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Stackelberg games have garnered significant attention in recent years given their deploy-
ment for real world security. Most of these systems, such as ARMOR, IRIS and GUARDS
have adopted the standard game-theoretical assumption that adversaries are perfectly ra-
tional, which is standard in the game theory literature. This assumption may not hold in
real-world security problems due to the bounded rationality of human adversaries, which
could potentially reduce the effectiveness of these systems.
In this paper, we focus on relaxing the unrealistic assumption of perfectly rational adver-
sary in Stackelberg security games. In particular, we present new mathematical models of
human adversaries’ behavior, based on using two fundamental theory/method in human
decision making: Prospect Theory (PT) and stochastic discrete choice model. We also pro-
vide methods for tuning the parameters of these new models. Additionally, we propose
a modification of the standard quantal response based model inspired by rank-dependent
expected utility theory. We then develop efficient algorithms to compute the best response
of the security forces when playing against the different models of adversaries. In order
to evaluate the effectiveness of the new models, we conduct comprehensive experiments
with human subjects using a web-based game, comparing them with models previously
proposed in the literature to address the perfect rationality assumption on part of the ad-
versary.
Our experimental results show that the subjects’ responses follow the assumptions of
our new models more closely than the previous perfect rationality assumption. We also
show that the defender strategy produced by our new stochastic discrete choice model
outperform the previous leading contender for relaxing the assumption of perfect rational-
ity. Furthermore, in a separate set of experiments, we show the benefits of our modified
stochastic model (QRRU) over the standard model (QR).1
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1. Introduction

Stackelberg game models have recently become important tools for analyzing real-world security resource allocation
problems, such as critical infrastructure protection [2] and robot patrolling strategies [3,4]. These models provide a sophisti-
cated approach for generating unpredictable, randomized strategies that mitigate the ability of attackers to find weaknesses
using surveillance. The ARMOR [5], IRIS [6], GUARDS [7] and PROTECT [8] systems are notable examples where this approach
has been used to develop decision-support systems for real-world security problems. One of the key sets of assumptions
that these systems make are about how attackers will choose attack strategies based on their preferences and observations
of the security policy. Typically, such systems have applied the standard game-theoretic assumption that attackers are per-
fectly rational and will strictly maximize their expected utility. This is a reasonable starting point for the first generation
of deployed systems. Unfortunately, this standard game-theoretic assumption leaves open the possibility that the defender’s
strategy is not robust against attackers using different decision procedures, and it fails to exploit known weaknesses in the
decision-making of human attackers.

It is widely accepted that standard game-theoretic assumptions of perfect rationality are not ideal for predicting the
behavior of humans in multi-agent decision problems [9,10]. A large variety of alternative models have been studied in
behavioral game theory and cognitive psychology that capture some of the deviations of human decisions from perfect
rationality. In the multi-agent systems community there is a growing interest in adopting these models to improve decisions
in agents that interact with humans or to provide better advice to human decision-makers in multi-agent decision-support
systems [11,12]. Our work in this paper focuses on integrating these more realistic models of human behavior into the
computational analysis of Stackelberg game models in security settings, which are often referred to as Stackelberg security
games [13–15]. We also provide a case study in this general paradigm of introducing more realistic models of human
behavior into game theoretic analysis. While there are quite a few studies looking at the problem of predicting human
behavior, there are very few examples where this is actually included in a real decision-making system. Our work here is
one of the first examples showing that this is possible, and actually improves performance in an important class of games.

In order to move beyond perfect rationality assumptions to integrate more realistic models of human decision-making in
real-world security systems, we address several key challenges. First, the literature has introduced a multitude of potential
models on human decision making [16,9,17,10], but each of these models has its own set of assumptions and there is little
consensus on which model is best for different types of domains. Therefore, there is an important empirical question of
which model best represents the salient features of human behavior in the important class of applied security games. Sec-
ond, integrating any of the proposed models into a decision-support system (even for the purpose of empirically evaluating
the model) requires developing new algorithms for computing solutions to Stackelberg security games, since most existing
algorithms are based on mathematically optimal attackers [18,19]. One notable exception is Cobra developed by Pita et
al. [20]. Cobra is one example of modeling bounded rationality of human adversaries by taking into account

(i) the anchoring bias of humans while interpreting the probabilities of several events [21,22];
(ii) the limited computational ability of humans which may lead to deviation from their best response.

To the best of our knowledge, Cobra is the best performing strategy for Stackelberg security games in experiments with
human subjects. Thus, the open question is whether there are other approaches that allow for fast solutions and outperform
Cobra in addressing human behavior in security games.

In this paper, we significantly expand the previous work on modeling human behavior in Stackelberg security games by
implementing and evaluating strategies based on two very important methods in literature of modeling human decision-
making. The first relates to Prospect Theory (PT), which provides a descriptive framework for decision-making under un-
certainty that accounts for both risk preferences (e.g. loss aversion) and variations in how humans interpret probabilities
through a weighting function [16]. The other method adapts the ideas in the literature on discrete choice problems [23–26]
to a game-theoretic framework with the basic premise that humans will choose better actions more frequently, but with
some noise in the decision-making process that leads to stochastic choice probabilities following a logit distribution. We first
propose two mathematical models of the adversary’s decision-making based on Prospect Theory: one of them assumes the
adversary maximizes ‘prospect’ in their decision making process and the other assumes the adversary makes bounded error
in computing such ‘prospect’ so he may deviate to a sub-optimal solution within a bound. We then propose two mathemat-
ical models of how an adversary makes decisions based on using a logit discrete choice models. One model (QR) couples
the quantal response of the adversary with the expected utility for attacking each target; the other model (QRRU) modifies
the expected utility by adding extra weight to the target covered with minimum resources, inspired by rank-dependent
expected utility theory [27].

Based on the above models of adversary decision making, computing the defender’s corresponding best response is
also challenging since it involves solving non-convex and non-linear optimization problems. We develop new techniques to
address these problems. In particular, we develop a Mixed Integer Linear Program to compute the defender optimal strategy
against the PT based models by representing the non-linear functions from Prospect Theory with piecewise approximations.
Furthermore, we present a local search method with random restarts to compute the defender optimal strategy against the
stochastic models of the adversary.
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Table 1
Notations used in this paper.

T Set of targets; ti in T denotes the ith target
xi Probability that target ti is covered by a resource
qi Probability that target ti is attacked by the adversary

Rd
i Defender reward when covering ti if it’s attacked

Pd
i Defender penalty when not covering ti if it’s attack

Ra
i Attacker reward for attacking ti if it’s not covered

Pa
i Attacker penalty on attacking ti if it’s covered

M Total number of resources

In order to compare the performance of different adversary models, we conduct an extensive empirical evaluation using
the crowd-source platform Amazon Mechanical Turk2 (AMT). First, we design an online game called “The Guard and the
Treasure” to simulate a security scenario similar to the ARMOR program for the Los Angeles International (LAX) airport [5].
We then develop classification techniques to select payoff structures for experiments such that the models are well separated
from each other and the payoff structures are representative of the game space. We compare our new methods against a
robust baseline algorithm MAXIMIN, a perfect rationality baseline (Dobss) and the previous leading contender (Cobra) in the
experiments. Our experimental results show that: (i) our new models more accurately represent the adversaries’ behavior
in security games than previous methods; (ii) strategies based on our new models lead to statistically (and practically)
significant higher defender expected utility than the previous leading contender (Cobra). Moreover, we identify situations
where the QRRU model of adversary leads to significantly better strategies than the QR model.

The rest of the paper is organized as follows. Section 2 provides necessary background information of Stackelberg security
games and defines the notation that will be used in the paper. Section 3 presents the new models of adversary decision-
making based on Prospect Theory and Quantal Response Equilibrium. Following that, Section 4 describes the algorithms we
developed to compute optimal defender strategy against these new adversary models. In Section 5, we explain the methods
we used to decide the parameters of different models. Section 6 presents our experimental setup and results. We then
discuss additional related work in Section 7 and summarize the paper in Section 8.

2. Stackelberg security games

In this section, we first define Stackelberg security games as well as the notation used in this paper. We then introduce
an online game designed as a testbed to collect data and evaluate performance of the different algorithms introduced in
this paper for solving Stackelberg security games.

2.1. Definition and notation

We consider a Stackelberg Security Game (SSG) [1,28] with a single leader and one follower, where the defender plays
the role of the leader and the adversary plays the role of the follower. The defender has to protect a set of targets from
being attacked by the adversary. The defender has a limited number of resources, e.g., she may need to protect 8 targets
with 3 guards. Each player has a set of pure strategies. In SSGs, a pure strategy of an adversary is defined as attacking a
single target; and a pure strategy of a defender is defined as an assignment of all the security resources to the set of targets
(e.g. assigning the three resources to targets 1, 3 and 6). An assignment of a security resource to a target is also referred to
as covering a target. A mixed-strategy is defined as a probability distribution over the set of all possible pure strategies.

We use the following notation to describe a SSG, also listed in Table 1: the defender has a total of M resources to protect
a set of targets T = {ti}. The outcomes of the SSG depend only on whether or not the attack is successful. Given a target ti ,
the defender receives reward Rd

i if the adversary attacks a target that is covered by the defender; otherwise, the defender
receives penalty P d

i . Correspondingly, the attacker receives penalty P a
i in the former case; and reward Ra

i in the latter case.
A key property of SSG is that while the games may be non-zero-sum, Rd

i > P d
i and Ra

i > P a
i , ∀i [28]. In other words, adding

resources to cover a target helps the defender and hurts the attacker.
We represent the defender’s mixed-strategy by x which describes the probability that each target will be protected by

a resource and denote these individual probabilities by xi . So we have x = 〈xi〉 as the marginal distribution on each target.
In the example where the defender has to protect 8 targets with 3 resources (guards), the defender’s mixed-strategy can be
written as x = 〈x1, . . . , x8〉. We focus on generating marginal distributions rather than distributions over the original defender
pure strategies (e.g., the original

(8
3

)
pure strategies) for improved algorithmic efficiency [19,29]. In this paper, we consider

the case without any constraints on assigning the resources, which models important domains such as ARMOR deployed
at LAX [5]. Korzhyk et al. show in [29] that the marginal probability distribution of covering each target is equivalent to
a mixed-strategy over the original combinational defender pure strategies in such domains. Moreover, given the marginal
coverage on each target, we could use a technique called ‘comb sampling’ [30] to implement the corresponding mixed-
strategy over the set of the actual assignments of the resources.

2 https://www.mturk.com.

https://www.mturk.com
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Fig. 1. Game interface for our simulated online SSG.

In SSGs, the defender (leader) first commits to a mixed-strategy, assuming the attacker (follower) decides on a pure
strategy after observing the defender’s strategy. This models the situation where an attacker conducts surveillance to learn
the defender’s mixed-strategy and then launches an attack on a single target. We denote the attacker’s choice using a vector
of variables q = 〈qi〉 for ti ∈ T , where qi ∈ [0,1] represents the probability that target ti will be attacked. Furthermore, we
could compute the expected utility for the adversary assuming the target ti is attacked by the adversary as

U a
i (xi) = xi P a

i + (1 − xi)Ra
i (1)

and the expected utility for the defender in this case is

U d
i (xi) = xi Rd

i + (1 − xi)P d
i (2)

2.2. A simulated online SSG

We develop a game, called “The Guards and The Treasure”, to simulate the security model at the LAX airport, which
has eight terminals that can be targeted in an attack [5]. Fig. 1 shows the interface of the game. Players are introduced to
the game through a series of explanatory screens describing how the game is played. In each game instance a subject is
asked to choose one of the eight gates to open (attack). They are told that guards are protecting three of the eight gates,
but not which ones. The defender’s mixed strategy, represented as the marginal probability of covering each target, 〈xi〉,
is given to the subjects. At the same time, the subjects are also told the reward on successfully attacking each target as
well as the penalty of getting caught at each target. The three gates protected by the guards are drawn randomly from the
probability shown on the game interface. If subjects select a gate protected by the guards, they receive a penalty; otherwise,
they receive a reward. Subjects are rewarded based on the reward/penalty shown for each gate. For example, in the game
shown in Fig. 1, the probability that gate 1 (target 1) will be protected by a guard is 0.59. Assuming the subjects choose
gate 1, he/she gets reward of 8 if gate 1 is not protected by the guard; or get a penalty of −3 if gate 1 is protected by a
guard.

3. New models for predicting attacker behaviors

Existing models of adversary behavior in SSGs have poor performance in predicting the behavior of human adversaries
[20]. In order to design better defender strategy, better models of adversary decision-making need to be developed. In this
section, we present three models of adversary’s behavior in SSGs, based on using Prospect Theory and Quantal Response
Equilibrium. All of the models have key parameters. We describe in the next section our methodology for setting these
parameters in each case.
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Fig. 2. Prospect Theory empirical function forms.

3.1. Prospect Theory

Prospect Theory provides a descriptive model of how humans make decision among alternatives with risk, which is
a process of maximizing the ‘prospect’, which will be defined soon, rather than the expected utility. More formally, the
prospect of a certain alternative is defined as∑

l

π(xl)V (Cl) (3)

In Eq. (3), xl denotes the probability of receiving Cl as the outcome. The weighting function π(·) describes how proba-
bility xl is perceived by individuals. An empirical function form of π(·) (Eq. (4)) is shown in Fig. 2(a) [31].

π(x) = xγ

(xγ + (1 − x)γ )
1
γ

(4)

The key concepts of a weighting function are that individuals overestimate low probability and underestimate high proba-
bility [16,31]. Also, π() is not consistent with the definition of probability, i.e. π(x) + π(1 − x) � 1 in general.

The value function V (Cl) in Eq. (3) reflects the value of the outcome Cl . PT predicts that individuals are risk averse
regarding gain but risk seeking regarding loss, implying an S-shaped value function [16,31]. A key component of Prospect
Theory is the reference point. Outcomes lower than the reference point are considered as loss and higher as gain.

V (C) =
{

Cα, C � 0

−θ(−C)β, C < 0
(5)

Eq. (5) is a general form for the value function where C is the relative outcome to the reference. In Eq. (5), we assume
the reference point to be at 0. α and β determine the extent of non-linearity in the curves. If the parameters α = 1.0 and
β = 1.0, the function would be linear; typical values for both α and β are 0.88 [31]. θ captures the idea that the loss curve
is usually steeper than the gains curve, a typical value of θ is 2.25 [31], which reflects a finding that losses are a little more
than twice as painful as gains are pleasurable. The function is also displayed in Fig. 2(b) [31]. Given these parameters, we
will henceforth denote this value function with Vα,β,θ .

In a SSG, the prospect of attacking target ti for the adversary is computed as

prospect(ti) = π(xi)Vα,β,θ

(
P a

i

) + π(1 − xi)Vα,β,θ

(
Ra

i

)
(6)

According to Prospect Theory, subjects will choose the target with the highest prospect. Thus,

qi =
{

1, if prospect(ti) � prospect(ti′), ∀ti′ ∈ T

0, otherwise
(7)

3.2. Quantal Response

Quantal Response Equilibrium (QRE) is an important solution concept in behavioral game theory [17]. It is based on a
long history of work in single-agent problems and brings that work into a game-theoretic setting [32,33]. It assumes that
instead of strictly maximizing utility, individuals respond stochastically in games: the chance of selecting a non-optimal
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strategy increases as the cost of such an error decreases. Given the strategy profile of all the other players, the response of
a player is modeled as a quantal response (QR model): he/she selects action i with a probability given by

qi(x) = eλU a
i (x)∑

tk∈T eλU a
k (x)

(8)

where, U a
i (x) is the expected utility for the attacker for selecting pure strategy i. Here, λ ∈ [0,∞] is the parameter that

captures the rational level of player p: one extreme case is λ = 0, when player p plays uniformly random; the other
extreme case is λ → ∞, when the quantal response is identical to the best response. Combining Eqs. (8) and (1),

qi(x) = eλRa
i e−λ(Ra

i −Pa
i )xi∑

tk∈T eλRa
k e−λ(Ra

k−Pa
k )xk

(9)

In applying the QR model to the security game domain, we only consider noise in the response of the adversary. The
defender uses a computer decision support system to choose her strategy hence is able to compute optimal strategy. On the
other hand, since the attacker observes the defender’s strategy first to decides his response, it can only hurt the defender
to add noise in her response. Recent work [33] shows Quantal Level-k [32] to be best suited for predicting human behavior
in simultaneous move games. The key idea of level-k is that humans can perform only a bounded number of iterations of
strategic reasoning: a level-0 player plays randomly, a level-k (k > 1) player best response to the level-(k − 1) player. We
applied QR instead of Quantal Level-k to model the attacker’s response because in Stackelberg security games the attacker
observes the defender’s strategy, so level-k reasoning is not applicable.

3.3. Quantal Response with Rank-related Expected Utility

We modify the Quantal Response Model by taking into consideration the fact that individuals are attracted to extreme
events, such as the less uncertain and highest payoff. This idea is inspired by the rank-dependent Expected Utility Model
[27], in which the utilities of choosing different alternatives are based on the their ranks. We adapt this idea to security
games, but we only consider such effect on the target covered with minimum resources. That is the adversary would
prefer the target covered with minimum resources since he is most likely to be successful attacking that target. This could
significantly reduce the defender’s reward in the case when this target with fewest resources also gives a large penalty to
the defender.

We modify the QR model by adding extra weight to the target covered with minimum resources. We refer this modified
model as Quantal Response with Rank-related expected Utility (QRRU) model, where the probability that the attacker attacks
target ti is computed as

qi(x) = eλu U a
i (xi)eλs Si(x)∑

tk∈T eλu U a
k (xk)eλs Sk(x)

(10)

where Si(x) ∈ {0,1} indicating whether ti is covered with least resource.

Si(x) =
{

1, if xi � x′
i, ∀ti′ ∈ T

0, otherwise
(11)

The denominator in Eq. (10) is only for normalizing the probability distribution so all the qi sum up to 1. In the numerator,
we have two terms deciding the probability that target ti will be chosen by the adversary. The first term eλu U a

i (xi) relates to
the expected utility for the adversary to choose target ti . U a

i (xi) is computed as in Eq. (1). The parameter λu � 0 represents
the level of error in adversary’s computation of the expected utility, which is equivalent to λ in Eq. (8). The second term
eλs Si(x) relates to the adversary’s preference for the least covered target. Note that if ti is not covered with the minimum
resource, this term equals to 1 so there is no extra weight added to the non-minimum covered targets; if ti is covered
with minimum resource, this term will be � 1, adding extra weight to the probability that adversary will choose ti . The
parameter λs � 0 represents the level of the adversary’s preference to the minimum covered target. λs = 0 indicates no
preference to the minimum covered target. As λs increase, this preference becomes stronger.

4. Computing optimal defender strategy

Given the new models of adversary behavior in SSG, new algorithms need to be developed to compute the optimal de-
fender strategy since the existing algorithms are based on the assumption of a perfectly rational adversary. We now describe
efficient computation of the optimal defender mixed strategy assuming a human adversary whose response follows one of
the three models we proposed: Prospect Theory (PT-Adversary), Quantal Response (QR-Adversary) or Quantal Response with
Rank-related Utility (QRRU-Adversary).
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4.1. Computing against a PT-adversary

Assuming that the adversary’s response follows Prospect Theory (PT-adversary), we developed two methods to compute
the optimal defender strategy.

4.1.1. Brpt

Best Response to Prospect Theory (Brpt) is a mixed integer programming formulation for computing the optimal leader
strategy against players whose responses follow a PT model. We first present an abstract version of our formulation of
Brpt in Eqs. (12)–(16), and then present a more detailed operational version in Eqs. (17)–(29) that uses piecewise linear
approximation to provide the Brpt MILP (Mixed Integer Linear Program).

max
x,q,a,d,z

d (12)

s.t.
n∑

i=1

xi � M (13)

n∑
i=1

qi = 1, qi ∈ {0,1} (14)

0 � a − (
π(xi)V

(
P a

i

) + π(1 − xi)V
(

Ra
i

))
� K (1 − qi), ∀i (15)

K (1 − qi) + (
xi Rd

i + (1 − xi)P d
i

)
� d, ∀i (16)

The objective is to maximize d, the defender’s expected utility. Eq. (13) enforces that the constraint on the total amount
of resources is met. In Eq. (14), the integer variables qi represent the attacker’s pure strategy. In Brpt, qi is constrained to be
binary variable, since, as justified and explained in [18], we assume the adversary has a pure strategy best response: qi = 1 if
ti is attacked and 0 otherwise. Eq. (15) is the key to decide the attacker’s strategy, given a defender’s mixed strategy x = 〈xi〉.
The variable a represents the attacker’s ‘benefit’ of choosing a pure strategy 〈qi〉. Since we are modeling attacker’s decision
making using Prospect Theory, the benefit perceived by the adversary for attacking target ti is the attacker’s ‘prospect’,
which is calculated as (π(xi)V (P a

i ) + π(1 − xi)V (Ra
i )) following Eq. (3). The attacker tries to maximize a by choosing the

target with the highest ‘prospect’, as enforced by Eq. (15). In particular, the inequality on the left side of Eq. (15) enforces
that a is greater or equal to the ‘prospect’ of attacking any target. On the right hand of Eq. (15), we have a constant
parameter K with a very large positive value. For targets with qi = 0, the upper bound of the difference between a and
the ‘prospect’ is K , therefore, the bounds is not operational. For target with qi = 1 (i.e. the target chosen by the attacker),
the value of a is forced to be equal to the actual ‘prospect’ of attacking that target. In Eq. (16), the constant parameter K
enforces that d is only constrained by the target that is attacked by the adversary (i.e. qi = 1).

We now present the Brpt MILP based on our piecewise linear approximation of the weighting function as discussed
earlier. We use the empirical functions introduced in Section 3.1 for the weighting function π(·) and value function V (·).
Let (P a

i )
′ = V (P a

i ) and (Ra
i )

′ = V (Ra
i ) denote the adversary’s value of penalty P a

i and reward Ra
i , which are both given as

input to the optimization formula in Eqs. (13)–(16). The key challenge to solve that optimization problem is that the π(·)
function is non-linear and non-convex. If we apply the function directly, we have to solve a non-linear and non-convex
mixed-integer optimization problem, which is difficult. Therefore, we approximately solve the problem by representing
the non-linear π(·) function as a piecewise linear function. This transforms the problem into a MILP, which is shown in
Eqs. (17)–(29).

max
x,q,a,d,z

d (17)

s.t.
n∑

i=1

5∑
k=1

xik � M (18)

5∑
k=1

(xik + x̄ik) = 1, ∀i (19)

0 � xik, x̄ik � ck − ck−1, ∀i, k = 1 . . . 5 (20)

zik · (ck − ck−1) � xik, ∀i, k = 1 . . . 4 (21)

z̄ik · (ck − ck−1) � x̄ik, ∀i, k = 1 . . . 4 (22)

xi(k+1) � zik, ∀i, k = 1 . . . 4 (23)

x̄i(k+1) � z̄ik, ∀i, k = 1 . . . 4 (24)

zik, z̄ik ∈ {0,1}, ∀i, k = 1 . . . 4 (25)
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Fig. 3. Piecewise approximation of the weighting function.

x′
i =

5∑
k=1

bkxik, x̄′
i =

5∑
k=1

bkx̄ik, ∀i (26)

n∑
i=1

qi = 1, qi ∈ {0,1} (27)

0 � a − (
x′

i

(
P a

i

)′ + x̄′
i

(
Ra

i

)′) � M(1 − qi), ∀i (28)

M(1 − qi) +
5∑

k=1

(
xik Rd

i + x̄ik P d
i

)
� d, ∀i (29)

Let π̃ (·) denote the use of a piecewise linear approximation of the weighting function π(·), as shown in Fig. 3. We em-
pirically set 5 segments3 for π̃ (·). This function is defined by {ck|c0 = 0, c5 = 1, ck < ck+1, k = 0, . . . ,5} that represent
the endpoints of the linear segments and {bk | k = 1, . . . ,5} that represent the slope of each linear segment. In order to
represent the piecewise linear approximation, i.e. π̃ (xi) (and simultaneously π̃ (1 − xi)), we partition xi (and 1 − xi ) into five
segments, denoted by variables xik (and x̄ik). Therefore, x′

i which equals π̃ (xi) can be calculated as the sum of the linear
function in each segment

x′
i = π̃ (xi) =

5∑
k=1

bk · xik

which is shown in Eq. (26). At the same time, we can enforce the correctness of partitioning xi (and 1 − xi ) by ensuring that
segment xik (and x̄ik) is positive only if the previous segment is used completely. This is enforced in Eqs. (19)–(25) by using
the auxiliary integer variable zik (and z̄ik). zik = 0 indicates that the kth segment of xi (i.e. xik) has not been completely
used, therefore, the following segments can only be set to 0, and vice versa. Eq. (26) defines x′

i = π̃ (xi) as the value of the
piecewise linear approximation of xi , and x̄′

i = π̃ (1 − xi) as the value of the piecewise linear approximation of 1 − xi .

4.1.2. Rpt

Robust-PT (Rpt) modifies the base Brpt method to account for the possible uncertainty in adversary’s choice caused (for
example) by imprecise computations [34]. Similar to Cobra, Rpt assumes that the adversary may choose any strategy within
ε of the best choice, defined here by the prospect of each action. It optimizes the worst-case outcome for the defender
among the set of strategies that have the prospect for the attacker within ε of the optimal prospect.

max
x,h,q,a,d,z

d (30)

s.t. Constraints (18)–(28)

3 This piecewise linear representation of π(·) achieves a small approximation error: supz∈[0,1] ‖π(z) − π̃ (z)‖� 0.03.
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n∑
i=1

hi � 1 (31)

hi ∈ {0,1}, qi � hi, ∀i (32)

ε(1 − hi) � a − (
x′

i

(
P a

i

)′ + x̄′
i

(
Ra

i

)′)� M(1 − hi) + ε, ∀i (33)

M(1 − hi) +
5∑

k=1

(
xik Rd

i + x̄ik P d
i

)
� d, ∀i (34)

We modify the Brpt optimization problem as follows: the first 11 constraints are equivalent to those in Brpt (Eq. (18)–
(28)); in Eq. (31), the binary variable hi indicates the ε-optimal strategy for the adversary; the ε-optimal assumption is
embedded in Eq. (33), which forces hi = 1 for any target ti that leads to a prospect within ε of the optimal prospect, i.e.
a; Eq. (34) enforces d to be the minimum expected utility for defender on the targets that lead to ε-optimal prospect for
the attacker. Rpt attempts to maximize the minimum for the defender over the ε-optimal targets for the attacker, thus
providing robustness against attacker (human) deviations within that ε-optimal set of targets.

4.2. Computing an optimal strategy against a Quantal Response adversary

Assuming the adversary follows a quantal response (QR-adversary), we now present the algorithm to compute the de-
fender’s optimal strategy against a QR-adversary. Given the quantal response of the adversary, which is described in Eq. (9),
the best response of defender is to maximize her expected utility:

max
x

U d(x) =
n∑

i=1

qi(x)U d
i (x)

Combined with Eqs. (9) and (2), the problem of finding the optimal mixed strategy for the defender can be formulated as

max
x

∑
ti∈T eλRa

i e−λ(Ra
i −Pa

i )xi ((Rd
i − P d

i )xi + P d
i )∑

tk∈T eλRa
k e−λ(Ra

k−Pa
k )xk

(35)

s.t.
n∑

i=1

xi � M (36)

0 � xi � 1, ∀i, j (37)

Algorithm 1 Brqr.
1: optg ← −∞;
2: for it ← 1, . . . , IterN do
3: x(0) ← randomly generate a feasible starting point
4: (optl, x∗) ← Find-Local-Minimum(x(0))

5: if optg > optl then
6: optg ← optl , xopt ← x∗
7: end if
8: end for
9: return optg , xopt

Unfortunately, since the objective function in Eq. (35) is non-linear and non-convex, finding the global optimum is ex-
tremely difficult. Therefore, we focus on methods to find local optima. To compute an approximately optimal strategy against
a QR-adversary efficiently, we develop the Best Response to Quantal Response (Brqr) heuristic described in Algorithm 1.
We first take the negative of Eq. (35), converting the maximization problem to a minimization problem. In each iteration,
we find the local minimum using the fmincon() function in Matlab with the Interior Point Algorithm with a given starting
point. If there are multiple local minima, by randomly setting the starting point in each iteration, the algorithm will reach
different local minima with a non-zero probability. By increasing the iteration number, IterN, the probability of reaching the
global minimum increases. We empirically set IterN to 300 in our experiments.

4.3. Computing against a QRRU-adversary

We now present the algorithm to compute defender optimal strategy assuming the adversary’s behavior follows the
QRRU model. The adversary’s response given this model is computed as in Eq. (10). The optimal defender strategy against a
QRRU-adversary is computed by solving the following optimization problem:
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max
x,s,xmin

∑
ti∈T eλu Ra

i e−λu(Ra
i −Pa

i )xi eλssi ((Rd
i − P d

i )xi + P d
i )∑

tk∈T eλu Ra
k e−λu(Ra

k−Pa
k )xk eλs sk

(38)

s.t. Constraint (36), ( 37)

xi − (1 − si)K � xmin � xi, ∀ti ∈ T (39)∑
ti∈T

si = 1 (40)

si ∈ {0,1}, ∀ti ∈ T (41)

where the integer variables si are introduced to represent the function Si(x) as shown in Eq. (11). In constraint (39), K is
a constant with a very large value. Constraints (39) and (40) enforces xmin to be the minimum value among all the xi .
Simultaneously, si is set to 1 if target ti has the minimum coverage probability assigned; and is set to 0 otherwise. The
above optimization problem is a non-linear and non-convex mixed integer programming problem, which is difficult to solve
directly. Therefore, we developed Best Response to a QRRU-Adversary (Brqrru), an algorithm that iteratively computes
the defender’s optimal strategy. The iterative approach breaks down the mixed-integer non-linear programming problem
into sub-problems without integer variables. For each sub-problem, one of the target is assumed to be the least covered
target. Then, under this constraint, the maximum defender expected utility and the associated defender mixed strategy are
computed by solving a non-linear programming problem (similar to Brqr). Finally, the sub-problem generating the highest
maximum defender expected utility is found as the ‘actual’ optimal solution, and the associated defender mixed-strategy is
the optimal defender strategy assuming a QRRU-adversary.

Algorithm 2 Brqrru.
1: optg ← −∞;
2: for ti′ ∈ T do
3: (optl, x∗) ← Find-Optimal-Defender-Strategy(si′ = 1)

4: if optg > optl then
5: optg ← optl , xopt ← x∗
6: end if
7: end for
8: return optg , xopt

Algorithm 2 shows the pseudo code of the algorithm. Algorithm 2 describes Brqrru. In each iteration, one target ti′ is
conditioned to be covered with minimum resource, therefore si∗ = 1. This reduces the optimization problem to the following

max
x

∑
ti∈T eλu Ra

i e−λu(Ra
i −Pa

i )xi eλssi ((Rd
i − P d

i )xi + P d
i )∑

tk∈T eλu Ra
k e−λu(Ra

k−Pa
k )xk eλssk

(42)

s.t. Constraint (36), ( 37)

xi∗ � xi, ∀ti ∈ T (43)

where there are no integer variables involved since si , ∀ti ∈ T are all pre-defined parameters of the optimization
problem. Therefore, we could solve it using the same method of local search with random restart as that in Brqr.
Find− Optimal− Defender− Strategy(si′ = 1) on Line (3) in Algorithm 2 calls Algorithm 1 to solve the optimization
problem in Eqs. (42)–(43).

5. Parameter estimation

In this section, we describe our methodology for setting the values of the parameters for the different models of human
behavior introduced in the previous section. We set the parameters for our later experiments using data collected in a
preliminary set of experiments with human subjects playing the online game we introduced in Section 2.2. We posted the
game on Amazon Mechanical Turk as a Human Intelligent Task (HIT) and asked subjects to play the game. Subjects played
the role of the adversary and were able to observe the defender’s mixed strategy (i.e., randomized allocation of security
resources). In order to avoid non-compliant participants, we only allowed workers whose HIT approval rates were greater
than 95% and who had more than 100 approved HITs to participate in the experiment.

Let G denote a game instance, which is a combination of a payoff structure {(Ra
i , P a

i , Rd
i , P d

i ), ti ∈ T }, and a defender’s
strategy x. Given a game instance G , we denote the choice of the jth subject as τ G

j ∈ T . We include seven payoff structures
in the experiments: four of which are selected based on using a classification method we explain in detail in Section 5.1;
the other three are taken directly from Pita et al. [20]. For each payoff structure we tested five different defender strategies.
This results in 7∗5 = 35 different game instances. Each of the subjects played all 35 games. In total, 80 subjects participated
in the preliminary experiment.
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Table 2
A-priori defined features.
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Fig. 4. Payoff structure clusters (color in the web version).

5.1. Selecting payoff structures

Even for a restricted class of games such as security games, there are an infinite number of possible game instances
depending on the specific values of the payoffs for each of the targets. Since we cannot conduct experiments on every
possible game instance we need a method to select a set of payoffs structures to use in our experiments. Our main criteria
for selecting payoffs structures are (1) to select a diverse set of payoff structures that cover different regions in the space
of possible security games and (2) to select payoff structures that will differentiate between the different behavioral models
(in other words, the models should make different predictions in different test conditions). In the first round our goal was
to select game instance that would distinguish between the three key families of prediction methods (Brpt, Rpt, Brqr). In
the second round of selection we need to further differentiate within the families. Since there is not yet a well-understood
method to select such game instances in the literature, we introduce a procedure for making such selections below.

We first sample randomly 1000 different payoff structures, each with 8 targets. Ra
i and Rd

i are integers drawn from
Z+[1,10]; P a

i and P d
i are integers drawn from Z−[−10,−1]. This scale is similar to the payoff structures used in [20].

We then use k-means clustering to group the 1000 payoff structures into four clusters based on eight features, which are
defined in Table 2. Intuitively, features 1 and 2 describe how good the game is for the adversary, features 3 and 4 describe
how good the game is for the defender, and features 5∼8 reflect the level of conflict between the two players in the sense
that they measure the ratio of one player’s gain over the other player’s loss.

In Fig. 4, all 1000 payoff structures are projected onto the first two Principal Component Analysis (PCA) dimensions for
visualization. The three payoff structures (5–7) that were first used in Pita et al. [20] are marked in Fig. 4. All three of these
payoff structures belong to cluster 3, indicating that the game instances used in the previous experiments we all similar in
terms of the features we used for classification.4

To select specific payoff structures from these clusters we first generated five defender strategies based on the following
families of algorithms: Dobss, Cobra, Brpt, Rpt and Brqr. Here we select only one algorithm from each family (e.g., only
one version of Brqr). At this point we did not have preliminary data to set the parameters of the algorithms, since we are
deciding which payoff structures to test on. Instead, we set the parameters as follows: Dobss has no parameters; for Cobra

4 In [20], there were four payoff structures used, but we only use three of those here. The fourth payoff structure is a zero-sum game, and the deployed
Stackelberg security games have not been zero sum [5,6]. Furthermore, in zero-sum games, defender’s strategies computed from Dobss, Cobra and Maximin

collapse into one — they turn out to be identical.
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we use parameters drawn from [20]; Brpt and Rpt use the empirical parameter settings for Prospect Theory [31]; Brqr uses
a value of λ = 0.76 which we set using the data reported in [20] (using the method to be described in Section 5.3).

We use the following the criteria to select payoff structures that differentiate among the different families of algorithms:

• We define the distance between two mixed strategies, xk and xl , using the Kullback–Leibler divergence: D(xk, xl) =
DKL(xk|xl) + DKL(xl|xk), where DKL(xk|xl) = ∑n

i=1 xk
i log(xk

i /xl
i).

• For each payoff structure, D(xk, xl) is measured for every pair of strategies. With five strategies, we have 10 such
measurements.

• We remove payoff structures that have a mean or minimum of these 10 quantities below a given threshold. This results
in a subset of about 250 payoff structures in total for all four clusters. We then select one payoff structure closest to
the cluster center from each of these subsets.

The four payoff structures (1–4) we selected from different clusters and are marked in Fig. 4.

5.2. Parameter estimation for Prospect Theory

An empirical setting of parameter values is suggested in the literature [31] based on various experiments conducted with
human subjects. We also include this setting of parameter values in our experiments to evaluate the benchmark performance
of the prospect theory. At the same time, we provide a method to estimate the parameter values for the PT model using
a set of empirical response data collected for the SSG domain. In this section, we describe our method of estimating the
parameter values based on using grid search.

The empirical functions we used in the PT model for the adversary have four parameters that must be specified:
α,β, θ,γ , as shown in Eqs. (4) and (5). Varying the values for these four parameters will change the responses predicted by
the PT-model. We denote the weighting and value function as πγ (·) and Vα,β,θ (·), for a given a set of parameter values. We
then define the fit of a parameter setting to a given data set of subjects’ choices as the percentage of subjects who choose
the target predicted by the model. The fit can be computed as

Fit(α,β, θ,γ | G) = 1

N

∑
j=1..N

qτ G
j
(α,β, θ,γ | G) =

∑
ti∈T

Ni

N
qi(α,β, θ,γ | G)

where qi(·) ∈ {0,1} indicates whether the PT model predicts target ti to be chosen by the subjects and is computed using
Eq. (7), Ni is the number of subjects who choose target ti , and N = ∑

ti∈T Ni is the total number of subjects.
We estimate the parameter setting with the best fit for PT model by maximizing the fit function over all 35 game

instances

max
α,β,θ,γ

∑
G

Fit(α,β, θ,γ | G) (44)

s.t. 0 < α, β < 1, θ � 1, 0 < γ < 1 (45)

The constraints in (45) restrict the feasible range of all the four parameters, as defined in the prospect theory model. The
objective function in Eq. (44) cannot be expressed as a closed-form expression of α,β, θ and γ . Without a closed form it is
difficult to apply gradient descent or any other analytical search algorithm to find the optimal solution. Therefore, we use
grid search [35,36] to solve the problem as follows:

(1) We first uniformly sample a set of values for each parameter across the feasible ranges, with the following grid intervals:

α = 0.05, 
β = 0.05, 
γ = 0.05, and 
θ = 0.1. This gives a set of different values for each of the four parameters. For
simplicity, we represents the four sets of sampled values as the following: {αk1 = αl + k1 · 
α}, where αl is the lower
bound of the region; similarly {βk2 = βl + k2 · 
β}; {θk3 = θl + k3 · 
θ }; and {γk4 = γl + k4 · 
γ }. The feasible region of θ

does not have upper bound, so we set it to 5 which is twice as the suggested empirical value [31].
(2) In total, we have 20 · 20 · 20 · 40 = 320k different combinations of the four parameter values. We then evaluate the

objective function on each of the combinations (αk1 , βk2 , θk3 , γk4 ) and take the parameter combination with the best
aggregate fit as the solution:

(
α∗, β∗, θ∗, γ ∗) = arg max

k1,k2,k3,k4

∑
G

Fit(αk1 , βk2 , θk3 , γk4 | G)

The parameter settings estimated using the method described above are:

(
α∗, β∗, θ∗, γ ∗) = (1.0,0.6,2.2,0.6)
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5.3. Parameter estimation for the QR model

We now explain how we estimate the parameter for the Quantal Response Model (QR Model). The parameter λ in the
QR model represents the level of noise in the adversary’s response function. We employ Maximum Likelihood Estimation
(MLE) to fit λ using data we collected. Given a game instance G and N samples of the subjects’ choices {τ j(G), j = 1 . . . N},
the likelihood of λ is

L(λ | G) =
∏

j=1..N

qτ G
j
(λ | G)

where, τ G
j ∈ T denotes the target attacked by the jth player and qτ G

j
(λ | G) can be computed by Eq. (9). For example, if

player j attacks target t3 in game G , we would have qτ G
j
(λ | G) = q3(λ | G). Furthermore, the log-likelihood of λ is

log L(λ | G) =
N∑

j=1

log qτ j(G)(λ | G) =
∑
ti∈T

Ni log qi(λ)

Combining with Eq. (8),

log L(λ | G) = λ
∑
ti∈T

Ni U
a
i (xi) − N log

(∑
ti∈T

eλU a
i (x)

)

We learn the optimal parameter setting for λ by maximizing the total log-likelihood over all 35 game instances:

max
λ

∑
G

log L(λ | G) (46)

s.t. λ� 0 (47)

The objective function in Eq. (46) is concave, since for each G , a log L(λ | x) is a concave function. This can be demonstrated
by showing that the second order derivative of log L(λ | G) is non-positive ∀G:

d2 log L

dλ2
=

∑
i< j −(U a

i (xi) − U a
j (x j))

2eλ(U a
i (xi)+U a

j (x j))

(
∑

i eλU a
i (xi))2

� 0

Therefore, log L(λ | x) only has one local maximum. We use gradient descent solve the above optimization problem. The
MLE of λ is

λ∗ = 0.55

5.4. Parameter estimation for the QRRU model

For the QRRU Model, we need to estimate two parameters: λu and λs as defined in Eq. (10). We again apply Maximum
Likelihood Estimation, similar to the method for the QR model. Given a game instance G, and the responses of N subjects
{τ j(G), j = 1 . . . N}, the log-likelihood of a parameter setting (λu, λs) is

log L(λu, λs | G) =
N∑

j=1

log qτ j(G)(λu, λs | G) =
∑
ti∈T

Ni log qi(λu, λs)

Combining with Eq. (10),

log L(λu, λs | G) = λu

∑
ti∈T

Ni U
a
i (xi) + λs

∑
ti∈T

Ni Si(x) − N log

(∑
ti∈T

eλu U a
i (xi)+λs Si(x)

)

We learn the optimal parameter settings for the QRRU Model by maximizing the total log-likelihood over all 35 game
instances:

max
λu,λs

∑
G

log L(λu, λs | G) (48)

s.t. λu � 0, λs � 0 (49)

The objective function in Eq. (48) is a concave function, since ∀G the Hessian matrix of log L(λu, λs | G) is negative semi-
definite. We include the details of proof in the appendix and only show here that ∀〈λu, λs〉
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〈λu, λs〉 · H(λu, λs | G) · 〈λu, λs〉T � 0

where H(λu, λs | G) is the Hessian matrix of log L(λu, λs | G) computed as the following

H(λu, λs | G) = −N

⎛
⎜⎝

∑
i< j(U a

i −U a
j )

2e Ai+A j

(
∑

ti∈T e Ai )2

∑
i< j(U a

i −U a
j )(Si−S j)e Ai+A j

(
∑

ti∈T e Ai )2∑
i< j(U a

i −U a
j )(Si−S j)e Ai+A j

(
∑

ti∈T e Ai )2

∑
i< j(Si−S j)

2e Ai+A j

(
∑

ti∈T e Ai )2

⎞
⎟⎠

where, Ai = λu U a
i (xi) + λs Si(x). Therefore, we can use gradient descent to solve the optimization problem in Eqs. (48) and

(49). The MLE parameters based on our data set are:(
λ∗

u, λ∗
s

) = (0.6,0.77)

6. Experimental results and discussion

We evaluated the performances of defender strategies as well as the accuracy of different adversary models with human
subjects using the online game “The Guard and The Treasure” introduced in Section 2.2. We conducted two set of evalua-
tions: the first set includes the same 7 payoff structures used in the experiments in the previous section; the second set
focuses on comparison between the QR model and the QRRU model.

6.1. Experimental settings

The design of the simulated game was already provided in Section 2.2. We now present a detailed description of the
experimental settings. In total, we included 70 game instances (comprising 7 payoff structures and 10 strategies for each
payoff structure) in the first set and 12 game instances (comprising 4 new payoff structures and 3 strategies for each payoff
structure) in the second set. To avoid confusion between these two sets of payoff structures, we will number the first seven
payoff structures as 1.1–1.7, and the next four as 2.1–2.4.

Each game instance is played by at least 80 different participants (the actual number of subjects for each game in-
stance ranges between 80 to 91). Each subject is asked to play 40 out of the 70 games. For the purpose of a within-subject
comparison, we want a subject to play the 10 different strategies for the same payoff structure. Therefore, the 40 games
is composed of 4 payoff structures and 10 defender strategies for each. Furthermore, in order to mitigate the ordering
effect on subject responses, we randomize the order of the game instances played by each subject. We generated 40
different orderings of the games using Latin square design. The order played by each subject was drawn uniformly ran-
domly from the 40 possible orderings. To further mitigate ordering effect, no feedback on success or failure is given to
the subjects until the end of the experiment. As motivation to the subjects, they earn or lose money based on whether or
not they succeed in attacking a gate; if the subject opens a gate not protected by the guards, they win; otherwise, they
lose.

The participants were recruited on Amazon Mechanical Turk. Note that these participants differ from those who played
the game to provide data for estimating the parameter, as discussed in the previous section. In order to avoid non-compliant
participants, we only allowed workers whose HIT approval rates were greater than 95% and who had more than 100 ap-
proved HITs to participate in the experiment. They were first given a detailed instruction of the game explaining to them
how the game is played. Then two practical rounds of games were provided to help them get familiar with the game. After
all the learning and practising, they were given enough time to finish all the games.

Each participant first received 50 cents for participating in the game. Then they gain bonus based on the outcomes of the
games they played, with each point worth 1 cent. On average, the subjects who participated in the first set of experiment
(i.e. payoff 1.1–1.7) received $1.45 as bonus based on their total scores across 40 game instances they played; the subjects
who participated in the second set of experiment (i.e. payoff 2.1–2.4) received $0.44 as bonus based on their total scores
across 12 game instances they played. Participants were given 5 hours in total to finish the experiment which was shown
to be sufficiently long given that the average time they spent was 28 minutes for the first set of 40 games and 8 minutes
for the second set of 12 games.

In the following part of this section, we first describe the parameter settings for the different leader strategies. We
then provide our experimental results, and follow that up with analysis. We compare both the quality of different defender
strategies against the human participants and the accuracy of different adversary models in the sense that how well the
human participants follow the assumption of these models.

6.2. Algorithm parameters

For the seven payoff structures (1.1–1.7) introduced in Section 5, we tested ten different mixed strategies generated
from seven different algorithms: Maximin, Dobss [18], Cobra [20], Brpt, Rpt, Brqr, Brqrru. We include Maximin as a
benchmark algorithm. Maximin assumes that adversary always selects the target that is worst to the defender. Table 3 lists
the parameter settings of these ten strategies for each of the seven payoff structures.
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Table 3
Parameter settings for different algorithms.

Payoff 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Cobra-α 0.15 0.15 0.15 0.15 0.37 0 0.25
Cobra-ε 2.5 2.9 2.0 2.75 2.5 2.5 2.5

Brpt-E (α,β, θ,γ ) = (0.88,0.88,2.25,0.64)

Rpt-E (α,β, θ,γ ) = (0.88,0.88,2.25,0.64), ε = 2.5
Brpt-L (α,β, θ,γ ) = (1,0.6,2.2,0.6)

Rpt-L (α,β, θ,γ ) = (1,0.6,2.2,0.6), ε = 2.5
Brqr-76 λ = 0.76
Brqr-55 λ = 0.55
Brqrru (λu , λs) = (0.6,0.77)

• Dobss and Maximin have no parameters.
• For Cobra, we set the parameters following the methodology presented in [20] as closely as possible for payoff struc-

tures 1.1∼1.4. In particular, the values we set for α meet the entropy heuristic discussed in that work. For payoff
structures 1.5∼1.7 that are identical to payoff structures first used by Pita et al., we use the same parameter settings as
in their work.

• For both Brpt-E and Rpt-E, the parameters for Prospect Theory are empirical values suggested by literatures [31]. For
Rpt-E, we empirically set ε to 25% of the maximum potential reward for the adversary, which is 10 in our experimental
settings.

• We tried another set of parameters for Prospect Theory, which are learned from our first set of experiment as described
in Section 5.2. We denote these two algorithms as Brpt-L and Rpt-L.

• For Brqr, we tried two different values for the parameter λ, λ = 0.76 is the values learned from the data reported
by Pita et al. [20]; λ = 0.55 is the value learned from data collected in our first set of experiments with participants
from Amazon Mechanical Turk. We will refer to the strategies resulting from these two parameter settings of the Brqr

algorithm as Brqr-76 and Brqr-55 respectively.
• For Brqrru, the parameters are learned from the data collected our first set of experiments.

6.3. Quality comparison

We evaluated the performance of different defender strategies using the defender’s expected utility and the statistical
significance of our results using the bootstrap-t method [37].

6.3.1. Average performance
We first evaluated the average defender expected utility, U d

avg(x), of different defender strategies based on the subjects’
choices:

U d
avg(x) = 1

N

N∑
j=1

U d
τ j

(x) = 1

N

∑
ti∈T

Ni U
d
i (xi)

where τ j is the target selected by the jth subject, Ni is the number of subjects that chose target ti and N is the total number
of subjects. Fig. 5 displays U d

avg(x) for the different strategies in each payoff structure. We also displayed the normalized

defender average expected utility of different strategies within each payoff structure in Fig. 6. After normalization, U d
avg(x)

for each defender strategy varies between 0 and 1, with the highest U d
avg(x) in each payoff structure scaled to 1 and the

lowest U d
avg(x) scaled to 0.

Overall, Brqr-76, Brqr-55 and Brqrru performed better than other algorithms. We compare the performance of three
algorithms with each of the other seven algorithms and report the level of statistical significance in Tables 4, 5 and 6. We
summarize the results below:

• Maximin is outperformed by all three algorithms with statistical significance in all seven payoff structures. Dobss is also
outperformed by all three algorithms with statistical significance except for payoff structure 1.6.

• In five of the seven payoff structures, Cobra is outperformed by all three algorithms with statistical significance. In
payoff structure 1.3, the performance of Cobra is very close to the three algorithms, but there is no statistical signifi-
cance either way. In payoff structure 1.5, Cobra is outperformed by all three algorithms but no statistical significance is
achieved.

• The three algorithms outperform Brpt-E with statistical significance in all seven payoff structures. Furthermore, Brpt-L
is outperformed by the three algorithms in all seven payoff structures with statistical significance in six cases except
for in payoff structure 1.6.

• In four of the seven payoff structures, Rpt-E is outperformed by the three algorithms with statistical significance. In
payoff 1.3, Rpt-E is outperformed by all three algorithms but the result is not statistical significant. In payoff structure
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Fig. 5. Defender average expected utility achieved by different strategies.

1.4, Rpt-E achieves very similar performance to Brqr-55 and is outperformed by Brqr-76 and Brqrru. In payoff 1.5,
Rpt-E achieves very similar performance as Brqr-76 and is outperformed by Brqr-55 and Brqrru. Furthermore, Rpt-L
is outperformed by all three algorithms with statistical significance in almost all seven payoff structures, except for in
payoff structure 1.2 where the result of comparing Brqr-76 and Brqrru with Rpt-L doesn’t have statistical significance.

Overall, any of the three quantal response (Brqr-76, Brqr-55 and Brqrru) strategies would be preferred over the other
strategies. However, the performance of the three strategies are close to each other in this set of experiments. In order to
further differentiate the three strategies as well as prove the effectiveness of QRRU model, we conducted a separate set of
experiments. We first select four new payoff structures from the 1000 random samples using the following rules:

• We first measure the distance between the Brqrru strategy and each of the other two Brqr strategies using Kullback–
Leibler (KL) divergence: D(xk, xl) = DKL(xk|xl) + DKL(xl|xk), where DKL(xk|xl) = ∑n

i=1 xk
i log(xk

i /xl
i).

• For each payoff structure, we measure this KL distance for the pair (Brqrru, Brqr-76) and the pair (Brqrru, Brqr-55).
So we have two such measurements for each payoff structure.

• We sort the payoff structures in a descending order of the mean of these two distance.
• In the top 10 payoff structures, we select two payoff structures where the targets assigned with minimum coverage

probability by Brqr-76 or Brqr-55 have large penalty for the defender; and two payoff structures where the penalty
for the defender on such target is small.

The details of these four payoff structures and the defender strategies are included in the appendix. We conducted a new
set of experiments with human subjects using these four payoff structures and the three QR model based strategies for each
payoff structure. In total, we have 4 ∗ 3 = 12 game instances included in these experiments. Each subject is asked to play
against all these 12 game instances. 80 subjects are involved in these experiments.
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Fig. 6. Defender average expected utility (normalized between 0 and 1) achieved by different strategies.

Table 4
Level of statistical significance of comparing Brqr-76 to other algorithms: ***(p � 0.01), **(p � 0.05), *(p � 0.1).

v.s. Dobss Maximin Cobra Brpt-E Rpt-E Brpt-L Rpt-L

payoff 1.1 *** *** *** *** ** *** ***
payoff 1.2 *** *** *** *** *** *** 0.15
payoff 1.3 *** *** 0.96 *** 0.21 *** **
payoff 1.4 *** *** * *** 0.25 *** ***
payoff 1.5 *** *** 0.26 *** 0.99 *** ***
payoff 1.6 0.20 *** *** * *** 0.13 ***
payoff 1.7 *** *** ** *** ** *** ***

Table 5
Level of statistical significance of comparing Brqr-55 to other algorithms: ***(p � 0.01), **(p � 0.05), *(p � 0.1).

v.s. Dobss Maximin Cobra Brpt-E Rpt-E Brpt-L Rpt-L

payoff 1.1 *** *** ** *** * *** ***
payoff 1.2 *** *** ** *** *** *** *
payoff 1.3 *** *** 0.86 *** 0.16 *** **
payoff 1.4 *** *** ** *** 0.95 *** **
payoff 1.5 *** *** 0.37 *** 0.12 *** **
payoff 1.6 0.16 *** *** ** *** 0.11 ***
payoff 1.7 *** *** *** *** *** *** ***
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Table 6
Level of statistical significance of comparing Brqrru to other algorithms: ***(p � 0.01), **(p � 0.05), *(p � 0.1).

v.s. Dobss Maximin Cobra Brpt-E Rpt-E Brpt-L Rpt-L

payoff 1.1 *** *** ** *** * *** ***
payoff 1.2 *** *** ** *** *** *** 0.27
payoff 1.3 *** *** 0.99 *** 0.27 *** **
payoff 1.4 *** *** ** *** 0.18 *** ***
payoff 1.5 *** *** 0.40 *** 0.33 *** *
payoff 1.6 0.15 *** *** ** *** 0.11 ***
payoff 1.7 *** *** *** *** *** *** ***

Fig. 7. Defender average expected utility achieved by QR model based strategies.

Table 7
Statistical significance (**: p � 0.05; ***: p � 0.01).

payoff 2.1 Brqrru v.s. Brqr-76 ***
Brqrru v.s. Brqr-55 **

payoff 2.2 Brqrru v.s. Brqr-76 **
Brqrru v.s. Brqr-55 **

payoff 2.3 Brqr-76 v.s. Brqrru 0.87
Brqr-55 v.s. Brqrru 0.40

payoff 2.4 Brqrru v.s. Brqr-76 0.97
Brqr-55 v.s. Brqrru 0.35

Fig. 7 displays the defender average expected utility achieved by the three strategies. We report the statistical signifi-
cance results in Table 7. In payoff structures 2.1 and 2.2, Brqrru outperforms both Brqr-76 and Brqr-55 with statistical
significance. In payoff structures 2.3 and 2.4, the three strategies have very close performance. No statistical significance is
found in the results, as reported in Table 7.

As noted earlier, a very important feature of payoff structures 2.1 and 2.2, compared to payoff structures 2.3 and 2.4,
is that the target covered with minimum resource by Brqr-76 and Brqr-55 (target 3 in payoff structure 2.1 and target 3
in payoff structure 2.2) has a large penalty (� −6) for the defender. In the experiments with payoff structures 2.1 and 2.2,
more than 10% of subjects selected these targets (target 3 in payoff structure 2.1 and 2.2) while playing against Brqr-76
or Brqr-55, while no subjects chose this target while playing against Brqrru — Brqrru covers these targets with more
resources. This is the main reason why Brqrru significantly outperforms Brqr in payoff 2.1 and payoff 2.2. In payoff 2.3
and 2.4, similar observation is obtained in subjects’ choice: the targets covered with minimum resources by Brqr-76 and
Brqr-55 are selected more frequently compared to the case when Brqrru is played. However, these targets (i.e. target 1 in
payoff 2.3 and target 2 in payoff 2.4) have very small penalty for the defender (−1). Therefore we do not see significant
differences in performance among the different Brqr strategies.

Based on the result in both sets of experiments, we conclude that the stochastic model based strategies are superior to
their competitors, and Brqrru is the preferred strategy within the stochastic model based strategies. In particular, Brqrru

achieves significantly better performance than Brqr when the target covered with minimum resource by Brqr has po-
tentially a large penalty for the defender; and has a performance similar to the other stochastic model based strategies
otherwise.
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Fig. 8. Distribution of defender’s expected utility against each individual subject.

6.3.2. Performance distribution
We now analyze the distribution of the performance of each defender strategy while playing against different adversaries

(subjects). Given a game instance G , the defender expected utility achieved by playing strategy x against a subject j is
denoted as U d

τ G
j
(x). Figs. 8 and 9 display the distribution of U d

τ G
j
(x) for different defender strategies against individual

subjects in each payoff structure. The y-axis shows the range of the defender’s expected utility against all different subjects.
Each box with the extended dash line in the figure shows the distribution of this defender expected utility for each of the
ten defender strategies: the dashed line specifies the range of U d

τ G
j
(x) with the bottom band showing the minimum value

and the top band showing the maximum value; the box specified the 25th to 75th percentiles of U d
τ G

j
(x) with the bottom

showing the 25th percentile value and the top showing the 75th value; the band inside the box specifies the median (50th
percentile) of U d

τ G
j
(x). We compare the distributions of different defender strategies from two perspectives:

Range: As presented in Fig. 8 and Fig. 9, in general, the defender expected utility has the smallest range when Maximin

strategy is played (except that in payoff structure 1.7, the range of the defender expected utility when RPT-L is played is
slightly smaller than that when Maximin is played). Cobra, Rpt, Brqr and Brqrru lead to larger range of defender expected
utility than Maximin. Defender expected utility has the largest range when Dobss or Brpt is played.

Worst case: The lower band of the dashed line indicates the worst-case defender expected utility when different strategies
are played. Maximin has the highest worst-case defender expected utility in general (except that in payoff 1.5, the worst-
case defender expected utility by playing Brqr-76 is better than that by playing Maximin). Dobss and Brpt lead to lowest
worst-case defender expected utility. The worst-case defender expected utility from playing Cobra, Rpt, Brqr and Brqrru

are in between the two extreme cases. Furthermore, Brqr and Brqrru lead to higher worst-case defender expected utility
than Cobra and Rpt.

In general, by playing Maximin, the defender expected utility against each individual adversary achieves the smallest
variance, hence it is most robust to the uncertainty in adversary’s choice. However, it does so by assuming that the adver-
sary could select any target hence making the expected utility on each target equal. Maximin does not exploit the different
preferences adversary may have among different targets. Brpt and Dobss assume the subjects select the target that maxi-



R. Yang et al. / Artificial Intelligence 195 (2013) 440–469 459
Fig. 9. Distribution of defender’s expected utility against each individual subject.

mizes their expected utility and do not consider the possibility of deviations from the optimal choice by the adversary. This
leads to arbitrarily lower defender expected utility when the adversary deviates from the predicted choice.

Cobra, Rpt, Brqr and Brqrru all try to be robust against such deviations. Brqr and Brqrru consider some (possibly
very small) probability of adversary attacking any target using a soft-max function. In contrast, Cobra and Rpt separate the
targets into two groups, the ε-optimal set and the non-ε-optimal set, using a hard threshold. They then try to maximize
the worst case for the defender assuming the response will be in the ε-optimal set, but assign less resources to the non-
ε-optimal targets. When the non-ε-optimal targets have high defender penalties, Cobra and Rpt become vulnerable to
adversary’s deviation. For example, target 6 in payoff structure 1.2 has a small reward (= 1) and a large penalty (= −10) for
the attacker. Both Cobra and Rpt consider this target to be in the non-ε-optimal set and assign very small probability to
cover this target (� 0.05). However, approximately 10% of the subjects have chosen this target. Since this target has a high
defender penalty (−6), Cobra and Rpt lose reward on this target. Similar examples include target 5 in payoff structure 1.4
and target 8 in payoff structure 1.1.

6.4. Model prediction accuracy

In this section, we evaluate how well each model predicts the actual responses of human participants using three differ-
ent metrics [38]: mean square deviation (MSD), a proportion of inaccuracy (POI), and Euclidean distance (ED).

We first extend the definition of MSD from that in [38] which is designed for a 2-action game, in order to suit our
domain where the player has 8 actions to take. Given the choices of the N subjects, the MSD of a model is computed as

MSD =
{

1

N

N∑
n=1

(pτ (n) − 1)2

}1/2

(50)

where, τ (n) represents the index of the target chosen by subject n, pi is the predicted probability by a model that target i
will be chosen.
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Table 8
Ability of behavioral models to predict attacker decision.

Model Out of sample In sample

MSD POI ED MSD POI ED

Dobss 0.81 0.67 0.76 0.85 0.73 0.80
PT-E 0.84 0.71 0.81 0.87 0.75 0.84
PT-L 0.84 0.71 0.81 0.86 0.74 0.83

QR-76 0.79 0.67 0.23 0.83 0.73 0.22
QR-55 0.81 0.67 0.22 0.84 0.73 0.21
QRRU 0.80 0.65 0.21 0.83 0.70 0.18

Cobra 0.91 0.83 (0.35) 0.94 0.91 0.83 (0.42) 0.93
RPT-E 0.93 0.87 (0.52) 0.99 0.94 0.88 (0.56) 0.99
RPT-L 0.93 0.86 (0.49) 0.98 0.93 0.86 (0.54) 0.96

The POI score is meant to put models with deterministic prediction on the same footing as those with stochastic predic-
tion. It treats the target with the highest predicted probability as the predicted target, and computes the proportion of the
subjects who didn’t choose the predicted target. The POI score is computed as

POI = 1

N

N∑
n=1

(1 − p̃τ (n)) (51)

where, τ (n) is the index of the target chosen by subject n. p̃τ (n) = 1 if τ (n) is the predicted target; and p̃τ (n) = 0 otherwise.
Note that for models with deterministic prediction, the POI score is exactly equal to the square of MSD value.

The Euclidean distance measures the difference between the actual distribution of the subjects’ choices and the predic-
tion of the model. It is computed as

ED =
√∑

i∈T

(
pi − pact

i

)2
(52)

where pi is the probability predicted by the model that target i will be chosen, and pact
i is the actually percentage of

subjects who have chosen target i.
Table 8 presents the ability of different models to predict the attacker decision measured with the three different cri-

teria.5 The measurements for both the out-of-sample data (70 rounds of games) and in-sample data (35 rounds of games)
are displayed in the table. Better predictive power is indicated by lower MSD value and POI score and lower ED value. The
top four models all have deterministic prediction and the three quantal response related models have stochastic prediction.
The last three models (Cobra, RPT-E and RPT-L) don’t have a strict definition of the prediction of the attacker’s behavior.
They are modifications of the base models for robustness. For example, Cobra modifies Dobss by assuming that attacker
will deviate from choosing the target with the highest expected utility to any other targets whose expected utilities are
within ε of the highest value. However, within this subset of possibly chosen targets, the model doesn’t explicitly predict
the behavior of the attacker but rather plays a maximin strategy (i.e. maximizing the lowest expected utility). RPT-E and
RPT-L modify PT-E and PT-L in similar ways. Given the above property of these three models, we compute the POI score in
two different ways by using two different definitions of the model prediction.

• The first definition predicts a single target with the lowest expected utility for the defender within the subset of possible
deviations. Therefore the POI score counts the proportion of subjects who have chosen any other targets.

• The second definition predicts all the targets within the subset of the possible deviations. Therefore, the POI score only
counts for the targets outside this subset.

The POI score computed with the first definition should be equal to or higher than the value computed with the second
definition. Note that the second definition doesn’t satisfy the property of prediction since the sum of the predictions on all
targets might be larger than 1. We use this definition to mainly show the importance of accounting for deviation of attackers’
decision. The POI values computed with the second definition are shown in parentheses in Table 8. The observations from
the table are summarized blow,

1. For the out-of-sample data, less than 30% of the subjects have selected the target predicted by PT-E or PT-L; in the
other words, more than 70% of the subjects have deviated from the prediction. For Dobss, on average 67% of the subjects
deviated from the predicted response. Similar patterns can be observed for the in-sample data.

2. Both Rpt and Cobra take into consideration the deviation of the subjects’ responses from their optimal action. The
percentage of subjects deviate from the model prediction decreased significantly: for the out-of-sample data, the POI score

5
Maximin doesn’t have a prediction of adversary behavior, so we exclude it from the analysis.
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of Cobra is 0.35 compared to 0.67 of Dobss; the POI score of RPT-E decreased by 0.19 compared to PT-E; the POI score of
RPT-L decreased by 0.22 compared to PT-L. Similar patterns are observed for the in-sample data.

3. The POI score of QR-76 and QR-55 is the same as Dobss. This is expected since the target predicted by the QR model
to be chosen with the highest probability is the target with the highest expected utility for the attacker, which is the also
prediction of Dobss. In other words, QR-76 and QR-55 have the same predicted target as Dobss. At the same time, QRRU
has the lowest POI score among all the models in both the out-of-sample data and in-sample data. The MSD scores of the
three QR-related models are better (lower) than other models (except that in the out-of-sample data QR-55 has the same
score as Dobss).

4. The advantage of the three QR related models is most significant under the ED score, which represents the error of the
model in predicting the distribution of subjects’ choices. As shown in Table 8, the three QR-related models have significantly
lower ED scores than the other models. This is essentially the reason why the three models achieved significantly better
defender expected utility than the other models.

7. Related work

In the first few sections of the paper, we discussed recent developments of game-theoretical approaches to solve Stack-
elberg security games. We discuss additional related work in this section.

Motivated by real-world security problems, there have been many algorithms developed to compute optimal defender
strategies in Stackelberg games [19,18,30]. The first such algorithm to be used in a real application is Dobss (Decomposed
Optimal Bayesian Stackelberg Solver) [18], which is central to the ARMOR system [5] at LAX airport and the GUARDS system
[7] built for the Transportation Security Administration. Other works related to Stackelberg security games include those of
Agmon et al. [3,39] and those of Gatti et al. [40,4] on multi-robot patrolling. However, an important limitation of all of this
work is the assumption of a perfectly rational adversary, which may not hold in many real world domains.

Recent work [20] developed a new algorithm Cobra, which provided a solution for designing better defender strategies
against human adversaries by modeling an adversary’s behavior taking into consideration (i) human deviation from the
utility maximizing strategy and (ii) human anchoring bias when given limited observation of defender mixed strategy.
Cobra significantly outperforms Dobss in the experimental results against human subjects. We have provided an extensive
comparison of our new approaches with COBRA in this paper.

Another line of related work in Stackelberg security games have been trying to design more robust strategies to deal
with different kinds of uncertainties [41–43]. Yin et al. [42] proposed a unified efficient algorithm that addresses both
execution uncertainties of the defender and observation uncertainties of adversaries in SSGs. Kiekintveld et al. [43] address
payoff uncertainty by introducing a general model of infinite Bayesian Stackelberg security games which allows payoffs to
be represented using continuous payoff distributions. Although the simulation based experiment showed promising result
of these studies, the performances of these models against real human subjects are left unaddressed. Our work differs from
these efforts in that they do not handle bounded rationality of human adversary while we propose different models to
explicitly predict human decision making accounting for their bounded rationality.

Many models have been proposed to capture human bounded rationality in their decision making in psychology and
cognitive science [44,34,45]. A key challenge of applying these models to game-theoretical framework to help design better
strategy is the transition from a (sometimes descriptive) model to a computational model. On the other hand, there has
been a growing interest in the game theory literature to develop more realistic computational models of human decision
making in games [9,11,32]. Most of these models find empirical support from the data of human playing games. However,
few research efforts have attempted to bridge the gap between computational game theory and behavioral game theory,
and fewer still in the important area of SSGs, which is the topic of this article. In this paper, we explore such method by
developing computation models of human adversary decision making based on two descriptive theories: Prospect Theory
and rank-dependent Expected Utility. The outperforming result of these new models provide a clear direction for future
work in further improve the models of human bounded rationality in security games.

Outside the area of Stackelberg security games, there have been several recent investigations of human subjects inter-
acting with agents. For example, Melo et al. [46] investigate the impact of expression of an automated agent’s anger or
happiness in how a human participant may play the game. In repeated prisoner’s dilemma games, agents’ expressions are
shown to significantly affect human subjects’ cooperation or defection. Similarly, Azaria et al. [47] focus on road selection
games, and advice an automated system may provide to human subjects; Peled et al. [48] focus on bilateral bargaining
games, designing agents that negotiate proficiently with people. Aside from the obvious difference that our focus is on SSGs,
another key is our focus on efficiently computing optimal mixed strategies for the defender.

8. Summary and future work

There is a significant interest in game-theoretic techniques to solve security problems. Several real-world application
based on using these techniques have been deployed across the nation, including ARMOR [5], IRIS [6], GUARDS [7] and PRO-
TECT [8]. These systems have adopted the traditional game-theoretical assumption of perfectly rational adversaries. While
this was appropriate in the first generation of Stackelberg security game applications, it is now critical to develop new
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methods to compute defender strategies addressing human bounded rationality — particularly as the range of SSG applica-
tions where these deployed systems will face human adversaries continue to grow. New methods need to be developed to
compute defender strategy against bounded rationality of real human adversaries.

In this paper, we address this problem by applying two fundamental theories in human decision-making, Prospect Theory
(PT) and Quantal Response Equilibrium (QRE), to model the adversary’s behavior in security games. The contributions of this
article include:

(i) proposing two mathematical models of adversary’s decision-making based on using PT;
(ii) providing a method to adapt the parameters of PT for the two PT-based methods;

(iii) proposing one mathematical model of adversary’s decision-making based on quantal response (QR) and a second one
that uses modified QR (based on rank dependent utility);

(iv) developing efficient algorithms to compute optimal strategy for the defender under each of these four adversary mod-
els;

(v) most extensive-to-date experiment to verify the effectiveness of the proposed approaches.

We compare our new approaches to three benchmark algorithms, Dobss, Maximin and Cobra in seven different payoff
structures, where Cobra is the leading contender for addressing human bounded rationality presented in previous work.
Experiment results show that our new methods based on using the QR model achieved statistically significant better per-
formance than all three benchmark algorithms as well as the PT-based new methods. Furthermore, we identify that in cases
where the targets covered with minimum resource have large penalty to the defender, the modified QR model achieved sig-
nificantly better performance than the basic QR model. By providing new models that better predicts the behavior of human
adversary and new algorithms that computes strategies outperforming our leading competitor, this paper has advanced the
state-of-the-art.

While the research reported in this article takes an important step forward in addressing bounded rationality of human
adversaries in the context of security games, there are still many open topics for future research. One key area is to translate
the results obtained here in controlled experiments on AMT into specific, real-world security applications. Most of the
issues related to making this transition are not unique to our work, but apply more generally to studies in agent/human
interactions. For example, the specific conditions tested in the lab and the way in which decisions are presented is not
likely to be exactly reflected in real interactions, and neither is the population of adversaries identical to the population of
adversaries in a real-world security setting. However, our methods are based on fundamental features of human decision-
making that are robustly supported in a large number of behavioral studies and these methods would thus translate into
real-world applications. In addition, the parameters offer some ability to tune the models over time to specific settings or
populations of interest, and our methodology provides techniques for tuning these parameters. The parameter settings in our
work can serve as initial settings in a real deployment to be adapted over time. Alternatively, the parameters can initially
be set conservatively (e.g., somewhat close to settings that result in a standard equilibrium), and adapted over time from
this starting point. Another interesting possibility that could be explored in future work is to develop ways to incorporate
different sources of information (such as prior knowledge of the biases of specific adversaries) into the models in a general
way.

Furthermore, the current game model is an abstraction of real-world security scenario, in particular, the one at the Los
Angeles international airport. The model can be further refined to reflect more details of the scenario. For example, the
current game assumes covering each target with a single unit of resources and a binary effect of protecting the targets
with the resources (i.e. protected/not protected). An interesting direction for future work is to explore the effect of having
multiple units of resources to protect a target. At the same time, another interesting direction for future work is to ex-
tend the current game model to deal with domains with continual and online interaction between the defender and the
attacker.
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Appendix A. Payoff structure information

The four payoff structures selected from the four clustering groups are displayed in Table A.9. The three payoffs that
are identical to that first used by Pita et al. are shown in Table A.10. The four payoff structures selected for the second
evaluation set of experiment for comparing the three QR model based strategies are listed in Table A.11.
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Table A.9
Payoff structures.

Target 1 2 3 4 5 6 7 8

(a) Payoff structure 1.1
defender reward 2 6 7 7 8 8 6 9
defender penalty −8 −10 −3 −1 −10 −5 −2 −5
subject reward 10 8 3 7 6 7 8 2
subject penalty −7 −4 −6 −8 −4 −2 −9 −3

(b) Payoff structure 1.2
defender reward 3 8 9 9 7 7 4 1
defender penalty −10 −2 −5 −1 −7 −6 −2 −1
subject reward 9 8 2 9 10 1 10 1
subject penalty −10 −1 −10 −8 −4 −10 −5 −3

(c) Payoff structure 1.3
defender reward 5 3 8 3 3 4 3 6
defender penalty −2 −5 −4 −6 −3 −10 −7 −2
subject reward 8 6 1 3 1 7 3 5
subject penalty −6 −9 −3 −7 −7 −2 −5 −2

(d) Payoff structure 1.4
defender reward 5 9 10 2 10 4 8 8
defender penalty −10 −4 −9 −3 −10 −10 −2 −5
subject reward 3 7 3 9 2 9 7 8
subject penalty −4 −8 −5 −8 −9 −4 −1 −6

Table A.10
Payoff structures.

Target 1 2 3 4 5 6 7 8

(a) Payoff structure 1.5
defender reward 1 4 2 3 4 1 5 2
defender penalty −5 −8 −1 −6 −5 −1 −7 −7
subject reward 1 9 5 6 7 1 10 3
subject penalty −2 −4 −3 −3 −3 −2 −4 −3

(b) Payoff structure 1.6
defender reward 4 3 1 5 1 2 5 2
defender penalty −8 −10 −1 −8 −1 −3 −11 −5
subject reward 8 5 3 10 1 3 9 4
subject penalty −3 −2 −3 −2 −3 −3 −2 −3

(c) Payoff structure 1.7
defender reward 4 3 1 5 1 2 5 2
defender penalty −8 −5 −1 −10 −5 −3 −9 −6
subject reward 8 5 2 10 1 3 9 4
subject penalty −3 −3 −3 −3 −3 −3 −3 −3

Table A.11
Payoff structures.

Target 1 2 3 4 5 6 7 8

(c) Payoff structure 2.1
defender reward 10 1 1 8 8 6 2 4
defender penalty −4 −6 −9 −10 −7 −4 −5 −8
subject reward 7 6 1 6 7 7 6 6
subject penalty −4 −3 −4 −8 −10 −5 −4 −5

(b) Payoff structure 2.2
defender reward 2 7 1 10 1 10 3 2
defender penalty −6 −4 −5 −1 −7 −4 −4 −7
subject reward 7 6 1 10 6 3 2 8
subject penalty −6 −6 −6 −2 −2 −9 −10 −3

(c) Payoff structure 2.3
defender reward 1 1 10 7 4 9 6 9
defender penalty −1 −7 −8 −6 −7 −1 −8 −7
subject reward 2 1 1 4 1 5 6 7
subject penalty −10 −1 −4 −10 −6 −2 −1 −8

(continued on next page)



464 R. Yang et al. / Artificial Intelligence 195 (2013) 440–469
Table A.11 (continued)

Target 1 2 3 4 5 6 7 8

(d) Payoff structure 2.4
defender reward 7 3 6 1 10 1 8 9
defender penalty −2 −1 −5 −4 −5 −8 −8 −10
subject reward 7 1 6 1 3 1 7 2
subject penalty −9 −1 −10 −7 −3 −1 −5 −1

Appendix B. Defender mixed-strategy

The defender’s mixed-strategy from each algorithm in each payoff structures are displayed in Tables B.12–B.19.

Table B.12
Defender’s mixed-strategy for payoff structure 1.1.

Target 1 2 3 4 5 6 7 8

Dobss 0.49 0.53 0.15 0.36 0.44 0.59 0.37 0.07
Maximin 0.74 0.59 0.24 0.06 0.52 0.34 0.18 0.32
Cobra 0.57 0.62 0.18 0.22 0.51 0.44 0.34 0.11
Brpt-E 0.39 0.51 0.17 0.26 0.43 0.70 0.26 0.28
Rpt-E 0.44 0.58 0.24 0.16 0.51 0.41 0.28 0.38
Brpt-L 0.53 0.54 0.10 0.36 0.42 0.60 0.39 0.06
Rpt-L 0.60 0.63 0.20 0.17 0.52 0.41 0.29 0.18
Brqr-76 0.57 0.58 0.18 0.21 0.51 0.47 0.30 0.18
Brqr-55 0.58 0.59 0.18 0.19 0.52 0.47 0.28 0.20
Brqrru 0.55 0.56 0.25 0.20 0.48 0.45 0.28 0.25

Table B.13
Defender’s mixed-strategy for payoff structure 1.2.

Target 1 2 3 4 5 6 7 8

Dobss 0.42 0.78 0.08 0.47 0.64 0 0.60 0
Maximin 0.75 0.18 0.34 0.08 0.49 0.45 0.30 0.40
Cobra 0.48 0.53 0.09 0.43 0.74 0 0.70 0.02
Brpt-E 0.28 0.93 0.07 0.34 0.59 0.05 0.52 0.23
Rpt-E 0.31 0.61 0.09 0.38 0.64 0.07 0.56 0.34
Brpt-L 0.43 0.78 0.04 0.48 0.65 0.01 0.61 0.01
Rpt-L 0.51 0.49 0.09 0.39 0.71 0.03 0.69 0.09
Brqr-76 0.54 0.52 0.21 0.36 0.64 0.16 0.58 0
Brqr-55 0.56 0.50 0.23 0.34 0.63 0.19 0.55 0
Brqrru 0.46 0.40 0.30 0.25 0.54 0.30 0.45 0.30

Table B.14
Defender’s mixed-strategy for payoff structure 1.3.

Target 1 2 3 4 5 6 7 8

Dobss 0.53 0.37 0.12 0.25 0.06 0.72 0.31 0.64
Maximin 0.12 0.48 0.24 0.54 0.31 0.63 0.58 0.10
Cobra 0.48 0.42 0.16 0.29 0.07 0.81 0.36 0.42
Brpt-E 0.42 0.24 0.29 0.19 0.09 0.78 0.28 0.72
Rpt-E 0.41 0.29 0.41 0.25 0.14 0.78 0.36 0.36
Brpt-L 0.58 0.39 0.09 0.21 0.05 0.76 0.28 0.65
Rpt-L 0.36 0.47 0.27 0.32 0.11 0.75 0.40 0.32
Brqr-76 0.36 0.43 0.20 0.36 0.13 0.72 0.43 0.37
Brqr-55 0.34 0.43 0.22 0.37 0.12 0.73 0.44 0.36
Brqrru 0.33 0.38 0.33 0.33 0.33 0.67 0.35 0.28

Table B.15
Defender’s mixed-strategy for payoff structure 1.4.

Target 1 2 3 4 5 6 7 8

Dobss 0.22 0.37 0.19 0.44 0.05 0.58 0.69 0.47
Maximin 0.59 0.21 0.41 0.36 0.44 0.63 0.080 0.29
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Table B.15 (continued)

Target 1 2 3 4 5 6 7 8

Cobra 0.24 0.42 0.21 0.50 0.04 0.66 0.39 0.53
Brpt-E 0.28 0.27 0.22 0.33 0.08 0.54 0.90 0.38
Rpt-E 0.37 0.31 0.29 0.37 0.10 0.60 0.53 0.43
Brpt-L 0.16 0.37 0.14 0.48 0.04 0.60 0.73 0.48
Rpt-L 0.25 0.43 0.21 0.53 0.07 0.66 0.35 0.50
Brqr-76 0.35 0.33 0.30 0.44 0.20 0.62 0.36 0.42
Brqr-55 0.37 0.32 0.32 0.41 0.23 0.62 0.33 0.40
Brqrru 0.34 0.34 0.34 0.39 0.34 0.58 0.29 0.38

Table B.16
Defender’s mixed-strategy for payoff structure 1.5.

Target 1 2 3 4 5 6 7 8

Dobss 0 0.59 0.45 0.51 0.56 0 0.62 0.27
Maximin 0.56 0.53 0 0.49 0.37 0 0.45 0.60
Cobra 0 0.64 0.23 0.63 0.52 0 0.55 0.40
Brpt-E 0.16 0.49 0.41 0.46 0.51 0.16 0.52 0.28
Rpt-E 0.28 0.53 0.12 0.52 0.48 0.18 0.53 0.36
Brpt-L 0.02 0.61 0.43 0.50 0.57 0.02 0.65 0.21
Rpt-L 0.13 0.62 0.13 0.60 0.49 0.13 0.53 0.37
Brqr-76 0.12 0.61 0.16 0.55 0.52 0 0.57 0.46
Brqr-55 0.13 0.62 0.12 0.56 0.52 0 0.58 0.48
Brqrru 0.15 0.60 0.10 0.52 0.49 0.15 0.56 0.41

Table B.17
Defender’s mixed-strategy for payoff structure 1.6.

Target 1 2 3 4 5 6 7 8

Dobss 0.56 0.45 0.19 0.68 0 0.19 0.65 0.30
Maximin 0.53 0.64 0 0.49 0 0.27 0.59 0.48
Cobra 0.58 0.55 0 0.53 0 0.31 0.62 0.41
Brpt-E 0.49 0.46 0.21 0.67 0.05 0.21 0.64 0.29
Rpt-E 0.56 0.56 0.01 0.54 0.01 0.31 0.63 0.38
Brpt-L 0.58 0.43 0.15 0.73 0 0.15 0.69 0.26
Rpt-L 0.58 0.56 0 0.54 0 0.28 0.63 0.40
Brqr-76 0.58 0.59 0 0.60 0 0.19 0.66 0.38
Brqr-55 0.59 0.60 0 0.61 0 0.16 0.67 0.37
Brqrru 0.58 0.59 0.05 0.60 0 0.16 0.66 0.36

Table B.18
Defender’s mixed-strategy for payoff structure 1.7.

Target 1 2 3 4 5 6 7 8

Dobss 0.59 0.44 0.10 0.65 0 0.25 0.62 0.36
Maximin 0.49 0.36 0 0.52 0.48 0.17 0.49 0.48
Cobra 0.57 0.48 0 0.59 0 0.33 0.56 0.47
Brpt-E 0.54 0.41 0.19 0.60 0.09 0.27 0.57 0.35
Rpt-E 0.54 0.44 0 0.57 0.18 0.30 0.54 0.43
Brpt-L 0.61 0.42 0.08 0.70 0.01 0.20 0.66 0.32
Rpt-L 0.52 0.41 0 0.55 0.21 0.25 0.52 0.53
Brqr-76 0.59 0.44 0 0.63 0.08 0.22 0.60 0.45
Brqr-55 0.59 0.44 0 0.64 0.08 0.20 0.61 0.45
Brqrru 0.59 0.44 0 0.64 0.08 0.20 0.61 0.45

Table B.19
Defender’s mixed-strategy.

Target 1 2 3 4 5 6 7 8

(a) Payoff structure 2.1
Brqrru 0.30 0.45 0.35 0.38 0.35 0.35 0.39 0.42
Brqr-55 0.31 0.50 0.17 0.42 0.36 0.34 0.43 0.47
Brqr-76 0.31 0.52 0.13 0.41 0.36 0.36 0.45 0.47

(continued on next page)
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Table B.19 (continued)

Target 1 2 3 4 5 6 7 8

(b) Payoff structure 2.2
Brqrru 0.38 0.35 0.35 0.30 0.43 0.35 0.35 0.51
Brqr-55 0.51 0.39 0.07 0.36 0.63 0.22 0.16 0.66
Brqr-76 0.51 0.40 0.05 0.41 0.63 0.20 0.14 0.65

(c) Payoff structure 2.3
Brqrru 0.32 0.32 0.32 0.32 0.32 0.27 0.66 0.44
Brqr-55 0.10 0.38 0.36 0.36 0.30 0.32 0.71 0.47
Brqr-76 0.15 0.38 0.32 0.35 0.27 0.33 0.71 0.47

(d) Payoff structure 2.4
Brqrru 0.26 0.31 0.37 0.31 0.36 0.31 0.52 0.56
Brqr-55 0.29 0 0.40 0.19 0.42 0.47 0.55 0.69
Brqr-76 0.29 0 0.40 0.20 0.41 0.50 0.54 0.65

Appendix C. Distribution of subjects’ choices

The distributions of subjects’ choices while playing against each payoff/strategy combination are displayed in Tables C.20–
C.27.

Table C.20
Distribution of subjects’ choices (%) in payoff structure 1.1.

Target 1 2 3 4 5 6 7 8

Dobss 17.44 5.81 6.98 1.16 4.65 23.26 4.65 36.05
Maximin 5.81 3.49 2.33 50.00 0.00 27.91 10.47 0.00
Cobra 8.14 2.33 1.16 26.74 0.00 31.40 10.47 19.77
Brpt-E 23.26 8.14 22.09 4.65 3.49 16.28 19.77 2.33
Rpt-E 11.63 1.16 2.33 43.02 1.16 38.37 2.33 0.00
Brpt-L 8.14 4.65 24.42 5.81 8.14 22.09 5.81 20.93
Rpt-L 4.65 5.81 2.33 45.35 5.81 18.60 2.33 15.12
Brqr-76 3.49 9.30 8.14 30.23 1.16 32.56 9.30 5.81
Brqr-55 5.81 1.16 9.30 36.05 2.33 29.07 9.30 6.98
Brqrru 8.14 2.33 1.16 36.05 2.33 33.72 8.14 8.14

Table C.21
Distribution of subjects’ choices (%) in payoff structure 1.2.

Target 1 2 3 4 5 6 7 8

Dobss 13.33 11.11 4.44 3.33 15.56 7.78 17.78 26.67
Maximin 2.22 30.00 1.11 31.11 12.22 0.00 22.22 1.11
Cobra 8.89 22.22 11.11 14.44 10.00 14.44 12.22 6.67
Brpt-E 23.33 10.00 8.89 14.44 13.33 8.89 20.00 1.11
Rpt-E 20.00 25.56 7.78 10.00 12.22 8.89 15.56 0.00
Brpt-L 13.33 13.33 14.44 4.44 14.44 5.56 16.67 17.78
Rpt-L 8.89 40.00 8.89 4.44 13.33 7.78 11.11 5.56
Brqr-76 1.11 21.11 4.44 17.78 15.56 2.22 16.67 21.11
Brqr-55 0.00 35.56 0.00 14.44 6.67 5.56 17.78 20.00
Brqrru 2.22 32.22 1.11 35.56 8.89 1.11 17.78 1.11

Table C.22
Distribution of subjects’ choices (%) in payoff structure 1.3.

Target 1 2 3 4 5 6 7 8

Dobss 23.08 10.99 18.68 2.20 12.09 19.78 5.49 7.69
Maximin 41.76 1.10 0.00 0.00 0.00 20.88 0.00 36.26
Cobra 23.08 8.79 10.99 3.30 8.79 17.58 3.30 24.18
Brpt-E 31.87 17.58 4.40 6.59 10.99 19.78 6.59 2.20
Rpt-E 24.18 20.88 0.00 3.30 8.79 16.48 2.20 24.18
Brpt-L 19.78 10.99 23.08 5.49 10.99 15.38 7.69 6.59
Rpt-L 46.15 1.10 13.19 3.30 12.09 12.09 4.40 7.69
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Table C.22 (continued)

Target 1 2 3 4 5 6 7 8

Brqr-76 31.87 1.10 4.40 2.20 14.29 10.99 0.00 35.16
Brqr-55 38.46 2.20 3.30 0.00 10.99 18.68 0.00 26.37
Brqrru 32.97 0.00 0.00 2.20 0.00 15.38 0.00 49.45

Table C.23
Distribution of subjects’ choices (%) in payoff structure 1.4.

Target 1 2 3 4 5 6 7 8

Dobss 5.43 6.52 8.70 10.87 21.74 20.65 22.83 3.26
Maximin 0.00 7.61 0.00 7.61 0.00 8.70 70.65 5.43
Cobra 4.35 5.43 5.43 11.96 15.22 10.87 41.30 5.43
Brpt-E 3.26 14.13 4.35 17.39 19.57 18.48 13.04 9.78
Rpt-E 0.00 10.87 2.17 22.83 14.13 9.78 38.04 2.17
Brpt-L 10.87 14.13 10.87 13.04 15.22 10.87 22.83 2.17
Rpt-L 3.26 2.17 8.70 9.78 17.39 7.61 48.91 2.17
Brqr-76 0.00 11.96 0.00 9.78 13.04 11.96 53.26 0.00
Brqr-55 0.00 8.70 1.09 13.04 16.30 8.70 48.91 3.26
Brqrru 1.09 2.17 0.00 10.87 1.09 10.87 67.39 6.52

Table C.24
Distribution of subjects’ choices (%) in payoff structure 1.5.

Target 1 2 3 4 5 6 7 8

Dobss 14.77 5.68 13.64 1.14 7.95 17.05 28.41 11.36
Maximin 1.14 1.14 47.73 2.27 10.23 1.14 36.36 0.00
Cobra 7.95 1.14 40.91 0.00 7.95 11.36 30.68 0.00
Brpt-E 12.50 19.32 1.14 4.55 1.14 6.82 38.64 15.91
Rpt-E 0.00 6.82 54.55 3.41 3.41 1.14 30.68 0.00
Brpt-L 11.36 6.82 13.64 5.68 3.41 12.50 25.00 21.59
Rpt-L 6.82 4.55 54.55 2.27 1.14 7.95 22.73 0.00
Brqr-76 3.41 2.27 38.64 0.00 4.55 19.32 31.82 0.00
Brqr-55 0.00 1.14 53.41 0.00 5.68 12.50 27.27 0.00
Brqrru 0.00 1.14 51.14 1.14 9.09 3.41 34.09 0.00

Table C.25
Distribution of subjects’ choices (%) in payoff structure 1.6.

Target 1 2 3 4 5 6 7 8

Dobss 8.33 11.67 13.33 28.33 18.33 8.33 6.67 5.00
Maximin 3.33 0.00 41.67 50.00 1.67 3.33 0.00 0.00
Cobra 0.00 1.67 46.67 43.33 3.33 3.33 0.00 1.67
Brpt-E 26.67 1.67 10.00 25.00 20.00 10.00 5.00 1.67
Rpt-E 8.33 1.67 40.00 35.00 3.33 1.67 6.67 3.33
Brpt-L 5.00 13.33 15.00 26.67 13.33 3.33 6.67 16.67
Rpt-L 0.00 1.67 13.33 63.33 15.00 3.33 3.33 0.00
Brqr-76 3.33 0.00 45.00 43.33 3.33 3.33 1.67 0.00
Brqr-55 3.33 0.00 45.00 41.67 1.67 5.00 1.67 1.67
Brqrru 3.33 0.00 30.00 45.00 15.00 1.67 3.33 1.67

Table C.26
Distribution of subjects’ choices (%) in payoff structure 1.7.

Target 1 2 3 4 5 6 7 8

Dobss 6.10 10.98 19.51 23.17 19.51 12.20 1.22 7.32
Maximin 7.32 9.76 32.93 19.51 1.22 9.76 19.51 0.00
Cobra 2.44 8.54 45.12 24.39 3.66 6.10 8.54 1.22
Brpt-E 6.10 9.76 12.20 32.93 18.29 9.76 4.88 6.10
Rpt-E 6.10 12.20 39.02 26.83 0.00 1.22 8.54 6.10
Brpt-L 12.20 10.98 14.63 18.29 14.63 13.41 4.88 10.98
Rpt-L 17.07 1.22 21.95 23.17 0.00 21.95 14.63 0.00
Brqr-76 7.32 13.41 41.46 17.07 1.22 7.32 12.20 0.00
Brqr-55 6.10 13.41 37.80 28.05 1.22 6.10 7.32 0.00
Brqrru 4.88 12.20 29.27 23.17 4.88 18.29 3.66 3.66
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Table C.27
Distribution of subjects’ choices (%).

Target 1 2 3 4 5 6 7 8

(a) Payoff structure 2.1
Brqrru 72.94 10.59 0.00 2.36 3.53 9.41 1.18 0.00
Brqr-55 54.12 16.47 10.59 1.18 7.06 7.06 2.35 1.18
Brqr-76 58.82 9.41 11.76 3.53 5.88 8.24 2.35 0.00

(b) Payoff structure 2.2
Brqrru 2.35 3.53 0.00 84.71 1.18 0.00 3.53 4.71
Brqr-55 2.35 5.88 10.59 68.24 1.18 2.35 1.18 8.24
Brqr-76 2.35 5.88 16.47 57.65 3.53 7.06 2.35 4.71

(c) Payoff structure 2.3
Brqrru 0.00 4.71 1.18 2.35 0.00 67.06 15.29 9.41
Brqr-55 14.12 2.35 2.35 2.35 0.00 43.53 22.35 12.94
Brqr-76 14.12 2.35 0.00 1.18 1.18 48.24 16.47 16.47

(d) Payoff structure 2.4
Brqrru 49.41 9.41 8.24 2.35 4.71 5.88 15.29 4.71
Brqr-55 35.29 35.29 2.35 1.18 5.88 3.53 16.47 0.00
Brqr-76 41.18 29.41 4.71 0.00 7.06 1.18 15.29 1.18
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