of parameters, bnk, guarantee that the predicted and observed compli-

ance of each constraint matches for each cluster of individuals. Equation (12) is similar but

aggregated across the whole population; hence, it is redundant if Eq. (11) holds for all n,

although it is relevant for exogenous bounds when (11) does not hold. It is important to

underline here an identification problem that may arise to estimate bnk and qk when bounds

are endogenous; under exogenous constraints, qk can always be identified. In Eq. (13), Unik

represents the expected magnitude of the violation of bounds, the estimate of x imposes

that the predicted magnitude of the constraint violations matches with that observed in the

data. It is worth noting that when attribute k is in the compensatory domain, then /nik = 1

and Unik ¼ 0; which implies that the relevant information to estimate parameter xk comes

2 Equation (10) can be extended to the nonlinear utility functions directly. Equations (11)–(13) are valid for
any compensatory utility function.
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from observations near the threshold. From these conditions it can be seen that the CMNL

model is a generalization of the MNL because, if the individuals present a pure com-

pensatory behaviour, the cut-off parameters are irrelevant, and the FOCs of the MNL

model are recovered.

Note that, as in the MNL model, the scale parameter, l, cannot be identified, so we

estimate lVniðxiÞ þ ln /niðxiÞð Þ, where ln /niðxiÞ ¼ � ln½1þ exp xkðxik � bnk þ qkÞ�. We

also note that ln /niðxiÞ is close to a bilinear form, as depicted in Fig. 1, approximated by

ln /niðxi ! bnkÞ � �xkðxik � bnk þ qkÞ. The quasi-bilinear form of the cut-off combined

with the linear compensatory utility induces a potential correlation problem between the

parameters hnk and xk, both associated with the restricted attribute, xik; this problem will

occur if an attribute is present both in the compensatory component and the cut-off of the

utility function. In this case an approach to identify parameters is to partition the sample

between observations subject to compensatory behaviour and those affected by constraints.

We propose a partitioning approach in ‘‘Empirical analysis and results’’ section.

When the bounds are endogenous variables, such as, for example, thresholds on walking

time or travel time in a mode choice, only a combined parameter, eqnk ¼ qk � bnk; can be

identified in addition to xk. This observation has practical importance because it implies

that, when it is convenient, the CMNL model can be estimated assuming endogenous

bounds, thus eliminating the need to provide exogenous parameters to the model.

When the bounds are exogenous, for example when income is observed, then both bnk

and ank are known, and qnk and xk can be estimated in addition to the hn parameters in the

compensatory part. In this case, all parameters are identifiable and, since the proportion of

people violating the restriction can be obtained directly from the database, qk � xk can be

obtained from Eq. (7); it follows that only the parameter xk needs to be estimated.

Empirical analysis and results

Estimation with synthetic data

To evaluate the estimation of the CMNL model, we used the simulation method suggested

by Williams and de Ortúzar (1982), also applied by Munizaga et al. (2000). The idea of this

method is to test the model in a controlled situation, where the choice process and all the

parameters are known. This method allows for testing whether the model parameters are

well recovered when using a database obtained from known choice rules. It also helps to

check if the model recognizes the correct behaviour with and without constraints. Finally,

the prediction capabilities can also be checked: parameters should be recovered if the

model is correctly specified and not subject to any identification problems; conversely, in

over specified models parameters should not be identifiable.

We generated a dataset assuming a behaviour by which individuals make their choices

following a compensatory utility function, but they penalize some attributes after certain

thresholds, just as the CMNL assumes. Mode choice data was generated for four hypo-

thetical alternatives: Car, Bus, Shared-Taxi and Metro, with a utility function that

depended on four attributes: Travel Time, Walking Time, Waiting Time and Cost, simu-

lating the choices of 10,000 individuals. The attributes of each mode were generated as

normal variables with fixed means and variances. Given the number of observations, there

is no need to make several repetitions of the simulation experiments for each particular

case (the results won’t be different).
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The iid Gumbel terms were generated with a variance such that the scale factor, l,

equals one. The following linear utility function was evaluated for each alternative i and

observation n:

Uni ¼
X

k

hk � xik þ ln /nið Þ þ eni ð14Þ

The parameters used to simulate the data are reported in Table 1.

Finally, the choice of each individual is computed as the alternative that yields the

simulated maximum utility. In this process, the values of the attributes and the choice

parameters presented in Table 1 were carefully chosen to represent a real choice situation,

but also to have an adequate balance between the deterministic and random components.

This is important because a purely deterministic or a purely random experiment would not

allow for the estimation of a random utility (CMNL or MNL) model. For these experi-

ments, a homogenous population of individuals is assumed; therefore, a single set of

parameters was considered for the entire sample.

In Table 2, we present results for a case in which travel time (tt) was penalized. The

model was estimated assuming an exogenous bound, according to Eq. (15), and an

endogenous bound, as shown in Eq. (16). As mentioned above, in the case of an endog-

enous bound, xtt, btt and qtt cannot be separately identified; therefore, an aggregate

Btt = xtt � (-btt ? qtt) parameter is estimated instead. Note that in this case gtt can be

directly calculated from the dataset as the percentage of observations in which the con-

straint is violated, which defines qtt according to Eq. (7).

Exogenous Bound Ui ¼
X

k

hk � xik � ln 1þ exp xtt � ðttik � btt þ qttÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Known by the modeler

0

B
@

1

C
A

2

6
4

3

7
5 ð15Þ

Exogenous Bound Ui ¼
X

k

hk � xik � ln 1þ exp xtt � ttik þ xtt � ð�btt þ qttÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Btt

0

B
@

1

C
A

2

6
4

3

7
5

ð16Þ
The estimation results show that in both cases, endogenous and exogenous bounds, the

scale parameter of the penalization term, xtt, is correctly estimated. The parameters esti-

mation is analysed in terms of the t test, checking whether the parameters are significantly

different from zero and whether they are significantly different from the known design

value. All parameters’ estimates are significantly different from zero (t0 [ 1.96), and none

Table 1 Statistical description of the simulated database

Explanatory variables
Mean (standard deviation)

Parameters

Car Shared taxi Bus Metro hk

Travel time (min) 16.6 (5.7) 15.7 (4.9) 24.0 (6.7) 9.6 (3.4) -0.08

Walking time (min) 5.4 (2.8) 7.0 (3.1) 7.0 (3.1) 10.6 (5.1) -0.16

Waiting time (min) – 1.1 (0.5) 1.6 (0.8) 1.3 (0.1) -0.24

Cost (Chilean$) 52.6 (31.7) 41.4 (6.8) 24.3 (4.4) 23.2 (0.4) -0.05

Mode constants 0.3 1.0 0.0 -0.5
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of them is significantly different from the corresponding design values used to generate the

data (see [td] \ 1.96). Comparing the results of both cases, parameters are not significantly

different and the slight difference in log-likelihood is not surprising, as the model with an

exogenous bound has been fed with the true (design) value of the bound. This basically

proves that the CMNL model is capable of capturing the true parameters, in a case where

the ‘‘real’’ behaviour is constrained.

We also studied what would happen if we used an incorrect model regarding the

simulated behaviour. For that purpose, we generated an additional database using a

compensatory utility function (MNL database), and estimated the parameters from a

CMNL model. The results, presented in Table 3, show that for all parameters in the

compensatory function the true value lye within the estimated confidence interval, even

though the cost parameter is in the lower limit of its rather large confidence interval. On the

other hand, the parameters associated with the cut-off were not statistically significant.

These results are not surprising, given the fact that the simulated behaviour is indeed

compensatory. However, the merit of these results is that they show that a modeller with no

clue about the behaviour of the decision-makers, can assume a constrained behaviour and

calibrate a CMNL model and the resulting parameters should indicate whether the

behaviour is compensatory or not.

Then we proceeded inversely: using a database generated assuming a constrained

behaviour (CMNL database) we estimated a MNL model. Two different databases were

used, one generated with bounds on travel costs and the other on travel times. The results

of these experiments are shown in Table 4. It can be seen that the MNL model only

recovers the parameters of non-penalized variables, and also that the model fit is signifi-

cantly worse than that of the correct CMNL model. The values of the likelihood ratio test

show that in this case the modeller would clearly choose the CMNL specification. This

again suggests that it is safe to try the CMNL specification, because if the behaviour

captured with the data is indeed constrained, the CMNL model should appear superior,

while if it is not, the model should be not significantly better than the MNL.

Table 2 Estimation of CMNL model for synthetic data with penalization in travel time

Parameters Estimate (t0) [td]

Variable Design values Exogenous bound Endogenous bound

Mode constants

Car 0.30 0.41 (3.9) [1.1] 0.411 (4.0) [1.1]

Shared taxi 1.00 1.01 (13.5) [0.1] 1.01 (14.0) [0.1]

Metro -0.50 -0.50 (-7.0) [-0.1] -0.52 (-7.2) [-0.2]

Utility function variables

Travel time -0.08 -0.088 (-12.5) [-1.2] -0.076 (-6.4) [0.3]

Walk time -0.16 -0.16 (-34.0) [-0.6] -0.16 (-32.6) [-0.8]

Wait time -0.24 -0.21 (-4.5) [0.6] -0.21 (-4.8) [0.6]

Cost -0.05 -0.051 (-38.6) [-0.5] -0.051 (-36.8) [-0.7]

Cut off parameters

Scale xk (travel time) 0.70 0.70 (45.4) [0.0] 0.71 (41.2) [0.6]

Bound b (travel time) -9.18 – -9.17 (-29.0) [0.0]

Log—likelihood -5886.52 -5885.66
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To estimate the potential error of not considering constrained behaviour when it is

present in reality, we conducted a prediction analysis. This is necessary because it might

argue that even though the parameters are different, the MNL model could somehow

compensate and predict correctly. Therefore, we tested several policy scenarios where the

penalized attribute value changes. The predictions of both models were compared with the

real (simulated) behaviour to calculate the following v2 error index (see Munizaga et al.

2000), originally proposed by Gunn and Bates (1982) to take into account the relative

magnitude of the observations: v2 ¼
P

i

bNi�Ni

� �2

Ni
; where and bNi and Ni are the model

estimate and actual (simulated) the number of individuals choosing option i. The results are

summarized in Table 5, where values above 7.81 imply significant differences between the

prediction and the simulated behaviour.

The results in Table 5 are for constrained travel time and cost on different modes (one

column for each mode) predicted with the corresponding model on each case. As expected,

the CMNL model predictions are generally correct, i.e. they present a v2 error index bellow

7.81, and the MNL model fails to reproduce changes of behaviour in the majority of cases.

The larger errors are concentrated in the cases of 50 % cost reduction of shared taxi, bus

and metro, and travel time reduction of the same percentage for metro. These results are

valid for this case, and we don’t have a general explanation of them. However, regarding

the concentration of errors in specific policies and modes, there might be a relation

between thresholds and potential biases of the MNL predictions.

In summary, these tests using simulated data indicate that the CMNL model captures

correctly the constrained behaviour when it is present and would lead the modeller to a

MNL when there are not active constrains. Also, we have shown that MNL predictions

could be severely biased when constrained behaviour is present and it is not considered in

the model.

Table 3 Estimation of MNL and CMNL models with choices generated MNL

Parameters Estimate (t0) [Confidence interval]

Variable Design values MNL CMNL

Mode constants

Car 0.30 0.26 (4.6) [0.15; 0.37] 0.26 (4.7) [0.15; 0.37]

Shared taxi 1.00 0.95 (20.4) [0.86; 1.04] 0.95 (23.4) [0.86; 1.03]

Metro -0.50 -0.53 (-11.0) [-0.62; -0.43] -0.53 (-12.7) [-0.61; -0.44]

Utility function variables

Travel time -0.08 -0.0808 (-30.9) [-0.09; -0.08] -0.0808 (-34.2) [-0.09; -0.08]

Walk time -0.16 -0.1584 (-30.9) [-0.17; -0.15] -0.1584 (-42.0) [-0.17; -0.15]

Wait time -0.24 -0.2815 (-10.3) [-0.33; -0.23] -0.2815 (-10.5) [-0.33; -0.23]

Cost -0.05 -0.0514 (-45.8) [-0.05; -0.05] 1.7053 (1.9) [-0.05; 3.76]

Cut off parameters

xk (Cost) – – 1.76 (1.1) [-1.28;4.79]

xk (qk - bnk) – – 4.14 (0.6) [-8.91;17.19]

Log—likelihood -1090.81 -1089.81

Likelihood ratio test (MNL) 2.0

vlim
2 3.84
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Estimation with real data

The estimation of the CMNL with real data needs to overcome the identification problem

found in ‘‘Estimation method’’ section , which arises when the variable is subject to a

threshold but it is also included in the compensatory utility. In this paper we propose and

test the following approach: define an endogenous method to partition the sample between

compensatory and constrained behaviour and estimate the each set of parameters using the

corresponding subset of data. The novelty here is the endogenous partition, which differs

from previous approaches that circumvent the partition problem by adding exogenous

information, e.g. exogenous partition by analysing the data or use stated preference data to

identify thresholds (Swait 2001).

We used the Las Condes–Downtown database (Donoso 1982), recognized as a good

quality source of revealed preferences data previously used in several studies. The database

contains a detailed description of the available alternatives for each individual (cost, travel

time, and walking time, among others), several socio-demographic variables to charac-

terize the individual (income, gender, and working hours, among others), and the option

chosen. The average values of the explanatory variables are described in Table 6. A

potential drawback of this data set is the exogenous definition of the choice set and that the

level of service variables are only available for the alternatives belonging to the choice set

of each individual. This is a limitation on the quality of the test we carried out.

Exogenous partition approach

Prior to estimating the CMNL model, we conducted a statistical analysis to identify

attributes that may be subject to a non-compensatory behaviour, thus determining likely

Table 5 Predictions comparisons under different policy scenarios

[%] Car Shared taxi Bus Metro

MNL CMNL MNL CMNL MNL CMNL MNL CMNL
v2 index v2 index v2 index v2 index v2 index v2 index v2 index v2 index

Travel time variation

-50 35.0 6.9 45.3 0.1 236.6 0.5 922.1 1.4

-20 5.4 2.5 22.9 0.5 15.3 0.3 89.2 0.8

20 57.3 3.8 12.0 0.2 1.4 0.1 28.4 1.3

50 27.4 1.9 35.4 0.3 3.8 0.4 32.7 1.8

100 21.5 1.0 48.6 0.8 0.5 0.0 9.5 1.9

150 10.4 0.3 33.5 0.7 1.2 0.7 2.0 1.7

200 11.4 0.3 20.8 0.8 1.4 0.5 1.7 1.5

Cost variation

-50 0.8 0.2 682.0 1.4 677.4 6.4 646.7 11.7

-20 0.2 0.2 31.1 1.3 1.6 2.4 14.5 7.1

20 0.5 0.5 4.4 0.6 17.6 2.1 88.3 2.4

50 0.3 0.4 3.9 0.4 41.9 2.3 362.5 0.8

100 0.4 0.2 0.3 0.7 22.4 1.9 335.1 0.2

150 0.4 0.3 0.1 0.1 13.8 1.7 8.1 0.2

200 0.6 0.5 0.1 0.1 8.7 1.6 8.1 0.2

Choices simulated with CMNL
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ranges for the relevant bounds, shown as ranges btt for travel and bwt for waiting time in

Fig. 2. In both cases, there is a clear slope change at a certain point, indicating a possible

threshold effect and the likely range for the bound.

A preliminary study about the performance this exogenous partition method is shown in

Fig. 3. The log-likelihood of models with the same specification of utility (see Table 4)

and a cutoff on walking time is presented for different partitions of the sample given by

parameter d% and for several exogenous values of bounds, bnk, selected from Fig. 2. The

sample is ordered for increasing values of walking time and d is the percentage of the

sample assumed not affected by the threshold. Therefore, d = 0 is equivalent to estimating

the original CMNL model without partition and with identification problems, while

d = 100 represents the MNL model and xk = 0. Figure 3a shows that for partition

d between 0 and 15 the CMNL performs better than the MNL, independently of the

exogenous bound chosen, and for all bounds the best likelihood is obtained at the same

d point (approximately at d = 10). Figure 3b shows that the scale parameter is sensitive to

d and b. Hence we conclude that the partition affects both the log-likelihood and the

(b) (a) 

Fig. 2 Level of service variables, cumulative histograms

Table 6 Las Condes–Centro sample description

Mode %
Chosen

%
Available

Mean (standard deviation)

Travel time
(min)

Walking time
(min)

Waiting time
(min)

Cost (Ch$)

Car-driver 17.9 66.6 15.0 (4.5) 5.5 (4.0) – 88.6 (49.9)

Car-companion 5.9 73.7 14.6 (4.6) 5.8 (4.0) – 15.6 (6.8)

Shared taxi 6.6 90.4 15.5 (5.2) 6.5 (3.5) 0.6 (0.3) 55.4 (5.9)

Metro 17.8 22.5 9.5 (3.4) 10.2 (5.3) 1.3 (0.0) 13.2 (0.4)

Bus 15.5 98.0 27.8 (8.2) 6.6 (3.3) 1.2 (0.9) 19.5 (1.1)

Car driver—
metro

16.1 60.0 17.5 (3.6) 5.4 (2.5) 1.3 (0.0) 46.7 (20.7)

Car comp.—
metro

5.6 67.9 24.2 (7.3) 5.3 (2.5) 1.3 (0.0) 13.7 (0.6)

Shared taxi—
metro

3.6 69.9 17.1 (4.2) 7.6 (3.6) 2.0 (0.3) 45.2 (8.4)

Bus—metro 11.0 73.3 20.0 (5.3) 7.7 (3.6) 2.3 (0.8) 32.4 (1.2)

Sample size: 697 observations
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estimated xk. Therefore, how to select the partition is a relevant question. In this particular

application, the maximum likelihood was found at a very small d, which implies that 90 %

the observations are affected by the walking time threshold. This is not a general result, as

different maximum likelihood partitions were found in other cases not reported here.

Additionally, we empirically verified that there is no relevant correlation between

parameters in this partitioned version of the model, thus the partition method comply with

the objectives.

Additionally, to complement this empirical analysis, and given the complexity of the

model CMNL model (Fig. 1), we also studied the alternative of estimating the approxi-

mated model that linearly penalizes the attributes, in line with the formulation of Swait

(2001). Swait’s model is shown in Eq. (17), where bnk is the parameter that accompanies

the penalized attribute k in the partition of the domain defined by g (equal to 0 if xik belongs

to the partition d% affected by the cut-off; 1 otherwise):

Uni ¼
X

l

hnlxil þ ð1� gÞbnkxik ð17Þ

Notice that this bilinear model can be seen as a linear approximation of Eqs. (15) and (16),

as shown in Fig. 1. The results using the Las Condes–Downtown database show that the log-

likelihood of the CMNL model for all values of g is always larger than that of the MNL model

and Swait’s model. Therefore, we conclude that the partitioned estimation method allows

estimating the penalization parameters and shows a better fit than simpler models, such as the

MNL and the bilinear Swait’s model. Moreover, despite the similarity between the CMNL

and the bilinear models (Fig. 1), the difference in likelihood is significant.

Endogenous partition approach

In this section we develop and analyze a method to estimate the CMNL model without an

ex-ante exogenous partition of the sample. The idea is to replace the costly and inaccurate

inspection methodology depicted in Fig. 3 by an optimization procedure able to identify

the partition of the sample that yields the maximum likelihood. For that end we redefine the

utility function in Eqs. (15) and (16) as:

Uni ¼
X

k

hnk � xik þ ð1� gnikÞ � ln /nik½ � ð18Þ
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where the g is defined as a continuous and differentiable partition factor gnik ¼ 1
1þexik�bnk�sk

which penalizes each attribute xk. The new position parameter sk defines at what point of

the attribute’s value the observations switch from compensatory to non-compensatory

behaviour, which is identified simultaneously with all other parameters. The roles of d in

Eq. (9) and factor g in Eq. (18) can be understood as similar and complementary: while the

former assigns individuals’ observations to choices, the latter assigns choices to a specific

utility function.

The estimation for the Las Condes–Downtown database, was performed considering

walking and travel times constrained by thresholds common to all individuals. The best

model obtained, considering that xk must be nonnegative and taking into account the

significance of the estimators, is presented in Table 7. In the CMNL specification walking

time is subject to a threshold of b ¼ 5 min and q ¼ 3; 42 min. All variables in the com-

pensatory utility are specified in linear form, and their parameters are not significantly

different than those of the MNL, except for the constrained variable (walking time).

We also explored the effect of adding nonlinear terms on walking time in the com-

pensatory utility. In this case, the threshold parameters become non significant. This was

tested for several non-linear exponents. These exercises suggest that the nonlinear term

competes with the cut-off, making both models potentially similar. However, there is an

advantage on using the CMNL model in predicting demand, because it provides a model of

the feasible choice set for scenarios with different thresholds, while the MNL with non-

linear terms ignores the existence of such thresholds.

Table 7 Endogenously parti-
tioned CMNL with walking time
threshold

Las Condes–Downtown
database: morning trip to work

Number of cases 697

Variables MNL CMNL

Mode constants

Car-driver -2.01 (-4.4) -2.11 (-4.8)

Car-companion -2.12 (-6.2) -2.18 (-6.6)

Shared taxi -1.44 (-4.7) -1.45 (-4.9)

Metro 2.44 (7.2) 2.27 (6.8)

Car driver—metro -1.91 (-4.6) -1.97 (-5.0)

Car companion—metro -1.27 (-5.1) -1.27 (-5.3)

Shared taxi—metro -1.69 (-5.1) -1.72 (-5.4)

Bus—metro -0.43 (-1.6) -0.45 (-1.8)

Utility function variables

# cars/# driving licenses 2.24 (5.3) 2.25 (5.5)

Gender (1:female, 0:male) -0.31 (-1.4) -0.30 (-1.4)

Travel time [min] -0.0846 (-4.8) -0.0836 (-4.9)

Walking time [min] -0.1620 (-8.4) -0.3243 (-7.3)

Waiting time [min] -0.2435 (-2.1) -0.2263 (-2.1)

Cost/wage rate -0.0061 (-4.1) -0.0056 (-3.8)

Cut off parameters

x(walking time) 0.2342 (3.6)

s(walking time) 1.4230 (1.5)

Log likelihood -943.9 -940.6

Likelihood ratio test 6.6

v2
lim

3.84
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In Fig. 4 we present the elasticities and subjective values of time (SVT) for the models

presented in Table 7. We observe that the elasticities perform similarly up to 5 min of

walking time, beyond that threshold the estimates are significantly different. The SVT are

constant up to the 5 min walking time threshold but different between CMNL and MNL

and, as expected, the gap between MNL and CMNL increases with the walking time. These

results highlight the potential negative repercussions for both model forecasting perfor-

mance and policy evaluation when assuming that individuals follow a compensatory

behaviour.

Conclusions and final comments

The CMNL model is a generalization of the MNL model that has a more complex prob-

ability formulation; this generalization can be extended to the family of Logit models

(nested, Mixed, etc.). Using a non-linear function, it includes the possibility of penalizing

the utility of alternatives not available or discarded by the decision maker because the

value of one or more attributes (or indeed a function of the attributes) approaches or

exceeds a threshold. This paper has confirmed that, despite the augmented complexity, it is

feasible to implement the CMNL model by estimating the parameters using the maximum

likelihood method. The first-order conditions are consistent with the models’ underpinning

theory of behaviour, that is, they reproduce the MNL conditions within the domain of the

variables, while at the edge (near the threshold) they define new conditions, allowing for

the estimation of the parameters associated with the penalization.

It has been shown that the CMNL model is capable of making reliable predictions. In

the case of real data, we found statistically significant evidence of threshold effects, where

the CMNL model fits the data better than the MNL model. Additionally, we found that the

CMNL predictions are different from those of the MNL model when behaviour is con-

strained. The modeller faces the a priori question of which variables are subject to

thresholds. From our results, the modeller could assume thresholds for all variables, or

proceed with a stepwise approach adding cut-offs one by one. In both cases, the likelihood

ratio test will help finding the best specification.

We have observed that the parameters of the restricted variables in the model may,

under certain circumstances, present an identification problem, due to the correlation with

(a) Elasticities (b) Subjective value of walking time 

Fig. 4 Elasticities and subjective values of time walking time constrained model
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their corresponding parameters in the compensatory component of the utility function. This

problem does not always appear, as shown in the simulation analysis. We proposed a

method to deal with this identification problem without requiring an a priori assumption

regarding the data. The method consists in the endogenous partition of the attributes

domain into two sub-domains defined by a critical value: an interior in which behaviour is

assumed to be compensatory (trade-off between attributes) and the edge of the domain

where the cut-off applies; thus, in each domain, an appropriate utility function applies. The

method estimates the compensatory and the cut-off parameters, identifying the best par-

tition by maximum likelihood.

The CMNL model belongs to a family of non-linear utility Logit models. Although all

of them might be considered as alternatives to model constrained behaviour, we note that

the CMNL model allows the modeller to specify the utility function as composed by two

distinctive terms, which introduces the flexibility to differentiate between the compensa-

tory and the restrained behaviour in the corresponding sub-domains. This offers the

advantage that the cut-off term vanishes in the compensatory sub-domain, thus not

affecting the utility function in that domain. Moreover, the CMNL model can further

differentiate the utility function for cases of several attributes subject to thresholds by

simply specifying the corresponding cut-off functions.

Finally, we conclude that both theoretically and empirically, the CMNL model does

reproduce the MNL model, while the inverse does not hold. This means that the modeller

may assume a non-compensatory behaviour and estimate a CMNL model, and the results

will let her/him know whether the assumption is supported by the data; if not, the estimated

parameters are the MNL model parameters. Moreover, the CMNL model provides a

straightforward method for modelling the choice-set availability without imposing arbi-

trary rules, and we have shown that this model is also easy to implement. Additionally, we

have shown that the estimation of the subjective value of time varies significantly from the

compensatory assumption of the behaviour of the MNL model to the constrained behaviour

of the CMNL specification; even in the compensatory domain, the former underestimates

the results of the latter.

All the conclusions obtained have a more significant impact on demand forecasting in

contexts in which behaviour is subject to constraints: the tighter the domain and the more

constraints, the larger the impact, which is a more common case in developing countries.
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