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a b s t r a c t

The identification of seismic records in seismically active mines is examined by considering logistic
regression and neural network classification techniques. An efficient methodology is presented for applying
these approaches to the classification of seismic records. The proposed procedure is applied to mining
seismicity from two mines in Ontario, Canada, and compared based on an analysis of the receiver operating
characteristic curve as well as a number of performance metrics related to the contingency matrix. The
logistic and neural network models presented excellent performance for identifying blasts, seismic events
and reported events in the training and testing datasets for both mining seismicity catalogues. Operated
under their respective optimal decision threshold values, the logistic and neural network models, accuracy
was higher than 95% for classification of seismic records. In general, the logistic regression and neural
network methods had close overall classification accuracies. The ability of the models to reproduce the
frequency-magnitude distribution of the testing dataset was used as a signature of classification quality. The
logistic and neural network models reproduced the reference distribution in a satisfactory manner. The
advantages and limitations pertaining to the two classifiers are discussed.

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Microseismic monitoring is employed in many mining opera-
tions in Canada as a tool to identify potential ground control safety
hazards to workers. The full-waveform seismic systems employed
at these mines provide real-time seismic parameters of seismic
records. From these seismic parameters, it is possible to characterize
the rockmass response around mining excavations, particularly to
the blasting cycle which triggers most of the seismicity as after-
shocks. Occasionally large magnitude events are triggered, caused
by the interaction of mining and geological structures at depth.

Following large seismic events or blasts there is a short-term
increase in levels of seismicity that over time decays to back-
ground levels. One of the applications of the microseismic data is
to enhance workplace safety by restricting access to the affected
zones of the mine for sufficient time to allow this decay of
aftershock events. This is the re-entry protocol [1,2].

A key aspect of re-entry policies is the triggering of re-entry
incidents, i.e., when should a re-entry protocol be invoked? Based
on a survey on current re-entry practices at 18 seismically active
13 Published by Elsevier Ltd. All r
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mines, it was established that 90% of re-entry incidents are
triggered by blasting [3]. Therefore, it is necessary to accurately
identify the origin time and location of blasts. The microseismic
technologist at the mine has an idea when blasts are scheduled,
but exact times are not recorded in blast notices or daily blast logs.
It is up to the technologist to manually match blasts to the
recorded seismicity; therefore, automating this procedure is an
invaluable labour saving device [4].

Some of the guidelines used at the surveyed mines for invoking
a re-entry protocol after large magnitude events, measured in the
Nuttli magnitude scale (Mn), are:
1.
ights
Any seismic event with a Mn≥3.0, regardless of location and
whether or not there was damage to mine excavations.
2.
 Any seismic event with a Mn≥1.5 and affecting the main
accesses (e.g. ramp, footwall drifts), which could require work-
ers to be confined to underground refuge stations and/or could
require the evacuation of workers.
3.
 Any seismic event with a 3.04Mn≥1.5, located within 30m from
mine excavations and/or main infrastructure (e.g. cross-cuts, ramp,
refuge station, electrical sub-station, garage, crusher station).

Guidelines such as these, which are based on a correlation
between event magnitude and damage, require a history of seismi-
city and careful calibration. However, large magnitude events are not
that frequent in all mining operations in Ontario, and mines that are
reserved.
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just starting to experience seismicity and rockbursting are faced with
the difficulty of having to develop their own guidelines for invoking a
re-entry protocol without the benefit of significant local experience.
What is needed is an approach that enables the type of seismic
record (blast, microseismic event, trigger of a re-entry protocol) to be
classified based on the real-time information provided by the
microseismic monitoring system.

This paper examines the applicability of logistic regression and
neural network-based classifiers for the identification of blasts, micro-
seismic events and events that may trigger a re-entry protocol by
using multiple seismic parameters. This linkage implicitly assumes
that there is a direct correlation between the seismic parameters of an
individual event and the consequences as observed underground.
2. Information available from the full-waveform systems

The full-waveform systems commonly used in Ontario mines
provide automatic (on-line) calculation of event location coordi-
Table 1
Summary of the seismic parameters provided on-line by the full-waveform systems.

Term Description

Required parameters and variables A, B : Parameters based
R : Source-sensor dis
ppV : Peak particle velo
ρ : Density at the sou
c : P-wave velocity
β : S-wave velocity
Fc : Wave radiation co
K : Wave source mod
μ : Synamic shear m
vmax, amax : Maximum velocit

Local Magnitude Estimate of the energy release of an event based
frequency. It can be calculated using either uniaxuMag≡tMag≡AlogðR⋅ppVÞ þ B
uMag: average of the unclipped peak amplitudes
tMag: average of the unclipped data of the vecto
if no triaxial sensors

Squared spectral integrals SD2 and SV2 are integrals of the squared spectral d

SD2 ¼ 2
R∞
0 D2ðtÞdt

SV2 ¼ 2
R∞
0 V2ðtÞdt D2(t) and V2(t) are calculated by summing the squ

Corner frequency The frequency corresponding to the intersection o
amplitude spectra of P or S wavesf c ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SV2=SD2

p
Low-frequency spectral level Flat part of the displacement amplitude spectra p

Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4S3=2D2 S−1=2V2

q
Energy flux
J¼SV2
Seismic moment Measure of seismic event strength equivalent to

slip surface. Average of P- and S-wavesMo ¼ 4πρc3RΩ0
Fc

Moment magnitude
Mw ¼ 2

3logMo−6:0
Seismic energy Measure of the total energy contained in the P- a
Eo¼4πρcR2J
Source radius Equivalent circular surface over which slip is pre

ro ¼ Kβ
2πf c

Asperity radius Calculated on the S-wave only
ra ¼ 1:32β vmax

amax

Static stress drop Average difference between initial and final (shea
Δs¼ 7

16
Mo
r3o

Apparent stress Difference between the average loading stress an
sa ¼ μ Eo

Mo

Dynamic stress drop Estimate of the stress release associated with brea
Δsd ¼ 2:50ρRamax

Maximum displacement
Dmax ¼ 8:1R vmax

β

Calculated on the S-wave only

Peak velocity parameter Calculated on the S-wave only
PVP ¼ Rvmax

Peak acceleration parameter Calculated on the S-wave only
PAP ¼ ρRamax
nates (E, N, D) and the associated vectorial error sum (Δr), origin
date-time (t), number of sensors used in the location of the event
(Ns) and 13 seismic parameters: uniaxial magnitude (uMag), triaxial
magnitude (tMag)—not applicable if no triaxial sensors were used
to acquire the data set, seismic moment (Mo) and moment magni-
tude (Mw), seismic energy (Eo), S-wave to P-wave energy ratio (ES/
EP), source radius (ro), asperity radius (ra), static stress drop (Δs),
apparent stress (sa), dynamic stress drop (Δsd), maximum displace-
ment (Dmax), peak velocity parameter (PVP), and the peak accelera-
tion parameter (PAP). Table 1 presents a summary of the main
formulas and terms involved in the calculation of these seismic
parameters. uMag and tMag are estimates of the strength of an
event based on the maximum amplitude of a seismic wave at a
particular frequency. Mo, E, ES/EP, ro, Δs and sa are determined over
P-wave and/or S-wave windows using a time-domain methodology
[5]. Δsd, Dmax, PVP and PAP are based on velocity and acceleration
waveforms accounting for source-receiver distance.

Generally, the seismic records are classified by mine personnel
mainly into three categories: microseismic events (e), blasts (b),
on local conditions
tance
city
rce

efficient
el parameter
odulus
y and acceleration recorded from the root-mean-square trace
on measurements of the maximum amplitude of a seismic wave at a particular
ial or triaxial sensors:
of uniaxial sensors
rial amplitudes for each component of the triaxial sensors. -9.99 default value

isplacement and velocity determined over P-wave and S-wave windows

ared double- and single-integrated P- and S-wave train acceleration components

f the low frequency spectral level and high-frequency decay in the displacement

rior to the corner frequency

the amount of work done to produce the observed displacement over the entire

nd S-waves. The sum of the P and S contributions

dicted to occur during a seismic event. Average of P- and S-waves

r) stress levels over a fault plane associated with slip on that surface

d the average resisting stress

king through the strongest part of the source area. Calculated on the S-wave only
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and reportable seismicity (r). The last category may include:
Ontario's reportable occurrences (rockburst damage greater than
5 t), events that cause visible damage to the excavations, and
events that are felt on surface or underground.
Table 2
Contingency matrix. (a) Two-class prediction problem. (b) Three-class prediction
problem.

Actual value

P N

(a) Prediction outcome P′ TP FP
N′ FN TN

Actual value

A B C

(b) Prediction outcome A AA AB AC
B BA BB BC
C CA CB CC
3. Modeling approach

The approach used here estimates the probability of having a
blast/event as a function of microseismic parameters through the
use of logistic regression and artificial neural networks. This
approach is also adapted to include the probability of having a
reportable incident. The models are described below.

3.1. Logistic regression

Logistic regression (LR) is a statistical modeling technique in
which the probability of a category is related to a set of explana-
tory variables [6]. Suppose that the dependent variables have M
categories. One value (typically the value with the highest fre-
quency) of the dependent variable is designated as the reference
category. The probability of membership in other categories is
compared to the probability of membership in the reference
category [7]. For dependent variables with M categories, this
requires the calculation of M−1 equations, one for each category
relative to the reference category, to describe the relationship
between the dependent variable and the independent variables.
Assuming the first category as the reference, then for each
category (m¼2, …, M) the logistic model is defined by the
following equations:

zm ¼ amo þ ∑
Nx

i ¼ 1
amixi; m≥2 ð1Þ

PðzmÞ ¼ ezm

1þ ∑
M

i ¼ 2
ezi

; m≥2 ð2Þ

PðzmÞ ¼ 1

1þ ∑
M

i ¼ 2
ezi

; m¼ 1 ð3Þ

where zm is a measure of the contribution of the explanatory
variables xi (i¼1,..,Nx) in the category m, ami are the regression
coefficients which are obtained by maximum likelihood in con-
junction with their standard errors Δami, and P(zm) is the catego-
rical response of variable m that represents the probability of a
particular outcome. In this particular application xi are the micro-
seismic parameters of interest, and P(zm) is the probability of
having a blast, microseismic, event and reportable seismicity.

3.2. Artificial neural networks

Artificial neural networks (ANN) is a mathematical model made
up of large numbers of simple, highly interconnected processing
elements (called neurons) to generate a solution to a problem.
An advantage of a neural net is that it can model a variety of
response surfaces given enough hidden nodes. There are several
types and architectures of neural networks [8]. In this paper, a
multi-layer perceptron network model is used. This type of net-
work has an input layer, one hidden layer, and an output layer. The
net input to a neuron is linear while the activation function is
given by a logistic S-shaped function:

SðxÞ ¼ 1
1þ e−x

ð4Þ
Therefore, given Nx input variables xi, the activation function for
the hidden node L, is defined by

HL ¼ S bLo þ ∑
Nx

i ¼ 1
bLixi

 !
ð5Þ

where bLi is the weight from input variable i to the hidden node L.
For a problemwith M categories and using the first category as the
reference, the contribution zm from the NH hidden nodes on
category m is given by

zm ¼ cmo þ ∑
NH

L ¼ 1
cmLHL; m≥2 ð6Þ

where cmL is the weight from hidden node L to the output categorym.
The weights bLi and cmL are estimated by using standard back-
propagation techniques. The probabilities for each category are
given by replacing Eq. (6) in Eqs. (2) and (3).

3.3. Classifier performance

The performance of a classifier is assessed by comparing the
prediction outcomes of the model to known values. For a two-class
prediction problem, there are four possible situations [9]. If the
actual value is positive (P) and it is classified as positive (P′), it is
counted as a true positive (TP); if it is classified as negative (N′) it is
counted as a false negative (FN). If the actual value is negative (N)
and it is classified as negative, it is counted as a true negative (TN);
if it is classified as positive, it is counted as a false positive (FP). The
information is displayed in a two-by-two contingency matrix
(Table 2a). To evaluate the contingency matrix it is necessary to
set a decision threshold value. For identifying blasts with LR and
ANN there is only one, which corresponds with the probability of
having a blast Pb. Once a decision threshold is selected the
contingency matrix forms the basis for several performance
metrics. Three of them are the true positive rate, TPR, false positive
rate, FPR, and accuracy, ACC:

TPR¼ TP
TP þ FN

; FPR¼ FP
FP þ TN

; ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð7Þ
For a perfect classifier TPR¼ACC¼1, and FPR¼0. The plot of TPR

as a function of FPR for a range of decision thresholds is known as
a receiver operating characteristic (ROC) curve. The area under the
ROC curve, abbreviated AUC, is an absolute measure of the
performance of the model [9,10] and takes values between
0.5 and 1.0. An AUC of greater than 0.9 is considered excellent,
0.8 to 0.9 is considered good, 0.7 to 0.8 is considered fair, and
below 0.7 is considered poor.

Considering that the performance of each model depends on
the value of the decision threshold, the selection of the optimal
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threshold for each model is guided by locating the maximum
values of the following two skill scores on the corresponding ROC
curve:

HSS¼ 2ðTP � TN−FP � FNÞ
ðTP þ FNÞðFN þ TNÞ þ ðTP þ FPÞðFP þ TNÞ ; PSS¼ TPR−FPR

ð8Þ
where HSS and PSS are the Heidke's [11] and Peirce's [12] skill
scores respectively. By examining the contingency matrix and
performance metrics of these two skill scores on the ROC curve
an optimal decision threshold that would optimize the classifica-
tion accuracy of the model can be determined.

In the case of a three-class prediction problem the contingency
matrix is a three-by-three matrix (Table 2b). To evaluate the AUC
in these cases the approach considered here is to first establish an
ROC curve for the class with the lowest frequency (class A)
considering the other classes as negatives. The optimal decision
threshold for identifying class A is guided by maximizing Eq. (8).
Once this threshold is set and the seismic records corresponding to
AA, AB and AC have been classified by the model, a second ROC
curve is established for the class with the second lowest frequency
(class B) considering the other classes as negatives. The selection
of the decision threshold for class B is also guided by maximizing
Eq. (8).
4. Data and methods

4.1. Sources of data

Seismic records from two mining sites, namely Nickel Rim
South and Kidd Creek, are used throughout this paper. In the
following, a brief overview of each site is provided.

4.1.1. Nickel Rim South
The Nickel Rim South orebody is a nickel–copper deposit,

located in Sudbury, Ontario. The top of the orebody is roughly
1200 m below surface and extends down to 1700 m. Transverse
blasthole with pillars is the principal mining method. The under-
ground microseismic monitoring system consists of 25 uniaxial
accelerometers (Fig. 1a). The seismic database (from 06/01/2009 to
11/30/2009) contains a total of 38,301 seismic records with all the
seismic parameters evaluated, from which 25,644 are labelled as
events and 12,657 as blasts. Of these seismic records 31% have
been manually labelled by mine personnel. Three main daily
blasting shifts are observed from the diurnal chart in Fig. 1b,
between hours 6–7, 14–15 and 22–23, each of which triggers an
Fig. 1. Isometric view of the orebody, excavations and microseismic monitorin
increase in seismicity that decays over a two to three hour time
period.

4.1.2. Kidd Creek
The Kidd mine orebody is a large-scale copper-zinc deposit,

located near Timmins, Ontario. Blasthole mining with delayed
paste backfill is used to extract the ore underground. The study
region corresponds to the complete Mine D, covering a volume of
approximately 300 m�200 m�500 m, between 2000 and
2700 m below surface. The underground microseismic monitoring
system consists of 15 uniaxial and 4 triaxial accelerometers
(Fig. 2a). The seismic database (from 06/01/2005 to 10/31/2008)
contains a total of 18,231 seismic records with all the seismic
parameters evaluated, from which 13,542 are labelled as micro-
seismic events, 4596 as blasts and 93 as reported. Of these seismic
records 98% have been manually labelled by mine personnel. Two
main daily blasting shifts are observed from the diurnal chart in
Fig. 2b, between hours 3–7 and 15–19, each of which triggers an
increase in seismicity that decays over a three to four hour time
period. The reported incidents are distributed throughout the day
with a higher frequency of cases occurring at hours 3 and 4.

4.2. Model building

Data from the seismicity catalogues is used to train and test the
logistic and the neural network models. In the logistic regression
the “training data” is referred to the portion of the database used to
calibrate the model and derive the regression equations, respec-
tively. Assuming that microseismic events, blasts, and reportable
seismicity are consistently time labelled, the databases are divided
into two groups (Table 3): (1) training dataset (first 70% of the
seismic records) used to train the models, and (2) testing dataset
(last 30% of the seismic records) used to examine the prediction
performance of the trained model. In the following, the steps used
to train the models are described.

4.2.1. Logistic regression
Initially, the logistic model is calibrated using the location error,

and the 13 seismic parameters provided by the full-waveform
system (Section 2). Parameters that do not contribute significantly
(at a 5% level) to the model fit are removed from the analysis. This
is accomplished by examining the likelihood-ratio tests calculated
as twice the difference of the log-likelihoods between the full
model and the model constrained by the hypothesis to be tested
(the model without the parameter). With this procedure the
microseismic parameters that best describe the classification of
blasts, microseismic events and reported incidents are identified
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Fig. 2. Isometric view of the orebody and microseismic monitoring system (frame a) and diurnal chart (frame b) at Kidd Creek Mine.

Table 3
Data used for training and testing the models. (a) Nickel Rim South. (b) Kidd Creek.

(a) Nickel Rim South (b) Kidd Creek

Training Testing Training Testing

Monitoring period, tR (days) 144 39 739 509
Blasts 9,748 2,909 2,918 1678
Events 17,063 8,581 9,799 3743
Reported – – 45 48
Total seismic records 26,811 11,490 12,762 5469
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for the logistic model (Table 4). At both sites Δr, uMag, Mw, ES/EP,
ro, ra, Δs, sa and PAP were found to be significant. In addition, PVP
was determined to be significant at the Kidd Creek Mine
(Table 4b).
4.2.2. Artificial neural networks
Using the significant microseismic parameters identified with

the logistic model a neural network is trained to the data. A critical
issue is over fit to the data so that the neural network no longer
predicts future data well. To avoid overfitting, the neural network
is trained using a holdback sample to crossvalidate the estimates.
In this method, a sample of the observations is withheld (the
holdback sample) and the remaining observations are used to train
the neural network. The holdback sample is randomly selected
and represents 30% of the dataset. For a given number of hidden
nodes the neural network is fit and a goodness of fit is computed
for the training dataset (R2) and for the holdback sample (R2

CV ).
This is shown in Fig. 3 for the Nickel Rim South and Kidd Creek
training datasets where R2 and R2

CV are presented as a function of
the number of hidden nodes. In both cases, the R2 values increase
monotonically as the number of hidden nodes in the network
increases, while R2

CV initially increases but then begins to decrease,
indicating overfitting [13]. The number of hidden nodes is selected
at the point where the maximum R2

CV is attained. Six hidden nodes
are sufficient for modeling the datasets of both the Nickel Rim
South and the Kidd Creek mines. Once the number of hidden
nodes is selected the neural network is trained for the entire
dataset. It is interesting to note that the determined number of
hidden nodes is almost coincident with the rule of thumb given by
NeuralWorks [14], which recommends 2/3 (numberofinputs+out-
puts) as the number of hidden units when using only one hidden
layer. For both the Nickel Rim South and Kidd Creek datasets this
recommendation gives seven hidden nodes.
5. Results

5.1. Nickel Rim South

In the case of the Nickel Rim South dataset the main objective
of the models is to properly identify blasts throughout the mine.
The ROC curves for the training dataset for the two models
considered are presented in Fig. 4. For the logistic model the
optimal probability levels for identifying blasts Pb estimated by
maximizing the Heidke and Peirce skill scores are 0.56 and 0.47
respectively (Fig. 4a). Both of them are located in the upper left
corner of the ROC curve. The performance metrics are extremely
similar for both skill scores. Taking the average of these, a Pb of
0.52 was set as optimal for this model. For the neural network
(Fig. 4b) the optimal Pb estimated by maximizing the Heidke and
Peirce skill scores are 0.37 and 0.47 respectively. A Pb of 0.42 was
considered optimal for this model.

Table 5 summarizes the contingency matrices and performance
metrics for the models with optimized decision thresholds for
both the training and testing datasets. Inspection of Table 5
provides the following:
1.
 Based on the AUC, the optimized logistic and neural network
models present an excellent discrimination of blasts within the
seismic records for both the training and testing datasets.
2.
 The optimized logistic and neural network models have similar
performance.
3.
 When comparing the results of the models between the
training and testing datasets, it can be concluded that the
logistic and neural network models generalize extremely well
as similar performance statistics are obtained for both datasets.
There is inclusively a slight increase in the performance of
these models for the testing dataset.
4.
 There are a few seismic events misclassified as blast (low FP) by
the logistic and neural network models for both the training
and testing dataset.
5.
 The number of real blasts misclassified as seismic events (FN)
are similar for the two models for the testing dataset.

An important issue is the time and magnitude distribution of
the misclassified seismic records by the models for the testing



Table 4
Calibration of the logistic model using the training dataset. (a) Nickel Rim South. (b) Kidd Creek. Removed parameters at each step are indicated in bold.

Δr uMag tMag Mw log Eo log ES/EP ro ra log Δs log sa log Δsd log Dmax log PVP log PAP

(a)

min. 0.72 −4.11 N/A −2.17 −1.90 −1.32 1.26 0.22 4.06 2.55 5.09 −5.49 −3.30 3.99
max. 999.90 0.87 N/A 0.57 6.17 3.00 6.14 28.18 7.99 6.96 7.81 −1.51 0.69 6.71
average 9.09 −1.73 N/A −0.94 1.83 0.57 3.51 4.06 5.99 4.49 6.47 −3.60 −1.40 5.37
S.D. 26.25 1.12 N/A 0.68 1.74 0.31 0.72 4.30 0.78 0.80 0.64 1.10 1.10 0.64

1
Prob4Chi-Sq 0.0276 0.0000 N/A 0.0000 0.0753 0.0000 0.0000 0.0000 0.0000 0.0000 0.3672 0.4438 0.4438 0.3669
Significant? Y Y N/A Y N Y Y Y Y Y N N N N
2
Prob4Chi-Sq 0.0271 0.0000 N/A 0.0000 0.0754 0.0000 0.0000 0.0000 0.0000 0.0000 0.3633 – 0.0423 0.3630
Significant? Y Y N/A Y N Y Y Y Y Y N – Y N

3
Prob4Chi-Sq 0.0267 0.0000 N/A 0.0000 0.0748 0.0000 0.0000 0.0000 0.0000 0.0000 – – 0.0430 0.0000
Significant? Y Y N/A Y N Y Y Y Y Y – – Y Y

4
Prob4Chi-Sq 0.0252 0.0000 N/A 0.0000 – 0.0000 0.0000 0.0000 0.0002 0.0000 – – 0.2211 0.0000
Significant? Y Y N/A Y – Y Y Y Y Y – – N Y

5
Prob4Chi-Sq 0.0318 0.0000 N/A 0.0000 – 0.0000 0.0000 0.0000 0.0001 0.0000 – – – 0.0000
Significant? Y Y N/A Y – Y Y Y Y Y – – – Y

(b)
min. 1.73 −5.25 −5.40 −2.46 −2.68 −1.30 0.66 0.17 3.52 2.10 4.05 −6.44 −4.21 2.95
max. 873.47 1.98 1.03 0.61 5.57 3.00 6.77 4.31 7.86 6.55 8.18 −2.15 0.08 7.08
Average 15.23 −1.45 −3.09 −1.47 0.24 0.71 3.11 0.71 5.15 3.96 5.78 −4.92 −2.69 4.67
S.D. 21.67 0.74 1.12 0.53 1.67 0.34 0.89 0.41 0.81 0.84 0.76 0.84 0.84 0.76

1
Prob4Chi-Sq 0.0083 0.0000 0.5403 0.0008 0.3111 0.0000 0.0000 0.0000 0.0000 0.0000 0.2007 0.4237 0.4273 0.1594
Significant? Y Y N Y N Y Y Y Y Y N N N N

2
Prob4Chi-Sq 0.0075 0.0000 – 0.0011 0.2695 0.0000 0.0000 0.0000 0.0000 0.0000 0.2068 0.4333 0.4300 0.1681
Significant? Y Y – Y N Y Y Y Y Y N N N N

3
Prob4Chi-Sq 0.0061 0.0000 – 0.0010 0.2733 0.0000 0.0000 0.0000 0.0000 0.0000 0.2193 – 0.0024 0.1786
Significant? Y Y – Y N Y Y Y Y Y N – Y N

4
Prob4Chi-Sq 0.0061 0.0000 – 0.0001 – 0.0000 0.0000 0.0000 0.0000 0.0000 0.2194 – 0.0005 0.1807
Significant? Y Y – Y – Y Y Y Y Y N – Y N

5
Prob4Chi-Sq 0.0055 0.0000 – 0.0001 – 0.0000 0.0000 0.0000 0.0000 0.0000 – – 0.0005 0.0101
Significant? Y Y – Y – Y Y Y Y Y – – Y Y
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CV as a function of the number of hidden nodes for the training dataset. (a) Nickel Rim South. (b) Kidd Creek.
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dataset. This is studied by considering the diurnal chart of FP
and FN (Fig. 5a1–b1), and the cumulative frequency-magnitude
distributions of TN, FN and FP Fig. 5a2–b2). In Fig. 5a1–b1
approximately half of FP and almost all of the FN occurrences are
associated with the process of blasting (between hours 6–7, 14–15
and 22–23). In terms of the percentages of the total occurrences;
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scores are indicated by circles in the ROC curves.

Table 5
Contingency matrices and performing metrics for the optimized, logistic regression
(LR) and artificial neural network (ANN) models considering blast as positives for
the training (frame a), and testing (frame b) datasets for the seismicity recorded at
the Nickel Rim South Mine.

Model Contingency matrix Performance metrics

TP TN FP FN TPR FPR ACC AUC

(a) Training dataset (26,811 seismic records)
LR 9252 16,761 302 496 0.949 0.018 0.970 0.977
ANN 9292 16,814 249 456 0.953 0.015 0.974 0.981

(b) Testing dataset (11,490 seismic records)
LR 2759 8,478 103 150 0.948 0.012 0.978 0.983
ANN 2782 8,506 75 127 0.956 0.009 0.982 0.982
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39% and 41% of FP's, while 97% and 96% of FN's occur during these
hours for the logistic and neural network models respectively.

The end product provided by the trained models for studying
mining seismicity is the seismic records classified as seismic
events. This corresponds to TN+FN. The testing dataset provides
a unique opportunity to understand the shape of the cumulative
frequency–magnitude distribution for TN+FN provided by the
trained models by examining separately the magnitude distribu-
tion of TN, FN and FP in connection with their time distributions
(Fig. 5). The magnitude range of real events labelled as blasts (FP)
by the logistic and neural network models are concentrated in the
largest events measured at the mine (Fig. 5a2–b2). It can be
observed that there is a lack of seismic records labelled as events
for magnitude larger than approximately −1.0 in the frequency–
magnitude distribution of TN's. A different situation appears for
the group of real blasts labelled as events by the trained models
(FN). These occurrences correspond to seismic records with
medium measured magnitude events. By adding TN+FN the total
seismic records classified as events by the trained models is
obtained. It can be observed that the addition of FN to TN does
not affect significantly the distribution of TN (Fig. 5a2–b2).

Even though the final frequency–magnitude distribution
(TN+FN) obtained by the logistic and neural network model seems
to misclassify large magnitude real events as blasts it has to be
considered in this case that the reference database used to train
the model is far from ideal. Further analysis revealed that from the
103 and 75 FN's detected by the logistic and neural network
models, only 36 and 18 were manually labelled by mine personnel
respectively. In addition, the part that was labelled automatically
by the system was the one responsible for the discrepancies
between the classification provided by the logistic and neural
network models with the reference database in the large magni-
tude range. It can be concluded that the trained logistic and neural
network models were able to learn the identification of blasts in
an efficient manner to the point that possible misclassifications in
the reference database were detected.

5.2. Kidd Creek

In the Kidd Creek dataset a third category is available and
introduced into the analysis. The actual objective of the logistic
and neural network models is to identify both reported occur-
rences and blasts throughout the mine. The approach is to select a
threshold Pr that maximizes the identification of reported inci-
dents (TP) which also gives an acceptable level of the mean time
interval between false alarms (FP):

tFP ¼ tR=FP ð9Þ
where tR is the monitoring period in days for the calibrating
dataset (Table 3b). The resulting ROC curves, related metrics and
tFP for different thresholds for the training dataset are presented in
Fig. 6. In both models the threshold Pr that maximizes the PSS
presented a large number of FP, approximately one per day, which
is unreliable. On the other hand, the thresholds Pr that maximizes
the HSS presents a low and medium TPR for the logistic (Fig. 6a)
and neural network models, respectively (Fig. 6b). In between the
two metrics (PSS and HSS) there is a range of suitable thresholds as
shown in Fig. 6. In the case of the logistic model a Pr of 0.05 was
selected as it produces a TPR higher than 0.8 and tFP≈5 days. In the
case of the neural network model a Pr of 0.03 is selected as this
threshold produces the same number of FP as the threshold
selected for the logistic model. It can also be observed from
Fig. 6 that both models present an excellent discrimination of
reported incidents within the seismic records (AUC40.9).

Once the Pr thresholds have been set, the models are used to
classify the testing dataset (Table 6). As a reference, the con-
tingency matrix and performance statistics for the calibrating
dataset have been included in Table 6. Both models generalize
well as similar performance statistics are obtained for the training
and testing datasets. However, the logistic model appears to
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Fig. 5. Diurnal charts (frames 1) and cumulative frequency–magnitude distributions (frames 2) for the testing dataset at the Nickel Rim South Mine. (a) Logistic regression.
(b) Neural network.
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generalize more effectively than the neural network model (higher
TPR and AUC, and lower FPR for the testing dataset).

The timing of false alarms in Table 6b (FP) deserves further
analysis. The time relative to blasts of these FP is investigated with
the logistic model for the testing dataset. The cumulative ascending
distribution of the elapsed time between the false positives and the
last seismic record labelled as blast, ΔtFP-b, is presented in Fig. 7. This
figure indicates that 65% of the FP's correspond to seismic records
labelled as blasts (ΔtFP-b¼0). An additional 15% of the FP's are events
triggered within 1 h after the last event labelled blast (ΔtFP-b¼1).
The implication is that 80% of the FP's may be attributed to the
process of blasting.



Table 6
Contingency matrices and performing metrics for the optimized logistic regression
(LR) and artificial neural network (ANN) models considering reported incidents as
positives for the training (frame a), and testing (frame b) datasets for the seismicity
recorded at the Kidd Creek Mine.

Model Contingency matrix Performance metrics

TP TN FP FN TPR FPR ACC AUC tFP (days)

(a) Training dataset (12,762 seismic records)
LR 37 12,574 143 8 0.822 0.011 0.988 0.983 5.2
ANN 39 12,574 143 6 0.867 0.011 0.988 0.995 5.2

(b) Testing dataset (5469 seismic records)
LR 35 5,362 59 13 0.729 0.011 0.987 0.987 8.6
ANN 33 5,330 91 15 0.688 0.017 0.981 0.974 5.6
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Next, the identification of blasts is addressed. In the case of the
logistic and neural network models a Pb of 0.39 and 0.36 were
considered as optimal respectively. The performance of the logistic
and neural network models are compared using the training
and testing datasets (Table 7). Inspection of Table 7 shows the
following:
Fig. 7. Cumulative ascending distribution of the time between a FP and the last
seismic record labelled as blast for the testing dataset at the Kidd Creek Mine.
1.
Table 7
The logistic and neural network models generalize extremely
well and present an excellent discrimination of blasts within
the seismic records (AUC40.9) for both the training and testing
datasets.
Contingency matrices and performing metrics for the optimized logistic regression
2.

(LR) and artificial neural network (ANN) models considering blast as positives for
There is a decrease in the performance of the neural network
model for the testing dataset (lower AUC).
the training (frame a), and testing (frame b) datasets for the seismicity recorded at
3.

the Kidd Creek Mine.

Model Contingency matrix Performance metrics

TP TN FP FN TPR FPR ACC AUC

(a) Training dataset (12,762 seismic records)
LR 2684 9625 219 234 0.920 0.022 0.965 0.954
ANN 2752 9654 190 166 0.943 0.019 0.972 0.964

(b) Testing dataset (5,469 seismic records)
The logistic and neural network models have similar perfor-
mance for the testing dataset.

The cumulative frequency–magnitude distribution of the seis-
mic records labelled and classified as events by the mine person-
nel and the models respectively are presented in Fig. 8. This
confirms quantitatively that the classification of seismic records
provided by these models are able to reproduce in a satisfactory
manner the manual labelling of mine personnel at this mine.
LR 1537 3685 106 141 0.916 0.028 0.955 0.951
ANN 1,539 3665 126 139 0.917 0.033 0.952 0.940
6. Discussion

The applicability of logistic regression and artificial neural
networks for classifying seismic records was investigated. These
models presented a superior ability to generalize for new datasets.
A remarkable aspect of these models is that they make it possible
to include a third category (reported incidents) into the classifica-
tion problem. This result proved to be useful for providing guide-
lines of when a re-entry protocol should be invoked. Several main
advantages of the approach were identified:
�
 Can be considered as a real time classification process.

�
 Misclassifications are minimized, reproducing in a satisfactory

manner the manual labelling of mine personnel at the mine sites
studied.
�
 The basis of the models is that blast, events, and reported
incidents have different mechanisms represented by their
seismic parameters.
�
 The probability of having a reportable incident is the first
component of any formal risk assessment.
�
 For mines without a large history of seismic records these
models will enable them to develop their own in-house
classification system. Considering that the calibrated models
reflect the blasting practices at the mines we recommend a
minimum time period of three months of seismic records for
calibrating the models.
There are, however, two possible limitations:
�
 It is necessary to have seismic records consistently-time-
labelled to calibrate the model, which is currently not done at
all the mines.
�
 The microseismic monitoring system has to be able to evaluate
and report the seismic parameters consistently in time.
7. Conclusions

In this paper, approaches to develop classifiers for seismicity
are evaluated and discussed. The method involves the use of
logistic regression and neural network techniques, making it
possible to incorporate a third class (reported incidents) into the
analysis for re-entry protocol development. Logistic regression and
artificial neural networks has proved to be an efficient and reliable
tool for the classification of microseismic records. Operated under
their respective optimal decision threshold values, the logistic and
neural network models, accuracies were higher than 95%. The
predictive ability of the artificial neural network was found to be
comparable to that of the logistic regression for both seismic
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datasets. However, when a third class was included into the
analysis the logistic model generalized better than the neural
network model. Additional studies using other mining seismicity
catalogues in different mining environments may further clarify
the differences between logistic and neural network models for
classifying seismic records. The fact that logistic regression can be
developed quickly without overfitting the data makes it an
efficient classifier that can be easily retrained as additional data
becomes available.

The successful predictions of the logistic and neural network
models invite further refinement of these models in the identifica-
tion of blasts and reported incidents. Other parameters can be
introduced in the algorithm, such as: distance from mining
excavations and to the microseismic array, time relative to the
last blast, and triggering of the strong ground motion system.
Other types of neural network architectures and classification
algorithms may be tested as well.
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