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a b s t r a c t

Traditional model updating methods make use of modal information as natural frequencies

and mode shapes. Natural frequencies can be accurately identified, but this is not the case

for mode shapes. Mode shapes are usually accurate to within 10% at best, which can reduce

the accuracy of the updated model. To solve this problem, some researchers have proposed

easier and more accurately than mode shapes. In addition, antiresonances provide the same

information as mode shapes and natural frequencies together. This article presents a new

methodology to identify antiresonant frequencies from transmissibility measurements. A

transmissibility function represents the relation in the frequency domain of the measured

response of two points in the structure. Hence, it does not involve the measurement of

excitation forces. These antiresonances are used to update the numerical models of two

experimental structures: An 8-dof mass–spring system, and an exhaust system of a car. In

both cases, the algorithm is tested first to update the numerical model of the structure, and

second, to assess experimental damage.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Model updating methods correlate a numerical model of a structure with its experimental data to improve the
numerical model. In general, the numerical model is derived from finite element analysis (FEA) and the measurements are
the vibration characteristics. The algorithm updates a set of parameters from the numerical model to obtain the minimum
difference between the numerical and experimental data. Building an accurate numerical model, defining an appropriate
parameterization, setting up the objective function and using a robust optimization algorithm are crucial factors in model
updating.

One of the main challenges in model updating is the selection of an appropriate measure of the system response. This
measure can be constructed in the time, frequency or modal domain. The last two are the most largely used. Traditional
model updating methods make use of modal information as natural frequencies and mode shapes. Natural frequencies can
be accurately identified, but this is not the case for mode shapes. Mode shapes are usually accurate to within 10% at best,
which can reduce the accuracy of the updated model.

The idea of using directly the frequency response functions (FRFs) has attracted many researchers. Among all
the dynamic responses, the FRF is one of the easiest to obtain in real-time, as the in-situ measurement is straightforward.
. All rights reserved.
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The advantage is that no modal extraction is necessary, thus contamination of the data with modal extraction errors is
avoided. However, complex FRF data with noise can make the convergence process very slow and often numerically
unstable as was found by Imregun et al. [1,2]. Furthermore, the success of the method is highly dependent on the selection
of the frequency points. Lammens [3] addresses how a poor selection of the frequency points can lead to an unstable
updating process and inaccurate results.

Frequency response functions have the disadvantage that they cannot be identified from output only modal analysis,
thus the measurement of the excitation force is always required. For structures in real conditions, it often becomes very
difficult to measure the excitation force. A critical issue in model updating is to reduce the dependence upon measurable
excitation forces. Devriendt and Guillaume [4] presented an algorithm to identify modal parameters using transmissibility
functions as primary data. Transmissibility functions relate the responses at two sets of coordinates. In consequence, it
does not involve the measurement of excitation forces. The only condition is that the location of the excitation force must
be known. The authors were able to correctly identify the system poles using transmissibility data. The proposed
methodology has the advantage that the input force does not need to be white noise as required in classical operational
modal analysis. This algorithm was later extended by Devriendt et al. [5] to identify also mode shapes using
transmissibility measurements. Steenackers et al. [6] propose to use transmissibility measurements instead of frequency
response functions in model updating. The researchers updated the finite element model of a mobile substation support
structure using driving point transmissibility poles. Driving point transmissibility poles correspond to the resonances of
the structure when the excitation degree of freedom is constrained. This is equivalent to the antiresonant frequencies of
the driving point frequency response function. The authors conclude that the finite element model updated with
transmissibility information is equivalent to the model updated with FRFs or operational modes. Hence, transmissibility
functions are a good alternative in model updating when the excitation force is not measured. Maia et al. [7] presented a
method for computing the transmissibility matrix from responses only. They showed that transmissibility functions are
sensitive to damage, making them a possible approach for damage assessment. According to Johnson and Adams [8], since
transmissibility depends only on the zeros (antiresonant frequencies) of the system, they are more sensitive to localize
changes than methods using the system�s poles (resonant frequencies). The authors successfully implemented an algorithm
to localize damage using the changes on transmissibility functions. Although the use of transmissibility functions is recent,
they seem to be quite promising in diverse fields as output-only modal analysis, model updating and damage assessment.

Recently, greatly attention has been given to the possible use of antiresonant frequencies in structural model updating.
Antiresonances are an attractive alternative because they can be determined easier and with less error than mode shapes.
Mottershead [9] showed that antiresonances sensitivities are linear combination of eigenvalues and mode shapes
sensitivities. Hence, antiresonances are an alternative to natural frequencies and mode shapes since they provide the
same information. As natural frequencies, antiresonances are located along the frequency axis and can be estimated from
experimental FRFs more accurately than mode shapes. In addition, antiresonances can be identified from operational data
[6,10]. Antiresonances are also very sensitive to small structural changes, which makes them good parameters for model
updating. Antiresonances can be derived from point FRFs, where the response coordinate is the same as the excitation
coordinate; or from transfer FRFs, where the response coordinate differs from the excitation coordinate. Point FRFs are
preferred because matching problems arise when antiresonances from transfer FRFs are used. Moreover, small structural
changes can modify significantly the distribution of the transfer antiresonances [11]. On the other hand, the procedure to
obtain point FRFs differs from common modal testing, i.e. the excitation degree of freedom (dof) is moved together with
the response dof. This may become not practical or too expensive. D’Ambrogio and Fregolent [11] updated the finite
element model of a frame structure using resonant and antiresonant frequencies. With antiresonances from point FRFs the
method is robust and leads to good results. In contrast, with transfer antiresonances the method is very unstable. Only
with a careful selection of the updating parameter and a good match between experimental and numerical antiresonances
they could reach results. Transfer antiresonances are used by Jones and Turcotte [12] to update a six meter flexible truss
structure. The correctness of the updated model is studied by using it to detect damage. D’Ambrogio and Fregolent [13]
updated the GARTEUR structure using an antiresonance-based method. The unmeasured point FRFs are synthesized
through a truncated modal expansion. In a later work [14], they propose the use of zeros from a truncated expansion of the
identified modes; they refer to these zeros as ‘‘virtual antiresonances’’. Results are compared with an updating method
using MAC and natural frequencies. The updated models using either true or virtual antiresonances were more accurate
than with MAC. Nam et al. [15] study the improvement in the performance of a parameter estimation algorithm by adding
additional spectral information. The basic spectral information originates from the natural frequencies and the additional
information from the antiresonances and static compliance dominant frequencies. Antiresonances are obtained from point
and transfer FRFs. The authors evaluated the method with a numerical spring–mass system. They conclude that the
accuracy of the algorithm can be improved with the use of additional spectral information as antiresonances and
compliance dominant frequencies. Meruane and Heylen [16] show that antiresonances are a good alternative to mode
shapes in model based damage assessment, but further research is needed in the identification and matching of
experimental and numerical antiresonances. The use of antiresonances is still under development and the application of
antiresonances to structural damage detection has not been fully investigated, mainly because the inverse optimization
problem using antiresonances is very challenging and robust global optimization algorithms are needed. Nevertheless,
Meruane and Heylen [16] demonstrated that Parallel Genetic Algorithms are robust enough to handle the difficult
optimization problem of model updating using transfer antiresonances.



V. Meruane / Journal of Sound and Vibration 332 (2013) 807–820 809
The present study proposes to identify antiresonance frequencies from the transmissibility functions. Antiresonance
frequencies correspond to the dips in FRFs, and consequently to the dips and peaks in transmissibility functions. Hence, it
is possible to identify antiresonance frequencies using transmissibility information. The main advantage of using
transmissibility functions and not frequency response functions is that in the first case it is not necessary to measure
the excitation force, which can be very challenging for structures in service. Nevertheless, the proposed approach has an
important restriction in its application: there must be a single excitation force and its location must be known.

The problem of identifying antiresonances has never been tacked systematically. There are many algorithms available
to identify resonance frequencies and mode shapes, but there is no validated algorithm to identify antiresonance
frequencies. This study develops an algorithm capable to automatically identify antiresonance frequencies from
transmissibility functions. This algorithm uses the rational fraction polynomials methodology proposed by Richardson
and Formenti [17].

The model updating algorithm uses the optimization algorithm presented by Meruane and Heylen [16]. The objective
function correlates antiresonant frequencies, and a Parallel Genetic Algorithm handles the inverse problem. The algorithm
is evaluated with two experimental structures: An 8-dof mass–spring system, and an exhaust system of a car. In both
cases, the algorithm is tested first to update the numerical model of the structure, and second, to assess experimental
damage.

2. Transmissibility functions

Transmissibility functions are defined as the ratio in the frequency domain between two measured outputs:

Tk
ij oð Þ ¼

XikðoÞ
XjkðoÞ

(1)

where Xik(o) and Xjk(o) are the output responses at degrees of freedom (dofs) i and j, due to an input force at dof k. In the
case of a single force, the transmissibility functions only depend on the location of the force but not on the amplitude.
Hence, the estimation of transmissibility functions does not involve the measurement of the excitation force. Frequency
response functions (FRFs), on the other hand, require the measurement of the excitation force (Fk):

Hik oð Þ ¼
XikðoÞ
FkðoÞ

(2)

Hik(o) is the FRF between the output dof i and the input dof k, when all the remaining dofs have zero inputs. Assuming a
single input force at dof k, transmissibilities are related to the FRFs as

Tk
ij oð Þ ¼

XikðoÞ
XjkðoÞ

¼
HikðoÞFkðoÞ
HjkðoÞFkðoÞ

¼
HikðoÞ
HjkðoÞ

(3)

In practice, there are advantages in using alternative ways of calculating the transmissibility function using the auto-
and cross-power spectrums:

Tk
ij oð Þ ¼

XikðoÞXn

jkðoÞ
XjkðoÞXn

jkðoÞ
(4)

where Xn

jkðoÞ is the complex conjugate of Xjk(o). The main reason for calculating the transmissibility functions with Eq. (4) and
not with Eq. (1) is the reduction of uncorrelated noise.

3. Identification of antiresonant frequencies

3.1. Numerical antiresonances

For a lightly damped structure, antiresonant frequencies are almost unaffected by damping. Therefore, they can be
obtained from the undamped system, using only the stiffness and mass matrices. The FRF matrix is by definition the
inverse of the dynamic stiffness matrix:

H oð Þ ¼ K�o2M
� ��1

¼
adj K�o2M
� �

det K�o2M
� � (5)

The operators adj(.) and det(.) indicate the adjoint and determinant respectively. Antiresonant frequencies correspond
to the zeros of the FRFs. The zeros of the i, kth FRF are the values of o for which the numerator of Hij(o) vanishes. The
numerator of Hij(o) is the i, kth term of adj(K�o2M), which is given by (�1)iþkdet(Ki,k�o2Mi,k). The subscripts i, k denote
that the ith row and kth column have been deleted. In consequence, the antiresonances of the i, kth FRF are the frequency
values that satisfy:

det Ki,k�o2Mi,k

� �
¼ 0 (6)
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This is equivalent to solve the eigenvalue problem:

Ki,k�o2Mi,k

� �
u¼ 0 (7)

If i¼k Eq. (7) represents a physical system obtained by grounding the ith degree of freedom. Therefore, the antiresonant
frequencies obtained from point FRFs (i¼k) are equivalent to the resonant frequencies of the structure with the ith degree
of freedom grounded.

If iak Eq. (7) does not represent any physical system and some of the eigenvalues may be negative or complex, these
values must not be considered as antiresonant frequencies.

3.2. Experimental antiresonances

The proposed algorithm identifies antiresonances using rational fraction polynomials [17]. The FRFs and/or the
transmissibility functions are represented in a rational fraction form. This representation is the ratio of two polynomials,
where the orders of the numerator and denominator are independent of one another. A FRF is represented in a rational
fraction form as follows:

Hik oð Þ ¼
NikðoÞ
DðoÞ ¼

Pn
p ¼ 1 apspPm
p ¼ 1 bpsp

(8)

The denominator of the fraction, D(o), is the characteristic polynomial of the system, which is common for all the FRFs.
The zeros of this polynomial correspond to the system poles (resonant frequencies). Similarly, the roots of the numerator
polynomial, Nik(o), are the zeros of the i, kth FRF, i.e. the antiresonant frequencies. Hence by curve fitting Eq. (8) to the FRF
data, and then solving the roots of both polynomials, the resonant and antiresonant frequencies of the system can be
determined. On the other hand, a transmissibility function is represented as

Tk
ij oð Þ ¼

HikðoÞ
HjkðoÞ

¼
NikðoÞ
NjkðoÞ

¼

Pn
p ¼ 1 apspPm
p ¼ 1 cpsp

(9)

The zeros of the numerator polynomial correspond to the antiresonant frequencies of the i, kth FRF, while the zeros of
the denominator polynomial correspond to the antiresonant frequencies of the j, kth FRF. Thus, transmissibility functions
only contain information only about the antiresonant frequencies. By curve fitting the transmissibility functions to Eq. (9)
and solving the roots of both polynomials it is possible to determine the antiresonant frequencies of the system for a given
excitation location.

To determine the antiresonant frequencies of the j, kth FRF, more accurately, the proposed algorithm uses the
summation of the amplitudes of all measured transmissibility functions whose denominators are the response in j. This
function is calculated as:

Tk
j ðoÞ ¼

XN

p ¼ 1,paj

ReðTk
pjðoÞÞ

��� ���þ j
XN

p ¼ 1,paj

ImðTk
pjðoÞÞ

��� ��� (10)

where N is the number of responses measured. The superscript k indicates de location of the excitation and the subscript j

indicates location of the response. Summing the transmissibility functions helps to reduce the noise to signal ratio, and
hence to increase the accuracy of the detected antiresonances. The resulting function, Tk

j ðoÞ, contains only peaks at the
antiresonance frequencies of the j, kth FRF. Hence, by curve fitting the absolute value of Tk

j ðoÞ to a rational fraction form
and solving the roots of the denominator, the antiresonances of the j, kth FRF are identified.

The curve fitting process uses the algorithm proposed by Richardson and Formenti [17] with orthogonal Forsythe
polynomials. A stabilization diagram assists in separating physical poles from mathematical poles [18]. The algorithm uses
the same order for the numerator and denominator. The following stabilization criterion is used: 1% for frequency stability
and 5% for damping stability.

Figs. 1 and 2 illustrate the antiresonance identification process for an eight dof system, which is formed by eight
translating masses connected by springs as shown in Fig. 5. In this example, the location of the excitation is dof 1, and the
dofs where the antiresonances are being identified are 1, 5 and 8. Fig. 1 illustrates the identification process using FRFs; the
FRFs measured at degrees of freedom 1, 5 and 8 are plotted together with their corresponding stabilization diagram. The
order on the left Y-axis corresponds to the order of the fitted orthogonal polynomials. The ‘x’s and circles correspond to the
roots of the numerator polynomial; a circle indicates a stable root. Here, the algorithm automatically identifies an
antiresonance if there are more than 10 stable roots in a row. Note that as the response location gets away from the point
of excitation, the number of antiresonant frequencies diminishes. In the farthest point (dof 8) there are no antiresonant
frequencies, as shown in Fig. 1. Therefore, this dof does not provide information for the current model updating algorithm.

Fig. 2 illustrates the identification process using the summation of transmissibility functions as defined in Eq. (10), this
summation is computed using transmissibilities between all measured degrees of freedom (1–8). The transmissibility
sums, T1

1ðoÞ, T1
5ðoÞ and T1

8ðoÞ, are plotted together with their corresponding stabilization diagram. The ‘x’s and circles
correspond to the roots of the denominator polynomial; a circle indicates a stable root.
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Fig. 1. Identification of antiresonant frequencies using frequency response functions.
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Fig. 2. Identification of antiresonant frequencies using summation of transmissibility functions.
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The results show that the antiresonances identified using frequency response functions or transmissibility functions are
the same; the differences are lower than 0.5%. In consequence, the accuracy in the antiresonance identification process is
the same for FRFs or transmissibility functions, even though the excitation force is not measured in the second case.
Furthermore, there are some antiresonant frequencies that are easier to identify in the transmissibility case. For example,
in the first dof the antiresonance at 116 Hz is much clear in the sum of transmissibility functions than in the FRF.

4. Model updating algorithm.

4.1. Formulation of the optimization problem

Defining bi as the ith updating parameter, the model updating problem is a constrained nonlinear optimization problem,
where b¼{b1, b2,y, bn} are the optimization variables. The objective function correlates antiresonant frequencies. The error in
antiresonances is represented by the ratio between the experimental and analytical antiresonances,

ei,n bð Þ ¼
oA

r,i,nðbÞ
2

oE 2
r,i,n

�1 (11)

The superscripts A and E refer to analytical and experimental, or,i,n is the ith antiresonance of the nth dof. The objective
function is given by

J
�
bÞ ¼

X
n

X
i

:er,i,nðbÞ: (12)

The optimization problem is defined as

min JðbÞ
subject to lbirbirubi

(13)

where lbi and ubi are the lower and upper bounds of the ith updating parameter.

4.1.1. Special case: damage assessment

The purpose of damage assessment is to detect and characterize damage at the earliest possible stage. The basic idea of
vibration-based damage assessment is that the vibration characteristics (natural frequencies, mode shapes, damping,
frequency response function, etc.) are functions of the physical properties of the structure. Thus, changes to the material
and/or geometric properties due to damage will cause detectable changes in the vibrations characteristics. Many studies
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have demonstrated that vibration measurements are sensitive enough to detect damage even if it is located in hidden or
internal areas [19]. Once the vibration characteristics of the structure have been measured, the damage assessment
algorithm attempts to solve the inverse problem: to assess which damage is producing the measured changes in the
vibration characteristics. This is a model-updating problem, in which the differences between models of the structure
correlated before and after the presence of damage are used to localize and determine the extent of the damage.

Damage is represented by an elemental stiffness reduction factor bi, defined as the ratio between the stiffness reduction
to the initial stiffness. This is the simplest method to model damage. Although this model has problems in matching
damage severity to crack depth and is affected by mesh density, Friswell and Penny [20] demonstrate that at low
frequencies this method can correctly model a crack. It is shown that a more detailed model does not substantially
improve the results from damage assessment. The stiffness matrix of the damaged structure Kd is expressed as a sum of
element matrices multiplied by reduction factors [16]

Kd ¼
X

i

1�bi

� �
Ki (14)

The value bi¼0 indicates that the element is undamaged whereas 0obir1 implies partial or complete damage.
The objective function is the same as in Eq. (12), but a damage penalization function, FD, is added:

JðbÞ ¼
X

n

X
i

:er,i,nðbÞ:þFD (15)

As demonstrated by Meruane and Heylen [16], damage penalization helps to avoid falsely detected damages because of
experimental noise or numerical errors. Two damage penalization functions are used:

FD,1 ¼ g1

X
i

bi

FD,2 ¼ g2

X
i

di, di ¼
1 bi40

0 bi ¼ 0

(
(16)

The first penalizes the total amount of damage. The second, on the other hand, penalizes the number of damage
locations. Depending on the damage pattern expected one can use the first function, the second or a combination of both.
The value of the constants g1 and g2 depend on the confidence in the numerical model and the experimental data.
According to the results obtained in [16], a good value for g1 and g2 is 0.1. Here, FD is defined as

FD ¼ FD,1þFD,2, with g1 ¼ g2 ¼ 0:1 (17)

The results obtained with the proposed approach are compared with the ones obtained using a conventional approach
based on mode shapes and natural frequencies. The objective function is defined as follows:

J bð Þ ¼
X

i

:
oA,iðbÞ

2

oE,i
2
�1:þ

X
i

1�MAC fA,i,fE,i

� �� �2
þFD (18)

The subscripts A and E refer to analytical and experimental respectively, oi is the ith resonant frequency and fA,i is the
ith mode shape. Modal Assurance Criterion (MAC) is a factor that expresses the correlation between two modes. A value of
0 shows no correlation whereas a value of 1 shows two completely correlated modes. This objective function is selected to
compare the performance of the proposed approach because it was the one that provided the best performance in the
study presented by Meruane and Heylen [21].

4.2. Optimization algorithm

Here the optimization is particularly challenging and a robust optimization algorithm is needed. Having this in
consideration it is proposed to work with Genetic Algorithms (GAs) has an optimization tool. The GA is a global searching
process based on Darwin’s principle of natural selection and evolution. A sequential GA consists of three main operations:
selection, genetic operations and replacement (see Fig. 3). The GA starts with creating a random initial population. A set of
possible solutions, referred to as chromosomes, form the initial population. A sequence of genes that represents the
variables of the problem forms each chromosome. The fitness function evaluates the fitness of each chromosome. Next, the
algorithm passes the initial population through a selection process. Chromosomes with a higher fitness have a higher
probability to survive in the next generation. After the selection process, the chromosomes are randomly paired. Each pair
of chromosomes is referred to as parents. The algorithm uses the basic GA operators, crossover and mutation, to reproduce
the parents. As a result, it creates new pairs of children. Crossover and mutation are applied randomly with a probability of
pc and pm respectively. After the process of selection, genetic operations and replacement, the algorithm evaluates the new
population. This process is iterated for a number of generations until a convergence criterion is achieved. The crossover is
considered the main search operator. Each crossover technique directs the search in different areas near the parents, some
of them use more exploration (or interpolation) and others more exploitation (or extrapolation). For the algorithm to be
successful there must be an adequate balance between exploration and exploitation. Herrera et al. [22] show that by
combining different types of crossovers the effectiveness of the search is improved.



Initial
Generation

Mating Pool Objective
Function

New 
Generation

Selection

Operators

Fitness

Fitness

Chromosome

Chromosome

Replace

Fig. 3. Working principle of a sequential Genetic Algorithm.

V. Meruane / Journal of Sound and Vibration 332 (2013) 807–820 813
The problem with sequential GAs is that they are inherently slow when they work with complicated or time consuming
objective functions. To improve the searching speed, Parallel Genetic Algorithms (PGAs) are proposed. PGAs are
particularly easy to implement and provide a superior numerical performance. PGAs are not just a parallel version of
GAs. In addition to being faster than sequential GAs, they lead to better results. Many studies show that with PGAs the
execution time can be reduced by a factor greater than the number of processors used [23]. The basic idea in parallel
processing is to divide a large problem into smaller tasks. A group of processors solves these tasks simultaneously.
Parallelization is applied to GA by different approaches, three main methods are distinguished: global, migration and
diffusion. Migration GAs, also known as multiple population GAs, are the most popular parallel method and potentially the
most efficient. In this case, a number of populations are running in parallel. Each population runs a conventional GA
individually. These populations exchange their individuals occasionally. This exchange is denominated migration. The
separation into sub-populations prevents premature convergence because it allows each population to search in different
zones. Meruane and Heylen [24] investigated the advantages of PGAs in a structural damage detection problem. They
concluded that PGAs always provide an improved and faster search in the solution space compared to sequential GAs.

Fig. 4 illustrates the optimization algorithm used here. The algorithm employs a multiple population GA with four populations
and a neighborhood migration. Each population runs a sequential GA that from time to time exchanges information with its
neighbors (migration). The gene of each chromosome is an updating parameter of the optimization problem. The GA uses a
normalized geometric selection. To ensure an effective search with an adequate balance between exploration and exploitation,
each population works with a different crossover, being the following ones: arithmetic crossover, heuristic crossover, BLX-0.5
crossover and uniform crossover. In addition, each population applies both boundary and uniform mutations. Each population has
a size of 40 individuals and the crossover and mutation probabilities are pc¼0.80 and pm¼0.02 respectively.

The migration interval is automatically adjusted. If a population has no improvement after 40 generations, the GA stops
and exchanges the individuals with their neighbors. This exchange of individuals is synchronous i.e., the algorithm waits
until the five populations are ready to perform the migration. At each migration, each population sends its best individual,
whereas the received individual replaces its worse individual. Before each migration, the algorithm compares the best
individuals from all populations, if they are all the same the optimization is finished.

During the optimization process the algorithm must match correctly each experimental antiresonance with an experimental
one. This becomes a difficult task, mainly because the antiresonances distribution is significantly altered with small structural
changes. Nevertheless, since the optimization algorithm used here is not gradient based, a perfect matching is not necessary.
Moreover, the matching can change at each step and the optimization is not affected. Having this in consideration, the numerical
and experimental antiresonances are paired each time the objective function is evaluated. Each experimental antiresonance is
paired with the closest numerical one. Because the number of experimental and numerical antiresonances may not be the same, a
numerical antiresonance is allowed to be paired with one or more experimental antiresonances.
5. Application cases

5.1. 8 dof mass–spring system

The structure consists of an eight dof spring–mass system. Los Alamos National Laboratory (LANL) designed and
constructed this system to study the effectiveness of various vibration-based damage identification techniques.
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As shown in Fig. 5, eight translating masses connected by springs form the system. Each mass is a disc of aluminum
with a diameter of 76.2 mm and a thickness of 25.4 mm. The masses slide on a highly polished steel rod, and are fastened
together with coil springs. Springs and mass locations are designated sequentially with the first ones the closest to the
shaker attachment.

In the undamaged configuration all springs are identical and have a linear spring constant. Damage is simulated by
replacing the fifth spring with another spring that has a lower stiffness. Acceleration is measured horizontally at each
mass, giving a total of eight measured dof. The structure is excited randomly by an electrodynamic shaker. The responses
are measured in the 8 dofs in the undamaged and damaged cases.

5.1.1. Model updating

The finite element model was built in Matlab; the initial parameters are the following:
�
 Mass 1: 559.3 g

�
 Masses 2–8: 419.4 g

�
 Spring constants: 56.7 kN m�1
During the model updating process, the masses and spring constants were updated individually. It was allowed a
variation of 10% with respect to their initial values. Twenty-eight antiresonances were identified from the transmissibility
functions, all of them are used to update the model.

Fig. 6(a) shows an example of a transmissibility function before and after updating the numerical model. After
updating, the numerical model is much closer to the experimental one. Fig. 6(b) shows the difference between the
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Fig. 5. Experimental 8 degrees of freedom system.
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Fig. 6. (a) Transmissibility function T7–5 and (b) antiresonance difference before and after updating the numerical model.
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numerical and experimental antiresonances before and after updating. The maximum difference between the experimental and
numerical antiresonances before updating is 4%, whereas after updating is only 0.58%.
5.1.2. Damage assessment

After model updating, a damage assessment case evaluates the accuracy of the numerical model and model-updating
algorithm. In this case, the expected values for the updating parameters are known. This study has two primary purposes:
First, to verify that the updated numerical model is accurate, and second to evaluate that the algorithm is able to find and
correct the actual differences between the numerical and experimental models.

Experimental damage is simulated by reducing the stiffness of the fifth spring in 55%. During the model updating the
stiffness of the eight springs were updated individually, according to the procedure described in Section 4.1.1. Fig. 7
illustrates a transmissibility function before and after model updating. The results show that after updating, the numerical
model is much closer to the experimental one. It should be noted that this updating algorithm is almost unaffected by the
experimental noise, because even in the presence of experimental noise antiresonances are accurately identified.

Fig. 8 shows the reduction of stiffness detected with the current approach and with an approach based on mode shapes
and natural frequencies. The results in both cases are very accurate, although with antiresonant frequencies, quantification
is more accurate; the error is lower than 0.5%. The algorithm does not detect damage in other springs than the fifth, thanks
to the damage penalization strategy adopted.
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Fig. 9. Experimental set-up.
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5.2. Car exhaust system

The structure consists of a car exhaust system as shown in Fig. 9. The dimensions are: length: 2.3 m, width: 0.45 m.
The exhaust pipe has a diameter of 38 mm. The structure is suspended by soft springs and it is excited randomly by
an electrodynamic shaker. The response is captured by 16 accelerometers. The test is performed in a frequency range of
0–512 Hz with a frequency resolution of 0.25 Hz.
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5.2.1. Model updating

The numerical model shown in Fig. 10 is built in Matlab with 2D beam elements and concentrated inertias for the
masses. The model has 47 beam and 5 inertia elements, with 144 dof. Generic material properties are used.

The updating parameters are the following: the thickness and material properties in the different sections of the tube,
the mass of the five concentrated inertias, and the rotation angle of some elements. There are a total of 21 updating
parameters. Thirty-two antiresonances were identified from the transmissibility functions, all of them are used during the
model updating process.

Fig. 11(a) shows an example of a transmissibility function before and after model updating. After updating, the
numerical model is much closer to the experimental one. Fig. 11(b) shows the difference between the numerical and
experimental antiresonances before and after updating. The maximum difference between the experimental and
numerical antiresonances before updating is 38.5%, whereas after updating is 7.6%.
5.2.2. Damage assessment

As described by Meruane and Heylen [16], a single fatigue crack with three increasing levels of damage is introduced to
the structure. Fig. 12(a) shows the crack, which is located in element 31 close to the welded connection between elements
30 and 31 (see Fig. 10) and covers around 60% of the pipe perimeter. The fatigue test is done again twice to grow the crack.
Fig. 12(b) shows the second damage level; here the structure has already failed due to unstable crack propagation.
The open crack covers around 70% of the perimeter. The last damage level is shown in Fig. 12(c), the crack covers around
85% of the perimeter.
1234
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Fig. 12. Three levels of damage introduced to the structure.
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Elements 18–47 are considered possible locations of damage, giving 30 stiffness reduction factors to be updated. All the
identified antiresonances in the range 0–260 Hz from the 16 measured dofs are used. The number of identified
antiresonances varies from 32 to 36 depending on the case. Fig. 13 shows the improvement in one of the numerical
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Fig. 13. Transmissibility function T6–14 before and after updating the numerical model in the three damaged cases.
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Fig. 14. Reduction of stiffness detected with both approaches.



Table 1
Damage detected on each case.

Case Antiresonant frequencies Mode shapes and resonant frequencies

Element Damage % Element Damage %

1 32 74.7 30 89.6

2 32 90.4 31 99.4

3 32 90.6 31 99.5
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transmissibility functions after updating. In the three cases, the numerical model gets much closer to the experimental one
after updating.

Fig. 14 illustrates the reduction of stiffness detected on each case, using antiresonant frequencies or mode shapes and
resonant frequencies. These results are summarized in Table 1.

With the current approach, damage is detected only in element 32, which is close to the experimental damage (element 31).
The reduction of stiffness detected on each case is 75%, 90% and 91% respectively. Hence, the magnitude of the detected damage
increases with an increment of the experimental damage. With the approach based on mode shapes and resonant frequencies, the
damage detected is closer to the actual damage location. In addition, the magnitude of the detected damage is larger than the one
detected with the first approach. This is explained by the fact that the damage detected is closer to the actual location.
Nevertheless, both approaches have detected damage very close to actual location and the quantification is reasonable. The
results from the first approach can be improved by adding more measuring points close to the damaged area.

6. Conclusions

This article presents a new methodology to identify antiresonant frequencies from transmissibility functions. These
antiresonances are used in a model-updating algorithm. A parallel Genetic Algorithm handles the optimization problem.
The objective function correlates experimental and numerical antiresonant frequencies. Two experimental cases verify the
algorithm: An 8 dof mass–spring system, and an exhaust system of a car. In both cases, the model updating algorithm is
tested first to update the numerical model, and second, to assess experimental damage. In the case of damage assessment,
the algorithm uses the damage penalization technique proposed by Meruane and Heylen [16] to avoid falsely detected
damages.

The results demonstrate that antiresonant frequencies can be identified from transmissibility functions, as easily as,
resonant frequencies are identified from frequency response functions. Nevertheless, antiresonant frequencies have two
principal advantages. First, it is not necessary to measure the excitation force, and second, they contain more information
than resonant frequencies. For example, in the case of damage assessment, resonant frequencies contain information only
about the amount of damage [25], while antiresonant frequencies contain information regarding the amount and location.

In both application cases, the algorithm is successful in updating the numerical models. In the cases of damage
assessment, the damage detected has a good correspondence with the experimental damage. The results demonstrate that
it is possible to accurately locate and quantify structural damage using only antiresonance information obtained from
transmissibility functions. Hence, antiresonant frequencies are a very attractive feature, which can be extracted from
output-only data, to be used in model updating and damage assessment.
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