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a b s t r a c t

This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic
nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as
exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality,
giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the
wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known
Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional
breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also
show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10 km=ðsTÞ)
and very short relaxation times (∼1 ns), offering a reliable fast control of VDWs velocities (∼1000 m=s at
applied fields of 0.7 mT).

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The development of newer, faster, and more robust devices
based on magnetic nanostructures relies on the knowledge of the
properties of its magnetic textures. As examples of potential
applications, we find magnetic memories [1], logic devices [2],
microwave nano-oscillators [3] and spintronic-based devices [4,5].
The potential to manipulate these devices grows with the
advanced synthesis and characterization techniques being devel-
oped for nanosystems [6]. For example, over many years there
have been extensive investigations about the static and dynamic
properties of magnetic domain walls (DWs) in nanostripes and
nanowires [7–15]. In fact, it has been argued recently that the
control of magnetic DWs may open the way to a new and faster
device, the magnetic racetrack memory [1].

The potential technological developments based on DW
dynamics have fueled further research about its detailed motion,
which can be driven either by electric currents or magnetic fields.
Most of the investigations have been focused on nanostripes,
where micromagnetic simulations and experimental results have
shown that DWs move mainly in two possible regimes: (i) a
viscous or steady motion in which the propagation is performed
with constant velocity, and (ii) a turbulent or precessional motion
wherein the walls propagate suffering oscillations as well as
ll rights reserved.

.

periodic topological transformations in its internal magnetic
microstructure [7,9,11,12,14]. Both regimes are separated by the
well-known Walker breakdown which defines the Walker mag-
netic field, if the external excitation is a magnetic field, or the
Walker electric current, if the driving force is the spin-transfer
from the current to the local magnetic moments. Besides the
enormous efforts to describe the DW dynamics deterministically
in nanostripes, its topological transformations during the preces-
sional regime involve an important limitation from an analytical
point of view, for example, in the evaluation of the strongly non-
uniform dipole fields. Because of such complex transformations,
the turbulent dynamics is mostly investigated through micromag-
netic simulations. Although the simulations offer good insights
into the related physics, the turbulent dynamics is still far from
being completely understood. This is an important limitation and
thus, a complete analytical description of the DW dynamics could
allows us to unveil most of the physical details, and very probably
new properties, which ultimately define future applications.

DW dynamics in ferromagnetic nanotubes have shown to be
absent of those complex topological transformations, so analytical
techniques are well situated to gain insight in the different DW
regimes. In fact, the robustness of DW motion in MNTs combined
with the intrinsic properties of the tubular geometry and the new
advanced synthesis techniques [16–21], have fueled further inves-
tigations. Particularly, we find recent analytical and computational
efforts focused to understand the properties of DWs in MNTs [22–
31], among which we observe very suggestive properties from a
technological point of view. This is the case of the chirality and
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propagation control of the vortex domain wall (VDW) by using
constant and pulsed magnetic fields [29] and electric currents [30],
which let us to envision possible applications related to the control
of the VDW chirality as a new degree of freedom for storage
devices. In order to avoid any further confusion with vortex
domains walls in planar systems, we mention that the “vortex-
like domain wall” studied here is quite similar to a transverse
domain wall in a nanostripe, and can be obtained by unrolling the
tube into a nanostripe [31]. On the other hand, with the exception
of the very recent magnetoresistance measurements of Rüffer
et al. [21], experimental work on this aspect has not been done
yet, which could be seen as a good opportunity to open a new
window for the design of devices based on the robustness of VDW
dynamics in MNTs.

This paper is focused on revealing in-depth the properties of
VDWs in MNTs. The high propagation speeds reached at weak
applied magnetic fields and the breaking of chiral symmetry that
gives origin to such chirality transformations constitute the main
motivations of this research. It is demonstrated that a proper
consideration of the dipole–dipole interaction and the tubular
geometry explains: (i) the symmetry breaking, which is mani-
fested by an additional dynamical instability (the chiral break-
down), and (ii) the DW propagation at high velocities for weak
applied magnetic fields, which for permalloy nanotubes (of outer
radius o 30 nm) range between 200–1000 m/s for field strengths
between 0.7–1.0 mT [32]. We organize this paper as follows: in
Section 2 we develop the theoretical model, in Section 3 we present
our theoretical results and finally in Section 4 we outline the final
remarks and conclusions.
2. Model

We consider a ferromagnetic nanotube confined in an ideal
cylindrical shape with a perfect surface, so that pinning effects are
not taken into account. We focus our attention on MNTs with large
aspect ratio LbR, where L is the MNT length, while R and r
correspond to the external and internal radii, respectively. In
recent experiments, the authors synthesize MNTs with values of
the order of R∼15–300 nm, r=R∼0:6–0:95, and L∼1–20 μm [17,18].
Recent theoretical results show that the VDW is the most probable
reversal mode, provided the external radius satisfies the relation
R4Rcðr=R; lÞ, whereas for RoRc the reversal mode corresponds to

a transverse DW [23]. Here, l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=μ0M

2
s

q
is the exchange length

of the ferromagnetic material. Higher values of Rc are obtained for
lower values of r=R, where r=R¼ 0 corresponds to a solid cylinder.
So, according to the experimental values mentioned above, we
only consider external radius limited by R42l when r≥0:6R, in
Fig. 1. Left panel: The four types of vortex domain walls in ferromagnetic nanotu
counterclockwise (CCW) and a clockwise (CW) chirality, and the same can be seen
magnetization component (m!) in the cross-section of the MNT at the center of the vorte
plays a key role in the dynamics of vortex domain walls.
order to ensure a VDW as the energetically probable reversal
mode. VDWs in MNTs consist of two regions of opposite magne-
tization parallel to the axis and separated by an intermedium zone
(the DW). In that zone, the magnetization is in a vortex config-
uration almost tangential to the cylindrical mantle, but with a not
necessarily zero radial component [27]. We observe four types of
VDWs: two head-to-head (h2h) and two tail-to-tail (t2t), each one
with two possible chiral states, clockwise (CW) and counterclock-
wise (CCW), as depicted in Fig. 1.

We follow a dissipative Lagrangian formalism to describe the
VDW dynamics, which is based on the method of collective
coordinates [27,33]. In this scheme, a VDW can be parameterized
by three collective coordinates: (i) the DW center (z0), (ii) the
width (w), and (iii) the out-of-plane angle (p) which is a measure
of the radial component of the magnetization (see Fig. 1). This
magnetization model describes a h2h–VDW which is enough for
the purposes of this paper. However, the extension of the model
and subsequent results to a t2t–VDW are straightforward. For the
normalized magnetization, m!¼M

!
=Ms, expressed in terms of

polar angles Θ and Ψ as m!¼ ðcos Ψ sin Θ; sin Ψ sinΘ; cos ΘÞ, the
model reads as
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Ψ ðzÞ ¼ π=2−p: ð2Þ
In terms of the above magnetization model, the magnetic energy
has been calculated for long tubes [27], which is given as

E¼ πA
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where s≡πðR2−r2Þ is the tube cross-section, A is the exchange
constant, and f 1ðkÞ, G1ðkÞ and Q(k) are functions given in Appendix
of Ref. [27] by Eqs. (A4), (A6) and (A9), respectively. The first term
of the total energy (Eq. (3)) corresponds to the dipolar energy, the
second and third terms give the exchange energy, and the last
term corresponds to the Zeeman energy. It is worth noting that we
focus our attention on MNTs with r=R≥0:6 in order to set the real
system closer to our model, wherein the magnetization is inde-
pendent of the radial coordinate. With this assumption, we safely
discard the formation of Bloch points [22].

Following the Lagrangian formalism [27], it is found that the
wall width is a slave coordinate, since its relaxation time is much
bes are shown. On the left panel we show a head-to-head (h2h) wall with a
on the right panel for the tail-to-tail (t2t) wall. Right panel: Illustration of the
x wall. The angle p is a measure of the radial component of the magnetization and
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Fig. 2. (a) Total energy at zero applied field for a head-to-head vortex domain wall
as a function of the out-of-plane angle p, for different outer and inner radii; and
(b) illustration of the evolution paths Pa and Pb of the VDW radial component and
its associated energy barriers.
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faster than the other collective coordinates. This means that w
depends on the instantaneous values of z0 and p, and therefore the
equations of motion for the remaining collective coordinates can
be written as follows:

_p−
απ2

2
_z0
w

¼−
2
τ
h; ð5Þ

_z0 þ
αw
4

_p ¼ −
l
τ

δε

δp
; ð6Þ

where h¼H=Ms, ε¼ E=ðμ0M2
s lsÞ, τ≡2=ðγμ0MsÞ, γ is the gyromagnetic

ratio and _x ¼ dx=dt with x¼ z0, p. The set of Eqs. (5)–(6) express
the dynamics of a VDW through its collective coordinates ðz0;p;wÞ.
We write Eqs. (5) and (6) in a more convenient way
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2
τ

1þ π2α2
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Here, based in the similarity between the term

hρðpÞ≡
π2l

4wðpÞ
∂ε
∂p

ð9Þ

and the component in the Ψ̂ direction of the effective field
(HΨ∝∂ε=∂p), it is possible to associate hρ to an effective-like field,
which depends of the magnetic energy density of the material. As
we see later, this field is responsible for the radial component of
the vortex magnetization and the breaking of chiral symmetry
mentioned above. We remark that this field is a helpful quantity,
which provides a better understanding of the DW dynamics. Now,
we proceed to discuss the global dynamical features of the VDW.
3. Results and discussion

In this section we discuss the VDW static properties, as well as
its dynamical properties under the influence of an applied mag-
netic field. We emphasize the origins of breaking of chiral
symmetry of DW propagation, and the motion at low applied
fields, wherein its response to pulsed fields will be analyzed
considering a particle-like description.

3.1. Vortex domain walls at zero applied field

The breaking of chiral symmetry of DW propagation and the
small radial component at zero applied magnetic field are linked
to each other. This can be understood in terms of the magnetic
charges originating in the DW region. Those magnetic charges are
the source of the magnetostatic energy and its corresponding
volumetric density for a VDW reads

sV ¼ −∇
!� M!¼−

Mρ

ρ
þ ∂Mz

∂z

� �
: ð10Þ

For a h2h wall it is easy to note that ∂Mz=∂zo0, which induces a
preferential orientation of the radial magnetization. At zero
applied field, the VDW tries to configure itself in order to reduce
the volumetric magnetic charges, and hence, minimize the dipolar
energy. So, in order to avoid magnetic poles, the magnetic
moments acquire a radial component that points outward
(Mρ40) from the external surface. On the other hand, surface
charges on the MNT mantle appear with a non-zero radial
magnetization, increasing the surface dipolar energy. Therefore,
in order to reduce the total dipolar energy, the volumetric and
surface contributions have to balance each other in such a way
that the radial magnetization is restricted to small values [31].
A small radial magnetization component at the VDW region
and other related properties are perceived from Fig. 2, wherein the
total energy is plotted as a function of the radial angle p for R/l¼
3 and 10, and r/R¼0.6, 0.7, 0.8 and 0.9. Here, we denote with pn the
out-of-plane equilibrium angle which minimizes the total energy.
So, in consequence of the two possible DW chiralities, the total
energy has two minima located at pn≈0 for the CCW and at pn≈π
for the CW (see Fig. 2a). That the energy minimum is pn≳0 is linked
with the localization of the global (local) energy maximum at
p¼ −π=2 (p¼ π=2). In Fig. 2a those maxima are denoted by Pa and
Pb, which label the energy barriers that the VDW has to overcome
if the radial component evolves by twists around path Pa or path
Pb, as illustrated in Fig. 2b. It is clear that twisting the radial
magnetization through path Pa is more energetically expensive
than twisting it around Pb. Indeed, the energy difference between
these twisting paths is the origin of the chiral symmetry breaking,
which as we will see in the next section, can be observed once a
non-zero magnetic field is applied.

Another remarkable feature of the zero-field energy landscape
is the limit of thinner tubes (when r-R). Thinner tubes mean less
volumetric charges, which in turn reduces the radial component of
the magnetization and then the associated surface charges. In
consequence, by the balance between the volumetric and surface
dipolar energies, the equilibrium angle pn increasingly approaches
0 (π) for CCW (CW) chirality, and the energy barriers located at
7π=2 get equally closer each other. These tendencies are shown in
Fig. 2a, wherein the thinner tube corresponds to r=R¼ 0:9. In the
limit of a very thin tube (r≈R), the volumetric charges can be
neglected and the dipolar contribution can be safely approximated
with a surface anisotropy term, allowing the total energy to
behave proportional to sin2p [27]. So, in a very thin tube where
the equilibrium angles are 0 and π, the size of both energy barriers
become equal each other, and the breaking of chiral symmetry
disappears.

Formally, we describe the VDW properties at zero applied field
through a set of dynamic equations (see (7) and (8)). In this case,
we have to set H¼0, _p ¼ 0 and _z0 ¼ 0 in order to determine the
static properties, mainly featured by the equilibrium angles pn.
From Eqs. (7) and (8), these settings are equivalent to solve hρ ¼ 0.
Then, the effective-like field hρ offers us information about: (i) pn

provided hρðpnÞ ¼ 0 and ∂phρðpnÞ40, and (ii) the critical fields,
given by the extremes of hρ (the inflection points in the energy).



Fig. 3. Effective-like field of a head to head DW, as a function of the angle p for
R=l¼ 3 and β¼ 0:8. The normalized critical fields hw and hc are related to the
Walker field, and the chiral field at which the DW changes its chirality from CW to
CCW. The angles pw and pc occurs at the onset of the Walker breakdown, and DW
chirality transformation, respectively.
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The general structure of the effective-like field shown in Fig. 3
is composed of the following characteristics: (i) four roots, two of
them corresponding to the out-of-plane equilibrium angles, and
the other two located at the magnetic energy maxima (at
p¼ 7π=2), and (ii) four extremes, a local (global) minimum at
the angle pc (pw) closer to p¼ 3π=4 (p¼ −π=4), and a local (global)
maximum at the angle π−pc (−π−pw) closer to p¼ π=4 (p¼ −3π=4)
(see Fig. 3). We identify pc and pw as critical angles whose
meanings are as follows: the critical angle pc occurs at the onset
of the DW chirality transformation, and the critical angle pw occurs
at the onset of the precessional motion at the Walker breakdown,
as we see later. We denote the local (global) extreme magnitude
by hc (hw), which is a very useful quantity to study the dynamical
regimes of the VDW, and as we will see in the next section, pc and
hc are two quantities that define the features of the breaking of
chiral symmetry of DW propagations.

We note that the set of dynamic equations of the VDW in MNTs
becomes quite similar to the equations of motion for a transverse
DW in nanostripes, but just in the case that the dipolar energy is
not so important and can be approximated by an effective
anisotropy term. In this case, if we consider the limit of very thin
nanotubes, it is easy to show that hρ∼sinð2pÞ [12,27].

3.2. Dynamics of vortex domain walls driven by an homogeneous
applied field

We now consider an external homogeneous magnetic field
applied parallel to the tube axis. In this case, h2h–VDWs propagate
in the same direction of the applied field, whereas t2t–VDWs
move in the opposite direction. Usually, the applied field strength
defines the following DW dynamical regimes: a steady motion
(S) and a precessional motion (P). The details of each regime and
the critical fields involved are analyzed solving the dynamic
equations (7) and (8). Regarding the initial conditions, we assume
that the VDW starts to move from rest where the initial state is
determined by the out-of-plane equilibrium angle pn. As we have
seen above, a VDW begins with one of the two possible chiral
configurations at the onset of the motion; CCW when pn is close to
0, or CW when pn is close to π. So, starting from these states, we
solve the dynamic equations for a range of applied fields in order
to allow the VDW to evolve through the different dynamical
regimes, as shown in Fig. 4. Here, (a–d) shows the time evolution
of the DW displacement (over the MNT axis) in the steady (S) and
precessional (P) regimes, when the DW is under the action of
applied fields of different magnitudes as illustrated by the differ-
ent lines. Fig. 4(e, f) shows the applied field dependence of the
average velocity and the corresponding equilibrium angle pn for
both initial chiralities (CCW and CW).

The appropriated range of applied magnetic fields can be
defined with the aid of the parameters hc and hw, which (as
discussed above) correspond to the extremes of the effective like-
field hρ. We can associate the meaning of critical magnetic fields to
these parameters as follows: (i) the well-known Walker breakdown
field Hw≡αMshw, and (ii) a new dynamical instability called as the
chiral breakdown field Hc≡αMshc . We note that HcoHw because by
definition hcohw.

The steady motion of DWs in nanostripes is a well-known
dynamical process in which, after a short transient time, the wall
propagates with a constant velocity and a final configuration very
close to the initial one [12]. However if we deal with VDWs in
MNTs, we have to consider a new bound. Here, the steady motion
splits into two ranges: (i) when 0oHoHc and (ii) when
HcoHoHw. In the first range, a VDW evolves during a transient
stage from the initial configuration characterized by pn (close to
0 for CCW and close to π for CW), until reaching the steady regime
where the final state is defined by another equilibrium angle pnðHÞ
which satisfies the condition _p ¼ 0 or hρðpnÞ ¼ −H=ðαMsÞ, and
depends on the applied field (see Fig. 4f). At this range of applied
fields, VDWs do not have enough energy to overcome any of the
two energy barriers (see Fig. 2a), and therefore the walls preserve
the initial chirality and continue the motion with (i) a constant
velocity, as shown by the slopes in Fig. 4(a, c) for applied fields of
1 and 3 mT, and (ii) a well defined equilibrium angle which
depends on H (see Fig. 4f). Otherwise, when the applied field is
in the second range HcoHoHw, the transient stage is character-
ized by a chiral transformation from the initial CW chirality to the
CCW one, wherein the walls suffer a recoil in the tube-axis
propagation (see Fig. 4a for applied fields of 5.5 and 6 mT).
However, the initial configuration is preserved if the DW starts
the motion with an initial CCW chirality (see Fig. 4b for applied
fields of 5.5 and 6 mT). This chiral dependence of the DW motion
during the transient stage essentially defines the breakdown of
chiral symmetry in vortex domain wall propagation in nanotubes.
Once the transient process finish, the VDW continues its motion in
a steady regime with CCW chirality.

The chirality transformation can be understood by looking at
the torque exerted by the external field over the in-plane magne-
tization. According to the Landau–Lifshitz–Gilbert equation, the
torque related to the magnetic field forces the DW to evolve with
_po0 [27], which means that the initial CW chirality follows the
less energetically expensive path Pb, instead of traveling on path
Pa, that is the path followed by an initial CCW wall, also with _po0
(see Fig. 2). So, when HcoHoHw, the chiral symmetry breaks
down. Since the CW domain wall has enough energy to overcome
only the local energy barrier, after the transient stage its equili-
brium angle becomes equal to the one reached by the CCW wall
(see Fig. 4f at H¼Hc). In t2t–VDWs, the chiral transformations
occur from CCW to CW.

In every steady regime, the final velocity of the VDW can be
written as

〈_z0〉¼
4wðpnÞ
τπ2α

H
Ms

; ð11Þ

which is an expression very close to that obtained for TDWs in
nanostripes and nanowires [12]. We observe that the average
velocity is sensitive to the initial chirality only in the range HoHc

wherein the chirality is preserved during the evolution (see Fig. 4
(e, f)). Here, CCW–VDWs moves faster than CW–VDWs, which is
evident if we consider that each chirality evolves by a different
energetic path. According to the discussion above, the CW follows
the less energetically expensive path Pb instead of traveling on
path Pa which is the path followed by the CCW wall (see Fig. 2).



Fig. 4. (a–d) Time evolution of the position of the center of a h2h–VDW at the (a, c) steady (S) and (b, d) precessional (P) regimes for a Py MNT, which is initially configured as
CCW and CW and is under the action of an applied magnetic field with different strengths. (a, c) The long-dashed, long-dashed dotted, dotted and full lines corresponds to
fields amplitudes of 1, 3, 5.5 and 6 mT. (b, d) The dashed and dot-dashed lines are for 7.5 and 8.5 mT, respectively. Applied magnetic field dependence of the h2h–VDW
average velocity and the associated equilibrium angle pn are shown in (e) and (f) respectively. The dynamical regimes are represented by three shaded regions, which are
defined by the chiral (Hc≈4:9 mT) and Walker (Hw≈6:3 mT) fields. The Gilbert damping parameter used is α¼ 0:01.

Fig. 5. (a) Pulsed magnetic field of weak amplitude (0.7 mT). (b, c) Velocity
response of a head-to-head vortex domain wall under the application of the pulsed
field on a permalloy MNT. The full (dashed) line corresponds to the analytical
(linearized) approximation. (d) Domain wall mobility at low fields. The field pulse
duration is Δt ¼ 1250τ≈15 ns and the relaxation time is τrel≈500τ≈5:5 ns.
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Because of this, it can be demonstrated that the displacement of
the CCW equilibrium angle is lower than the distance traced by the
angle of the opposite chirality (the CW chiral state). As conse-
quence the size of the CCW (CW) wall width is wider (narrower),
and therefore, realizing that the average velocity is proportional to
the VDW width, is straightforward to conclude that CCW chiral-
ities will move faster than a vortex with CW chiral states (for the
field configuration considered here). This velocity shift is another
consequence of the chiral asymmetry in vortex domain wall
propagation.

Otherwise, the VDW precessional regime occurs when the
external field is greater than the Walker field (H4Hw). Here, the
DW has enough energy to overcome both energy maxima, and
hence, the out-of-plane angle (p) decreases continuously, running
over all its possible values as time passes, because there is no
equilibrium angle that satisfy the condition h¼ −αhρðpnÞ. Conse-
quently, the DW propagates undergoing precessions over the MNT
axis, as demonstrated in Fig. 4(b, d). If a h2h–VDW starts preces-
sion with an initial CW chirality, the periodical motion will be
composed by a short precession followed by a large precession;
this order will be permuted for the case of the CCW. This behavior
is consistent with the local and global energetic barriers of the
energy landscape (see Fig. 2). Because of _po0 for a h2h–VDW, the
CCW overcomes first the global and later the local barrier, showing
a large and a short precession, respectively. On the contrary, the
CW wall has to first climb with the local barrier and later the
global one, letting the DW move with a short precession followed
by the large one. As is well known, because of this precessional
DW dynamics, the average velocity drops down (see Fig. 4a at
μ0H46 mT). This fact could be considered as a limitation from a
technological standpoint if high velocities were required. To avoid
the reduction in the average velocity, it might be possible to apply
optimized time-dependent fields, following the method intro-
duced by Tretiakov and Abanov [34]. These authors propose that
the usage of time-dependent electric currents to drive a transverse
DW in a nanostripe might reduce the Ohmic losses. They, addi-
tionally, found an optimized oscillation period for the time-
dependent electric current, minimizing Ohmic losses. Furthermore
they find that such oscillation period also avoids the reduction of
the average velocity in the precessional regime. In our case the DW
is driven by a magnetic field, so there is no Joule heating of the
sample as in the case of current driven DW motion. However, the
average velocity in the precessional regime can be increased
applying time-dependent fields, with a period that depends on
the geometry and magnetic field strength. Roughly speaking, from
Fig. 4(b, d) we can observe that the full period of DW precession
(p from 0 to 2 π) is about 6 ns for a field strength of 7.5 mT, and the
maximum instantaneous speed occurs at about 1 ns. Then, if we
apply a positive time-dependent field with a given profile, the full-
width at half-maximum characterizing this profile should be of the
order of 1 ns, in order to frustrate the precessional motion and, at
the same time, increase the average velocity.

Finally, we note the linear behavior and high values of the
average velocity at weak applied field strength around the milli-
tesla orders. This is the case shown in Fig. 4(e) for a permalloy
MNT in which VDWs reach velocities close to 300 m/s when
μ0H ¼ 1 mT. It is worth to mention that these velocities increase
considerably with the tube radius, as we will see in the next
section (see Fig. 5d), where the dynamics in the low field regime is
discussed.

3.3. Pulsed applied fields and low field regime

At weak applied fields (H5Hw), the VDW energy is close to a
minimum, where pnðHÞ≈pnðH¼ 0Þ≡p0. So, a linearization of the
dynamic equations (7) and (8) around the initial chirality state,
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allows us to understand the DW motion as a particle of mass
MDW ¼ ð2sAτ2=l3Þð∂2ε=∂p2Þ−1p0 moving in a viscous medium, wherein
the particle relaxes to reach the steady regime. The nature of this
motion allows us to define a relaxation time τrel≡ð2τwðp0Þ= απ2lÞ=
ð∂2ε=∂p2Þp0 , as a typical time during which the wall tries to reach
the steady regime with a terminal velocity v ¼ 〈_z0〉. Then, the
linearized dynamics is given as €z0 þ ð_z0−vÞ=τrel ¼ 0 where v ¼ μμ0H
and μ≡2γwðp0Þ=ðπ2αÞ is the low-field mobility. For Permalloy with
Gilbert damping α¼ 0:01 and most of the MNTs sizes that are
experimentally achievable, our analytical model ranges the chiral
and Walker fields between 3 mT and 7 mT (see Fig. 3 in Ref. [29]),
τrelo500τ≈6 ns and MDW∼10−18−10−16 kg which is in agreement
with the high mobility order ∼104 T−1 m=s.

Most of the DW properties at weak fields applied over several
representative MNT sizes are summarized in Fig. 5. To know the
reliability of the low field approximation, the DW motion is
calculated by the full analytical equations (6) and (7), and by the
linearized version when the applied field consists of pulses with
low amplitude. Fig. 5(a–c) shows that pulses with 0.7 mT of
amplitude let the VDW reach high velocities of propagation,
around 200 m/s (900 m/s) for the smaller (bigger) permalloy
nanotube. This is in agreement with the high values of the low-
field DW mobility μ which is plotted in Fig. 5d. Here, the DW
mobility increases with the outer radius and decreases with the
thickness diminution. This property is better understood by
recognizing two characteristics: (i) the mobility is proportional
to the VDW width wðp0Þ and (ii) the wall width grows with
nanotubes of larger outer radius and greater thickness. We also
observe that the DW velocity tries to mimic the pulsed field shape
with a good fidelity. In fact, the fidelity can be enhanced if the
pulse duration Δt is conditioned to be much larger than the
relaxation time (Δtbτrel), which ranges around a few nanose-
conds for most of the experimental MNT sizes [16 –21].

Finally, we remark that a short relaxation time and a high DW
velocity linked by a linear relation to a weak strength of the
applied field, might be a set of required properties in order to
obtain a reliable control of the DW motion with a fast response to
external magnetic fields. According to our previous results, that is
(high speed of propagations around 200 m/s (900 m/s), for the
smaller (bigger) Py tube and 0.7 mT of pulse amplitude, and
relaxation times around nanoseconds) we think that VDWs in
MNT accomplish those features, which make these kinds of walls
attractive from a technological standpoint.
4. Conclusions and final remarks

Dynamics of vortex domain walls (VDW) in long (LbR)
magnetic nanotubes under the action of an external magnetic
field have been investigated analytically. It has been shown that
VDW dynamics depend strongly on the initial chirality, a direct
consequence of the so-called breaking of chiral symmetry in vortex
domain wall propagation. We have traced this breaking until the
VDW energetic asymmetry, as shown by Fig. 2, wherein the two
energy barriers of different sizes involve a more (less) expensive
evolution path Pa (Pb) of the VDW out-of-plane angle p, which at
the same time privileges the DW propagation of just one kind of
chirality, and two critical fields, the well-known Walker break-
down field Hw≡αMshw and the so-called chiral field Hc≡αMshc ,
wherein hw (hc) is the inflection point associated to the global
(local) energy barrier. Accordingly, we have found that the VDW
dynamics is divided in the two usual regimes: (i) the steady
motion (see Fig. 4(a, c) for HoHw), and (ii) the precessional
motion (see Fig. 4(b, d) for H4Hw). However, as consequence of
the chiral asymmetry of VDW propagations, the steady regime is
affected by the chiral field Hc. When the external field is lower
than the chiral field HoHc, both initial VDW chiralities are
retained during the motion, and just one of them undergoes faster
propagation speeds (see Fig. 4e), and when HcoHoHw just one of
the initial chiralities is retained.

Finally, we investigated the VDW behavior at weak applied
fields. We have found that the VDW relaxes during a typical time
τrel until reaching the steady regime with a terminal velocity
v ¼ μH, where μ is the low-field mobility. The high mobility values
around 104 T−1 m/s (see Fig. 5d) and the short relaxation times
around nanoseconds, allow VDWs to propagate at surprisingly
high values of terminal velocities (around 200 m/s (900 m/s) for
the smaller (bigger) Py nanotube) for a amplitude of 0.7 mT, and at
the same time with a reliable control of the DW velocity if the
external field amplitude is modulated (see Fig. 5(a–c)).
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