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Abstract
In this article we study the existence and asymptotic profiles of high-energy
rotation type solutions of the singularly perturbed forced pendulum equation

ε2u′′
ε + sin uε = ε2α(t)uε in (−L, L).

We prove that the asymptotic profile of these solutions is described in terms
of an energy function which satisfy an integro-differential equation. Also we
show that given a suitable energy function E satisfying the integro-differential
equation, a family of solutions of the pendulum equation above exists having
E as the asymptotic profile, when ε → 0.

Mathematics Subject Classification: 34D15, 34B15, 35B25

(Some figures may appear in colour only in the online journal)

1. Introduction

In this article we will study the following equation describing the motion of a singularly
perturbed pendulum with external forcing

ε2u′′
ε + sin uε = ε2α(t)uε in (−L, L), (1.1)

where the function uε stands for the angle of the pendulum and the external forcing is of the
form ε2α(t)uε, which is not 2π -periodic. For the coefficient α(t) : [−L, L] → R we assume
from now on that it satisfies

α(t) ∈ C2([−L, L], R). (1.2)
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We will say that the solution uε has one positive (negative respectively) rotation in the
time interval [t, s], if for t < s we have uε(t) = 2Nπ , uε(s) = 2(N + 1)π (2(N − 1)π

respectively), with N ∈ Z, and uε(τ ) /∈ 2πZ for all τ ∈ (t, s). The type of solutions that we
study rotate Nε times in the interval (−L, L), that is there exists t0 < · · · < tNε

∈ (−L, L)

such that uε has one rotation in each interval [ti−1, ti] for i = 1, ..., Nε, and uε(t) /∈ 2πZ for
all t ∈ [−L, L] \ [t0, tNε

].
We are interested in the case where the number of rotations Nε satisfies 2πεNε → R

as ε → 0. Since each time that uε rotates it increases by 2π (or decreases by 2π ) we will
be dealing with solutions of (1.1) which are of order of ε−1 as ε → 0. More precisely, the
solutions that we construct satisfy the followings bounds

uε(t) ∈ [R1/ε, R2/ε], with 0 < R1 < R2 (1.3)

for all t ∈ [−L, L]. We observe that as a consequence of (1.3), the forcing term in (1.1) turns
out to be O(ε).

There is a large amount of works concerning the pendulum equation, see for instance
the review of Mawhin [6]. In particular, concerning solutions having a prescribed number
of rotations, we have the earlier work of Wiggins [8], and the articles of Hastings and
McLeod [4, 5], in which solutions having a prescribed number of rotations (clockwise or
counterclockwise) of a pendulum equation similar to (1.1) are constructed. It is important
to note that in these papers the rotations are prescribed in a sequence of integers which is
independent of ε > 0, even though the solutions constructed may have infinitely many rotations
in R, in each fixed time interval the number is finite and independent of ε. It may be further
noted that the solutions constructed in [4, 5] are close to heteroclinic solutions of the pendulum
equation and that the rotation occurs at certain points that depend on the forcing.

The solutions that we construct in this article exhibit clusters, each of which has a number
of rotations of the order of O(ε−1). Moreover, as ε → 0 the set of rotation points {t0, ..., tNε

}
described above become dense in subintervals of (−L, L), thus clusters accumulate in open
sets of R rather than points.

In order to provide a precise description of our rotation type solutions we introduce the
approximate energy function:

Eε(t) = 1

2
(εu′

ε)
2 − (cos uε + 1). (1.4)

The role of Eε is made clear once we consider the rescaled version of (1.1). Set tε ∈ (−L, L)

such that uε(tε) = 2πnε. Except possibly for a subsequence, we have that εuε(tε) → R0 with
R0 > 0 and tε → t0 ∈ (−L, L). We will prove in section 2 that

vε(s) = uε(tε + εs) − 2πnε

converges to v, a solution of the conservative pendulum equation

v′′ + sin v = 0. (1.5)

with energy

E = 1

2
(v′)2 − (cos v + 1), (1.6)

with E = limε→0 Eε(tε) and v(0) = 0. The energy characterizes the behaviour of the solutions
of (1.5), particularly if E > 0 the solution v is of rotation type, if E ∈ (−2, 0) the solution
v is periodic, while if E = 0 the solution v is a heteroclinic solution with v(0) = 0. It will
be shown in section 2, that under our assumptions, up to a subsequence, the function Eε(t)

converges uniformly to a function E(t) � 0 in [−L, L]. The solutions we construct have high
energy, that is, E(t) �≡ 0 and the clustering occurs in the intervals where E > 0. Now, the
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Figure 1. Ẽ and clusters.

Figure 2. Phase plane.

rotation may be clockwise or counterclockwise in the intervals where E > 0, to account for
this we define Ẽ as E when the rotation is counterclockwise (i.e. uε increases), and as −E

when it is clockwise (i.e. uε decreases). The profile of the solutions that we construct is shown
in figure 1.

We observe that, as is shown in figure 2 if Ẽ(a) = Ẽ(b) = 0 and Ẽ > 0 in (a, b), then
after rescaling, the solution is close to an heteroclinic solution of (1.5) close to a and b, while
it is close to a rotating solution of (1.5) with energy E in (a, b).

We should stress that although the solutions that we construct rotate clockwise or
counterclockwise, they satisfy (1.3) and thus εuε is always bounded away from 0 in [−L, L]
as ε → ∞.

In this paper we address two basic issues concerning existence and profiles of the type of
clustering solutions described above:

(Q1) If the uε has Nε rotations in (−L, L), with εNε → R > 0, and Eε → E, what is the
equation satisfied by E? Is the limit function E unique?

(Q2) If we have an admissible energy profile, i.e. E is a solution of the equation above in
(−L, L), can we find a family {uε} of solutions of (1.1) such that Eε → E?

These type of questions have been addressed by Felmer, Martı́nez and Tanaka for the
Schrödinger equation [1] and the Allen–Cahn equation [2, 3]. In these works the problem was
to show the existence of highly oscillatory solutions for a singularly perturbed equation with
time dependent potential. The asymptotic profile of these solutions was characterized in terms
of an adiabatic invariant, which was constant in the intervals where the solutions oscillates.
The existence of highly oscillatory solutions was also established and it was proved that for
any admissible adiabatic profile there exists a family of solutions whose asymptotic behaviour
was characterized by it. We should point out that the methods developed in these papers can be
applied to construct highly oscillatory solutions of pendulum type equations (for instance with
periodic forcing), which have suitable a priori bounds independent of ε. The unboundedness
of rotating solutions, and the nature of the forcing considered in (1.1), which depends on the
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number of rotations measured by εuε, are strong differences between this problem and those
considered before.

The question (Q1) is addressed partially in section 2 (proposition 2.2) in which the
following equation is derived by E assuming that the limiting energy E is nonzero (for
simplicity, we suppose that all rotations are counterclockwise):

E′(t) = (2π)2α(t)
1

T (E(t))

(
R +

∫ t

−L

ds

T (E(s))

)
in (−L, L). (1.7)

In this equation R = limε→0 εuε(−L) (initial angle) and T (E) denotes the time of one rotation
of a solution of (1.5) with energy E (see section 2). We write 1/T (E(t)) = 0 whenever
E(t) = 0. The equation (1.7) is nonlocal, due to the fact that the forcing considered depends
on the effect of the number of rotations between −L and t measured by the integral term. To
understand the integral term, we prove in section 2 that if the family of solutions {uε} of (1.1)
having energy Eε → E oscillates nε times in the interval (−L, t) then

2πnε →
∫ t

−L

ds

T (E(s))
as ε → 0.

The sign of α is key in the behaviour of the solutions since it gives the sign of E′, for instance,
if a solution of (1.7) is positive in (a, b) ⊂ (−L, L) and E(a) = E(b) = 0, we must have
that α(a) � 0 and α(b) � 0. The key question regarding (1.7) is that if R and

∫ L

−L
dt

T (E(t))
are

given (that is if the initial angle and the number of rotations are prescribed) do solutions of
(1.7) with these values exist and if so are they unique? The existence part of this question is
provided in proposition 4.1, and the uniqueness is proved in proposition 4.2 under additional
assumptions on α, and assuming that the support of the solution E is a single interval. We
should point out that a difficulty in proving such results arises because the right hand side of
(1.7) is non Lipchitz when E = 0, and that the question is basically a boundary value problem.
Also, this equation may have solutions with support consisting of disjoint intervals, hence we
do not expect uniqueness in the general case.

To answer (Q2) we need to construct a family of solutions of (1.1) having asymptotic
energy E, a solution of (1.7) with R > 0 given. We observe that to construct such family we
can set up the following boundary conditions

uε(−L) = (2nε + 1)π and uε(L) = (2(nε + mε) + 1)π, (1.8)

with nε, mε ∈ N and 2πnε → R, 2πmε → ∫ L

−L
dt

T (E(t))
. In order to construct such solutions we

use Nehari’s broken geodesic method, in which the solution is constructed by means of finding
a critical point of a functional constructed by glueing basic solutions of (1.1) providing one
rotation each. The construction of the basic solutions is shown in section 5, and it relies on the
fact that the function T (E) defined above is strictly monotone. The existence of the rotating
solutions having limiting energy with connected support is shown in theorem 6.1 in section 6,
while in theorem 7.1, in section 7 we show the case when E has support consisting of several
disjoint intervals. The critical point of the Nehari functional is found using a degree theoretic
approach together with a minimization argument. A key ingredient to prove the existence
result is to prove that if α(a) > 0 and uε rotates close to a then it has to continue rotating,
moreover, the support of E has to contain an interval (a, a + δ) with δ > 0. This property is
proved in proposition 3.1 and relies on precise expansions of the solutions.

We should point out that, while in this paper we glue clusters of rotating solutions moving
counterclockwise and then clockwise, the solutions constructed are such that εuε is bounded
away from zero in [−L, L] as ε → 0. The construction of solutions for which εuε may converge
to zero in a point of [−L, L] remains open. One of the difficulties is that equation (1.7) has
some degeneracy in such a point. Another open problem is the construction of clustering
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solutions of the forced pendulum equation, in which the solution rotates in one cluster and
oscillates in another cluster, corresponding to limiting energy E which is negative in one
interval (where it oscillates) and positive in another (where it rotates). We should point out
that to do that one needs to consider a more general forcing term, since by remark 2.1 if a
solution of (1.1) has negative limiting energy E at one point, it is negative at all points of
[−L, L] thus rotation cannot occur. These type of clustering solutions may exist for forcing
of the form ε2α(t)uε(t) + ε2β(t)u′

ε(t).

2. Profile and limit equation

In this section we analyse the asymptotic behaviour of a family uε of solutions to (1.1) as
ε → 0. Our purpose is to describe this behaviour by means of an asymptotic energy function
obtained as a limit of the family Eε defined in (1.4). Before starting this analysis, we introduce
some preliminaries. Consider v0(E; t), the solution of (1.5) with initial conditions:

v0(E; 0) = 0, v′
0(E; 0) > 0

and energy E, given by (1.6). For equation (1.5) the energy E can take any value in [−2, ∞),
however in this article we will only be concerned with E � 0. When E ∈ (0, ∞), the solution
v0(E; t) is of rotation type and unbounded, while when E = 0, the solution v0(0; t) is the
heteroclinic orbit joining −π with π . For E ∈ [0, ∞), we set

T (E) =
{

the time of one rotation if E > 0,
∞ if E = 0

and we define the area function A(E) by

A(E) =
∫ T (E)/2

−T (E)/2
v′

0(E; t)2 dt.

We remark that A(0) = 8. Some basic properties of these functions are listed in the following
proposition, whose proof can be shown using related arguments found in [1–3].

Proposition 2.1.

(i) T : (0, ∞) → (0, ∞) is of class C1, T ′(E) < 0 in (0, ∞), T (E) → ∞ as E → 0 and
T (E) → 0 as E → ∞.

(ii) A ∈ C([0, ∞)) ∪ C1(0, ∞), A′(E) = T (E) > 0 for E ∈ (0, ∞) and A(E) → ∞ as
E → ∞.

Let us consider a family {uε} of solutions satisfying (1.3) with 0 < R1 < R2 independent
of ε. Then we have

Lemma 2.1. If uε satisfies (1.3), then εuε(t) and Eε(t) are bounded in W 1,∞(−L, L),
independent of ε, as ε → 0.

Proof. We compute

E′
ε(t) = (ε2u′′

ε + sin uε)u
′
ε = ε2α(t)uεu

′
ε.

Thus by (1.3)

| E′
ε(t) |� R2‖α‖∞ | εu′

ε |�
√

2R2‖α‖∞
√

Eε(t) + 2. (2.1)

Thus for any s, t ∈ [−L, L]

|
√

Eε(t) + 2 −
√

Eε(s) + 2 |= |
∫ t

s

E′
ε(τ ) dτ

2
√

Eε(τ) + 2
| �

√
2R2‖α‖∞L. (2.2)
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We assume, for contradiction, that ‖Eε‖∞ → ∞. Then by (2.2), we have

inf
t∈[−L,L]

Eε(t) → ∞ as ε → 0,

which implies εu′
ε(t) �= 0 in [−L, L] for ε small and

inf
t∈[−L,L]

εu′
ε(t) → ∞ or sup

t∈[−L,L]
εu′

ε(t) → −∞.

Thus we have

εuε(L) − εuε(−L) =
∫ L

−L

εu′
ε(τ ) dτ → ±∞,

which is in contradiction with (1.3). Thus ‖Eε‖∞ is bounded and then ‖εu′
ε‖∞ is bounded

and, by (2.1), ‖E′
ε‖∞ is also bounded. �

By lemma 2.1, there is a subsequence, that we keep calling ε, such that

Eε(t) → E(t) and εuε(t) → 2πR(t) weakly∗ in W 1,∞(−L, L).

Now we remark that to each connected component of {t / E(t) > 0}, we can associate + or
− as follows. Let δ > 0 be an arbitrary constant and let Iδ be a connected component of
{t / E(t) > δ}. Since Eε(t) converges uniformly to E(t) in [−L, L], we can see that

Eε(t) � 1

2
δ in Iδ

for ε small. It implies that (εu′
ε(t))

2 = 2(Eε(t)+cos uε +1) � δ in Iδ . In particular, εu′
ε(t) has

constant sign in Iδ . Taking a subsequence again if necessary, we can assume that sign u′
ε(t) is

independent of ε and we can associate sign u′
ε(t) as a sign of Iδ . For a connected component

I of {t / E(t) > 0}, we can associate a sign as a limit as δ → 0.
For the purposes of this article we only consider the case E(t) � 0 for all t ∈ (−L, L)

(see remark 2.1 about the case when E(t) takes negative values). It will be convenient to define
Ẽ(t) : [−L, L] → R by

Ẽ(t) =
{
E(t) if E(t) > 0 has associated sign ‘+’,
−E(t) if E(t) > 0 has associated sign ‘−’,

and extend T as an even function of E. Now we obtain an equation for Ẽ

Proposition 2.2. Assume E(t) � 0, then

Ẽ′(t) = (2π)2α(t)
R(t)

T (Ẽ(t))
in (−L, L).

That is,

Ẽ′(t) = (2π)2α(t)
1

T (Ẽ(t))

(
R(−L) +

∫ t

−L

sign (Ẽ(s))

T (Ẽ(s))
ds

)
in (−L, L),

where we write 1/T (Ẽ(t)) = 0, whenever Ẽ(t) = 0.

Proof. Let us assume [a, b] ⊂ suppE and that it has associated sign +. Using ideas from [3]
we first show that

R(b) − R(a) =
∫ b

a

1

T (E(t))
dt. (2.3)
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Since εuε(b) − εuε(a) = ∫ b

a
εu′

ε(t) dt and εu′
ε(t) is bounded in L∞(−L, L), (2.3) will follow

if for all ϕ(t) ∈ C∞
0 (a, b) we have

lim
ε→0

∫ b

a

εu′
ε(t)ϕ(t) dt = 2π

∫ b

a

ϕ(t)

T (E(t))
dt. (2.4)

For s > 0, we consider the function ρs(t) = 1/(2s) if t ∈ [−s, s] and 0 otherwise, then for
any r > 0 we have ‖ρεr ∗ ϕ − ϕ‖L∞(a,b) → 0 as ε → 0. Thus, we have

lim
ε→0

∫ b

a

εu′
ε(t)ϕ(t) dt = lim

ε→0

∫ b

a

εu′
ε(t)(ρεr ∗ ϕ)(t) dt = lim

ε→0

∫ b

a

(ρεr ∗ εu′
ε)(t)ϕ(t) dt.

Defining wε(τ) = uε(ετ + t) we have

(ρεr ∗ εu′
ε)(t) = 1

2εr

∫ εr

−εr

εu′
ε(t + s) ds = 1

2r

∫ r

−r

w′
ε(τ ) dτ

and we easily see that vε(τ ) ≡ wε(τ) − 2π [wε(0)

2π
] converges to v(τ) = v0(E(t); τ + 	t ) for

some 	t ∈ R. Since we also have w′
ε(τ ) = v′

ε(τ ) → v′
0(E(t); τ + 	t ) uniformly in [−r, r], we

obtain that

lim
ε→0

(ρεr ∗ εu′
ε)(t) = 1

2r

∫ r

−r

v′
0(E(t); τ + 	t ) dτ

= 1

2r

(
v0(E(t); r + 	t ) − v0(E(t); −r + 	t )

)
.

Since εu′
ε is bounded in L∞(−L, L), by the Lebesgue’s dominant convergence theorem

we have

lim
ε→0

∫ b

a

(ρεr ∗ εu′
ε)(t)ϕ(t) dt =

∫ b

a

v0(E(t); r + 	t ) − v0(E(t); −r + 	t )

2r
ϕ(t) dt.

We note that for any M > 0

lim
r→∞

1

2r

(
v0(E; r + 	) − v0(E; −r + 	)

)
= 2π

T (E)
,

uniformly in 	 ∈ R and E ∈ [0, M], completing the proof of (2.4). Then, it follows from
E′

ε(t) = α(t)

2

{
(εuε)

2
}′

and (2.3) that

E′ = (2π)2α(t)R′(t)R(t) = (2π)2α(t)
R(t)

T (E(t))
. (2.5)

When the sign associated to the interval is ‘−’, the equation above changes just in the sign in
front of E′. Moreover, if the interval [a, b] ∩ supp E = ∅ then the equation trivially holds.
Putting these facts together, we conclude the proof. �

Remark 2.1. Suppose E(t0) < 0 for some t0 ∈ (−L, L). Then, in a neighbourhood of t0,
uε is bounded and then following the ideas of the proof of proposition 2.2 we can prove that
R′ = E′ = 0 there. By a continuation argument, we can prove then that E(t) and R(t) are
constant on [−L, L].

Corollary 2.1. Suppose E(t) � 0 and set A(t) = A(E(t)). Then, in each connected
component (a, b) of {t / E(t) > 0} we have

A′(t) = ±(2π)2α(t)R(t) in (a, b),

where ± depends on the sign associated to (a, b). That is,

A′(t) = ±(2π)2α(t)

(
R(a) ±

∫ t

a

1

T (E(s))
ds

)
in (a, b).
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Proof. Recall that, if E > 0, then A(E) is differentiable and dA
dE

= T (E). Thus, for t with
E(t) > 0, using (2.5) with proper sign we have

A′(t) = dA

dE
(E(t))E′(t) = ±(2π)2α(t)R(t).

�

3. Non-existence of growing solutions when α(t) > 0 and limε→0 Eε(t) = 0

This section is devoted to further analysing the behaviour of a sequence of solution uε of
equation (1.1) as ε → 0. We are interested in proving the impossibility of having a sequence
of increasing solutions, with vanishing energy, in an interval [a, b] ⊂ [−L, L] where

α(t) � α > 0 in [a, b]. (3.1)

This property will be important in section 6 in the computation of the degree for existence
theory. In precise terms we will prove

Proposition 3.1. Assume (3.1) and suppose that a family of solutions uε(t) of (1.1) in (−L, L)

satisfies for t ∈ (a, b)

u′
ε(t) > 0 if uε(t) ∈ 2πZ, (3.2)

max
t∈[a,b]

|Eε(t)| → 0 as ε → 0. (3.3)

Then for any δ > 0 there exists εδ > 0 such that for ε ∈ (0, εδ]

uε(t) �∈ 2πZ in (a, b − δ]. (3.4)

The proof of this proposition requires one to understand the behaviour of solutions with low
energy. Roughly speaking, these solutions should have values near odd multiples of π for
long periods of time. Thus, in section 3.1 we analyse the behaviour of solutions having values
near odd multiples of π , obtaining good estimates on the derivative as in corollary 3.1. On the
other hand, the main purpose of section 3.2 is to estimate energy changes of growing solutions
having low energy. Finally in section 3.3, we provide a proof of proposition 3.1. Here we use
the estimates just obtained in the previous subsections in order to compare the energy changes,
which are assumed to be small, with the changes in the value of the function due to rotation.

3.1. Analysis of solutions near (2n + 1)π

We rescale the equation defining vε(t) = uε(εt), for t ∈ (−L/ε, L/ε). Thus, if we consider

V ε(t, v) = − cos v − 1 − ε2

2
α(εt)v2,

the equation for vε becomes

v′′
ε + V ε

v (t, v) = 0 in (−L/ε, L/ε). (3.5)

Suppose n ∈ N satisfies

(2n + 1)π ∈ [R1/ε, R2/ε] (3.6)

then, for each t ∈ [−L/ε, L/ε] the equation V ε
v (t, v) = 0 has a unique solution ξεn(t) in a

neighbourhood of (2n + 1)π for ε small. We will see later that the function ξεn(t) is key to
obtaining precise a priori estimates for vε when it takes values close to (2n + 1)π .
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We have the following on basic properties of ξεn(t).

Lemma 3.1. The function ξεn(t) is of class C2 and there are constants C1 and C2 such that

‖ξεn(t) − (2n + 1)π‖L∞ + ε−1‖ξ ′
εn(t)‖L∞ + ε−2‖ξ ′′

εn(t)‖L∞ � C1ε (3.7)

and

‖ξ ′
εn(t)‖L2 � C2ε

3/2. (3.8)

In what follows we set L∞ = L∞(−L/ε, L/ε) and L2 = L2(−L/ε, L/ε).

Proof. We write ξεn(t) = (2n + 1)π + h(t), so that h(t) satisfies

− sin h(t) = ε2α(εt)((2n + 1)π + h(t)). (3.9)

By the assumption (3.6) we see that

sin h(t) + ε2α(εt)h(t) ∈ [−εR2α(εt), −εR1α(εt)], (3.10)

from which we can deduce the existence of C3, C4 > 0 such that

− C3εα(εt) � ξεn(t) − (2n + 1)π � −C4εα(εt), (3.11)

and the first term in (3.7). Differentiating (3.9) with respect to t , we have

− cos h(t) · h′(t) = ε3α′(εt)((2n + 1)π + h(t)) + ε2α(εt)h′(t),

and

− cos h(t) · h′′(t) + sin h(t) · h′(t)2 = ε4α′′(εt)((2n + 1)π + h(t))

+ 2ε3α′(εt)h′(t) + ε2α(εt)h′′(t).

From here, (3.9), (3.10) and the assumptions on α, we obtain C > 0 and C ′ > such that

| h′(t) |� Cε2 (3.12)

| h′′(t) |� C(ε3 + ε3 | h′(t) | + | sin h(t) || h′(t) |2) � C ′ε3. (3.13)

Inequality (3.8) follows directly from (3.12) and the second and third term in (3.7) follow
from (3.12) and (3.13). �

Remark 3.1. ξεn(t) is a better approximation of a solution of (3.5) near (2n+1)π than (2n+1)π

itself, in the following variational sense: setting

Iε(v) =
∫ L/ε

−L/ε

1

2
| v′ |2 −(V ε(t, v) − V ε(t, ξεn(t))) dt

we see that

Iε(ξεn(t)) = 1

2
‖ξ ′

εn(t)‖2
L2(−L/ε,L/ε) � 1

2
C2

2ε3

and in view of (3.11) we see that

Iε((2n + 1)π) =
∫ L/ε

−L/ε

−V ε(t, (2n + 1)π) + V ε(t, ξεn(t)) dt

� C

∫ L/ε

−L/ε

| (2n + 1)π − ξεn(t) |2 dt � C ′ε.
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Continuing with our analysis, we recall the definition of V ε(t, v) to get

V ε
v (t, v) = sin v − ε2α(εt)v and V ε

vv(t, v) = cos v − ε2α(εt).

Thus, since V ε
v (t, ξεn(t)) = 0, for any ν0 > 0 there exists δ0 > 0 independent of n, ε such that

for ε small

V ε
vv(t, v) ∈ [−1 − ν0, −1 + ν0] (3.14)

for all v ∈ [(2n + 1)π − 2δ0, (2n + 1)π + 2δ0], t ∈ [−L/ε, L/ε]. And from here

|V ε
v (t, v) + (v − ξεn(t))| � ν0|v − ξεn(t)| (3.15)

for v ∈ [(2n + 1)π − 2δ0, (2n + 1)π + 2δ0].
In accordance with remark 3.1, next we prove that solutions having values near odd

multiples of π are much better approximated by the function ξεn. Precisely we have

Proposition 3.2. There exist a1, a2 > 0 independent of ε > 0 such that any solution vε(t) of
(3.5) in (sε, tε) satisfying

|vε(t) − (2n + 1)π | � δ0 for t ∈ [sε, tε] (3.16)

has the property

| vε(t) − ξεn(t) |� a1ε
3 + a2e−√

1−ν0 min{|t−sε |,|t−tε |}. (3.17)

Proof. We set zε(t) = vε(t) − ξεn(t). Then zε(t) satisfies

z′′
ε + V ε

v (t, zε + ξεn) = −ξ ′′
εn(t) in (sε, tε),

| zε(sε) |, | zε(tε) |� 3

2
δ0.

(3.18)

We use the solution of the equation

w′′
ε − (1 − ν0)wε = − | ξ ′′

εn(t) | in (sε, tε),

wε(sε) = wε(tε) = 3

2
δ0.

(3.19)

for a comparison argument. Given such a solution, we claim that

zε(t) � wε(t) for all t ∈ [sε, tε]. (3.20)

In fact, assuming the contrary, there exists t0 ∈ (sε, tε) such that

zε(t0) − wε(t0) = max
t∈[sε,tε]

(zε(t) − wε(t)) > 0 and

z′′
ε (t0) − w′′

ε (t0) � 0. (3.21)

On the other hand, by (3.18)–(3.19), we have

z′′
ε − w′′

ε = − V ε
v (t, zε + ξεn) − (1 − ν0)wε − ξ ′′

εn+ | ξ ′′
εn |

� − V ε
v (t, zε + ξεn) − (1 − ν0)wε.

Note that zε(t0) + ξεn(t0) > wε(t0) + ξεn(t0) > ξεn(t0), since wε(t) > 0 in [sε, tε]. Thus (3.15)
implies

z′′
ε (t0) − w′′

ε (t0) � (1 − ν0)(zε(t0) − wε(t0)) > 0. (3.22)

(3.21) and (3.22) are in a contradiction and we have (3.20).
To complete the proof, we obtain an estimate for wε. For simplicity of notation, we assume

[sε, tε] = [−Aε, Aε] without loss of generality. Setting

fε(t) = 1

2
√

1 − ν0

∫ Aε

−Aε

e−√
1−ν0|t−s| | ξ ′′

εn(s) | ds,
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the solution of (3.19) can be written as

wε(t) = a e
√

1−ν0t + b e−√
1−ν0t + fε(t),

where a and b can be computed imposing wε(±Aε) = 3
2δ0. Using that ‖fε(t)‖L∞ �

‖ξ ′′
εn(t)‖L∞ � C1ε

3, we find that

|a|, |b| � Ce−√
1−ν0Aε (δ0 + ε3),

from where

wε(t) � Ce−√
1−ν0 min{|t+Aε |,|t−Aε |}(δ0 + ε3) + C1ε

3.

This inequality, together with (3.20), gives one side of (3.17). The other side follows using a
similar comparison argument from below. �

Using (3.15) we can obtain precise bounds for v′
ε.

Corollary 3.1. Assume tε − sε � 1. Then, for all t ∈ (sε, tε),

| v′
ε(t) |� a′

1ε
2 + a′

2e−√
1−ν0 min{|t−sε |,|t−tε |}.

Proof. We have by (3.18)

| z′′
ε (t) | �| V ε

v (t, zε(t) + ξεn(t)) | + | ξ ′′
εn(t) |� C | zε(t) | +C2ε

3

� C ′ε3 + C ′e−√
1−ν0 min{|t−sε |,|t−tε |} in (sε, tε).

Thus by interpolation, we have

| z′
ε(t) |� C ′′ε3 + C ′′e−√

1−ν0 min{|t−sε |,|t−tε |} in (sε, tε).

Hence, by (3.7), for all t ∈ (sε, tε)

| v′
ε(t) |�| z′

ε(t) | + | ξ ′
εn(t) |� C ′′′ε2 + C ′′e−√

1−ν0 min{|t−sε |,|t−tε |}.

�
We end this subsection with two properties of the solutions vε of (3.5) near (2n + 1)π ,

which are a direct consequence of the properties of V ε, so we omit their proofs.

Lemma 3.2. Let vε(t) be a solution of (3.5). Then

v′′
ε (t)(vε(t) − ξεn(t)) > 0 if 0 < |vε(t) − (2n + 1)π | � 2δ0.

Lemma 3.3. Let [a, b] ⊂ [−L/ε, L/ε] and suppose that vε(t) is a solution of (3.5) in (a, b)

satisfying the inequality

|v(t) − (2n + 1)π | � 2δ0 for t ∈ [a, b]. (3.23)

Then vε(t) is a minimizer of the following variational problem:

Iε,[a,b](vε) = inf{Iε,[a,b](v) / v satisfies (3.23), v(a) = vε(a), v(b) = vε(b)},
where

Iε,[a,b](v) =
∫ b

a

1

2
| v′ |2 −(V ε(t, v) − V ε(t, ξεn(t))) dt.
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3.2. Properties of growing solutions when α(t) > 0

We consider the energy function Eε(t) for a solution vε(t) of (3.5), where Eε is given in (1.4)
with v′

ε instead of εu′
ε. We study the behaviour of these solutions in [a/ε, b/ε], under the

following assumption: For δ0 > 0 given in (3.14)–(3.16) and some δ1 ∈ (0, − cos δ0 + 1), the
family of solutions vε satisfies

| Eε(t) |� δ1 in (a/ε, b/ε). (3.24)

Under condition (3.24), we see that

v′
ε(t) �= 0 if vε(t) �∈

⋃
k∈Z

[(2k + 1)π − δ0, (2k + 1)π + δ0].

Let C1 > 0 be the constant in (3.7). We say that vε(t) is growing in [ŝ, t̂] if

v′
ε(t) > 0 when vε(t) ∈ [ŝ, t̂] \

⋃
k∈Z

[(2k + 1)π − 2C1ε, (2k + 1)π + 2C1ε].

We remark that

v′′
ε (t) > 0 if vε(t) ∈

⋃
k∈Z

[(2k + 1)π + C1ε, (2k + 1)π + δ0],

v′′
ε (t) < 0 if vε(t) ∈

⋃
k∈Z

[(2k + 1)π − δ0, (2k + 1)π − C1ε].

Thus, if for some n ∈ N, vε(t) satisfies

vε(t) ∈ [2nπ, 2(n + 1)π ] for all t ∈ [ŝ, t̂]

and one of the following conditions

(i) vε(ŝ) = 2nπ and vε(t̂) = 2(n + 1)π ,
(ii) |vε(ŝ) − (2n + 1)π | � 2C1ε and vε(t̂) = 2(n + 1)π ,

(iii) vε(ŝ) = 2nπ and |vε(t̂) − (2n + 1)π | � 2C1ε,

then vε(t) is growing in [ŝ, t̂].
In the next lemma we obtain a lower estimate on the energy change in terms of the rotation

of the solution, under our basic assumption on the coefficient α (3.1) and assuming that the
energy of the solutions is kept small. This estimate is crucial in the proof of proposition 3.1.

Lemma 3.4. Assume (3.1) and let vε(t) be is a solution of (3.5) for which there exists
[sε, tε] ⊂ [a/ε, b/ε] such that vε(t) is growing in [sε, tε] and

| Eε(t) |� δ1 in [sε, tε]. (3.25)

Then there are constants a3, a4 > 0 independent of ε, vε, sε, tε such that for ε small

Eε(tε) − Eε(sε) � a3ε(vε(tε) − vε(sε)) − a4ε
2. (3.26)

Proof. First we consider the case where vε(t) satisfies

vε(t) ∈ [2nεπ, 2(nε + 1)π ] in (sε, tε) for some nε ∈
[

R1

2πε
,

R2

2πε

]
. (3.27)

We compute

Eε(tε) − Eε(sε) =
∫ tε

sε

d

dτ
Eε(τ ) dτ =

∫ tε

sε

ε2α(ετ)vεv
′
ε dτ. (3.28)

Let Nε = {τ ∈ [sε, tε] / | vε(τ ) − (2nε + 1)π |< 2C1ε}, where C1 > 0 is given in (3.7).
Then, since vε is growing and satisfies (3.25), we see that

v′
ε > 0 in [sε, tε] \ Nε
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and Nε is an interval if Nε �= ∅. Denoting Nε = [τ 1
ε , τ 2

ε ] in this case, we have∫ τ 1
ε

sε

ε2α(ετ)vεv
′
ε dτ � ε2

2
α

∫ τ 1
ε

sε

d

dτ
(v2

ε ) dτ = ε2

2
α(vε(τ

1
ε )2 − vε(sε)

2)

= ε2

2
α(vε(τ

1
ε ) + vε(sε))(vε(τ

1
ε ) − vε(sε))

� εαR1(vε(τ
1
ε ) − vε(sε)), (3.29)

where α is given in (3.1). Similarly we have∫ tε

τ 2
ε

ε2α(ετ)vεv
′
ε dτ � εαR1(vε(tε) − vε(τ

2
ε )). (3.30)

Next we look at the integral in [τ 1
ε , τ 2

ε ], considering 2 cases: (a) | τ 2
ε − τ 1

ε |� 2 and (b)
| τ 2

ε − τ 1
ε |� 2. If case (a) holds, by lemma 3.3, we have

1

2
‖v′

ε‖2
L2(τ 1

ε ,τ 2
ε ) � Iε,[τ 1

ε ,τ 2
ε ](vε) � Iε,[τ 1

ε ,τ 2
ε ](ζε) = O(ε2),

where ζε interpolates linearly (2nε+1)π−2C1ε with ξεn(τ
1
ε +1) in [τ 1

ε , τ 1
ε +1], ζε(τ ) = ξεn(τ ) in

[τ 1
ε +1, τ 2

ε −1] and it interpolates linearly ξεn(τ
2
ε −1) with (2nε +1)π +2C1ε and in [τ 2

ε −1, τ 2
ε ].

Thus∣∣∣∣∣
∫ τ 2

ε

τ 1
ε

ε2α(ετ)vεv
′
ε dτ

∣∣∣∣∣ � ((2nε + 1)π + 2C1ε)ε
2‖α‖∞‖ζ ′

ε‖L2(τ 1
ε ,τ 2

ε ) = O(ε2). (3.31)

If case (b) holds, we also show (3.31). Letting τ(s) = (τ 2
ε − τ 1

ε )s + τ 1
ε we define

wε(s) = 1
ε
(vε(τ (s)) − (2nε + 1)π). Then wε(s) satisfies

w′′
ε − (τ 2

ε − τ 1
ε )2

ε
sin(εwε) = ε(τ 2

ε − τ 1
ε )2α(ετ(s))(εwε + (2nε + 1)π)

and −C1 � wε(0) � wε(1) � C1. Then, up to a subsequence, we have τ 2
ε −τ 1

ε → h0 ∈ [0, 2],
ετ 1

ε → t0 and wε(s) → w0(s), where w0(s) satisfies

w′′
0 − h2

0w0 = Rh2
0α(t0),

for some R > 0 and also −C1 � w0(0) � w0(1) � C1. Thus we have∣∣∣∣∣
∫ τ 2

ε

τ 1
ε

ε2α(ετ)vεv
′
ε dτ

∣∣∣∣∣ =
∫ 1

0
ε3α(εs)(εwε(s) + (2nε + 1)π)|w′

ε(s)| ds

� 3nεπε3
∫ 1

0
(|w′

0(s)| + 1) ds = O(ε2).

Thus we also have (3.31) and now (3.26) follows from (3.29)–(3.31). The general case can be
argued similarly by adding integrals like (3.26) over intervals satisfying (3.27), and noticing
that by our general assumptions the number of terms to add cannot be larger that mε, where
εmε is bounded. �

To end this subsection we obtain an estimate on the energy for solutions that do not rotate for
long periods of time. Precisely we have

Lemma 3.5. Assume (3.1) and suppose that there exist [sε, tε] ⊂ [a/ε, b/ε] with | tε − sε |� 1
such that (3.25) and for some nε ∈ [R1/(2πε), R2/(2πε)] ∩ Z

vε(t) ∈ [2nεπ, 2(nε + 1)π ], in (sε, tε), (3.32)



1486 P Felmer et al

Then there exist constants a5, a6 > 0 such that for all t ∈ (sε, tε)

| vε(t) − (2n + 1)π |� 3

2
C1ε + a6e−√

1−ν0 min{|t−sε |,|t−tε |}

and

| Eε(t) |� a5ε
2 + a6e−2

√
1−ν0 min{|t−sε |,|t−tε |}.

Proof. Let Ñε = {τ ∈ [sε, tε] / | vε(τ ) − (2n + 1)π |< δ0}. As in the proof of lemma 3.4,
if Ñε is not empty, we may write Ñε = [s1

ε , t
1
ε ]. Since we assume (3.25), there exists 	0 > 0

independent of ε such that

tε − t1
ε , s1

ε − sε � 	0 for ε small.

In particular, we have

min{| t − s1
ε |, | t − t1

ε |} � min{|t − sε|, |t − tε|} − 	0. (3.33)

We may also assume | t1
ε − s1

ε |� 1, since on the contrary we have 1 �| tε − sε |� 2	0 + 1 and
min{|t − sε|, |t − tε|} � 1

2 | tε − sε |� 1
2 (2	0 + 1), which means the conclusion of lemma 3.5

holds trivially.
Applying proposition 3.2 and corollary 3.1 in [s1

ε , t
1
ε ], we have

| vε(t) − ξεn(t) |� a1ε
3 + a2e−√

1−ν0 min{|t−s1
ε |, |t−t1

ε |},

| v′
ε(t) |� a′

1ε
2 + a′

2e−√
1−ν0 min{|t−s1

ε |, |t−t1
ε |}.

We also remark that by lemma 3.1

| vε(t) − (2n + 1)π | � | vε(t) − ξεn(t) | + | ξεn(t) − (2n + 1)π |
� a′′

1ε + a′
2e−√

1−ν0 min{|t−s1
ε |, |t−t1

ε |},

so that

cos vε(t) + 1 � a′′′
1 ε2 + a′′

2 e−2
√

1−ν0 min{|t−s1
ε |, |t−t1

ε |}.

Therefore

| Eε(t) |� Cε2 + C ′e−2
√

1−ν0 min{|t−s1
ε |, |t−t1

ε |}

and by (3.33) we conclude that

| Eε(t) |� Cε2 + C ′′e−2
√

1−ν0 min{|t−sε |,|t−tε |}.

�

3.3. Proof of proposition 3.1

To show proposition 3.1, we assume (3.32) and (3.25) in [sε, tε] ⊂ [a/ε, b/ε].
We write vε(t) = uε(εt) and A0 = 2√

1−ν0
. We argue indirectly assuming that

Jε = {t ∈
(

a

ε
,
b − 1

2δ

ε

) /
vε(t) ∈ 2πZ} = {t ε1 , . . . , tεmε

} �= ∅,

where a/ε < tε1 < tε2 < · · · < tεmε
< (b − 1

2δ)/ε. Writing vε(t
ε
1 ) = 2(nε + 1)π , by (3.2), we

have vε(t
ε
i ) = 2(nε + i)π for i = 1, 2, . . . , mε. We also denote by t ε0 the largest t ∈ [−L

ε
, tε1 )

such that vε(t) = 2nεπ and by t εmε+1 the smallest t ∈ (tεmε
, L

ε
] such that vε(t) = 2(nε +mε +1)π .

In case some of them do not exist, we just set t ε0 = −L/ε or t εmε+1 = L/ε. Next we define

J̃ε = {i ∈ {0, 1, 2, . . . , mε} / | t εi+1 − t εi |� 2A0 | log ε |}.
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To start the proof we claim that for ε small

{1, 2, . . . , mε} ∩ J̃ε = ∅. (3.34)

To prove the claim we argue indirectly, assuming that iε0 � 1 belongs to J̃ε. We set
t̂ ε = t εiε0

+ A0 | log ε | and we see that [t εiε0 , t̂
ε] ⊂ [a/ε, b/ε] and vε(t) is growing in [t εiε0 , t̂

ε].
Thus by lemma 3.4 we have

Eε(t̂
ε) − Eε(t

ε
iε0
) � a3ε(vε(t̂

ε) − vε(t
ε
iε0
)) − a4ε

2

� a3ε(vε(t̂
ε) − 2(nε + 1)π) − a4ε

2. (3.35)

On the other hand, applying lemma 3.5 in [t εiε0 , t
ε
iε0 +1], we find for t ∈ [t εiε0 , t

ε
iε0 +1]

| vε(t̂
ε) − (2(nε + iε0) + 1)π |� 2

3
2C1ε + a6e

− 2
A0

min{|t−tε
iε0

|,|t−tε
iε0 +1

|}
,

| Eε(t̂
ε) |� a5ε

2 + a6e
− 4

A0
min{|t−tε

iε0
|,|t−tε

iε0 +1
|}
.

Noting min{| t − t εiε0
|, | t − t εiε0 +1 |} = A0 | log ε |, we have

| vε(t̂
ε) − (2(nε + iε0) + 1)π |� 2C1ε, (3.36)

| Eε(t̂
ε) |� a7ε

2. (3.37)

Recalling that Eε(t
ε
iε0
) = 1

2 | vε(t
ε
iε0
) |2� 0, we see that (3.35)–(3.37) are incompatible for ε

small, proving the claim (3.34). Next we prove that

lim
ε→0

εtε1 = b − 1

2
δ. (3.38)

By (3.34), we have t εi+1 − t εi � 2A0|log ε| for i = 1, 2, . . . , mε. In particular, we have

lim
ε→0

ε(tε2 − t ε1 ) = 0 and lim
ε→0

εtεmε
= b − 1

2
δ. (3.39)

By (2.3) and since 2πε(mε − 2) = ε(vε(t
ε
mε

) − vε(t
ε
2 )), we also have

lim
ε→0

2πε(mε − 2) = R(b − 1

2
δ) − R(a)

=
∫ b− 1

2 δ

a

1

T (lim Eε(t))
dt = 0. (3.40)

Then we apply lemma 3.4 in [t ε1 ,
tεi +tεi+1

2 ] to get

Eε

(
t εi + t εi+1

2

)
� Eε(t

ε
1 ) + a3ε

(
vε

(
t εi + t εi+1

2

)
− vε(t

ε
1 )

)
− a4ε

2

� a3ε(2(nε + i) − 2(nε + 1))π − a4ε
2

� 2πa3ε(i − 1) − a4ε
2 (3.41)

and noting that (3.3) implies t εi+1 − t εi → ∞ as ε → 0 for all i, we may apply lemma 3.5 in
[t εi , tεi+1] to obtain

Eε

(
t εi + t εi+1

2

)
� a5ε

2 + a6e−2
√

1−ν0|tεi+1−tεi |. (3.42)

It follows from (3.41) and (3.42) that, for some constants a7, a8 > 0 independent of ε and i

tεi+1 − t εi � −a7 log(a8ε(i − 1)) for i = 2, 3, . . . , mε − 1.



1488 P Felmer et al

Thus

ε(tεmε
− t ε2 ) � ε

mε−1∑
i=2

−a7 log(a8ε(i − 1))

�
mε−1∑
i=2

∫ ε(i−1)

ε(i−2)

−a7 log(a8x) dx

= a7ε(mε − 2) (1 − log(a8ε(mε − 2))) .

From here and (3.40), we have ε(tεmε
− t ε2 ) → 0 as ε → 0 and then, by (3.39) we get (3.38).

Now we finally see that (3.4) is true, since {t ∈ [ a
ε
, tε1 ) / uε(t) ∈ 2πZ} = ∅ and (3.38)

holds. �
Remark 3.2. The conclusion of proposition 3.1 still holds for a family of solutions of (3.5) in
(a/ε, b/ε) giving suitable boundary conditions at t = a/ε, b/ε.

4. The Area Equation and Properties

In this section we study the basic properties of the profile equation. We prefer to study the area
equation, as given in corollary 2.1, rather than the energy equation, since it is much simpler.
We consider only the + since the other case is analogous, so for a given R > 0 we study

A′(t) = (2π)2α(t)

(
R +

∫ t

a

1

T (A(s))
ds

)
in (a, b), (4.1)

where, for the sake of simplicity of notation, we denote by T (A) the function T (E(A)). Before
starting the analysis, we need to make more precise the notion of the solution to this equation.
We will always assume that R > 0 and we extend the function 1/T (A) to A = 8, simply as 0.

We say that a continuous function A : [−L, L] → [8, ∞) is a solution of (4.1) in [−L, L],
if, for every t ∈ [−L, L] such that A(t) > 8, the function A satisfies the differential equation
(4.1) at t . We define the support of a solution as

supp(A) = {t ∈ [−L, L]/A(t) > 8}.
We start with a basic existence result

Proposition 4.1. Let a, b ∈ [−L, L], with a < b, and assume that α(a) > 0. Then, for every
R > 0 and R′ > 0 there is a solution of equation (4.1) in the interval [a, b] such that∫ b

a

ds

T (A(s))
= R′. (4.2)

Proof. Given A0 > 8 we consider the equation (4.1) for t > a, with initial condition
A(a) = A0. We continue the solution while A(t) > 8 and we define tf = sup{t ∈
(a, b)/A(τ) > 8 for τ ∈ [a, t)}. If tf < b, we define A(t) = 8, for all t ∈ [tf , b]. Since
limA→∞ T (A) = 0 we see that, by choosing A0 large enough, we have that∫ b

a

ds

T (A(s))
> R′.

On the other hand, let t0 = sup{t ∈ (a, b]/α(τ) > 0 for τ ∈ [a, t)} and consider ti ∈ [a, t0).
Then we solve equation (4.1) for t > ti , with A(ti) = 8.

Before continuing, we need to say a word about the existence and uniqueness of the
solution in this case. We may differentiate (4.1) to obtain the equivalent problem

A′′ = α′(t)
α(t)

A′ + (2π)2 α(t)

T (A)
,
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with initial conditions A(ti) = 8 and A′(ti) = (2π)2α(ti)R > 0. Because of this last condition
we can write the equation for B(s), where A(B(s)) = s, for s � 8. For this equation, the
classical existence and uniqueness theorem for ordinary differential equations applies since T

is a continuous function and α is of class C2.
Now we continue with our analysis of the solution A of (4.1) extending the solution while

A(t) > 8 and we define tf as above. Then we set A(t) = 8 for t ∈ [a, ti)∪ (tf , b]. We observe
that, by choosing ti close enough to t0, we have∫ b

a

ds

T (A(s))
< R′.

To complete the argument, we see that the solution depends continuously on A0 ∈ [8, ∞) and
ti ∈ [a, t0), so that there must exist t∗i ∈ [a, t0] or A∗

0 ∈ [8, ∞) such that the corresponding
solution satisfies (4.2). �

Next we prove a uniqueness result.

Proposition 4.2. Let a, b ∈ [−L, L], with a < b, and assume that there is tz such that α(t) > 0
in [a, tz), α(tz) = 0 and α′(t) < 0 in [tz, b]. Then, for every R > 0 and R′ > 0 the equation
(4.1) possesses at most one solution with support in (a, b) and satisfying (4.2).

Proof. Assume we have two different solutions A1 and A2 satisfying (4.2), with support [t1
i , t1

f ]
and [t2

i , t2
f ], respectively. We claim that for all A > 8 for which there are

(tz <) t1
A < t2

A with A1(t
1
A) = A = A2(t

2
A), (4.3)

then we have

A′
2(t

2
A) < A′

1(t
1
A) < 0, (4.4)

and that the same is true if we reverse the role of A1 and A2.
To prove the claim we first observe that, since A1 and A2 satisfy (4.2) and α is decreasing

in [tz, b], we have that (4.4) is satisfied for A = 8. Let Ā > 8 and t1
A and t2

A such that (4.3)
holds and so that (4.4) holds for all A ∈ [8, Ā). Then, using the monotonicity of the period in
terms of A we have that∫ t1

f

t1
A

ds

T (A1(s))
>

∫ t2
f

t2
A

ds

T (A2(s))

and from then, since α(t) is decreasing in [tz, b], we find that

0 > A′
1(t

1
A) = (2π)2α(t1

A)

(
R + R′ −

∫ t1
f

t1
A

ds

T (A1(s))

)

> (2π)2α(t2
A)

(
R + R′ −

∫ t2
f

t2
A

ds

T (A2(s))

)
= A′

2(t
2
A),

that is, (4.4) is satisfied.
Now with the aid of the claim, we prove the proposition. We may assume that

A1(tz) < A2(tz) (4.5)

and consequently they satisfy A2(t) > A1(t) for all t ∈ (t2
i , tz].

First, assume that t1
f < t2

f . Then, by our hypothesis on α we have α(t2
f ) < α(t1

f ) < 0 and
by the claim, we see then that A1(t) < A2(t), for all t ∈ [t1

i , t1
f ], contradicting that both A1

and A2 satisfy (4.2). On the other hand, if we assume that t2
f < t1

f , then, by the claim we have
that A2(tz) < A1(tz), contradicting (4.5). �
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Remark 4.1. The uniqueness result is also true if one or both solutions satisfies A(a) > 8, but
it may be false if one or both solutions satisfy A(b) > 8. Thus, in order to have a complete
uniqueness result we would need to know that all solutions with R and R′ satisfy A(b) = 8.

Given R0 > 0, it is possible to give an estimate on R′
0 so that for all 0 < R � R0 and

0 < R′ � R′
0 the solutions of (4.1) with (R, R′) satisfy A(b) = 8. We let h : [a, b] → R such

that h(t) = 1 if t < tz and h(t) = 0 if t � tz and we consider the solution of the equation

A′(t) = (2π)2α(t)

(
R + h(t)

∫ t

a

ds

T (A(s))

)
(4.6)

with initial value A(ti) = 8, for ti ∈ [a, tz) and denote it as A(t, ti). We observe that the
solutions of this equation are ordered by ti and by R and we have that either

(i) A(t, ti) > 8 for all t ∈ [tz, b] or else,
(ii) there is tf ∈ [tz, b] such that A(tf , ti) = 8.

We let t∗ be the infimum all ti such that (ii) holds and we define

R′
0 =

∫ tz

t∗

ds

T (A(s, t∗))
.

By definition of R′
0 and since the solutions of (4.6) are ordered, it is easy to see that given

(R, R′) ∈ (0, R0] × (0, R′
0], all solution of (4.1) with (R, R′) satisfy A(b) = 8.

Next we prove a compactness property we will use later.

Proposition 4.3. Given R > 0 and R′ > 0. Let A be the set of all solutions of (4.1) with (4.2)
in [a, b]. Then A is compact in the topology of the norm ‖u‖∞ = sup{|u(t)|/t ∈ [−L, L]}.
Proof. First we see that there is a constant c > 0 so that |A′(t)| � c(R+R′) for all t ∈ [−L, L].
This, together with (4.2), implies that there is C > 0 such that A(t) � C for all t ∈ [−L, L].
Then, using the Arzela–Ascoli theorem, we find that any sequence {An} ⊂ A has a convergent
subsequence, say converging to A. Since An satisfies (4.1) and (4.2) we see also that A satisfies
(4.1) and (4.2). �

In the construction of solutions via the Nehari method, it would be useful to assume
uniqueness of the solution, given R and R′. However, when this is not possible it is a useful
and suitable notion of isolatedness. Assuming that α : [a, b] → R, with [a, b] ⊂ (−L, L),
satisfies

α(t) > 0 in [a, taz ) and α(t) < 0 in (tbz , b], with α(taz ) = α(tbz ) = 0

and that R and R′ are given, we say that the set A of all solutions of (4.1) satisfying
(4.2) is isolated if A is non-empty and there is δ > 0, so that for all A ∈ A we have
suppA ⊂ [a + δ, b − δ]. This implies that even though the solution may not be unique any
solution in [a, b] will have its support located in an strict subinterval. This localization property
is key in the existence result.

Remark 4.2. Under the assumptions of Proposition 4.2, for any R > 0 there exists cR > 0
such that for R′ ∈ (0, cR), the set of solutions of (4.1)–(4.2) in [a, b] with R, R′ is unique and
thus isolated.
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5. The Basic Solutions

In this section we describe the basic solutions, which are the building blocks of approximate
solutions of (1.1) and will allow us to set up the Nehari Method. We consider

ε2u′′ + sin u = ε2α(t)u in (	0, 	1), (5.1)

with various boundary conditions.

(1) Solutions at endpoints: we define the left increasing solution at n as the solution wi
L(t) of

(5.1) that satisfies

u(	0) = (2n − 1)π, u(	1) = 2nπ (5.2)

and the right increasing solution at n as the solution wi
R(t) of equation (5.1) that satisfies:

u(	0) = 2nπ, u(	1) = (2n + 1)π. (5.3)

In a similar way we may define wd
L (wd

R) the left decreasing solutions.
(2) Interior solutions: we define increasing interior solutions at n as the solution wi

I of (5.1)
that satisfies

u(	0) = 2nπ, u(	1) = (2n + 2)π. (5.4)

Similarly we may define wd
I the decreasing interior solutions at n.

(3) Glueing solutions: these basic solutions, denoted as wii
g , are defined in the same way as

the interior solutions, but we distinguish them because they play a different role in the
construction. In the first case we consider 	1 − 	0 when small, while in the second case
	1 − 	0 is large. Similarly we define wdd

g as the decreasing glueing solution.
Using the basic properties of solutions of the equation (1.5) and the monotonicity of the
period T (E) it can be proved that there exists ε0 > 0 such that for any −L � 	0 < 	1 � L,
all of the above basic solutions are uniquely defined for all ε ∈ (0, ε0].

(4) Homotopy glueing solutions. We define the increasing-decreasing glueing solution at n

as the solution wid
g of (5.1) that satisfies

u(	0) = 2nπ, u(	1) = 2nπ, (5.5)

with u′(	0) > 0. Similarly we define wdi
g as the decreasing-increasing glueing

solution at n.

In what follows we analyse the existence and uniqueness of solutions wid
g and wdi

g and
a homotopy of solutions that will be used in section 7 for a homotopy argument in glueing
clusters. We will construct these solutions using a variational approach with an appropriate
penalization. We will give the details only for the increasing-decreasing function, that is for
wid

g , since the other one is analogous. Let −L < a < c0 < c1 < b < L and 	0 ∈ [−L, a],
	1 ∈ [b, L], we consider

ε2u′′ + sin u = ε2α(t)u + λχ(t)(u − (2nε + 1)π) in (	0, 	1),

u(	0) = u(	1) = 2nεπ.
(5.6)

Here nε ∈ N, λ ∈ [0, ∞) and χ(t) denotes the characteristic function of the interval [c0, c1],
that is, it takes the value 1 in [c0, c1] and 0 elsewhere. Let us consider the spaces

H0 = {u ∈ H 1(	0, c0) / u(	0) = 2nεπ and u(c0) = (2nε + 1)π},
H1 = {u ∈ H 1(c1, 	1) / u(c1) = (2nε + 1)π and u(	1) = 2nεπ}

and

H01 = {u ∈ H 1(	0, 	1)/u(	0) = u(	1) = 2nεπ and

u(t) ∈ [2nεπ, (2nε + 1)π + δ0] for t ∈ [	0, 	1]}.
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Let J 0
ε and J 1

ε be the functionals associated to equation (5.1) in the corresponding intervals,
over H0 and H1, respectively. Let Jε,λ be a functional corresponding to (5.6) on H01. Then we
have

Lemma 5.1. (i) There exists ε0 > 0 such that for ε ∈ (0, ε0], λ ∈ [0, ∞), 	0 ∈ [−L, a],
	1 ∈ [b, L], J 0

ε , J 1
ε and Jε,λ have unique minimizers u0

ε,∞(	0; t), u1
ε,∞(	1; t) and uε,λ(	0, 	1; t),

respectively. (ii) Moreover, the functions defined on [−L, a]×[b, −L]×[0, ∞] → R, given by

(	0, 	1, λ) �→
{
u′

ε,λ(	0, 	1; 	0) if λ ∈ [0, ∞),
(u0

ε,∞)′(	0; 	0) if λ = ∞
and

(	0, 	1, λ) �→
{
u′

ε,λ(	0, 	1; 	1) if λ ∈ [0, ∞),
(u1

ε,∞)′(	1; 	1) if λ = ∞
are continuous.

Proof. (i) Existence and uniqueness for minimizers for J 0
ε and J 1

ε is obtained in a similar
way to other basic solutions. The existence of a minimizer uε,λ(t) for Jε,λ, for small ε > 0 is
also rather standard, so we only deal with uniqueness. Let us consider the rescaled function
ũε,λ(t) = uε,λ(εt) : [	0/ε, 	1/ε] → R, which satisfies

ũ′′ + sin ũ = ε2α(εt)ũ + λχ(εt)(ũ − (2nε + 1)π) in (	0/ε, 	1/ε),

ũ(	0/ε) = ũ(	1/ε) = 2nεπ and ũ(t) ∈ [2nεπ, (2nε + 1)π + δ0]. It is easily observed that as
ε → 0

ũε,λ(t +
	0

ε
) − 2nεπ → ζ0(t) in C1

loc([0, ∞), R),

ũε,λ(t +
	1

ε
) − 2nεπ → ζ0(−t) in C1

loc((−∞, 0], R),

where ζ0(t) is the heteroclinic solution of (1.5), joining −π and π and satisfying ζ(0) = 0,
ζ ′(0) = 2. Then, for any δ > 0 there exists rδ > 0 such that

ũε,λ

(
rδ +

	0

ε

)
, ũε,λ

(
−rδ +

	1

ε

)
∈ [(2nε + 1)π − δ, (2nε + 1)π + δ],

for ε small. Comparing ũε,λ(t) with a solution of

w′′ − (1 ∓ ν0)w = ∓α(εt)(2nε + 1)π,

w

(
rδ +

	0

ε

)
= w

(
−rδ +

	1

ε

)
= (2nε + 1)π ± δ,

which is independent of λ, as in section 3, we have for all λ ∈ [0, ∞)

| ũε,λ(t) − (2nε + 1)π |� a1ε
3 + a2e−√

1−ν0 min{|t−(rδ+ 	0
ε

)|,|t−(−rδ+ 	1
ε

)|} (5.7)

for t ∈ [rδ + 	0/ε, −rδ + 	1/ε], where a1, a2 are independent of ε and λ and satisfies |a1|,
|a2| � Cδ. Thus we see that

‖ũε,λ(t) −
(

ζ0

(
t − 	0

ε

)
+ ζ0

(
−

(
t − 	1

ε

))
+ 2nεπ

)
‖

L∞
(
rδ+ 	0

ε
,−rδ+ 	1

ε

) → 0 (5.8)

as ε → 0 uniformly in λ ∈ [0, ∞). Next we observe that there exists C5 > 0 such that∫ ∞

0
| h′ |2 −(cos ζ0(t))h

2 dt � C5‖h‖2
H 1(0,∞), for all h ∈ H 1

0 (0, ∞),

as follows from uniqueness of the heteroclinic orbit for (1.5). It also follows the existence of
C ′

5 > 0 independent of a, b such that for | b − a |� 1∫ b

a

| h′ |2 −(cos(ζ0(t − a) + ζ0(−(t − b))))h2 dt � C ′
5‖h‖2

H 1(a,b). (5.9)
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Now we show uniqueness of a minimizer for Jε,λ. Arguing indirectly, we assume it has
two minimizers u1

ε,λ(t) and u2
ε,λ(t). Setting ũi

ε,λ(t) = ui
ε,λ(εt) (i = 1, 2), we see that

h(t) = ũ1
ε,λ(t) − ũ2

ε,λ(t) satisfies

h′′ − cos(θ(t)ũ1
ε,λ(t) + (1 − θ(t))ũ2

ε,λ(t))h = ε2α(εt)h + λχ(εt)h

for some function θ(t) : [	0/ε, 	1/ε] → [0, 1]. Multiplying by h and integrating on
[	0/ε, 	1/ε], we have∫ 	1/ε

	0/ε

|h′|2 − cos(θ(t)ũ1
ε,λ(t) + (1 − θ(t))ũ2

ε,λ(t))h
2 dt

+ε2
∫ 	1/ε

	0/ε

α(εt)h2 dt + λ

∫ 	1/ε

	0/ε

χ(εt)h2 dt = 0.

Since both of ũi
ε,λ(t) (i = 1, 2) satisfy (5.8), we find that h(t) ≡ 0 for all λ ∈ [0, ∞) for ε

small, hence uniqueness of a minimizer.
(ii) Now we consider the behaviour of ũε,λ(t) as λ → ∞, for ε fixed. Since ũε,λ(t)

minimizes

J̃ε,λ(u) =
∫ 	1/ε

	0/ε

1

2
| u′ |2 +(cos u + 1) +

ε2

2
α(εt)u2 dt

+
λ

2

∫ c1/ε

c0/ε

| u − (2nε + 1)π |2 dt,

we have, for some constant Mε independent of λ, that∫ c1/ε

c0/ε

|ũ′
ε,λ|2 dt, λ

∫ c1/ε

c0/ε

| ũε,λ − (2nε + 1)π |2 dt � Mε. (5.10)

Recalling (5.7), it follows from (5.10) that

max
t∈[c0/ε,c1/ε]

| ũε,λ(t) − (2nε + 1)π |→ 0

as λ → ∞, which implies (ii). �

6. Nehari Method and the Existence of single clusters

In this section we will construct a solution of (1.1) exhibiting a single increasing cluster by
using the Nehari method whenever we have isolated solutions of (4.1)–(4.2).

We prove the following existence result.

Theorem 6.1. Let R > 0 and R′ > 0. We assume that the class A of all solutions of (4.1)–(4.2)
in [a, b] with R and R′ is non-empty and isolated in [a, b] as defined in section 4. Then there
exists a family {uε} of solutions of (1.1) in (−L, L) such that after extracting a subsequence

Aε(t) ≡ A(Eε(t)),

where Eε(t) is defined in (1.4), converges to some A(t) ∈ A as ε → 0.

To show our theorem 6.1, we consider natural numbers nε and mε such that

lim
ε→0

εnε = R and lim
ε→0

εmε = R′ (6.1)

and, for a positive number τ to be determined later, we define the set

�ε = {�t = (t1, t2, ..., tmε
)/t1 − a � τε, ti+1 − ti � τε, i = 1, ..., mε − 1,

b − tmε
� τε}.
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Given �t ∈ �ε we consider basic solutions ui , i = 0, ..., mε in the following way (we refer to
section 5):
(i) u0 is a left increasing solution in the interval [−L, t1], with boundary values

u0(−L) = (2nε + 1)π and u0(t1) = 2(nε + 1)π,

(ii) ui , for i = 1, ..., mε − 1, is an increasing interior solutions in the interval [ti , ti+1] with
boundary values

ui(ti) = 2(nε + i)π and ui(ti+1) = 2(nε + i + 1)π

and
(iii) umε

is a right increasing solution in the interval [tmε
, L] with boundary values

umε
(tmε

) = 2(nε + mε)π and umε
(L) = (2(nε + mε) + 1)π.

Then we define the function Iε : �ε → R
mε as

(Iε)i(�t) = u′
i (ti) − u′

i−1(ti), for i = 1, ..., mε. (6.2)

We observe that defining uε : [−L, L] → R as uε(t) = ui(t) if t ∈ [ti , ti+1], the function uε

is a solution of (1.1) provided

Iε(�t) = 0. (6.3)

In order to find a solution of this equation we will use the degree theory. It will be sufficient
to prove that

Proposition 6.1. There exists ε0 > 0 such that for all 0 < ε � ε0

deg(Iε, �ε, 0) = 1.

In what follows we prove this proposition. For this purpose we will define an appropriate
homotopy in two steps, first we reduce the interval for the equation (1.1) and second we move
α to zero.

Accordingly we consider λ ∈ [0, 1] and the equation

ε2u′′ + sin u = min{1, 2λ}ε2α(t)uε in t ∈ [aλ, bλ], (6.4)

uε(aλ) = (2nε + 1)π, uε(bλ) = (2(nε + mε) + 1)π, (6.5)

where

aλ = −(2λ − 1)+L + (1 − (2λ − 1)+)a

and

bλ = (2λ − 1)+L + (1 − (2λ − 1)+)b.

We observe that if λ ∈ [0, 1/2] then the equation (6.4) is considered in the interval [a, b] and
the right hand side goes from 0 to ε2αuε, while if λ ∈ [1/2, 1] then equation (6.4) has a fixed
right hand side ε2αuε and it is considered in an interval going from [−L, L] to [a, b]. In both
cases the boundary values are the same.

Next, for every λ ∈ [0, 1] we may consider the equation for the area as

A′
λ(t) = (2π)2αλ(t)

(
R +

∫ t

a

ds

T (Aλ(s))

)
, t ∈ (aλ, bλ), (6.6)

with the condition∫ b

a

ds

T (Aλ(s))
= R′, (6.7)

here we denoted αλ = min{1, 2λ}α. As in proposition 4.3, we can prove that the class A[0,1]

of all solutions of (6.6) with (6.7) and λ ∈ [0, 1] is compact with the supremum norm. Now
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we consider the function E(Aλ), the energy function associated to Aλ ∈ A[0,1], then there is
E0 such that

E0 = sup{E(Aλ(t)) / t ∈ [aλ, bλ], Aλ ∈ A[0,1], λ ∈ [0, 1]}.
Then we choose the number τ used in the definition of �ε as τ > 0 as

2π2

τ 2
− 2 > E0. (6.8)

Now we are in a position to start the proof of proposition 6.1. Given λ ∈ [0, 1] we consider
equation (6.4)–(6.5). We may construct basic solutions as in section 5 and then, given �t ∈ �ε

we may proceed as before to define Hε(�t, λ) as in (6.2). Our next lemma allows to define the
degree for H and, in particular the degree of Iε.

Lemma 6.1. There is ε0 > 0 so that, for all 0 < ε � ε0 and λ ∈ [0, 1] the equation

Hε(�t, λ) = 0, �t ∈ ∂�ε

does not have a solution.

Proof. Let us assume that there is a sequence εn → 0, and λn → λ̄ and �tn ∈ ∂�εn
such that

Hεn
(�tn, λn) = 0.

On one hand we find a sequence of solutions uεn
that gives rise to a limiting energy function

Eλ̄ defined in [aλ̄, bλ̄] according to proposition 2.2 in section 2. Since the solutions uεn
were

constructed with nε and mε satisfying (6.1), we see that

Eλ̄(t) � E0, for all t ∈ [aλ̄, bλ̄]. (6.9)

On the other hand, since �tn ∈ ∂�εn
, there exists a sequence tnin → t̄ such that:

(1) tnin+1 − tnin = εnτ , with 1 � in � mεn
− 1,

(2) tn1 − a = εnτ or
(3) b − tnmεn

= εnτ .

If (1) holds then there exists t̃n ∈ (tnin , t
n
in+1) such that

u′
εn

(t̃n) = 2π

εnτ
,

from where

Eεn,λn
(t̃n) = 1

2
(εnu

′
εn

(t̃n))
2 − (cos uεn

(t̃n) + 1) � 2π2

τ 2
− 2.

From here we obtain Eλ̄(t̄) � 2π2

τ 2 − 2, which contradicts (6.8).
If (2) holds, then we argue depending on the value of λ̄. In case λ̄ ∈ [0, 1/2), then we may

use the argument given above, with slight changes, to get a contradiction. In case λ̄ ∈ [1/2, 1],
we observe that Aλ̄(t) = A(Eλ̄(t)) is a solution of (4.1)–(4.2) in [a, b]. By the isolatedness
of A, we have Aλ̄(t) = 8 in a neighbourhood [a, a + σ ] of a, which implies Eλ̄(t) = 0 in
[a, a+σ ]. By the construction, uε(t) is growing in [a, b]. Thus by proposition 3.1, uε(t) /∈ 2πZ

in (a, a + δ
2 ]. Therefore case (2) cannot take a place for ε small.

Case (3) is similar to (2). �
Proof of proposition 6.1. By lemma 6.1 we only need to compute the degree of Hε(·, 0),
which is associated to the autonomous equation (1.5). Let T > 0 and u(t; T ) be the solution
of (1.5) of rotation type satisfying u(0; T ) = −π , u(T ; T ) = π and denote v(T ) = u′(0; T ).
Then we have

T =
∫ π

−π

ds√
v(T )2 + 2(cos s + 1)

,
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so that

dv

dT
= −

(∫ π

−π

v(T ) ds

(v(T )2 + 2(cos s + 1))3/2

)−1

< 0.

Thus, at the unique solution equation

Hε(�t, 0) = 0, �t ∈ �ε,

given by �tε = a(1, 1, · · · , 1) + Tε(1, 2, · · · , mε), with Tε = (b − a)/(mε + 1), we have that the
derivative is

DHε(�tε, 0) = 1

ε2

dv

dT
(ε−1Tε)M,

where M is the matrix with −2 in the diagonal and 1 in the upper and lower diagonal. Then
we find that

deg(Hε(�t, 0), �ε, 0) = 1,

which completes the proof. �

7. Nehari Method and the Existence of multiple clusters

In this section we will construct a solution of (1.1) exhibiting a single increasing cluster and a
single decreasing cluster. Construction solutions exhibiting with more than 2 clusters can be
done essentially in a similar way.

We deal with the following situation: let R1, R′
1 > 0, R2 = R1 + R′

1, R′
2 > 0 with

R1 + R′
1 > R′

2 and −L < a1 < b1 < c1 < c2 < a2 < b2 < L. We consider a class A1 of
all solutions of (4.1)–(4.2) with R = R1, R′ = R′

1 in [a1, b1] and a class A2 of all solutions
in [a2, b2] of

A′(t) = −(2π)2α(t)

(
R2 −

∫ t

a2

1

T (A(s))
ds

)
in [a2, b2],

∫ b2

a2

1

T (A(s))
ds = R′

2.

We show the following

Theorem 7.1. Assume that Ai is non-empty and isolated in [ai, bi] for i = 1, 2. Then there
exists a family {uε(t)} of solutions of (1.1) in (−L, L) such that after extracting a subsequence

Aε(t) = A(Eε(t)),

where Eε(t) is defined in (1.4), converges to some A(t) as ε → 0. Moreover supp A ⊂
(a1, b1) ∪ (a2, b2) and A

∣∣
[ai ,bi ]

∈ Ai for i = 1, 2.

To prove theorem 7.1 we consider natural numbers n1
ε , m1

ε , n2
ε , m2

ε so that

lim
ε→0

εn1
ε = R1, lim

ε→0
εm1

ε = R′
1,

lim
ε→0

εn2
ε = R2 = R1 + R′

1, lim
ε→0

εm2
ε = R′

2.

We choose τ > 0 so that

2π2

τ 2
− 2 � sup{E(Ai(t)) / Ai ∈ Ai , t ∈ [ai, bi], i = 1, 2}
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and we define

�1
ε = {�t1 = (t1

1 , . . . , t1
m1

ε
) / t1

1 − a1 � τε, t1
i+1 − t1

i � τε (i = 1, 2, . . . , m1
ε),

b1 − t1
m1

ε
� τε},

�2
ε = {�t2 = (t2

1 , . . . , t2
m2

ε
) / t2

1 − a2 � τε, t2
i+1 − t2

i � τε (i = 1, 2, . . . , m2
ε),

b2 − t2
m2

ε
� τε}.

For a given (�t1, �t2) ∈ �1
ε × �2

ε we consider basic solutions ui(t) (i = 0, 1, . . . , m1
ε + m2

ε) in
the following way. For the homotopy argument, our basic solution in the interval [t1

m1
ε
, t2

1 ]
depends on the parameter λ ∈ [0, ∞] which is due to introduction of a penalty term
λχ(t)(u − (2(n1

ε + m1
ε) + 1)π).

(i) u0(t) is a left increasing solution in [−L, t1
1 ] with u0(−L) = (2n1

ε + 1)π , u0(t
1
1 ) =

2(n1
ε + 1)π .

(ii) ui(t) (i = 1, 2, . . . , m1
ε − 1) is an increasing interior solution in [t1

i , t1
i+1] with ui(t

1
i ) =

2(n1
ε + i)π , ui(t

1
i+1) = 2(n1

ε + i + 1)π .
(iii) For λ ∈ [0, ∞), uλ

m1
ε
(t) is an increasing-decreasing glueing solution of the following

equation with a penalty:

ε2u′′ + sin u = ε2α(t)u + λχ(t)(u − (2(n1
ε + m1

ε) + 1)π),

u(t1
m1

ε
) = 2(n1

ε + m1
ε)π,

u(t2
1 ) = 2(n1

ε + m1
ε)π,

u′(t1
m1

ε
) > 0.

Here χ(t) is defined by χ(t) = 1 if t ∈ [c1, c2], χ(t) = 0 otherwise.
For λ = ∞, we set

u∞
m1

ε
(t) =




a left increasing solution in [t1
mε

, t2
1 ] with

u∞
m1

ε
(t1

mε
) = 2(n1

ε + m1
ε)π, u∞

m1
ε
(c1) = (2(n1

ε + m1
ε) + 1)π, in [t1

mε
, c1],

(2(n1
ε + m1

ε) + 1)π in [c1, c2],
a right decreasing solution in [c2, t

2
1 ] with

u∞
m1

ε
(c2) = (2(n1

ε + m1
ε) + 1)π, u∞

m1
ε
(t2

1 ) = 2(n1
ε + m1

ε)π in [c2, t
2
1 ].

(iv) um1
ε+i (t) (i = 1, 2, . . . , m2

ε − 1) is a decreasing interior solution in [t2
i , t2

i+1] with
um1

ε+i (t
2
i ) = 2(n1

ε + m1
ε + 1 − i)π , um1

ε+i (t
2
i+1) = 2(n1

ε + m1
ε − i)π .

(v) um1
ε+m2

ε
(t) is a right decreasing solution in [t2

m2
ε
, L] with um1

ε+m2
ε
(t2

m2
ε
) = 2(n1

ε+m1
ε−m2

ε +1)π ,

um1
ε+m2

ε
(L) = (2(n1

ε + m1
ε − m2

ε) + 1)π .

Then for λ ∈ [0, ∞] we define the function I λ
ε : �1

ε × �2
ε → R

m1
ε+m2

ε by

(I λ
ε )i(�t1, �t2) =




u′
i (ti) − u′

i−1(t)

if i ∈ {1, 2, . . . , m1
ε + m2

ε} \ {m1
ε, m

1
ε + 1},

(uλ
m1

ε
)′(tm1

ε
) − u′

m1
ε−1(tm1

ε
) if i = m1

ε,

u′
m1

ε+1(tm1
ε+1) − (uλ

m1
ε
)′(tm1

ε+1) if i = m1
ε + 1.

Here we use convention ti = t1
i for i = 1, 2, . . . , m1

ε and tm1
ε+i = t2

i for i = 1, 2, . . . , m2
ε .

We remark that when λ = ∞, (I∞
ε )i(�t1, �t2), i = 1, . . . , m1

ε , (respectively (I∞
ε )m1

ε+i (�t1, �t2),
i = 1, . . . , m2

ε) does not depend on �t2 (respectively �t1). Thus we can write

I∞
ε (�t1, �t2) = (Iε,1(�t1), Iε,2(�t2)). (7.1)
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Here Iε,1(�t1) (respectively Iε,2(�t2)) is corresponding to a solution with a single cluster
[a1, b1] ⊂ (−L, c1) (respectively [a2, b2] ⊂ (c2, L)). By the result in the previous section, we
have for ε small

deg(I 1
ε , �1

ε, 0) = 1, (7.2)

deg(I 2
ε , �2

ε, 0) = 1. (7.3)

For (�t1, �t2) ∈ �1
ε × �2

ε , we observe that defining uε(t) = ui(t) in [ti , ti+1], uε(t) solves

ε2u′′ + sin u = ε2α(t)u + λχ(t)(u − (2(n1
ε + m1

ε) + 1)π) in (−L, L) (7.4)

if and only if I λ
ε (�t1, �t2) = 0. In particular, uε(t) satisfies (1.1) if and only if I 0

ε (�t1, �t2) = 0.
To find a solution of I 0

ε (�t1, �t2) = 0, we use the Brouwer degree. We show

Proposition 7.1. There exists ε0 > 0 such that for ε ∈ (0, ε0]

deg(I 0
ε , �1

ε × �2
ε, 0) = (−1)m

1
ε+m2

ε . (7.5)

Proof. To show (7.5), first we show for ε small

I λ
ε (�t1, �t2) �= 0 for all λ ∈ [0, ∞] and (�t1, �t2) ∈ ∂(�1

ε × �2
ε). (7.6)

Suppose that there exists sequences (�t1
εn

, �t2
εn

) ∈ �1
ε × �2

ε with εn → 0 and λn ∈ [0, ∞]
such that I λn

εn
(�t1

εn
, �t2

εn
) = 0. Then the corresponding uεn

(t) solves (7.4). We set Eεn
(t) =

1
2 (εnu

′
εn

)2 − (cos uεn
+ 1) and E(t) = limn→∞ Eεn

(t) (if necessary, we take a subsequence).
We can see that suppE(t) ⊂ [a1, b1] ∪ [a2, b2]. We define Ai(t) = A(E(t))|[ai ,bi ] (i = 1, 2).
Then we can see that Ai ∈ Ai (i = 1, 2). Thus, by the isolatedness of Ai , we can see as in
the proof of lemma 6.1 that �t i ∈ ∂�i

ε cannot take a place for large n for i = 1, 2. Thus (7.6)
holds and we have

deg(I 0
ε , �1

ε × �2
ε, 0) = deg(I∞

ε , �1
ε × �2

ε, 0).

By (7.1), (7.2), (7.3), we have

deg(I∞
ε , �1

ε × �2
ε, 0) = deg((Iε,1, Iε,2), �

1
ε × �2

ε, 0)

= deg(Iε,1, �
1
ε, 0) · deg(Iε,2, �

2
ε, 0)

= 1.

�
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