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a b s t r a c t

Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic
and incompressible material are summarized and then specialized to a form suitable for the analysis of a
spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during infla-
tion is analyzed using four different material models. Specifically, one and two terms in the Ogden energy
formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate
the existence of local pressure maxima and minima and the dependence of the corresponding stretches
on the material model and on shell thickness. These results are then used to investigate axisymmetric
bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled
spherical shell subject to an external pressure. We find that the results of the two terms Ogden formu-
lation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we iden-
tify additional critical stretches, which have not been reported in the literature before.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

On several occasions the behavior of an inflating spherical
membrane has been investigated to provide information on the
pressure-deformation response. Needleman (1977), Chen and
Healey (1991), Müller and Struchtrup (2002), Goriely et al.
(2006), Beatty (2011) and Rudykh et al. (2012), among others, have
shown that the spherical configuration is maintained during initial
inflation up to a pressure maximum at which point the membrane
expands rapidly thereby reducing the internal pressure. While the
pressure is reducing a sequence of aspherical modes occurs until a
local minimum is reached where the spherical symmetry is rees-
tablished. For further inflation, an increase in pressure is always
accompanied by an increase in radius. If both, a pressure maximum
and minimum exist, bifurcation points of a given mode n appear in
pairs, as pointed out by Haughton and Ogden (1978b), Haughton
(1980) and Haughton and Kirkinis (2003). As we show numerically,
the prediction of a local pressure minimum depends on the consti-
tutive model used in the analysis and on the wall thickness.

The general theory used to investigate stability of spherical
shells of arbitrary thickness subject to uniform pressure is based
on the existence of equilibria for small elastic deformations super-
imposed upon a finitely deformed configuration, see the important
contributions by Green et al. (1952), Wesolowski (1967), Hill
ll rights reserved.

ann).
(1976), Haughton and Ogden (1978a,b) and Hill (1976) derived
closed form solutions to predict the first aspherical buckling mode
n ¼ 1 for thick-walled spherical shells subject to an uniform exter-
nal pressure. Specifically, he showed that the n ¼ 1 mode does not
occur for the neo-Hookean material and that for the Varga material
the n ¼ 1 mode is only possible for an inflated shell, i.e. negative
external pressure. Haughton and Ogden (1978b), in their seminal
paper, provide full details of the possible existence of aspherical
bifurcation modes for membrane and thick-walled spherical shells
subject to internal pressure. They showed that the existence of
these modes depends, in addition to the material model, on the
thickness of the shell. For a thickness above a critical value no
aspherical equilibrium configurations are possible. For shells under
compression Haughton and Ogden (1978b) list the critical
stretches and the corresponding bifurcation modes n. Results are
compared using the three terms Ogden formulation, the neo-Hook-
ean and Varga models and a formulation proposed by Hill (1976).

The mechanical and geometrical effects of growth on the stabil-
ity of a neo-Hookean thick-walled shell is given by Amar et al.
(2005). In the context of biological tissues, the effect of strain hard-
ening on the stability of a spherical shell is investigated by Goriely
et al. (2006). Specifically, they found that a compressed shell of any
thickness made of a Fung material is less stable than a neo-Hook-
ean material.

This paper is organized as follows. Section 2 gives a brief over-
view of the basic equations in Eulerian and Lagrangian forms
describing the stress-stretch response of an elastic materials sub-
ject to finite deformations. We derive the incremental equilibrium
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equations and incremental boundary conditions for an isotropic
hyperelastic and incompressible material. These equations are well
known and have been derived by Haughton and Ogden (1978b), in-
cluded in the monograph Ogden (1997) and used by, for example,
Haughton (1980, 1987), Chaplain and Sleeman (1992, 1993),
Haughton and Kirkinis (2003), Amar et al. (2005) and Goriely
et al. (2006). The derivations are included in Section 3 because they
are needed to introduce proper notations and conventions and are
relevant for the solution method adopted inhere. In Section 4 we
derive the pressure-deformation response of a spherical shell due
to an applied internal pressure. Using spherical coordinates, the
incremental governing equations and boundary conditions are spe-
cialized to an axisymmetric incremental deformation superim-
posed upon a known spherically symmetric configuration.

The solution technique is addressed in Section 5, where we pro-
vide an outline on the use of the compound matrix method to solve
the governing equations. The accuracy of this method has been
verified and validated by Haughton (2008), where solutions ob-
tained from the compound matrix method have been compared
to the exact values determined by direct computation. The com-
pound matrix method has been used by Haughton and Kirkinis
(2003) and Dorfmann and Haughton (2006) to related problems.

In Section 6 we consider four strain energy functions to deter-
mine the pressure-stretch response of a spherical shell during
inflation and then use the results to analyze aspherical bifurcations
associated with modes n ¼ 1;2;3; . . .. Specifically, we consider one
term and two terms in the formulation proposed by Ogden (1972),
the model introduced by Gent (1996) and a generalized I1 model
recently published by Lopez-Pamies (2010). We investigate possi-
ble local pressure maxima and the corresponding critical stretches
for an inflating spherical shell. We emphasize, that the existence of
a local pressure minimum depends not only on the material model
considered but also on the shell thickness, as pointed out by
Haughton and Ogden (1978b). In Section 6.2 we use the compound
matrix method to investigate axisymmetric bifurcations of a spher-
ical shell of arbitrary thickness subject to an external pressure. We
identify the critical stretches and corresponding aspherical modes
and find that the two terms Ogden formulation, the Gent and the
Lopez-Pamies models give very similar results. For the one term
Ogden model we find additional critical stretches which, to the
best of our knowledge, have not been recognized in the literature
before.
2. Basic equations

2.1. Continuum kinematics

Consider a nonlinear elastic solid which is located in the fixed
reference configuration B0 in the absence of any mechanical body
forces. To describe the deformation, we denote a generic material
point by its position vector X relative to an arbitrary chosen origin.
Application of surface loads deforms the body, so that the point X
occupies the new position x ¼ vðXÞ in the deformed configuration
B. The vector field v describes the deformation of the body and as-
signs to each point X a unique position x in B and viceversa attri-
butes a unique reference position X in B0 to each point x. In other
words, the deformation function v is a one-to-one mapping with
suitable regularity properties.

The deformation gradient tensor relative to B0 is defined by

F ¼ Gradx; ð1Þ

where Grad denotes the gradient operator with respect to X. The
Cartesian components are Fia ¼ @xi=@Xa, where xi and Xa are the
components of x and X, respectively, with i;a 2 f1;2;3g. Roman
indices are associated with B and Greek indices with B0. We also
adopt the standard notation

J ¼ det F ¼ dv
dV

> 0; ð2Þ

where dV and dv are volume elements in B0 and B, respectively.
The deformation gradient can be decomposed according to the

unique polar decomposition

F ¼ RU ¼ VR; ð3Þ

where R is a proper orthogonal tensor and U and V are positive def-
inite and symmetric, respectively the right and left stretch tensors.
These can be expressed in spectral form. For U, for example, we
have the spectral decomposition

U ¼
X3

i¼1

kiuðiÞ � uðiÞ; ð4Þ

where the principal stretches ki > 0; i 2 f1;2;3g, are the eigen-
values of U, uðiÞ are the corresponding (unit) eigenvectors, and � de-
notes the tensor product. For a volume preserving (isochoric)
deformation, we have

J ¼ det F ¼ det U ¼ det V ¼ k1k2k3 � 1: ð5Þ

Using the polar decomposition (3), we define

C ¼ FTF ¼ U2; B ¼ FFT ¼ V2; ð6Þ

which denote the right and left Cauchy–Green deformation tensors
respectively. The three principal invariants for C, equivalently B, are
defined by

I1 ¼ tr C; I2 ¼
1
2
ðtr CÞ2 � trðC2Þ
h i

; I3 ¼ det C ¼ J2; ð7Þ

where tr is the trace of a second-order tensor. Alternatively, in
terms of the principal stretches, the invariants I1; I2; I3 are

I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k2

1k
2
2 þ k2

2k
2
3 þ k2

3k
2
1; I3 ¼ k2

1k
2
2k

2
3: ð8Þ
2.2. Mechanical balance laws

The equilibrium equation in the current configuration in terms
of the Cauchy stress r and in the absence of mechanical body
forces may be written in the form

divr ¼ 0; ð9Þ

where div is the divergence operator with respect to x. Introducing
the nominal stress tensor, denoted T, and defined by

T ¼ JF�1r; ð10Þ

allows the equilibrium Eq. (9) to be written in the alternative form

DivT ¼ 0; ð11Þ

where Div is the divergence operator with respect to the reference
configuration.

Let ta denote the surface force per unit area at a point x on the
surface @B of the current configuration B. Then, the stress r must
satisfy

rn ¼ ta on @B: ð12Þ

The traction boundary condition associated with (11) can be re-
cast as

TTN ¼ tA on @B0; ð13Þ

where @B0 denotes the surface of the material body in the reference
configuration B0. The traction vector tA is connected to ta by
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tAdA ¼ tada where Nanson’s formula nda ¼ JF�TNdA is used to re-
late the area elements.

2.3. Isotropic hyperelasticity

The theory of hyperelasticity characterizes the elastic response
of a material by a strain energy function W defined per unit volume
in the reference configuration B0. For a homogeneous material W
depends only on the deformation gradient F and we write
W ¼WðFÞ. The nominal stress tensor is then given by

T ¼ @W
@F

; ð14Þ

and, using (10) gives the expression of the corresponding Cauchy
stress tensor

r ¼ J�1F
@W
@F

: ð15Þ

The expressions (14) and (15) apply for a material that is not
subject to any internal mechanical constraint. If the material is
incompressible, the deformation gradient satisfies the constraint

det F � 1 ð16Þ

and the expressions for the nominal and Cauchy stress tensor re-
quire modifications. The nominal stress T and the Cauchy stress r
given in terms of W are then amended in the forms

T ¼ @W
@F
� pF�1; r ¼ F

@W
@F
� pI; ð17Þ

respectively, where I is the identity tensor and p is commonly re-
ferred to as the arbitrary hydrostatic pressure.

For an isotropic elastic solid W depends on the deformation only
through the principal invariants defined in (7) such that
W ¼WðI1; I2; I3Þ. We now restrict our attention to incompressible
material where I3 � 1 and the strain energy function can be writ-
ten in the form W ¼WðI1; I2Þ. A direct calculation of Eqs. (17),
using the derivatives of the strain invariants with respect to F given
in A by Eq. (A.1), leads to

T ¼ 2ðW1 þ I1W2ÞFT � 2W2CFT � pF�1 ð18Þ

and

r ¼ 2ðW1 þ I1W2ÞB� 2W2B2 � p I; ð19Þ

where the notation Wi ¼ @W=@Ii with i 2 f1;2g has been
introduced.

3. Incremental equations

3.1. Increments within the material

We now examine the effect of an incremental deformation
superimposed on the current configuration B. Let increments be
signified by superposed dots. For example, _T denotes the increment
in T. This allows to write the incremental form of the equilibrium
Eq. (11) as

Div _T ¼ 0; ð20Þ

which requires the (linearized) incremental form of the constitutive
Eq. (14). For an unconstrained material this is given by

_T ¼ A _F; ð21Þ

where _F is the increment in F and A is a fourth-order tensor. This
equation can be written in component form as

_Tai ¼ Aaibj
_Fjb; ð22Þ
where

Aaibj ¼
@2W

@Fia@Fjb
: ð23Þ

For an isotropic material with no mechanical constraint, W is a
function of the three invariants I1; I2; I3, and expression (23) can
be expanded in the form

Aaibj ¼
X3

m¼1

X3

n¼1

Wmn
@Im

@Fia

@In

@Fjb
þ
X3

n¼1

Wn
@2In

@Fia@Fjb
;

where Wn ¼ @W=@In; Wmn ¼ @2W=@Im@In. Expressions for the first
and second derivatives of In; n 2 f1;2;3g, with respect to F are gi-
ven in A by Eqs. (A.1) and (A.2).

For an incompressible material, the nominal stress T is given by
(17)1 and its increment is

_T ¼ A _F� _pF�1 þ pF�1 _FF�1; ð24Þ

which replaces (21).
We now update the reference configuration to coincide with the

current configuration and denote by _T0 the ‘push forward’ versions
of _T given by

_T0 ¼ J�1F _T; ð25Þ

which allows to define the Eulerian counterpart of Eq. (20) as

div _T0 ¼ 0: ð26Þ

It is convenient now to use the notation u for the incremental dis-
placement _x, with u treated as a function of x, so that _F ¼ ðgraduÞF.
Let d ¼ gradu, with components defined in Cartesian coordinates by
dij ¼ @ui=@xj. When the reference configuration is updated to coin-
cide with the current configuration, the incremental constitutive
Eq. (21) can be re-cast in the form

_T0 ¼ A0d; ð27Þ

where, in index notation, the tensor A0 is defined by

A0jisk ¼ J�1FjaFsbAaibk: ð28Þ

For an incompressible material J ¼ 1 in (28), and (27) is replaced by

_T0 ¼ A0dþ pd� _pI ð29Þ

and u satisfies the incremental incompressibility condition

divu ¼ 0: ð30Þ
3.2. Incremental boundary conditions

In the reference configuration B0 the material is subject to an
applied traction tA (defined per unit area of @B0) and the nominal
stress T must satisfy relation (13). On taking the increment of this
equation, we obtain

_TTN ¼ _tA on @B0 ð31Þ

and by use of Nanson’s formula the incremental boundary condi-
tions in Eulerian form become

_TT
0n ¼ _ta on @B: ð32Þ
4. Inflation of a spherical shell

4.1. Kinematics

Consider a thick-walled spherical shell made of an isotropic,
hyperelastic and incompressible material. It is convenient to use
spherical polar coordinates ðR;H;UÞ to define the geometric quan-
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tities in the reference configuration B0. Specifically, the geometry is
defined as

A 6 R 6 B; 0 6 H 6 p; 0 6 U 6 2p; ð33Þ

where A and B denote the inner and outer radii of the sphere,
respectively. The shell is now inflated by applying a pressure P on
the inner surface R ¼ A to produce a spherical symmetric deforma-
tion given by x ¼ f ðRÞX, where R ¼ jXj. The deformed geometry is
described by

a 6 r 6 b; 0 6 h 6 p; 0 6 / 6 2p; ð34Þ

where ðr; h;/Þ are again spherical polar coordinates and a and b are
the inner and outer radii of the deformed configuration, respec-
tively. We note that for an incompressible material

r3 ¼ R3 þ a3 � A3
: ð35Þ

The deformation gradient with respect to the spherical polar coor-
dinate axes is diagonal and the associated principal stretches are gi-
ven by

k1 ¼ k�2; k2 ¼ k; k3 ¼ k; ð36Þ

with k ¼ r=R > 1 being the principal stretch in the h- and /-direc-
tions. The principal stretch in the radial direction is

k1 ¼ k�2 ¼ dr
dR

: ð37Þ

The associated strain invariants are

I1 ¼ 2k2 þ k�4; I2 ¼ 2k�2 þ k4; I3 � 1: ð38Þ

For later use we define the stretches at the inner and outer surfaces
of the deformed shell as ka ¼ a=A and kb ¼ b=B, respectively. It is
easy to show that these stretches are not independent and are re-
lated by

ðk3
a � 1Þ ¼ B

A

� �3

ðk3
b � 1Þ; ð39Þ

with

ka P k P kb P 1: ð40Þ
4.2. Equilibrium

For an incompressible material, using Eq. (19), we find the nor-
mal components of the Cauchy stress

rrr ¼ 2 W1k
�4 þ 2W2k

�2� �
� p;

rhh ¼ 2 W1k
2 þW2ðk4 þ k�2Þ

� �
� p;

r// ¼ rhh; ð41Þ

with the shear components rrh; rr/ and rh/ being identically zero.
Eq. (38) shows that the invariants I1; I2 depend only on the

stretch k. It is therefore appropriate to define a strain energy func-
tion ŴðkÞ ¼WðI1; I2Þ, with

dŴ
dk
¼ 4W1ðk� k�5Þ þ 4W2ðk3 � k�3Þ:

In terms of Ŵ , the principal stress difference becomes

rhh � rrr ¼
1
2

kŴk; ð42Þ

where the subscript on Ŵ indicates differentiation with respect to k.
The only component of the equilibrium equation (9) not identi-

cally satisfied is given by

drrr

dr
þ 2

r
ðrrr � rhhÞ ¼ 0; ð43Þ
which, using Eq. (42) can be written as

r
drrr

dr
¼ kŴk: ð44Þ

Integration of (44), using the boundary conditions at the inner
and outer surfaces rrrðaÞ ¼ �P and rrrðbÞ ¼ 0, leads to the pres-
sure-deformation relation

P ¼
Z b

a
kŴk

dr
r
: ð45Þ

Using Eq. (35) together with k ¼ r=R results in

k
dr
r
¼ � dk

k3 � 1
; ð46Þ

which allows a change of variable in (45). We write

P ¼
Z ka

kb

Ŵkdk

ðk3 � 1Þ
; ð47Þ

which gives the internal pressure P as a function of the stretch at
the inner surface ka or equivalently as a function of kb.

4.3. Boundary conditions

Eq. (12) provides the stress r when the boundary of the mate-
rial is subject to an applied traction ta. It is convenient to write
the pressure boundary condition at the interior surface of the
sphere in terms of the nominal stressZ
@B

tada ¼
Z
@B
�Pnda ¼

Z
@B0

�PF�T NdA ¼
Z
@B0

TT NdA; ð48Þ

where we have used Nanson’s formula. The connection between ap-
plied pressure and nominal stress for an incompressible material is
then given by

TT N ¼ �PF�T N: ð49Þ

On taking an increment of (49), we have

_TT N ¼ � _PF�T Nþ PF�T _FT F�T N; ð50Þ

which can be written in the current configuration as

_TT
0n ¼ � _Pnþ PdTn; ð51Þ

where we recall that d ¼ grad u.

4.4. Incremental deformation

Denote the components of the incremental displacement vector
u by u; v; w along the r-, h- and /-directions, respectively. For
simplicity, we confine attention to axisymmetric modes of defor-
mation with w ¼ 0 and with the remaining components being
independent of /. Then, the gradient of the displacement vector
d has the matrix representation

d ¼

@u
@r

1
r
@u
@h � v

r 0
@v
@r

1
r
@v
@h þ u

r 0
0 0 v cot h

r þ u
r

0
B@

1
CA; ð52Þ

where the sum of the diagonal terms gives the incremental incom-
pressibility condition (30)

r
@u
@r
þ @v
@h
þ v cot hþ 2u ¼ 0: ð53Þ

The equilibrium equation (26), using expression (29) for _T0,
gives

div _T0 ¼ div A0dð Þ þ ðgradpÞd� grad _p ¼ 0: ð54Þ



G. deBotton et al. / International Journal of Solids and Structures 50 (2013) 403–413 407
In a spherical polar coordinate system, for the assumed incre-
mental axisymmetric deformation, all components are indepen-
dent of /. Therefore, only the r- and h-components of the
equilibrium equations are not identically satisfied. These are

@ _T0rr

@r
þ 2

r
_T0rr þ

1
r
@ _T0hr

@h
þ cot h

r
_T0hr �

1
r

_T0hh þ _T0//

� �
¼ 0; ð55Þ

@ _T0rh

@r
þ 2

r
_T0rh þ

1
r

_T0hr þ
1
r
@ _T0hh

@h
þ cot h

r
_T0hh � _T0//

� �
¼ 0: ð56Þ

Of the three incremental boundary conditions (51) two are not
identically satisfied. The boundary condition in the r-direction re-
quires that

_T0rr ¼
� _P þ P@u=@r at r ¼ a;

0 at r ¼ b:

(
ð57Þ

For the underlying equilibrium configuration the correlations

rrr ¼ k1
@W
@k1
� p; rhh ¼ k2

@W
@k2
� p; ð58Þ

apply with rrr ¼ �P at the inner surface r ¼ a and rrr ¼ 0 on r ¼ b.
Eq. (57), using the incompressibility condition (53), can then alter-
natively be written as

A01111 �A01122 þ k1
@W
@k1

� �
@u
@r
� _p ¼ � _P on r ¼ a;

0 on r ¼ b:

(
ð59Þ

The remaining boundary condition to be satisfied is in the h-
direction and has the form

_T0rh ¼
P @u=@h� vð Þ=r at r ¼ a;

0 at r ¼ b:

�
ð60Þ

For the development that follows, we recall some correlations
between the elastic moduli of incompressible isotropic materials.
Specifically, Ogden, 1997 has shown that the following connections
are satisfied

A02112 ¼ A01212 � k1
@W
@k1

; A01221 ¼ A02121 � k2
@W
@k2

: ð61Þ

Using the explicit expression for _T0rh together with (61)1 we find
that the boundary condition (60) can be written alternatively as

r
@v
@r
þ @u
@h
� v ¼ 0 at r ¼ a; b: ð62Þ

Using the equilibrium Eq. (43) and the expressions (58) for rrr

and rhh we find the gradient of p, namely

r
dp
dr
¼ r

d
dr

k1
@W
@k1

� �
þ 2 k1

@W
@k1
� k2

@W
@k2

� �
: ð63Þ

Equilibrium equation (55) can then be rewritten in the alternative
form

@u
@r

d
dr
A01111 �A01122 þ k1

@W
@k1

� �	 


þ @u
@r

1
r

2A01111 � 4A01122 � 2A01212 þA02222 þA02233 þ 4k1
@W
@k1
� k2

@W
@k2

� �	 


þ u
2
r2 A02121

	 

þ @

2u
@r2 A01111 �A01122 �A02112½ �

þ @u
@h

cot h
r2 A02121

	 

þ @

2u

@h2

1
r2 A02121

	 

¼ @

_p
@r
: ð64Þ

Similarly, Eq. (56) has the alternative expression
@u
@h

1
r

dA01212

dr
þ 1

r2 2A01212 � A02222 þ A02233 � k2
@W
@k2

� �	 


þ v �1
r

dA01221

dr
� 1

r2 2A01212 � A02222 þ A02233 � k2
@W
@k2

� �	 


þ @2u
@r@h

1
r

A01212 þ A01122 � A02222 � k1
@W
@k1

� �	 


þ @v
@r

dA01212

dr
þ 2

r
A01212

	 

þ @

2v
@r2 A01212½ �

¼ 1
r
@ _p
@h
: ð65Þ

We write the components of the incremental displacement vec-
tor u as the product of a function of r alone and a Legendre polyno-
mial in cosðhÞ by setting

u ¼ fnðrÞPnðcos hÞ; v ¼ gnðrÞ
d

dh
Pnðcos hÞ;

_p ¼ hnðrÞPnðcos hÞ; ð66Þ

for n ¼ 0;1;2; . . . Use of the incompressibility condition (53) and the
identity

d2

dh2 Pnðcos hÞ þ cot h
d

dh
Pnðcos hÞ þ nðnþ 1ÞPnðcoshÞ ¼ 0 ð67Þ

provides a correlation between the functions fnðrÞ and gnðrÞ in the
form

nðnþ 1Þgn ¼ rf 0n þ 2f n; n ¼ 0;1;2; . . . ð68Þ

The equilibrium equation in the r-direction (64) can now be written
as

ðA01111 � A01122 � A02112Þf 00n

þ r
d
dr

A01111 � A01122 þ A01212 � A02112ð Þ
�

þ2 A01111 � A01122 � A02112 þ A01212ð Þ � A02121 þ A02222

þA02233 � 2A01122 � A01221g
1
r

f 0n þ
1
r2 A02121 2�mð Þfn ¼ h0n: ð69Þ

where we introduced the notation m ¼ nðnþ 1Þ. Similarly, Eq. (65)
becomes

r3A01212f 000n þ r2 r
d
dr
A01212 þ 6A01212

� �
f 00n

þ r2 d
dr

2A01212 þ rrrð Þ þmr A02112 þA01122 �A02222ð Þ
�

�r A01221 þA02121 þA02233 �A02222 � 6A01212ð Þ
�

f 0n

þ ðm� 2Þ r
d
dr
A01212 � rrrð Þ þ A01221 þA02121 þA02233 �A02222ð Þ

� �
fn

¼ mrhn: ð70Þ

The boundary condition in the r-direction given by (59), using Eq.
(70), can be expressed in terms of fn as

r3A01212f 000n þ r2 r
d
dr
A01212 þ 6A01212

� �
f 00n

þ r
d
dr

2A01212 þ rrrð Þ þm 2A01221 þ 2A01122 �A01111 �A02222 �A01212ð Þ
�

� A01221 þA02121 þA02233 �A02222 � 6A01212ð Þ
�

rf 0n

þ ðm� 2Þ r
d
dr
A01212 � rrrð Þ þ A01221 þA02121 þA02233 �A02222ð Þ

� �
fn ¼ 0:

ð71Þ

Finally, the boundary condition (62), using Eq. (68), becomes

r2f 00n þ 2rf 0n þ ðm� 2Þfn ¼ 0 at r ¼ a; b: ð72Þ



Table 1
Summary of model parameters used in Eqs. (77)–(79). The values of l and li are
given in MPa.

Values of material model parameters

One term Ogden model (77) l1 ¼ 1 a1 ¼ 0:5
Two terms Ogden model (77) l1 ¼ 1 a1 ¼ 0:5

l2 ¼ 0:0001 a2 ¼ 6:75
Gent model (78) l ¼ 0:25 Jm ¼ 97:2
Two terms Lopez-Pamies l1 ¼ 0:25 a1 ¼ 0:5
model (79) l2 ¼ 0:00064 a2 ¼ 3:6
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5. Numerical solution

We use a numerical computation, known as the compound
matrix method, to solve the equilibrium equations (69) and (70)
together with the boundary conditions (71) and (72). For a brief
overview of the compound matrix method and its use for typical
problems in nonlinear elasticity we refer to Haughton and Kirkinis
(2003), Haughton (2008) and Dorfmann and Haughton (2006).

It is convenient to rewrite the relevant equations in a compact
form. Specifically, the equilibrium equation in the r-direction
(69) is written as

h0n ¼ A1f 00n þ A2f 0n þ A3fn ð73Þ

and the equilibrium equation in the h-direction (70) becomes

f 000n ¼ B1f 00n þ B2f 0n þ B3fn þ B4hn: ð74Þ

To apply the compound matrix method we need to replace the third
order derivative f 000n in Eq. (71), which is possible using (74). This al-
lows Eq. (71) to be rewritten as

hn ¼ C1f 00n þ C2f 0n þ C3fn at r ¼ a; b: ð75Þ

Finally, the remaining boundary condition (72) can be written as

f 00n ¼ �
2
r

f 0n þ
2�m

r2 fn at r ¼ a; b: ð76Þ

The coefficients of the equilibrium equations and boundary condi-
tions contain a complex combination of instantaneous moduli and
their derivatives, which, in turn, depend on the critical stretch k
to be determined. The explicit expressions of all coefficients used
in (73)–(75) are detailed in Eqs. (B.1)–(B.3) in Appendix B. In Appen-
dix C the compound matrix method is specialized to the current
application and the relevant equations are shown.

6. Numerical results

We now apply the numerical method outlined in Section 5 to
analyze the behavior of spherical shells made of different materi-
als. Specifically, we consider one term ðN ¼ 1Þ and two terms
ðN ¼ 2Þ in the formulation proposed by Ogden (1972)

WO ¼
XN

m¼1

lm

am
kam

1 þ kam
2 þ kam

3 � 3
� 

; ð77Þ

which were used respectively by Haughton and Ogden (1978b)
and Haughton and Kirkinis, 2003. The model proposed by Gent
(1996)

WG ¼ �
l
2

Jm ln 1� I1 � 3
Jm

� �
ð78Þ

and a generalized I1 model recently published by Lopez-Pamies
(2010)

WL ¼
XN

m¼1

31�am

2
lm

am
Iam
1 � 3am
� 

: ð79Þ

The values of the parameters chosen for the strain energy func-
tions are summarized in Table 1. The magnitude of the parameters
used for the one term and two terms Ogden formulation coincide
with those used by Haughton and Ogden (1978b) and by Haughton
and Kirkinis (2003). Therefore, by comparing results, the imple-
mentation of the numerical method can be validated.

The shear moduli, defined in the reference configuration, using
one term and two terms in the Ogden formulation are
l ¼ 0:25 MPa and l ¼ 0:253375 MPa, respectively. For the Gent
model (78) we select an identical stiffness l ¼ 0:25 MPa with
Jm ¼ 97:2, the latter suggested by Gent (1996) to account for the
limited extensibility of molecular chains in rubber. Finally, the
magnitude of the parameters for the two terms ðN ¼ 2Þ Lopez-Pa-
mies model (79) were determined by fitting extension and shear
data, both generated using two terms in the Ogden strain energy
formulation with the values shown in Table 1.

6.1. Inflation of a spherical shell

We first consider the pressure-stretch response of a spherical
shell during inflation and then use these results to analyze aspher-
ical bifurcations associated with modes n ¼ 1;2;3; . . . To investi-
gate the existence of local pressure maxima and minima and the
dependence of the corresponding stretches on shell thickness, in
addition to the four models listed in the previous subsection, we
also consider the neo-Hookean strain energy formulation. Note
that the formulation (77) for N ¼ 1 with l1 ¼ l and a1 ¼ 2 simpli-
fies to the neo-Hookean model. The existence of a pressure maxi-
mum or minimum requires that the derivative of Eq. (47) with
respect to ka vanishes for a value of ka > 1. We recall that this cri-
terion has been derived explicitly by Haughton and Ogden (1978b)
and is of the form

ka � k�2
a

�  dP
dka
¼ ŴkðkaÞ

k2
a

� ŴkðkbÞ
k2

b

¼ 0; ð80Þ

which determines the corresponding critical stretches. The values of
ka and kb are interdependent and are a function of the ratio B=A, see
Eq. (39). This implies that the solutions of (80) depend, in addition
to the particular form of the strain energy function, on the shell
thickness.

Fig. 1a depicts the internal pressure P as a function of the
stretch ka for a ratio of A=B ¼ 0:91 (B=A ¼ 1:1). It shows local max-
ima of the internal pressure and the corresponding critical
stretches ka. The exact values of ka are given by Eq. (80) and are
1.410, 1.411, 1.442, 1.322 and 1.426 for the one and two terms Og-
den model, for the Gent, for the Lopez-Pamies and for the neo-
Hookean formulations, respectively. For comparison, Goriely
et al., 2006 have shown that the critical stretch of a spherical
neo-Hookean membrane is ka ¼ 71=6, which coincides with the
solution of (80) for A=B! 1. For the two terms Ogden, for the Gent
and for the Lopez-Pamies models, a second solution of Eq. (80) ex-
ists indicating the stretch ka corresponding to a local pressure min-
imum, see Fig. 1a. For these materials, for a continuously
increasing pressure, the configuration jumps from the critical value
ka to a larger value, implying a sudden increase in the radius of the
spherical configuration. For the remaining two materials, a radial
expansion occurs while the pressure decreases. Figs. 1b and 1c
show the pressure-stretch responses for thicker shells with
A=B ¼ 0:2 and 0:1, respectively. Specifically, we see that for an in-
crease in shell thickness an increase in the critical stretch occurs.
For example, the results of the Lopez-Pamies model, shown in
Fig. 1c, no longer exhibit a snap-through condition and for increas-
ing ka we have a monotonic increase in pressure. No instability
occurs for very thick shells with A=B ¼ 0:001, see Fig. 1d.



(a) (b)

(c) (d)

Fig. 1. The internal pressure P as a function of the stretch ka for the Ogden model with one term (O1), two terms (O2), for the Gent (G), for the Lopez-Pamies (L) and for the
neo-Hookean (N) formulations. Results of a thin shell with A=B ¼ 0:91 are given in (a), shells with intermediate thicknesses A=B ¼ 0:2 and 0.1 are analyzed in (b) and (c). The
response of a thick shell with A=B ¼ 0:001 is given in (d). Note the change is scale of the internal pressure P in going from (a) to (b).

G. deBotton et al. / International Journal of Solids and Structures 50 (2013) 403–413 409
6.1.1. Aspherical bifurcations
In Section 6.1 we discussed snap-through instabilities, which

maintain a radially symmetric configuration. Here we are inter-
ested in looking at aspherical bifurcations associated with modes
n P 1, see Eq. (66).

For a positive internal pressure, we solve the incremental equa-
tions as a function of the ratio A=B, where we recall that A=B! 1
represents a spherical membrane. Fig. 2a and b show the responses
for the one and two terms Ogden models (77), the results in Fig. 2c
and d correspond to the Gent (78) and Lopez-Pamies formulations
(79), respectively. The results are different and will now be ana-
lyzed in detail.

Consider an increase in internal pressure applied to a thin
spherical shell with, for example, A=B ¼ 0:91. During inflation, for
a one term Ogden model, the spherical symmetry is preserved until
the critical stretch ka ¼ 1:410 is reached, see Fig. 1a. Information on
the existence of aspherical bifurcations can be obtained from
Fig. 2a. With A=B ¼ 0:91, for increasing values of ka the snap-
through condition is reached when ka ¼ 1:410, i.e. at the intersec-
tion with the line representing mode n ¼ 0. For further increases in
ka the shell bifurcates into aspherical shapes with mode numbers
n ¼ 1; . . . ;7. For each ka the corresponding internal pressure is gi-
ven by Eq. (47). The order of mode shapes n ¼ 0; . . . ;7 is indepen-
dent of shell thickness up to A=B � 0:55. For smaller values of A=B
up to � 0:18 the mode n ¼ 0 is reached first but the subsequent
aspherical bifurcations appear in reversed order, i.e.
n ¼ 0;7; . . . ;2. For shells with smaller values of A=B bifurcation
modes with n ¼ 7; . . . ;2 occur. Fig. 2a shows additional results,
which to the best of our knowledge have not yet been reported
in the literature. Specifically, for shells with ratio A=B smaller than
0:525 and for stretches ka > 4:95, additional aspherical bifurcation
modes with n ¼ 7;6;5;4 occur.

The response of an inflating spherical shell changes completely
when a second term is added to the Ogden formulation (77), see
Table 1 for the values of the model parameters. The corresponding
pressure-stretch response in Fig. 1a shows that, for A=B ¼ 0:91 and
for increasing pressure, the spherical configuration snaps from the
critical value ka ¼ 1:411 to ka ¼ 7:55. The local pressure minimum
between these two points, obtained by solving Eq. (80), is at
ka ¼ 4:13. We now use this information to interpret results shown
in Fig. 2b. Consider a ratio A=B ¼ 0:91 and an increasing stretch ka.
When ka reaches the value of 1.411 it intersects the graph corre-
sponding to mode n ¼ 0. For further increase in ka, the shell as-
sumes aspherical configurations associated with modes
n ¼ 1;2;3;4 followed by modes in reversed order n ¼ 4;3;2;1.
The spherical symmetry n ¼ 0 is reestablished for ka ¼ 4:13, which



(a)

(c) (d)

(b)

Fig. 2. The critical stretches ka for bifurcation modes n ¼ 0;1;2; . . . are given as functions of the ratio A=B, where A (B) is the inner (outer) radius. The response of the shell to
internal pressure using the one term Ogden formulation is shown in (a), the behavior using two terms in (b). Results for the Gent and Lopez-Pamies models are depicted in (c)
and (d).
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coincides with the stretch of the local pressure minimum in Fig. 1a.
The pressure corresponding to each value of ka is again given by
(47). For increasing shell thickness the number of possible modes
becomes smaller until for A=B smaller than 0:227 aspherical bifur-
cations no longer occur. No local pressure maximum occurs for a
thick shell with A=B 6 0:1, which is also shown by the results of
the two terms Ogden model in Figs. 1c and 1d.

The pressure-stretch response of the Gent model, shown in
Fig. 1a, reaches a local maximum when ka ¼ 1:442 and a local min-
imum when ka ¼ 4:27. In Fig. 2c, these values correspond to the
intersection of the line representing mode n ¼ 0 with a vertical line
through A=B ¼ 0:91. Therefore, for any value of 1 < ka < 1:442 or
ka > 4:27 the deformation consists of a symmetric radial expan-
sion. Independent of shell thickness, the Gent model does not ad-
mit any aspherical bifurcations. Fig. 2c further shows that no
local pressure maximum and therefore no instability occurs for a
sphere with ratio A=B smaller than 0:135.

The Lopez-Pamies model (79) predicts, for a spherical shell with
A=B ¼ 0:91, a local pressure maximum and minimum for
ka ¼ 1:322 and ka ¼ 2:97, respectively. If the pressure is kept at
the value corresponding to the local maximum, a sudden radial
expansion occurs until the stretch on the inner surface becomes
ka ¼ 4:71, see Fig. 1a. On the other hand, if the stretch increases
from ka ¼ 1:322 to ka ¼ 1:48 or to ka ¼ 2:56 aspherical bifurcations
with n ¼ 1 develop. The spherical symmetry is reestablished for a
further increase in ka to 2.97, which is shown in Fig. 2d. The corre-
sponding pressures are determined by equation (47). For a ratio of
A=B smaller than 0.169 no local pressure maximum exits and we
have dP=dk > 0, see results in Figs. 1c and 1d. It is interesting to
note that in spite of the fact that the Lopez-Pamies model was fit-
ted to the two-terms Ogden model under both extension and
shear, the behaviors of spherical shells made out of these two
materials are quite different.

6.2. A spherical shell under external pressure

We now use the numerical method outlined in Section 5 to
investigate bifurcations of a spherical shell of arbitrary thickness
subject to an external pressure. Fig. 3a shows the predicted
stretches and corresponding critical modes for the one term Ogden
formulation (77) with the values of l1; a1 given in Table 1. For thin
shells aspherical bifurcations occur with modes n ¼ 7 or n ¼ 20,
both corresponding to a value of ka ¼ 0:99, which can be compared
to the results given by Haughton and Ogden (1978b). For smaller



(a) (b)

Fig. 3. The critical stretches ka for modes n ¼ 2;3; . . . are given as functions of the ratio A=B, where A and B are the inner and outer radii of a spherical shell, respectively. The
critical values of ka predicted by the one term Ogden model are shown in (a), for two terms in (b).
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values of A=B the shell stabilizes and more compression is needed
to induce bifurcations. Also, mode shapes change from initial n ¼ 7
and 20 to n ¼ 4;3 and 2. For any value of A=B smaller than � 0:55
the spherical shell first bifurcates with mode n ¼ 20 for a critical
value of ka ¼ 0:6865. For thicker shells with, for example
A=B ¼ 0:2, a further increase in compression induces a sequence
of modes n ¼ 20;7;4;3 and 2. Fig. 3a provides additional informa-
tion that has, to the best of our knowledge, not been reported in
the literature before. Independent of shell thickness A=B, for low
values of ka, additional bifurcation modes exist. The results show
that mode n ¼ 20 occurs repeatedly for different values of ka, as
do modes n ¼ 4 and n ¼ 7. For very small values of ka, modes
n ¼ 2 and 3 are possible solutions of the incremental equations.

Fig. 3b provides the aspherical bifurcation modes predicted
when two terms are used in the Ogden formulation (77). The se-
quence of mode shapes and critical stretches, for different values
of A=B, are remarkably similar to the results shown in Fig. 3a when
ka > 0:5. As part of this investigation, we also solved numerically
the incremental equations using the Gent (78) and Lopez-Pamies
(79) models and found those to be reminiscent of the results
shown in Fig. 3b. Therefore, these results are not included in this
article. For completeness, we refer to Goriely et al. (2006) for the
bifurcation analysis using the neo-Hookean material. The corre-
sponding results by Goriely et al. (2006) are very close to the re-
sults shown in Fig. 3b.
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Appendix A

Here we record for reference the expressions for the first deriv-
atives of the three invariants with respect to F. In component form,
we have
@I1

@Fia
¼ 2Fia;

@I2

@Fia
¼ 2ðCccFia � CacFicÞ;

@I3

@Fia
¼ 2I3F�1

ai ; ðA:1Þ

The second derivatives with respect to F are

@2I1

@Fia@Fjb
¼ 2dijdab;

@2I2

@Fia@Fjb
¼ 2ð2FiaFjb � FibFja þ cccdijdab � bijdab � cabdijÞ;

@2I3

@Fia@Fjb
¼ 2I3ð2F�1

ai F�1
bj � F�1

aj F�1
bi Þ: ðA:2Þ
Appendix B

The coefficients A1; A2; A3 used in the equilibrium equation in
the r-direction (73) are given by

A1 ¼ A01111 �A01122 �A02112;

A2 ¼
d
dr
A01111 �A01122 þA01212 �A02112ð Þ

þ 2
r
A01111 �A01122 �A02112 þA01212ð Þ ðB:1Þ

þ 1
r
�A02121 þA02222 þA02233 � 2A01122 �A01221ð Þ;

A3 ¼
2�m

r2 A02121:

Similarly, the expressions of the coefficients B1; B2; B3 and B4

used in the equilibrium equation in the h-direction (74) are

B1 ¼ �
1

A01212

d
dr
A01212 �

6
r
;

B2 ¼ �
1

A01212

1
r

d
dr

2A01212 þ rrrð Þ þm
r2 A02112 þA01122 �A02222ð Þ

�

� 1
r2 A01221 þA02121 þA02233 �A02222 � 6A01212ð Þ

�
; ðB:2Þ

B3 ¼
2�m
A01212

1
r2

d
dr
A01212 � rrrð Þ þ 1

r3
A01221 þA02121 þA02233 �A02222ð Þ

� �
;

B4 ¼
m

r2A01212
:
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The explicit expressions of the coefficients C1; C2; C3 used to
specify the boundary conditions in Eq. (75) are

C1 ¼ �
B1

B4
� 1

B4A01212

d
dr
A01212 �

6
rB4

;

C2 ¼ �
B2

B4
� 1

B4A01212

1
r

d
dr

2A01212 þ rrrð Þ
�

þm
r2 2A01221 þ 2A01122 �A01111 �A02222 �A01212ð Þ ðB:3Þ

� 1
r2 A01221 þA02121 þA02233 �A02222 � 6A01212ð Þ

�
;

C3 ¼ �
B3

B4
� m� 2

r3B4A01212
r

d
dr
A01212 � rrrð Þ

�

þ A01221 þA02121 þA02233 �A02222ð Þ
�
:

Appendix C

Here we provide an overview on the use of the compound ma-
trix method to solve the equilibrium equations for n P 2, the case
n ¼ 1 requires minor modifications and will be outlined in C.1.

The solutions of (73) and (74) need to satisfy the two boundary
conditions (75) and (76) at r ¼ a, which can be solved in an equiv-
alent manner requiring two linearly independent initial conditions
at r ¼ a. We write the general solution as a linear combination

y ¼ c1yð1Þ þ c2yð2Þ; ðC:1Þ

where y ¼ y h; f ; f 0; f 00ð Þ and yðiÞ ¼ yðhðiÞ; f ðiÞ; f ðiÞ0; f ðiÞ00Þ with i 2 f1;2g.
The compound variables /i are 2� 2 determinants such that, for
example,

/1 ¼
hð1Þ hð2Þ

f ð1Þ f ð2Þ

�����
����� � h

f
;

���� ðC:2Þ

where the expression on the right introduces a convenient short-
hand notation. For this particular application there are a total of 6
compound variables, which are given by

/1 ¼
h
f

���� ; /2 ¼
h
f 0

���� ; /3 ¼
h
f 00

���� ; /4 ¼
f
f 0

���� ; /5 ¼
f
f 00

���� ; /6 ¼
f 0

f 00

���� :

ðC:3Þ

The next step is to determine the derivatives of these variables,
where we use Eqs. (73) and (74) to substitute h0n and f 000n . For /1, for
example, we have

/01 ¼
h0

f

����� þ
h

f 0

���� ¼ A1
f 00

f

���� þ A2
f 0

f

���� þ
h

f 0

���� ¼ �A1/5 � A2/4 þ /2;

where in the last equality we have made use of the definitions given
in (C.3). Similarly substitutions are used for /2; . . . ;/6 to obtain

/01 ¼ �A1/5 � A2/4 þ /2; /04 ¼ /5; ðC:4Þ
/02 ¼ �A1/6 þ A3/4 þ /3; /05 ¼ /6 þ B1/5 þ B2/4 � B4/1;

/03 ¼ A2/6 þ A3/5 þ B1/3 þ B2/2 þ B3/1; /06 ¼ B1/6 � B3/4 � B4/2:

We require the compound variables to satisfy the boundary
condition at r ¼ a and, on the use of Eq. (75) we obtain

/1 ¼
h

f

���� ¼ C1
f 00

f

���� þ C2
f 0

f

���� /4 ¼
f

f 0

����
/2 ¼

h

f 0

���� ¼ C1
f 00

f 0

���� þ C3
f

f 0

���� /5 ¼
f

f 00

���� ðC:5Þ

/3 ¼
h
f 00

���� ¼ C2
f 0

f 00

���� þ C3
f
f 00

���� /6 ¼
f 0

f 00

����
Using f 00 in Eq. (76) at r ¼ a we obtain the boundary conditions for
the differential equation (C.5), namely

/1 ¼
2C1

r
� C2

� �
/4; /4 ¼ /4 � 1;

/2 ¼ C3 �
C1

r
ðm� 2Þ

� �
/4; /5 ¼ �

2
r

/4; ðC:6Þ

/3 ¼
C2

5
ðm� 2Þ � 2C3

r

� �
/4; /6 ¼

m� 2
r2 /4:

For chosen values of ka and n P 2 the set of first order differential
Eqs. (C.4) can be solved together with the boundary conditions
(C.6).

We now rewrite the boundary conditions (75) and (76) as

C1f 00n þ C2f 0n þ C3fn � hn ¼ 0; r2f 00n þ 2rf 0n þ ðm� 2Þfn ¼ 0: ðC:7Þ

By taking the determinant of these two equations, collecting terms
with equal coefficients, and making use of Eq. (C.3) we arrive at the
target condition at r ¼ b, namely

C1 �2r/6 þ ð2�mÞ/5½ � þ C2 r2/6 þ ð2�mÞ/4

� �
þ C3 r2/5 þ 2r/4

� �
� r2/3 � 2r/2 þ ð2�mÞ/1

¼ 0: ðC:8Þ

For a given n, the value of ka for which Eq. (C.8) is satisfied is the
critical value at which there exists an incremental configuration
for a small axisymmetric deformation superimposed upon the cur-
rent configuration at constant load.

C.1

For n ¼ 1 the above numerical routine needs to be adjusted as
follows. The equilibrium equations (73) and (74) simplify to

h0n ¼ A1f 00n þ A2f 0n; f 000n ¼ B1f 00n þ B2f 0n þ B4hn: ðC:9Þ

We replace the function f 0n by a function gn such that

h0n ¼ A1g0n þ A2gn; g00n ¼ B1g00n þ B2gn þ B4hn; ðC:10Þ

and the number of compound variables reduces from 6 to 3

/1 ¼
h

g

���� ; /2 ¼
h

g0

���� ; /3 ¼
g

g0

���� :

The derivatives of the three compound variables become

/01 ¼ �A1/3 þ /2; /02 ¼ A2/3 þ B1/2 þ B2/1; /03 ¼ B1/3 � B4/1:

Boundary conditions (75) and (76) reduce to

hn ¼ C1f 00n þ C2f 0n; f 00n ¼ �
2
r

f 0n at r ¼ a; b; ðC:11Þ

and using the substitution gn ¼ f 0n we get

hn ¼ C1g0n þ C2gn; g0n ¼ �
2
r

gn at r ¼ a; b: ðC:12Þ

We now require the compound variables to satisfy the bound-
ary condition at r ¼ a

/1 ¼ C1
g0

g

���� � �C1; /2 ¼ C2
g

g0

���� � C2; /3 ¼
g

g0

���� � 1: ðC:13Þ

For the boundary r ¼ b we rewrite the boundary conditions
(C.12) as

hn � C1g0n � C2gn ¼ 0; rg0n þ 2gn ¼ 0 ðC:14Þ

and find

r
h

g0

���� þ 2
h

g

���� � 2C1
g0

g

���� � rC2
g

g0

���� ¼ 0: ðC:15Þ
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Expanding gives the target condition for r ¼ b in compact form

r/2 þ 2/1 þ ð2C1 � rC2Þ/3 ¼ 0; ðC:16Þ

and its solution determines the critical value of ka for which there
exists an incremental deformation having the form given by (66)
with n ¼ 1.
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