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Non-uniqueness of positive ground states of non-linear
Schrodinger equations

Juan Davila, Manuel del Pino and Ignacio Guerra

ABSTRACT
Existence of a positive, decaying radial solution to the problem
Au—u+u? + u?=0 inRY,
when A >0 and 1 <q<p < (N +2)/(N —2) has been known for a long time. For A =0, it
is well known that this solution is unique. While uniqueness conditions for rather general non-
linearities have been found, the issue has remained elusive for this problem. We prove that
uniqueness is in general not true. We find that if N =3, 1 < ¢ < 3, X is fixed sufficiently large,

and p < 5 is taken sufficiently close to 5, then there are at least three positive decaying radial
solutions.

1. Introduction

We consider the non-linear Schrodinger equation

iy =AY+ [P + [Ty in RY xR, (1.1)
where N > 3 and the powers p and ¢ are superlinear and subcritical, namely
1<g<p< N2
q<7p N_2

This equation is a natural non-scaling invariant extension of the extensively studied defocusing
equation

ihy = Atp + |[9[P~1  in RY x R,
A complete theory on the basic issues of well-posedness, asymptotic behaviour and blow-up
for (1.1) was developed by Tao, Visan and Zhang [29].

In this paper, we are interested in standing-wave solutions of problem (1.1), namely finite-
energy solutions of the form

O(z,t) = e PQ(x).
Assuming that 8 = o? with a > 0 and renormalizing through the scaling
Q(z) = o®/ "= Vy(az),
we obtain the following equation for v:
Av—v+ v lo+ Ao/l =0 inRY, (1.2)

where
A\ = o2@a—p)/(p=-1)
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In this paper, we are interested in positive decaying solutions of equation (1.2) (sometimes
called ground states), namely solutions of the problem

Av—v4+P+ ? =0, v>0 inR"Y,

1.3
v(x) — 0 as || — oo, (1.3)
where A >0and 1 < g <p< (N+2)/(N —2).
In the case of a pure power non-linearity, namely the problem
Av—v+vP =0, v>0 inRY, (1.4)

v(z) — 0 as |z| — oo,

existence of a radially symmetric solution was first established by Strauss [28] for 1 <p <
(N +2)/(N —2). When p > (N +2)/(N — 2) no solution exists, as it follows from Pohozaev’s
identity [25]. Solutions of (1.4) (and also those of (1.3)) are necessarily radially symmetric
up to translations owing to the classical Gidas, Ni and Nirenberg result [13]. In [15], Kwong
established uniqueness of the radially symmetric solution of (1.4).

Berestycki and Lions [6] found that existence of radial solutions also holds for the more
general problem

Av—v+ f(v)=0, v>0 inRY,

v(z) — 0 as |z| — oo,

(1.5)

where f is of class C* and there exist p € (1, (N +2)/(N — 2)) and to > 0 such that

2 to
f(0) = f(0) =0, %0 <J ftyde, |f@t) <CA++¢?) forallt>0.
0
These conditions obviously hold for the sum of subcritical powers (1.3); see also
[1,4, 5,7, 10-12, 24] for related existence results.

On the other hand, uniqueness of radial solutions of (1.5) is known only under more restrictive
assumptions; see, for instance, [8, 15-18, 21, 22, 27] and also [3, 9] for uniqueness in balls.

The most general extension of Kwong’s result is due to Serrin and Tang [27]: a radial
solution of (1.5) is unique if there exists a b > 0 such that (f(v) —v)(v —b) > 0 for v # b and
the quotient (f’(v)v —v)/(f(v) — v) is a non-increasing function of v € (b, 00).

However, f(v) = vP 4+ Av? does not satisfy the latter condition for large v, unless p = ¢. Thus,
uniqueness of radial solutions of problem (1.3), the most natural extension of the single power
case (1.4), has remained conspicuously open.

The purpose of this paper is to establish the rather striking fact that Kwong’s uniqueness
result is in general not true for problem (1.3) when p # ¢. In fact, we establish that in dimension
N =3 and suitable ranges for the parameters p, ¢ and A, problem (1.3) has at least three
solutions.

Thus we consider in what follows the problem

(1.6)

v(z) — 0 as || — oo,

{Av—v—i—vp—l—/\quo, v>0 inR3,

where A > 0, and 1 < g <p <5.

1.1. Main result

Our main result reads as follows.

THEOREM 1.1. Let 1 < q < 3. Then for each \ sufficiently large, there exists a number
1 < po < 5 so that for all py < p < 5 problem (1.6) has at least three solutions.
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0(0) = [|v[loo
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FIGURE 1. Bifurcation diagram in p for (1.6) for A sufficiently large and fixed.

It is illustrative to depict the above result in terms of bifurcation diagrams. The picture in
Figure 1, obtained from numerical simulations, represents the branch of positive solutions for
a fixed, large number A\, when we let p act as a parameter of the problem and ¢ is fixed. The
branch in p crosses the critical exponent p = 5 then it turns backwards crossing again p =5
and finally it turns right developing an asymptote at p = 5. We distinguish in this picture for
a given p slightly below 5, a large solution and a small solution. Those parts of the branch will
be described in detail. The third solution can be found by a degree-theoretical argument.

The restriction 1 < g < 3 is essential in our proof. Moreover, if ¢ > 3, then the branch appears
numerically monotone. This seems also the case in dimensions N > 4. Establishing uniqueness
in those scenarios (except for A small, which is easy by perturbations) appears as a challenging
problem.

1.2. The small solution

The lower part of the branch represents a small solution of size of order O(A~/(4=1)). The
change of variables v(z) = A~/ (4=Vy(z) takes problem (1.6) into the form

{Aw—w+7wp+wq=(), w > 0 in R3,

w(x) — 0 as |z| — oo,

where 7 = A\~(P=1/(a—1),
In Lemma 5.1, we find a solution for any A large as regular perturbation of the unique
solution for 7 = 0.

1.3. The large solution

The upper part of the branch diverges in size by bubbling. Let us write p =5 — &, where we
regard ¢ as a small positive parameter. It turns out that the following scaling is convenient:

v(z) = e /U=y (z/e),
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so that problem (1.6) becomes

Au+uP~f + Xe®u? —2u =0, u>0in R3 (1.7)
u(y) — 0 as |y — oo, |
where
5-q e(g—1
_5-q 1.
« 2 24—« o

As ¢ — 0, problem (1.7) approaches formally to
Au+u® =0, u>0inR3,
whose unique radial solutions are given by the functions
u 1/2
wy(y) = 3t/ <M2 i |y|2) .

As we will see, there is a solution of (1.7) which comes as a perturbation of w, for the choice
w = 7m/32. In terms of the original problem (1.6), the following result holds.

THEOREM 1.2. Let1 < g < 3, A > 0 be given, and write p =5 — €. Then for all sufficiently
small € > 0 there exists a solution u. of (1.6) of the form

1/2
) = () < VR ol), 9

where o(1) — 0 uniformly as € — 0.

1.4. The central solution and \ large

As a by-product of the proofs, we will see that the large and the small solution are both non-
degenerate, and that their Morse indices are both equal to 1. This information yields their
local degrees in a suitable space, and the existence of a third solution will follow from a global
degree argument. The number A\ in Theorem 1.1 has to be fixed prior to letting p approach
5. Indeed, as we find in Lemma 5.3, when we fix p, if A is too large, then there is only one
solution. The set of positive solutions when we fix p = 5 — ¢ and consider \ as its parameter
can be depicted by the diagram in Figure 2, obtained by numerical simulations. Computing
how large A can be taken in Theorem 1.1, depending on ¢, corresponds intuitively to locating
the upper turning point P. in Figure 2. For A near that point, we see two large solutions which
can be explicitly described for 2 < ¢ < 3 as follows.

THEOREM 1.3. Assume 2 < ¢ < 3. There exists a number A\ such that for each 0 < A < Xg
and the number

[ Aem B2 if2<q<3,
| AeV2|loge|Tt ifg=2,

in problem (1.6), there exist two positive numbers d_ and d such that for all € there are two
solutions vy of the form

ve(x) = 31/ (

where o(1) — 0 uniformly as € — 0.

1

1/2
]W) €_1/2di(1+0(1)), (110)
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v(0) = [[v]loo

P€

0 A

FIGURE 2. Bifurcation diagram in X for (1.6) inp =5 — ¢, € > 0 small and fixed.

In the case 1 < ¢ < 2, it is also possible to find these two solutions but the proof is different
and will be addressed in future work. The numbers A\g and d+ can be explicitly computed as
follows. Let us consider the function

Fp) = by~ B0/ — 511M_(5_Q)/2 where b; = 4 g+l T(/2)(g+1)

32 5—q3@=1/471/21((q¢ — 2)/2)’
whose maximum value is computed as
T\-G-0/2 (5 ¢\ CD/2 9 S5—qm
Ao = = =b (—) — —_— =—— (1.11
o o= max (1) = f(0) = by (25 (3_q) S =t (L)

Thus, given 0 < A < Ao, the equation A = f(u) has exactly two solutions

5 <H () < po < it (A), (1.12)

As we will see, the numbers dy in (1.10) are simply given by
b =i

The solutions of (1.6) in the (A, v) space can be identified with a set in the (A, m)-plane, where
m =v(0) = ||v]ls as in Figure 2. Our result can be portrayed as representing approximately
the upper turning point as

P7 s (o (Bm0/2 314 ()1 /2712)
while the set is itself near this point approximated by the graph
A= B=D25312(em?) 1) for m ~ e V2,

The proofs are based on a Lyapunov—Schmidt reduction method along the lines of that used
in [23, 24]. We first prove Theorem 1.2 in Section 4 after some preliminaries in Section 2, a
computation of the energy in Subsection 2.2, and a study of the linearized operator in Section 3.
Theorem 1.1 is proved in Section 5. In Section 6, we carry out the proof of Theorem 1.3.
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2. First approximation of the large solution

We assume that 1 < ¢ < 3 and A > 0 are given. As we have discussed, to prove Theorem 1.2 it
is convenient to express problem (1.6) in its equivalent form

{Au+u5_5+)\€auq—52u:0, u >0 in R3, 2.1)

u(y) — 0 as |y| — oo,

with a = (5—¢)/2 —e(q —1)/2(4 — €), via the change of variables v(z) = e~ 2/(4=Sy(zx/e).
Thus, letting
1
_al/4 _ -1/

the idea is to look of a solution of (2.1) which is a perturbation of w,, for a suitable choice of
. It turns out that a more convenient first approximation than w,, is its projection U,, defined
as the unique solution of the problem

{AUu — 20, = —w? in R3,

(2.2)
Uuly) — 0 as |y — oc.

Let us write
fe(u) = w4 Ae®ul.

Searching for a solution u of (2.1) of the form u = U, + ¢ yields the following equation for ¢:

L.¢p+ N(¢) +R=0 inR3, (23)
¢(y) — 0 as [y — oo,
where
Lep =D+ fL(U)¢ —2d, N(¢) = f-(Up+ ¢) = f-(Uyn) = fL(UL),
R=AU, + f-(U,) — €°U,. (2.4)

We will use a Lyapunov—Schmidt reduction scheme to solve problem (2.3). To this end, it is
important to get some basic estimates for U,,.
2.1. Basic estimates for U,
First, by the maximum principle we readily find
0<U, <w, inR%.
Define the positive function 7, := w,, — U,. Then
Am, —e*m, = —e®w, in R®.

The following estimates hold.

LEMMA 2.1. Assume that § < u <01 for some § > 0. For any 0 < o < 1, we have the
expansion

2w, (y) = dm3t4epH (ey) — e Doly/p) + €370 (y),
where H(z) = (1 — e 1#1) /4r|z|,
Do(y) = Iyl log(lyl + VIyl> + 1) + VI]yl> + 1 — |yl], (2.5)
and |0 (y)| < C(1 +ely|) =1 for all y € R3.
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Proof. Let us define the Green’s function G := G(x) by
— AG(z) + G(x) = dp(z), G(x) — 0 as |z| — 0. (2.6)
Take H(x) = 1/4r|z| — G(x), so
1 1
e H(z)— ——
dr|z|’ (@) 47|z

Note that H(z) = (1 — e~ |*l) /47|z| is the explicit solution of the problem. Let Dy be the unique
continuous solution of the problem

AH(xz)— H(z) =

— 0 as |z| — 0.

1 1
ADg = Dy (y) := 3'/* A+ Tl
with Do(y) — 0 as |y| — oo. Since Dy < 0, we have Dy > 0, in fact Dy is given by (2.5). Define
S(y) = p'2mu(y) — 43" *epH (ey) + €*1° Do(y/ ).
Clearly, S satisfies
~AS +e2S =e*1?Do(y/p) >0 in R3,
By the maximum principle S > 0 in R?. Taking S(x) = S(x/¢),
~AS+ 8 =%’ Do(z/(ep)) in R®.

Since Dy (y) ~ |y| =" log(|y|) as [y| — oo, we have Do(z/(ep)) < C(e/]x])' =7 for any 0 < o < 1.
Then S(z) < e2(e/(1 + |z|))1 77 for all z € R3. O

LEMMA 2.2. We have
wﬂ(y) - Ult(y) g Ol + E|y|
Uu(y) < Ce™y|™> for [y| > 1/e. (2.8)

for all y € R3, (2.7)

Proof. Let P(z) = wy(xz/e) — Uy(z/c). The P satisfies
~AP + P =w,(z/s) inR3
Since wy(z/e) < Ce/|x|, using v(x) = ¢/|z| as a barrier in a set |z| > R/e with R > 0 a large
constant, we get P(x) < Ce/(1 + |z]) for all |x| > R/e. On the other hand, P(z) < ¢ near the
origin and we deduce (2.7).

To prove (2.8), we use as barrier the function v(y) = e %|y|=5. It satisfies Av —&%v <
—e72|y|75 for |y| > R/e with R >0 a large constant. Since v(y) = Re for |y| = R/e and

U,(y) <w,(y) < C/ly| for all |y| > 0, we get Av(y) > U, (y) for |y| = R/e, for some constant
A > 0. By the maximum principle, U, (y) < Av(y) for all |y| > R/e. |
We will also need the functions
ow
Z,=—& 2.9
K 6“ ( )
and
= oU
Z,=— 2.10
=2 (210)

which satisfies
AZ, —&*Z, = —5wtZ, inR?,
Zu(y) — 0 as|y] — oo.

As in the proof of (2.7), we can also show the following lemma.
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LEMMA 2.3.
|Z()fz()|<& for all |y| > 0 (2.11)
u\Y pw\Y) X 1+€‘y| y =Y, .
Z.(y)| < for all |y| > 0, 2.12
\fz()l Tyl [yl (2.12)
Zu(y)| < Ce™y|™> for all [y > 1/e. (2.13)

2.2. Energy expansion for U,
Solutions of problem (2.1) are critical points of the energy functional
E(u) = Ep(u) + Ex(u),

where p =5 — ¢,

2
Byw) = DuPay+ S| uPay— | uptia
pu 2 s u y 2 RSU y . u y

3

p+1

and

1
E\(u) = =X e JRg lu| T dy.

LEMMA 2.4. Assume 1 <qg<3, A>0 and 6 >0 be fixed. Then there exist positive
constants ag, a1, as,az for such that § < pu < §~*

EU,) = ap+e¥(n) — aseloge — aze + 0. (),
where
V() = a1p — azlog p,

and ©.(p) — 0 as € — 0 in the C! norm in the interval 6 < pu < 6~ L.

Since a1 and ay are positive, the critical point of ¥ is p = as/a; and d = p~ /2.

Proof. For u = U,, we have

1 1
Bs(U) = —5 | 00 du+ 5| it

writing U, = w, — 7, we have

1 1
E5<Uu>=fj WS (y)dy — j Wy dy + R,
3 RS 2 ]R3
where

1
R = _EJ [|w, — 7ru|6 — wﬁ + Gwiwu] dy.
R3

Using Lemma 2.1, we have
1

1
3 JRa wﬁ(y) dy — 3 JRS wiwu dy = ap + a1€p,

where

1
ag = 7J wl(y)dy = ~V31?, a) = 7J w(y)®3Y* dy = 27V/3.
R3 2 R3
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Now using (2.7), we have

1
R— —5J J (wy, — tmy) 2 (1 — ) didy = O(2).
R3 JO

So we have the following energy expansion
E5(U,) = ag + a1ep + O(e?).
On the other hand,
Ep(Uu) — E5(Uy) = (p — 5)lazlog(p) + as] + o(p — 5),

where

1 6
- — d
5 JRS w(y)” dy

For 2 < ¢ < 3, we have

V32 1
= ,  asz3 = -
16 36

az

Ex(U,) = —Aag(ep)®=9/2 1 O(2).

where

1
- L) dy =
“ q+1JR3w (v) dy

and the energy has the form

3(a+1)/4 73/2D((q — 2)/2)
(g+1) T(1/2(q+1)

E(U,) = ap + arep — Aag(ep) ®~D/2 4 (p — 5)[ag log (1) + as).
For ¢ = 2, we have the following estimate
E(U,) = ap + aypu + Aaglog(ep)(ep)®? + (p — 5)[as log(u) + as),
where a4 = 47/3%/4. In fact, we have

j U, () dy =J Uu<y>3dy+j U, (y)* dy
R3 Bo(1/¢) R3\Bo(1/¢)

= —4n3%/% 13/ log(ep) + O(1),
since [gr?/(1+ r2)3/2 =log(a + V1 + a2) — a/v/1 + a2. For 1 < g < 2, we have

J (w,, — 7TM)q+1 - M(q+1)/25q—2(31/447r)q+1J' GTH 4 o(1),
R3 R3

and the energy has the form
E(U,) = ao + arep — Aaa(ep) 2 + (p = 5)[as log(p) + ag),
where ay = (3/44m)1H! [, G (2) /(g + 1) da.

Combining (2.14), (2.15) and (2.18), and taking p = 5 — &, we obtain the result.

3. Solvability for the linearized operator around U,
In this section, we analyse the linear equation
Ao+ prj_1¢ + Aeo‘qU"j_lqb —e2¢p=h+ chMwﬁ in R3,
¢(y) — 0 as |y| — o0,
LR“ qﬁZ#wﬁ =0,

|, w610z - 11y

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(3.1)

where U, is the function introduced in (2.2), p=5—-¢, 1<¢<5 and a=(5-gq)/

2—-(B-plg—1)/2(p—1).
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Let us define the following norms, for function ¢, h : R? — R:

ol = sup (1+[y)) 22 |6(y)|+ sup £|y|’|o(y)] (3.2)
lyl<1/e yl>1/e
and
[2]] s = sup (1 + |y[*)?/2|n(y)| (3.3)
ly|=0

with @ in the range 2 < 6 < 3 (so that 727 is superharmonic).
The objective of this section is to prove the following result.

LEMMA 3.1. Let 0< 6 <1 and A >0 be fixed. Then there exists g = £o(5,\) > 0 such
that for 0 < e < g9, 0 < A<\, 6 < <67, and for any radial h with ||h||.. < co there exists
a unique radial ¢ with ||¢[|« < 400 and ¢; € R solution of (3.1), moreover there exists C > 0
such that

[plle < ClAlles,  Jer] < CllAlx- (34)

We first prove an a priori estimate for solutions of a simpler problem:

Ap+pUP~tp — % = h,

P(y) — 0 as |y| — oo, (3.5)
oo Zywio =0, [ F2wie =0, i=1,23

with [p — 5| = €. In order for it to be useful in a later situation, we do not assume here h, ¢ to
be radial.

LEMMA 3.2. Assume that 6 < < 6~ where 0 < § < 1 is fixed. There is C' such that if
e > 0 is sufficiently small, for any h, ¢ solution of (3.5) we have

19l < Clihlles- (3.6)

Proof. By contradiction, suppose that there exist ¢y, hn, fin, €n, |Pn — 5| = €5, such that
[fnlls =1, Nhnllw — 0, pn €[6,671], €4 — 0,

and such that ¢,,, h,, solve (3.5).

We claim that ¢,, — 0 uniformly on compact sets of R?. Indeed, assume otherwise. Then up
to a subsequence f,, — i > 0 and ¢,, — ¢ uniformly on compact subsets of R3, where ¢ Z 0
and satisfies

A¢+5wy¢ =0 inR®.
We also know that ||¢||. < 1 which implies that ¢ is bounded. Since w,, is non-degenerate, it
is well known, see [26], that ¢ = ¢y Z,, + Zg’zl ¢i(Ow,,/0x;) for some co, ..., c3 € R. But taking
the limit in the orthogonality condition in (3.5), we obtain
ow
Zywip =0 J Ewio =0,
J]R3 kuaﬁ R3 Ox; w#qS
so ¢ = 0, which is a contradiction.
This proves that ¢, — 0 uniformly on compact sets of R3. We will obtain now an estimate
for ||én ||« using suitable barriers. Let 0 < 0 < 1 with ¢ < 6, § > 0 and ry > 0 to be fixed later
on. Define

é(x) =204 or—?, r=lz|
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Then
R L it oo
+0[—0o(1 —a)r 772 4 puwPr 1y — 2979
( 0)(3 — 0)r—0 4+ O(r~4OEn))p2=0 _ 2,20
+d[—o(l—0o)r=7" 2—l——l—O( _4+O(En))r o _ 2p0]
—Cyr=% forr > ro,

where Cy > 0 depends only on 0, if we chose 7y > 0 large depending on € and o. Define
n(a) = ( sup 90 ()12 + - [Falloe + 1) 3x) — bu(a),
lyl=ro 0 "
which satisfies
(A + ppwPrt —e2)v, <0 for |z| =g
and
v (z) =0 for |z| = ro.
Since | ¢y, (z)| < ;,2|x|? for |z| > 1/e,, we can find r,, > 1/e,, such that for |x| > r, we have
vp(z) 20 for |z| >,
By the maximum principle, we deduce that
vp(x) 20 for |z| > ro,
which means
fulz) < ( sup |6 I+ Sl + 1) (122~ + 8la|~7) for [z] > ro
ly|=ro 6 n

By a similar argument,

lyl=ro

1 1 - .
[Pn(2)] < (sup |6 (1) |75 2Jra()llhnll*wn) (lz[>~% + 6[x| =) for |z| >r

Letting § — 0, we obtain
on(2)] < ( sup 0n(y)lr > + - ol + 1) W forfel . (37)
lyl=ro 0 n
Let
dla) =1~ +6r77, r=la,
with o as before. Then

(A + ppwPr ™t =) = —0(1 — 0)r 7% + puuwPn 10 — 20
2

where M > 0 is a constant that depends only on 6. So

2 = - M
(A + ppwPr—t —€2) (2||hn|**¢— ¢n) <0 forr>—.
gn

En

Since
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and by (3.7)
_ 1 - 1 —0 o— M
uta)l < (1000l + 2ol + 2 ) A28 for o] = 2,
0 n En

we have

1 - 1 - (M M
u(@l < (Ionrol 2+ ol 5 ) 207526 (25) o fo] = 2

n En n

We also have

6n(2)] < ( up 19 ()18 2+ - lFallos + 1) M 25(a)
0 n

lyl=ro

for |z| sufficiently large. By the maximum principle,

_ 1 - 1 _ 2 .~ -
[on ()| < (( sup [¢n (y)|rg % + @\\hnll** + n) M?er® + 2||hn||**> ¢(x)

ly|=ro €

for all |x| > M/e,. Letting § — 0, we obtain

1= 1 2 -
|6n(r)] < (( sup |¢n (y)rg % + Gy 1Pmlles + n) M?e,? + Eﬁllhnll**> |~

lyl=ro

for all |x| > M/e,. This and (3.7) imply that ||¢,]|. — 0 as n — oo, which is a contradiction,
and establishes (3.6). U

We derive now an a priori estimate for the solutions of:
Ap+pUbtop+ XeqUi ™ ¢ — e?¢ = h,
¢(y) =0 as |y[ — oo, (3-8)
oo Zuwio =0, [oo F2wiop =0, i=1,23,

with |[p — 5| = ¢ and 1 < ¢ < 5. Again this is done without assuming ¢, h to be radial.

LEMMA 3.3. Assume that § < <31 where 0 < § < 1 is fixed. There is C such that if
e > 0 is sufficiently small, for any h, ¢ solution of (3.8) we have

19l < Clihlles- (3.9)

Proof. We claim that
[UZ pllew < CT72 0] (3.10)

Since U, < w,,, it is sufficient to prove
[l Pl < CT72][@]l.
We have that

sup (1+ [y*)" 2wl e(y)| < C sup (14 [y[*)??|y|~ "V |g(y)|
ly|<1/e ly|<1/e
<O gll« sup |y[>~2.
lyl<1/e
Therefore,

sup |y|*w? ™ (y)|o(y)| < C|l¢ll.e?7>.
ly|<1/e
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Now we analyse the case |y| > 1/e:

sup Jy*w?(y)|o(y)| < C sup |ylfly|= TV (y)]

ly|>1/e ly|>1/e
<C sup |yl’lylm Py ¢
lyl>1/e
=Ce?||¢]l. sup |y~
ly|>1/e
< CH¢||*Eq_37

since ¢ > 1. This proves (3.10).
Then, using estimate (3.6), we deduce that

@]l < Cllhllx + C*F973 ).
Since a = (5 — ¢)/2 4+ O(g), we see that o+ ¢ — 3 > 0, which proves the desired estimate. [J

Proof of Lemma 3.1. We first prove the estimate (3.4). Assume that h, ¢ are radial and
¢ satisfies (3.1). Then Lemma 3.3 shows that ||¢||. is finite. Let n € C§°(B2r(0)) be such
that n =1 in Bg(0), |Vn| < CR™!, |An| < CR™2. Multiplying (3.1) by Z,n and then letting
R — o0, we get

clj Zhwy, = J (pUE™" —bw})Z, + As“qJ Uitez, — 52J 07, —J hZ,.
R3 R3 R3 R3 R3
To verify this, we need to estimate
c | )
J o #8717 < gl | e ar < C72Rlll.

and
j BIVAIIV Z,] < Ce2 B9,
Br(0)

and they converge to 0 as R — oo. We also have

| 102, <l (3.11)
and
JRS (PUP — 5ut)pZ,| < Celgll.,
using (2.7). Similarly,
Ae® JRS Ul Zu9| < Ce°2, (3.12)

and | [ps hZ,| < C||h||««. The inequalities (3.11) and (3.12) show that
ler] < o(D)]|]l« + Clh|x
where 0(1) — 0 as € — 0. This together with (3.9) yields (3.4).
To prove existence of a solution of (3.1), consider the Hilbert space
H= {¢ € H'(R?): J Zywyo = 0}
R3

with inner product (¢1, ¢2) = [ps V1 Vs + g2 Jgs @102 For h: R3 — R, with ||h]l«x < +o00,
the variational problem of finding ¢ € H such that

(6, 9) = J (PUP '+ Ae®US™ + h)p forall p € H

Qx
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is a weak formulation of (3.1). Using the Riesz representation theorem, this variational problem
is equivalent to solve

¢+ K(¢) = h, (3.13)

where h € H and K : H — H is a compact operator. Any solution ¢ of (3.13) is a weak solution
of (3.1) and by standard regularity theory ¢ € C(R?). Moreover, we can prove that this solution
has finite || || norm using barriers, and hence estimate (3.4) holds. When /& = 0, then this
argument shows that ¢ = 0. By the Fredholm alternative, there is a solution ¢ € H of (3.13)
giving a solution of (3.1). O

4. Proof of Theorem 1.2 and non-degeneracy of the solution

For the proof, we will solve the problem in two steps: first we use the linear theory devised
in the previous section to solve a projected version of the problem, and then we will find the
right value of i in such a way that we actually have a solution to the full problem. We have
the validity of the following result.

ProrosITioN 4.1.  For € > 0 sufficiently small, there is a unique ¢, and c solution of

L+ N(¢p)+ R=cZ,w?t inR3  ¢(z) — 0 as |x| — +o0,

. H (4.1)
JR3 ¢Z = 07

and such that ||¢,| < Ce, || < Ce.
For the proof, we start by estimating R, which was defined in (2.4).

LEMMA 4.2, Assume 1 < ¢ < 5. Suppose that § < 1 < 0! where 0 < § < 1 is fixed and
that A > 0 is a constant. Then, choosing 2 < § < 3 appropriately in the norms (3.2), (3.3),

there exists g = €9(A) > 0 such that if 0 < e < g9, 0 < A < A, we have

[R]l.+ < Ce, (4.2)
18, R]l+s < Ce. (4.3)

Proof. We compute R = Ui‘a — wz + Ae?U. We claim that
1US5 = w) =% ls < Ce. (4.4)
Indeed, using (2.7) we get
sup (14 [y[2)?/2|US= —wi™*| < C sup (1+ |yl2)*/ 2wl =70, — w,|

ly|<1/e lyl<1/e
1 0—44+0(¢e)
< Ce sup L < Ce,
lyl<ie  L+7e

since we work with 2 < 6 < 3. Also
sup (Ui’*s + wffe) < Ot 01006 < 0et=0 L Ok,
r>1/e
and we obtain (4.4).
By direct calculation,

=€ — wP||,. < Ce.
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To estimate the term Ae®UY

1, we use the inequality U, < w,, to get

Xe®  sup (14 |y\2)0/2U5 <
0<|y[<1/e

Che® if § < gq,
Che®ta=0 if § > .

Using (2.8), we find
Ae® sup (1+ |y|2)9/2U3 <O sup (1 + [y])?|y| =5 < OrevHa70,

ly|>1/e ly|>1/e
Note that a + g = ¢/2+5/2 + O(e) > 3. Therefore, fixing 6 in the range
3
2<0< %, (4.5)

we get estimate (4.2).
Regarding the derivative of R, we have

OuR=(5—e) U "' Z, — 5wl Z, + \e"qUI " Z,.
Owing to (2.11) and (2.12), the proof of estimate (4.3) for ||0,R||.« is similar to that of || R||,..
O

4.1. Proof of Proposition 4.1

Let T be the linear operator that to h with ||h]|.. < 400 associates the unique solution ¢ of
(3.1) with ||¢||« < 400, constructed in Lemma 3.1. Then problem (4.1) can be written as the
fixed point problem

which we can solve by the fixed point mapping principle. For this, let £ be the Banach space of
continuous radial functions ¢ : R* — R with |@||. < oo, endowed with this norm. Let B, C E
be the closed ball in E centred at zero with radius p > 0, where p will be chosen later on.
Owing to (3.4),
IT(N(¢) + R)|[« < CIN ()]l + | Rl 1x)-

We estimate [N (¢1) = N(@2)]l«x for [|¢n]ls, |¢2]l« < p, by writing
1

N(61) — N(dn) = J N'(¢o + t(é1 — b)) di(d1 — ).

0

We see that
[N (1) = N(d2)[lsx < Kll¢1 — 2]l
where
K,= sup | sup LU+ )~ LU+ sup e 20, +6) - LU (46)
Il <p [r<1/e r>1/e
We compute
sup P(Up+ )P = UL < O[] 4 g™ D=20)gp=1) (4.7)
Ty g
and
sup & 2|(Uy + @) = UE T S O 70 gl + 072D 72| g 7). (4.8)

r=l/e
If 2 < g < 3, then we obtain
Kp < C)\Ea(€0+q—6 + 5(9_2)(q_1)_2)p,
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and if 1 < ¢ < 2, then we get
K, < CAe@H(0=2)(a=1)=2 ja—1
Take p = Ae for some A to be fixed. Then for ||¢1||«, [|P2]. < Ae,

IN(¢1) = N(d2)l+x < Ce[[91 = 2|+,

where a > 0 (for any 2 < 6 < 3). This and the estimate for R in (4.2) (valid for 6 > 2 in the
range (4.5)) show that taking A large enough, —T(N(¢) + R) is a contraction from Ba. to
itself, and therefore it has a unique fixed point in this set.

PROPOSITION 4.3. The solution ¢,,, ¢(u) constructed in Proposition 4.1 is C' with respect
to v and satisfies

10upll« + 1 ()] < Ce. (4.9)

Proof. The differentiability of ¢,,, ¢(i) with respect to p follows from the differentiability of
R, the operator T" defined by Lemma 3.1 and the contraction mapping principle, by a standard
argument. We will prove next estimate (4.9). Differentiating (4.1) with respect to u, we find
for v = 0,9,

/ / / 7 OR
Av+ fLlU v = %0+ (fU(Uu + 6) = fLU)) (2 +v) + m
, AZ,wh)
=c Zuwﬁ + c#,

in R?, where Z, is given by (2.10). Let & = v —aZ,w),, where a € R is chosen so that
s f)Zwa; = 0. Differentiating the orthogonality condition in (4.1), we see that a = O(e).
The function ¢ satisfies

AT+ fL(UL)0 %0 + a[A(Zuwﬁ) + fel(Uu)Zuwﬁ - EZZuwﬁ]
B(Z#wf:)

~ OR
+ (fLUu+ ) = fLUDNZy + 0 + aZ#wﬁ) 5= c'Zﬂwﬁ tc EN

o
in R3. Therefore, applying Lemma 3.1 we obtain
on
Ol

where we have used that a = O(e) and ¢ = O(e). Using the function K, introduced in (4.6),
we can estimate

191l +1¢'| < Ce+C |\ (FLU + ¢) = FLUUDNZu + T + aZywy,) + ; (4.10)

I(f2 (U + ¢) = fL(UL)0 ] < O[T (4.11)

<
for some b > 0. Similarly, since a = O(¢) and [ Z,w} |« < C and using the estimates for K,
we find
I(S2(U + ¢) = FL(UL))aZuwy |l es < Ce. (4.12)
Next we claim that
I(S2(Up + ) = FLUW) Zyullor < Ce. (4.13)

The computations for the term u? in f. are similar as before, using K, the estimates (4.7),
(4.8) and || Z, ||« < C. Regarding the term Ae®u?, in the case 2 < ¢ < 3 we compute
e sup (U +¢) ™" = Ui Z,] < sup " (JUL772 + (0|72 6] Z,]
r<l/e r<l/e
< CEa-i-q—Q’
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and note that o + ¢ — 2 > 1. Also, using (2.13)
e sup r?(|UL|"72 4 [9]972)|9l| Zu] < Ce* a2,

r>1/e
In the case 1 < ¢ < 2, a similar calculation shows that
e*supr?|p|771|Z,| < Ceat0-Da=2),
r>0
We note that in the case 1 < ¢ < 2, choosing 6 in the interval (4.5) implies 2 < 60 <2+

(¢ —1)/2(2 — q) which gives o + (6 — 1)(¢ — 2) > 1 for € > 0 small. Therefore, we obtain (4.13).
Using the bounds (4.10)-(4.13) and the estimate for |0, R||.. in (4.3), we deduce

190+ + I¢'| < Ce*[19]] + Ce.
Thus, for € > 0 small we deduce the validity of (4.9). O

4.2. Variational reduction and the proof of the theorem

Next we adjust p such that ¢ = 0. We consider the energy functional
1
B = VP - F(w)
R 2

where F.(u) = [, f-(s)ds, and define
E(N) =EU, + ¢p)-
LEMMA 4.4. We have the expansion
E(p) = B(U,) + o(e),

as € — 0 where this error is in C* norm for y in an interval of the form [5,6].

The proof of this estimate is similar to the one of del Pino, Dolbeault and Musso
[23, Lemma 4].

Proof of Theorem 1.2. Testing equation (4.1) against Zw we obtain

J ¢L.Z, +J N(¢)Z, +J RZ, = CJ ZuZ,w.
R3 R3 R3 R3

A calculation shows that the equation ¢ = 0 is equivalent to
J RZ, + o(e) = 0, (4.14)
R3
as € — 0 where o(g) depends continuously on p for u in (6,671). We observe that
J RZ, = B'().
RI?'

By Lemma 2.4,

E(Uy) = cc +e¥(n) + o(e),
where
U(p) =arp— aglog p

with ay,as > 0 and o(¢) is uniform in C! for y in [4,6~!]. The function ¥ has a unique critical
point p* > 0, which is moreover non-degenerate. Then, owing to Lemma 4.4, equation (4.14)
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can be rewritten in the form
e(¥' (1) +o(1)) =0,

where o(1) — 0 uniformly as ¢ — 0 in [6,6!]. Since p* is a non-degenerate critical point of ¥,
it follows that for € > 0 small there is a unique solution p of (4.14) close to p*. The construction
is concluded. U

4.3. Non-degeneracy and Morse index

We will prove that the solution just built is non-degenerate in the sense that the linearized
operator only contains trivial solutions, and in addition we will compute its Morse index as a
critical point of the associated energy.

We recall the notation f.(u) = u®>~¢ + Ae®ud. Let . be the unique number close to p* such
that E'(u.) = 0. Let u. be the solution constructed before for € > 0 small, having the form
ue = U, + ¢,.. We shall denote in the following:

U,=U,, ¢=¢, and w,=w,.
We need to show that if ¢ is a bounded solution of
A+ fllu )y —e®p =0 in R3,

then 1 is a linear combination of the functions du./dx;, i = 1,2, 3. We note that for convenient
c1, ¢, c3 € R the function ¢ = ¢ — Z?:1 ¢i(Ou, /Ox;) satisfies

J aw’fq/?w‘* —0, j=1,23. (4.15)

ow, 4 B 2 Oue Ow,, 4
Jstaxj w’u n ZQJ 3 8:1:7 &Ej wl“

which is diagonal with the diagonal elements bounded away from 0. Replacing ¢ with 1/;, we
may assume that ¢ satisfies (4.15) and it is sufficient to prove that ¢ = 0.

Let us write ¢ = ¢+ — o1 Z, where o is such that
J Yt Z,w =0, (4.16)
R3
and where Z,,, Zu are defined in (2.9) and (2.10), respectively. Then ¥ satisfies
AP+ fL(U, + ¢t — 2t — an (fL (U + ¢)Z, — bwiZ,) =0 in R,
Multiplying this equation by Zﬂ and integrating, we obtain
or | (U + 02— 50i202, = | (A0, + 02, — 5zt @
We want to estimate the integral
I = JRS (FLUu+ ¢)Zy — 5w}, 2,) Zy. (4.18)
Let us define the energy of the ansatz as

1 g2
T = BU,) = | | 5IVUPE = P0,) + S,
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and let us compute

J'(p) = — JRS(AUAL + fe(Uy) — €2U#)Zﬂv

_ _ [ 07,
T () = — JRS(AZH + U2y —22,) 2, — JRS(AUN + f-(U,) — €2U,) aul .

Differentiating (2.2) with respect to u yields

{AZM — 27, = —5whZ, i R?, (419)

Zu(y) — 0 as [y| — oo,

SO

I = J (FLU, + )2+ ANZ, —22,) 2,
]R?)

. 0z
= =)+ | (UU+ ) = FUNZ = | (AU, + 100 - 2U)GE
=)+ | 20uk0ZE + | (U + ) = £V 2~ 2000 7]

oz
- J (AU, + f-(U,) — 62Uu)a—”.
R3 K
But differentiating (4.19) with respect to u gives
02, 2 0Z, 107,
ou o Hou

Multiplying this equation by ¢,,, integrating and evaluating at p = jic, so that ¢ = 0 in equation
(4.1), we find

A =0.

372
+ 20w, Z;, + Sw

, 02 _
[ICCATERNORROR|

0z
] (20wizﬁ + 5w4“> ¢.
R

m
We solve from here J"Rg, QOwZZELqS and replace it in the formula for I, recalling that R = AU, +
fE(Uu) - EQUH:

_ . qn / 62;4 _ 48ZM J LZM
I'=-J (ME)+JR3 (fa(UM) o Sw, aﬂ>¢+ 25 N(o) BN

+ | 0w+ 0 - 2002 - 20007,

We need to show that all terms in RHS of the above expression, except F"(u), are o(e) as
e — 0. We start estimating

A= J [(fL(U, + @) — fLUW))ZE — 20w ¢ Z2] = A1 + Ag + As,
R3
where

Ay

| ot —vpt — -z,

Ay =| plp—1D)UL26Z} — 20w} Z2,
R3

Az = AsO‘J (qU, + P) 1 — qUﬂfl)Zi.
R3
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Let us estimate Az. In the case 1 < ¢ < 2, we estimate |(U,, + ¢)?"' — Ul < C|¢|?™". Using
that [¢(r)] < e 2r=9|¢|l. < Ce™1r=f for r > 1/e and (2.13), we estimate

EO‘J (U, + gb)q*l - U571|Zi < CSO‘J (8717'70)(171(6741"75)27"2 dr
r=1/e r=1/e
< Ceot -1 -1,

Since a has the form (1.8) and ¢ > 1, we see that o+ (6 —1)(¢ — 1) —1 > 1 for € > 0 small.
Also, since |¢(r)| < Ce(1+7)27% and |Z,(r)| < (1 +7)"! for r < 1/e,

CE&J U+ ) = U Z) < EQJ (e(L+7)*"1 1 +r)"2r2 dr.
r<l/e 0

Therefore, Az = o(g) as € — 0. Similarly, it is possible to verify that A; = o(e), Az = o(¢)
as e — 0.
It follows that

I=—J"(u:)+o(e), ase—0. (4.20)

We estimate the right-hand side of (4.17)
| 0w+ 02, - subz, 0t < celo. (a.21)

We observe that i+ satisfies (4.16) and (4.15) because [gs Z,(0w,,/0z;) = 0. Therefore,
we may apply Lemma 3.3 and obtain

[l < Cllon (FLU + $)Zy = 5w Z) v < Celan]- (4.22)
Combining (4.17) and (4.20)—(4.22), we find
Jon (=" (pe) + o(€))| < Ce?fon].

Since J"(ue) = ¥ (ue)e + o(e) as € — 0, and ¥’ (ue) # 0, we deduce from this that a3 = 0.
This implies that 1) = 1+ and from (4.22) we obtain that 1) = 0, which is the desired non-
degeneracy of the solution wu..

We comment here on the claim that u. has Morse index equal 1. By Morse index, we mean
the largest integer k such that there is a subspace N C C§°(R?) of dimension k on which the
quadratic form

Qlp) = J ] Vol + %p? — pul ™' p* — Age®ud ™"
R

is negative definite.
It is convenient to introduce the eigenvalue problem

Aty + fl(u) — e +vwpp =0 in R? (4.23)

with ¢ € H'(R?). Owing to the weight wy,, the embedding from H'(R?) to L*(wj, dx) is
compact and the theory provides a sequence of eigenvalues v; . — 0o as j — oo with associated
eigenfunctions 1, . € H'(R?®). These eigenvalues can be obtained variationally

. Q - : .
ij’f:lnf{f 1(1)92)()02 ZQOECO (R3)7 <§0,wi,5>:O,’L:1,...,j—1 )
R3 "

where (p1, p2) = IRS galgagwﬁ. Then the Morse index of u, is the same as the number of negative
eigenvalues of (4.23).
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The limit eigenvalue problem
Aty + B5witp + vwip =0 in R?

is known to have a negative eigenvalue v; = —4 with associated eigenfunction ¢, = w,. The
second eigenvalue is 0 with eigenfunctions given by Z,, and dw,,/0z;, i =1,2,3.

The eigenvalue v; . is simple, and the eigenfunction is radial, has exponential decay and
converges as € — 0 (after normalization) to a multiple of . Also vy . — 11 as e — 0.

Now suppose that 1. is an eigenfunction with eigenvalue v, <0, v, # v1 .. Let us consider
first the case that v. stays away from zero. Then one can prove that . converges, after
normalizing ||1).||L2 = 1, to an eigenfunction 1 associated to a negative eigenvalue v < 0. The
case v = v; can be discarded because v is LQ(wa dx) orthogonal to 1, since ). is L? (wl‘i dx)
orthogonal to 11 .. The case v; < v < 0 can be discarded because the limit eigenvalue problem
has only one negative eigenvalue.

In the case v. — 0 as € — 0, we argue as follows. We define

3

~ ou,
Pe = 1P — ;Ci,saixj
with ¢; . chosen so that (4.15) holds for 12}5. Note that
|ciel < Cllvbell. (4.24)

We write ¢, = ¢& — a1 Z, so that (4.16) holds for 1. Observe that 1% also satisfies (4.15).
We compute

4 Oue
m oz,

= al(fe(us)Zﬂ - 5w,,LZ,u, + sz#Z;L) (425)

ij_ + f! (us)wl - s2wL + vew 41/) + v, ZCZ W

in R3. We multiply this equation by Zu and obtain,

1 <I+1/5 J']Ra wﬁZﬁ) = JRB(f (ue)Z, 5w Z)E + VEJ wﬁq/);‘Zu,

R3
where I is the integral (4.18). Owing to (4.20), we find

m(ﬂﬂWJ+d@+%Jlﬁ%)<0@+MMWﬁw
RS

Using Lemma 3.3 and equation (4.25), we obtain

4 0u
ch}” C'||al(f€(u5) 5w Lyt vew, Zu)”** +C ZCZ elVeWy, 3338 (4.26)
=1 ok
As in (4.22),
lloa (fL(ue) Zy — 5wy Zyu + vew, Zy) || < Clo| (e + |ve).
Therefore, (4.26) and (4.24) yield
1z Il < Claul(e + [ve]) + Cloe] [z ||
Then for € > 0 small we obtain
92l < Claul(e + |ve])- (4.27)

Therefore,

o1 (=" + o) +v. [ wlZ) < et Pl
N



NON-UNIQUENESS OF GROUND STATES OF NLS 339

Since J"(pe) = 9"’ (pe)e +o(e) as € — 0, ¥’ (u) >0, and v. <0, v. — 0 as € — 0, we can
conclude that vy = 0 for € > 0 small. This implies that 7,/;5 =L and then (4.27) implies that
1Z€ = 0, which gives that 1. is a linear combination of the functions du./dz;. But v. < 0 and
this implies ¢; . = 0, so 9. = 0, which is a contradiction.

5. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on Theorem 1.2 which provides a large solution and
Lemma 5.1 that gives the existence of a small solution. A degree-theoretical argument will
give the third solution.

We start with the existence of small solutions (for A large). This solution can also be
constructed by a shooting argument, using the results in [11].

LEMMA 5.1. Fix 1 < g <5 and consider p € [py,p2], where 1 < p; < po are fixed (here po
need not be subcritical). Then there exists Ao > 0 such that for all A > )Xo, (1.3) has a solution
uy, which depends continuously on A\ and satisfies ||u|[p~ < CA~'/(4=1),

Proof. By the change of variables u(z) = A='/(@=Dy(z), problem (1.3) gets rewritten as

{Av+)\_’7vp+vq—v20, v > 0in R3, (5.1)

v(z) — 0 as |z| — +o0,

where v = (p —1)/(g — 1) > 0. Let vy € H'(R?) be the unique radially symmetric solution of

Av4v?—v =0, v>0inR> (5.2)
We look then for a solution of (5.1) of the form v = vy + ¢. Then equation (5.1) becomes

Lo+ Ni(¢) + Na(¢) =0 in R?,
where

Lo =A¢+quf ' — 9,
Ni(¢) = Ao + @)%, Na(e) = (vo + 0)} —vf — quf~'¢.

Problem (5.1) can be solved by the contraction mapping theorem in the space E of radial
continuous functions ¢ : R* — R, with the norm

]l = sup e”l[@(x)],
z€R3

where o > 0 is fixed and small. Using the non-degeneracy of vy, see [20, Appendix C| and also
[15, 16], it can be shown that L is invertible from E to E. We look for a solution ¢ of

¢ = L™ (N1(6) + Na(0)).
In fact, we have
INL(¢1) = Ni(2)llo S ATV ¢1 = d2llo,  [N1(0)]lo < CATY
and
IN2(¢1) — Na(¢a)[lo < A™™ME1Y| gy — 6y
Then we find a unique solution ¢ € E with ||¢|l, < AA™7Y and A large. O
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Next we compute the total degree of the solutions of (1.3). For this purpose, we introduce
the operator

T(u) = G (uf + Aul)

foru e HL ((R?) = {u € H'(R®) : w is radial}, where G is the Green function defined in (2.6).
Fixed points of T in H' j(R?) are automatically solutions of (1.3).

rad

We can write T' = G * A(u), where A(u) = uf 4+ Auf. By the lemma of Strauss [28], A :
H! (R3) — LS ,(R?) is completely continuous. Since G is C°° with exponential decay, u €
LS J(R?) — G xue H. (R?) is a bounded linear operator, and we get that 7': H'(R3?) —

rad
H'(R3) is completely continuous.

For 1 < g < p < 5, there is an apriori bound for solutions of (1.3), that is, there is R > 0
such that for any solution w of (1.3) we have

||UHH1(R3) < R. (53)

Indeed, using a blow-up argument and the non-existence result of Gidas and Spruck [14], there
exists R such that for any solution u of (1.3) satisfies

[ull Lo ey = u(0) < R.
Then a barrier argument gives
u(x) < Ce™®l for all z € R®

for some ¢ > 0 (see, for example, [6]). This implies the apriori estimate (5.3). Moreover, this
estimate is uniform for bounded A.
Then, for R > 0 large enough, the Leray—Schauder degree deg(I — T, Br(0), 0) is well defined.

LEMMA 5.2. Forall A >0, if R > 0 is large, then deg(I — T, Br(0),0) = 0.

Proof. We introduce a family of operators T : H'(R?) — H'(R?) defined by
Ty(w) = G+ ((tg +uy)? +ul),
where t > 0 and g(x) > 0, is a radial C*® function with compact support such that g =1 in
the unit ball B;(0). The same argument that leads to the apriori estimate (5.3) shows that for
any L > 0, there exists R > 0 such that for any ¢ € [0, L] and any fixed point u € Hrlad(RS) of
T, we have
||UHH1(R3) < R.
Then by homotopy invariance of the degree,
deg(I - TO; BR(O)v 0) = deg(I - TL, BR(O)v 0)

We claim, that the above total degree is zero if L is large, which we can prove by showing
that 77, as no fixed points. Suppose to the contrary that 77, has a fixed point u € H], j(R3).
Then u solves

Au+ (u+ Lg(x))P +  u? —u=0 inR>, (5.4)
and decays to zero exponentially as |z| — +o00.
Let 1 € HY(R3), » > 0 be the principal eigenfunction of
—Ap+¢=pgp inRY,

where g > 0 is a smooth non-trivial function with compact support in the unit ball. The
existence of this principal eigenfunction associated to an eigenvalue > 0 can be found in [19].
We normalize the eigenfunction ¢ so that ¢(0) = 1, and note that it decays exponentially to
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zero. Multiplying (5.4) by ¢ and integrating in R?, we get

J (u+ Lg)Pe + Ao = MJ- guep.
R3 R3
If we choose L large enough, then we have

(wt L)P = pllgll~u+1 Vu =0,
and therefore, (u+ Lg)P + Auf > pgu + 1 in Bo(1). This yields

J » <0,
R3

which is impossible, and we conclude that (5.4), has no solutions. O

LEMMA 5.3. Fix 1 < ¢ < p < 5. Then for all X sufficiently large (depending on p,q), (1.6)
has a unique radial solution.

Proof.  'We proceed by contradiction. Suppose that for a sequence \,, — 400, there are two
different radial solutions vy ,,, v2,, of (5.1). Using a blow-up argument, we can show that vy .,
va,, remain uniformly bounded in R?, and then that they converge uniformly on compact sets
to the unique radially symmetric solution vy of (5.2).

Let

Vin — U2n

Wy, = .
" ||U1,n - Uz,nHLw(RB)

Then w,, satisfies

Aw, + XY A, (2)wy, + By (x)w, —w, =0 in R3,

where
P P q q
v — U v — U
1,n 2,n 1,n 2.n
A, =-Ln 2no g o Ln 2
VUi,n — U2,n Vin — U2n

Using a barrier, we get |w,, (z)| < Ce~%%l for some constants C, § > 0 and all large n. Therefore,
there is some z,, € R? such that |w,(z,)| = 1, and x,, remains bounded. By elliptic regularity,
up to subsequence w, — w uniformly on compact sets, and w is bounded and satisfies

Aw+ qui'w—w =0 inR>

By the non-degeneracy of vy, deduce that w =0 (see [2, p. 47]). But also up to subsequence
2, — xo and hence |w(xg)| = 1, which yields a contradiction. O

Proof of Theorem 1.1. Let Ag be as in Lemma 5.2. The solution uy of (1.6) constructed
in that lemma for A\ > \g is continuous with respect to A, and is also isolated in the space
FE in that lemma. By elliptic regularity, it is isolated also in Hrlad(R3). Therefore, the local
degree of T around wu) is well defined. But for A > 0 very large the total degree is zero, there
is uniqueness of non-trivial solutions, and the zero solution has local degree 1. Therefore, the
local degree of T around wuy is —1 for all A > \g.

By Theorem 1.2, for any A > 0 there exists & > 0 such that for 0 < ¢ < £and 0 < A < X there
exists a solution Uy of (1.6) of the form (1.9). In particular,

U.2(0) = Ce™Y2(1 + 0(1)) (5.5)

as € — 0, and this is uniform for 0 < A < A Moreover, this solution is non-degenerate in the
space of radial functions by Theorem 1.2.
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Fix A > X\g and & > 0 small, and let \g < A < X\. We note that U. ) # uy because ||u = <
CA~Y(a=1) and (5.5). Since

deg(I — Ty, Br(0),0) = 0

for A\g < A < A (R is fixed large), U; » is non-degenerate and the local degrees of uy and 0 are
—1,1, respectively, by degree theory we conclude that there exists a third solution of (1.6). []

6. Three solutions

In this section, we sketch the proof of Theorem 1.3 in the case 2 < ¢ < 3. The case ¢ =2 is
analogous.
We look for solution of problem
Au+ud=c+ Xe=B-D/249 — 4y =0 in R3,
(PE) . 3 N 1 3
u>0 inR° win H(R?).

By the rescaling in Section 2, we obtain

Au+u’f + Xe®u? —e2u =0, u>0in R3, 6.1)
u(y) — 0 as |y| — oo, '
where
54:1_@.
24—¢)

To prove Theorem 1.3, we follow the proof of Theorem 1.2. For that, we need to study the
solvability of the linear problem (3.8) with A = A and o = @. This is done in Lemma 3.3, for
(3.8). Rewriting the proof of Lemma 3.3, now using A = A and o = @&, we obtain the result. For
problem (6.1), we can prove the error estimates (4.2) and (4.3) as in Lemma 4.2, using that

2 <q<3,and A = X and a = &. Note that now A < )¢ in Lemma 4.2. The expansion of the
energy is different and is given in the next lemma.

LEMMA 6.1. Assume 2<¢q<3, A>0 and § >0 be fixed. Then there exist positive
constants ag, ay, as,as, ay for such that § < p < ="

E(U,) = ao +e¥(u) — ageloge — aze + €O (),
where
U(p) =aip— M0 2q, — aylog p,

and ©.(u) — 0 as € — 0 in the C* norm in the interval § < pu < J~1.

Combining the solvability of the linear problem, the error estimates and the above lemma,
we can conclude the proof of Theorem 1.3. Note that W has two non-degenerate critical points
for each 0 < A < Ag. In fact,

194 @3- -
V'(p) = a1 - /\Tu(3 D204 — app”"

is negative for small and large u, and has a unique critical point that is a maximum. In this
maximum point fimayx, the function W (pmay) is positive if and only if 0 < A < Ao, where ) is
given by (1.11). In this case, the equation W' () = 0 has two positive solutions p*()\) satisfying
(1.12). Note that = is a local minimum and g% is a local maximum of ¥(u). Following the
argument in Section 4, the solution u_ has Morse index 1 and u has Morse index 2.
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