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In part I of this two-part paper, a new theoretical
framework was presented to describe the response
of electro-elastic bodies. The constitutive theory that
was developed consists of two implicit constitutive
relations: one that relates the stress, stretch and the
electric field, and the other that relates the stress, the
electric field and the electric displacement field. In
part II, several boundary value problems are studied
within the context of such a construct. The governing
equations allow for nonlinear coupling between the
electric and stress fields. We consider boundary
value problems wherein both homogeneous and
inhomogeneous deformations are considered, with
the body subject to an electric field. First, the extension
and the shear of an electro-elastic slab subject to an
electric field are studied. This is followed by a study
of the problem of a thin circular plate and a long
cylindrical tube, both subject to an inhomogeneous
deformation and an electric field. In all the boundary
value problems considered, the relationships between
the stress and the linearized strain are nonlinear, in
addition to the nonlinear relation to the electric field.
It is emphasized that the theories that are currently
available are incapable of modelling such nonlinear
relations.

1. Introduction
In part I of this two-part paper [1], we extended the
implicit constitutive theory proposed by Rajagopal [2–4]
for describing the response of elastic bodies that lead
to models that are neither Cauchy elastic nor Green
elastic (see Truesdell & Noll [5] for a definition of the
same), to the electro-elastic response of materials. This
generalization involves two sets of implicit constitutive
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relations, one between the stress, the Cauchy–Green tensor and the electric field and an implicit
relation between the stress, the electric field and the electric displacement field. The theory
developed was also restricted to a simplified form of Maxwell’s equations. Unlike the studies
of Rajagopal & Srinivasa [6,7] that consider implicit constitutive relations for elastic bodies
within the context of a thermodynamic framework, our generalization to electro-elasticity was
not within the context of a fully thermodynamic framework but was restricted to mechanical,
electrical and magnetic effects. After developing implicit constitutive relations that are capable of
describing large deformations, we obtained approximations wherein the displacement gradient
and the electric displacement are assumed to be small; the constitutive relations, however, yet
being nonlinear. As discussed in part I, such constitutive relations are capable of describing the
nonlinear response that is observed in piezoelectric bodies, which the classical small displacement
gradient theories are incapable of describing.

A special subclass of the fully implicit constitutive relations is one wherein explicit constitutive
relations are prescribed for the Cauchy–Green stretch in terms of the stress, the electric field and
the electric displacement vector. This constitutive relation can also be approximated by assuming
that the displacement gradient and the electric displacement vector are appropriately small. This
part of the paper is devoted to the study of boundary value problems corresponding to both
homogeneous and inhomogeneous states of stress, within the context of such an approximation.
We first consider the homogeneous state of stress of a slab, first when subject to traction, and
then when subject to shear, the slab being in the presence of an electric field in both problems.
This is followed by the analysis of a thin circular plate which is inflated in the radial direction,
wherein the state of stress is inhomogeneous. Finally, we study the inhomogeneous inflation of
a long cylindrical annulus. In all the boundary value problems that were studied, the strains
remain very small, though the stresses and the electrical field are large, and, more importantly,
the relationship between the stress and the linearized strain is nonlinear. We cannot emphasize
enough the fact that unlike the present theory, the theories that are currently in place are incapable
of describing a nonlinear relationship between the linearized strain and the stress.

2. Basic equations

(a) Kinematics and the equations of electrostatics
Let X ∈ κR(B) denote a particle belonging to a body B in the reference configuration κR(B), and let
x ∈ κt(B) denote the position of the same particle in the current configuration κt(B), at time t. We
shall assume that the mapping χ , which assigns the position x at time t, x = χ(X, t) is sufficiently
smooth so as to make all the derivatives that are taken, meaningful. The displacement u, the
deformation gradient F, the Cauchy–Green stretch tensors b and c and the linearized strain ε are
defined through

u = x − X, F = ∂χ

∂X
, b = FFT, c = FTF, ε = 1

2

[(
∂u
∂x

)
+
(

∂u
∂x

)T
]

. (2.1)

More details concerning kinematics can be found in references [8,9]. In this paper, we are
interested in studying quasi-static problems of electro-elastic bodies.

We denote by E and D, respectively, the electric field and the electric displacement in the
current configuration. The fields E and D satisfy a simplified form of Maxwell’s equations in
the absence of magnetic interactions, distributed charges and time dependence, namely

curl E = 0, div D = 0. (2.2)

In vacuum B′, the following relation is valid:

D = ε0E, (2.3)

where ε0 is the electric permittivity in vacuum.
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The polarization field P for condensed matter is defined as

P = D − ε0E. (2.4)

Across a surface of discontinuity in the body or the boundary ∂κt(B), considering there is no
distribution of electric surface charges, the fields E and D have to satisfy the continuity conditions

n × [[E]] = 0, n · [[D]] = 0, (2.5)

where n is the unit outward normal to ∂κt(B). The double brackets represent the jump across
the surface of discontinuity, for example, [[D]] = Do − Di, where Do and Di would be the electric
displacements on either side of the boundary, respectively (evaluated very close to the surface of
discontinuity). More detail about the theory of electromagnetism can be found, for example, in
Kovetz [10].

There are different ways in which the equilibrium equations can be used when dealing with
electromagnetic interactions [11]. A simple formulation is based on the use of a ‘total stress’ tensor
τ , which incorporates in its definition a term related with the electric body forces [12]. This total
stress tensor is symmetric and in the current configuration the equilibrium equation is of the form
(in the absence of time dependence)

div τ + ρf = 0. (2.6)

The continuity condition across a surface of discontinuity of the surface of the body ∂κt(B) in
the current configuration is of the form [12,13]

[[τ ]]n = 0, (2.7)

where if ta is the mechanical traction per unit area, then the above condition implies that

τn = ta + τmn, (2.8)

where τm is the Maxwell stress due to the electric field outside the material near the boundary of
the body [11]

τm = Do ⊗ Eo − 1
2 (Do · Eo)I. (2.9)

(b) Some new constitutive relations for electro-elastic bodies
We [1] proposed the following implicit relations to describe the response of electro-elastic bodies:

f(τ , b, E) = 0, l(τ , E, D) = 0, (2.10)

where f is a tensor implicit relation and l is a vector implicit relation. In this paper, we work with
the subclass of (2.10), which is a consequence of a linearization based on ‖∇u‖∼ O(δ), δ � 1. We
consider the special subclass that takes the form

ε = f̂(τ , E), l(τ , E, D) = 0. (2.11)

For isotropic functions f̂ and l, (2.11) leads to (see §3.3 of Bustamante & Rajagopal [1])

ε = α̂0I + α̂1τ + α̂2τ
2 + α̂3E ⊗ E + α̂4(E ⊗ τE + τE ⊗ E) + α̂5(E ⊗ τ 2E + τ 2E ⊗ E) (2.12)

and

β0E + β1τE + β2τ
2E + β3D + β4τD + β5τ

2D + β6[τ (E × D) + (τD) × E)] = 0, (2.13)

where α̂i, i = 0, . . . , 5 are scalar functions that depends on the invariants (see Spencer [14])

I1 = tr τ , I2 = tr τ 2, I3 = tr τ 3, I4 = E · E, I5 = E · (τE), I6 = E · (τ 2E) (2.14)
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and βj, j = 0, 1, . . . , 6 are scalar functions that depend on the invariants (2.14) and the invariants

I7 = D · D, I8 = D · (τD), I9 = D · (τ 2D), I10 = (D · E)2, I11 = [D · (τE)]2. (2.15)

We shall also consider the approximation to (2.10) under the assumptions ‖∇u‖∼ O(δ) and
‖D‖∼ O(δ) with δ � 1; in fact, we shall consider the special subclass of electro-elastic bodies
defined by

ε = f̂(τ , E), D = l̂(τ , E). (2.16)

For isotropic functions f̂ and l̂, (2.16)1 reduces to (2.12), whereas (2.16)2 leads to

D = β̂0E + β̂1τE + β̂2τ
2E. (2.17)

The functions β̂j, j = 0, 1, 2 depend on the invariants (2.14).
In what follows, we solve some boundary value problems that are governed by

equations (2.12), (2.13) and (2.12), (2.17) in order to determine the efficacy of such models. We
first consider problems wherein the stress and the electrical field are homogeneous and we
consider problems within the confines of the constitutive relations (2.12) and (2.13). We follow
this with a study of a problem wherein the stress and the electrical field within the body are
inhomogeneous, within the context of constitutive equations (2.12) and (2.17), where we assume
that the functions f̂ and l̂ are isotropic, although in many applications involving electro-active
bodies, it is necessary to work with anisotropic bodies. As outlined in part I, applications such
as piezoelectricity demand the use of such anisotropic bodies. However, there is a dearth of
experimental data against which one can corroborate the predictions of the theory, especially
in reasonably simple geometries wherein one can solve initial boundary value problems, as the
equations are nonlinear and quite complicated. Moreover, it is important to first solve problems
in simple enough geometries to assess the usefulness of such models before embarking on studies
of boundary value problems in complicated geometries.

(c) Boundary value problems
We shall first give a short account of some important issues concerning the solution of boundary
value problems within the context of nonlinear electro-elasticity. Unlike classical problems in
elasticity (or electro-elasticity), wherein the expression for the stress is substituted into the balance
of linear momentum that leads to an equation for the displacement field (and the electric field),
we now have the situation wherein the constitutive relation has to be solved simultaneously
with the balance of linear momentum. Thus, the stress is also a primitive in this approach. The
basic variables that we work with are: the total stress tensor τ , the electric field E, the electric
displacement D, the linearized strain tensor ε and the displacement field u. These quantities have
to satisfy the implicit constitutive relations (2.11): ε = f̂(τ , E), l(τ , E, D) = 0 (or (2.16)2 D = l̂(τ , E)),
the equilibrium equation (no mechanical body forces and time dependence) (2.6): div τ = 0, the
simplified form of the Maxwell equations (2.2) (considering no time dependence): curl E = 0,
div D = 0 and the kinematical relation (2.1)5, namely ε = 1

2 [∇u + (∇u)T].
Let us assume that the electric field is expressed through a scalar electric potential ϕ in the

following manner:

E = −grad ϕ. (2.18)

Such a potential would automatically satisfy (2.2)1. To summarize, we need to find ε, τ , ϕ, D by
solving the equations (2.11), (2.6), (2.2)2 and (2.1)5

ε = f̂(τ , E), l(τ , E, D) = 0, div τ = 0, div D = 0, ε = 1
2 [∇u + (∇u)T], (2.19)

and considering (2.16)2 instead of (2.11)2 in the case ‖D‖∼ O(δ) with δ � 1.
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There are six components each for the strain and total stress tensors, three components for
the electric displacement and the displacement field, and one component for the electric scalar
potential; therefore there are 19 unknowns. If we count the number of equations in (2.19), then
there are six equations from f̂, three for l (or l̂ in the case of (2.16)2), three equilibrium equations
for the stress, one equation for the electric displacement and six for the strain–displacement
kinematics relation; therefore we have in total 19 equations, and so the problem is determinate.

An alternative method to solve the boundary value problem is to introduce a stress tensor
potential, where (see equation (227.10) in §227 of Truesdell & Toupin [9])

τ km = ekrpemsqars,pq, (2.20)

where ekrp is the permutation symbol and ars = asr are the components of the stress tensor
potential. In such a case, (2.19)3 would be satisfied automatically. If we assume again that (2.18)
holds, then we would need to find the six components of ars, the six components of ε, the three
components of D and the scalar electric potential ϕ; therefore, in this alternative case, we would
need to find 16 unknowns. These unknowns should be found by solving (2.19)1 (six equations),
(2.19)2 (three equations), (2.19)4 (one equation) and (2.19)5 would be replaced by the compatibility
equations (only six are independent) [9]:

R(ε)

kmpq = 0, (2.21)

where the components of the Riemann tensor R(ε)

kmpq are defined in terms of ε, for example in
equation (34.2) of Truesdell & Toupin [9] (the compatibility equations are necessary in order to
obtain a unique displacement field solving (2.19)5); therefore, we have, in total, 16 unknowns and
again the problem is determinate.

If we are interested in solving the boundary value problem without using (2.18), we would
have to consider the 19 equations in (2.19) plus (2.2)1, which has three components, so in total we
would have 22 equations to be solved. However, with regard to the unknowns, we would have
the 18 independent components of ε, τ , D and u, plus the three components of E, so in total there
are 21 unknowns, which would make the problem ill-conditioned (unless we use (2.18)). This is an
interesting fact about the simplified form of the Maxwell equations used in this work; we would
not run into such a difficulty when using the full system of Maxwell’s equations and the balance
of linear momentum; for a detailed discussion, see [15] in particular §3 therein.

With regard to the boundary conditions, in most of the works published in electro-elasticity,
the investigators have considered only the body and not the surrounding space for the analysis,
but Maxwell’s equations (and its specializations (2.2)) have to be satisfied not only for the electro-
elastic body under consideration, but also for the whole surrounding space (see the discussion in
Kovetz [10]). It is important to recognize this aspect to the problem in order to obtain a meaningful
solution; however, if one is only interested in the response of the electro-elastic body, we enforce
the usual boundary conditions for the displacement field and the stress

u = ũ(x) x ∈ ∂κu
t (B), τn = t̃(x) x ∈ ∂κ t

t (B),

and for the electric variables (assuming ϕ is the basic variable, in virtue of its clear physical
meaning in electrostatics [10,16]):

ϕ = ϕ̃(x) x ∈ ∂κ
ϕ
t (B), D · n = D̃(x) · n x ∈ ∂κD

t (B),

where ũ, t̃, ϕ̃ and D̃ are known fields on the boundary of the body in the current configuration
κt(B), where ∂κt(B) = ∂κu

t (B) ∪ ∂κ t
t (B) = ∂κ

ϕ
t (B) ∪ ∂κu

D(B), and ∂κu
t (B) ∩ ∂κ t

t (B) = Ø, ∂κ
ϕ
t (B) ∩

∂κD
t (B) = Ø. If we assume for simplicity that the body is in free vacuum, it is possible to show

that the presence of the surrounding space could have an important impact on the distribution of
electric field, and therefore in the deformation of the body, because of the continuity conditions
(2.5), (2.7) (for the equivalent magnetoelastic problem see [17,18]). The effect of considering the
exterior free space depends on the geometry of the body, and in particular on its electromechanical
behaviour and the magnitude of the electric susceptibility in vacuum ε0 [19].
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We make two additional remarks before turning our attention to presenting solutions to some
simple boundary value problems:

— the fulfillment of the continuity conditions (2.5) for ‘finite’ geometries is not easy to
achieve. In the classical theory of nonlinear electro-elasticity, there is one exact solution,
to the best of our knowledge, for a boundary value problem that takes into account (2.5)
for electro-active bodies of finite size; almost all exact solutions that have been established
thus far have been obtained assuming infinite long tubes, slabs and cylinders (see [20]),
the only exception being the problem of inflation of a sphere, see §5 of [13];

— regarding the boundary conditions for the traction, we must recognize that mechanical
surface traction can be applied only by the interaction with the surface of another external
body (see the discussion in Bustamante [21]). In the case of the traction associated with
Maxwell stresses that appears in (2.8) (see (2.9)), for the sake of simplicity, we will assume
that such Maxwell stresses can be incorporated into the definition of the external traction
(see the discussion in McMeeking & Landis [22]); and

— when the bodies are in empty space, we consider the Maxwell stresses (2.9) as external
traction loads in (2.8) [23].

3. Homogeneous stresses and electrical field
Let us consider two simple problems wherein we can assume that we have a homogeneous
distribution of the total stress and the electric field.

(a) Slab under traction
Let us consider a slab defined through

− L1

2
≤ x1 ≤ L1

2
− L2

2
≤ x2 ≤ L2

2
, −L3

2
≤ x3 ≤ L3

2
. (3.1)

Because we work under the assumption of small gradient for the displacement field, we do
not make a distinction between the current and the reference configurations; therefore, in this
particular problem and in the three problems that are described later, the body is described by
using the coordinates in the current configuration.

Let us assume that L3 � L1 and L2 � L1. Let us further assume that the stress and the electric
field are of the form:1

τ =
3∑

i=1

τ0i ei ⊗ ei, E = E0e1, (3.2)

where τ0i , i = 1, 2, 3 and E0 are constants; therefore (2.19)3 and (2.2)1 are automatically satisfied. In
this case, it follows from (2.12) that

ε11 = α̂0 + α̂1τ01 + α̂2τ
2
01

+ α̂3E2
0 + 2α̂4E2

0τ01 + 2α̂5E2
0τ

2
01

(3.3)

and

ε22 = α̂0 + α̂1τ02 + α̂2τ
2
02

, ε33 = α̂0 + α̂1τ03 + α̂2τ
2
03

, (3.4)

and εij = 0, i = j, i, j = 1, 2, 3. The scalar functions α̂q, q = 0, 1, . . . , 5 depend on the invariants (2.14)

I1 = τ01 + τ02 + τ03 , I2 = τ 2
01

+ τ 2
02

+ τ 2
03

, I3 = τ 3
01

+ τ 3
02

+ τ 3
03

(3.5)

and

I4 = E2
0, I5 = E2

0τ01 , I6 = E2
0τ

2
01

. (3.6)

1For problems where we consider uniform distribution of electric field, it is not necessary to use (2.18) because (2.2)1 is
satisfied trivially.
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Because τ0i , i = 1, 2, 3 are constant, and because in virtue of (3.3)–(3.6), we can also conclude that
the components of the strain are constant, it follows that the compatibility equations (2.21) are
satisfied and from (2.19)5 a unique u can be calculated.

From (3.2) and (2.13), it cannot be said immediately that D has only a component in the x1-
direction; therefore, we shall assume that in general D is of the form

D = Diei. (3.7)

From (3.2) and (2.13), we obtain that

β0E0 + β1τ01 E0 + β2τ
2
01

E0 + β3D1 + β4τ01 D1 + β5τ
2
01

D1 = 0, (3.8)

(β3 + β4τ02 + β5τ
2
02

)D2 + β6τ02 E0D3 = 0 (3.9)

and β6(τ03 − τ02)E0D2 + (β3 + β4τ03 + β5τ
2
03

)D3 = 0, (3.10)

where the functions βr, r = 0, 1, 2, . . . , 6 depend on the invariants (3.5) and (3.6) and the invariants
(2.15)

I7 = D2
1, I8 = D2

1τ01 , I9 = D2
1τ

2
01

, I10 = D2
1E2

0, I11 = D2
1τ

2
01

E2
0. (3.11)

We note that (3.9) and (3.10) can be written as(
β3 + β4τ02 + β5τ

2
02

β6τ02 E0

β6(τ03 − τ02 )E0 β3 + β4τ03 + β5τ
2
03

)(
D2
D3

)
=
(

0
0

)
. (3.12)

If M denotes the matrix M=
(

β3+β4τ02 +β5τ
2
02

β6τ02 E0

β6(τ03 −τ02 )E0 β3+β4τ03 +β5τ
2
03

)
, we have two possible solutions for D.

One solution is obtained if we assume D2 = D3 = 0, but there could be another possibility, which
is to assume that in general D2 = 0 and D3 = 0, and detM= 0. In that case, it follows from (3.11)
that equation detM= 0 would be, in general, a nonlinear relation for D1. If D1 is found such that
both detM= 0 and (3.8) are satisfied, then from (3.12) there would be other possibilities for D2 and
D3 and one of the two would be arbitrary.

For the sake of simplicity, let us consider the solution D2 = D3 = 0, then from (3.5), (3.6), (3.11)
and (3.8), we would have an algebraic equation (in general nonlinear) to obtain D1 in terms of E0
and τ0i , i = 1, 2, 3. Because such a value for D1 would be constant, then (2.19)4 would be satisfied
automatically.

We thus have a solution for the set of equations (2.19); let us now turn our attention to a
discussion of the boundary conditions. At the surfaces x1 = ±L1/2, if we want (2.5)2 to be satisfied,
then we need

Do
1 = D1, (3.13)

where Do
1 is the electric displacement outside the body at the boundary. From (2.3), for vacuum

we would have

Do
1 = ε0Eo

1. (3.14)

Across the surfaces x2 = ±L2/2 and x3 = ±L3/2 in order for the continuity condition (2.5)1 to
be satisfied we would need Eo

1 = E0, but this condition in general does not give the same value
for Eo

1 as that which is obtained from (3.13) to (3.14); however, if L3 � L1 and L2 � L1, the surfaces
x2 = ±L2/2 and x3 = ±L3/2 are located far away, and so, as an approximation, we do not consider
the electric continuity conditions for such surfaces.

Therefore, from the point of view of the electric field, from the exterior space we need (as an
approximation) an electric field of the form

E = Eo
1e1, (3.15)

where Eo
1 is obtained from (3.14) and (3.13). Such an electric field and the electric displacement

associated with it are constant and so they satisfy the simplified forms of Maxwell equations for
vacuum.
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With regard to the mechanical boundary conditions, we assume that at the surfaces x2 = ±L2/2
and x3 = ±L3/2 external mechanical forces are applied such that the total stress inside the body is
given by (3.2)1. If we denote t̃ to be this external mechanical traction, from τn = t̃ we find that on
the surfaces x2 ± L2/2 and x3 ± L3/2

t̃ = ±τ02 e2, t̃ = ±τ03 e2, (3.16)

respectively. As for the surface x1 = ±L1/2, we assume that the body is exposed to free vacuum,
and the traction will be found using the Maxwell stress (2.9). Using (3.15) and (2.3) for the exterior
field, from (2.9) we have

τm = ε0(Eo
1)2

2
(e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3), (3.17)

and so from (3.17) we find that τmn = (ε0(Eo
1)2/2)e1 on the surface x1 = L1/2 and τmn =

−(ε0(Eo
1)2/2)e1 on the surface x1 = −L1/2; therefore, from (2.8) we have

τ01 = ε0(Eo
1)2

2
on x1 = ±L1/2. (3.18)

We note that in (3.2)1 the stress τ01 is not an arbitrary quantity, but depends on the magnitude of
the electric field.

(b) A slab in a state of shear
For the problem in question, we shall assume a solution for stress and electric field of the form

τ = τ012(e1 ⊗ e2 + e2 ⊗ e1), E = E0e1, (3.19)

where τ012 and E0 are constant. We consider the same geometry defined by (3.1), but for this
problem, we assume that the external force is applied at the surfaces x1 = ±L1/2. From (2.12), we
obtain that

ε11 = α̂0 + α̂1τ
2
012

+ α̂3E2
0 + α̂5τ

2
012

E2
0, ε22 = α̂0 + α̂2τ

2
012

, ε33 = α̂0 (3.20)

and

ε12 = α̂1τ012 + α̂4τ012 E2
0, ε13 = ε23 = 0, (3.21)

whereas from (2.13), we have

β0E0 + β2τ
2
012

E0β3D1 + β4τ012 D2 + β5τ
2
012

D1 − β6E0D3τ012 = 0, (3.22)

β1τ012 E0 + β3D2 + β4τ012 D1 + β5τ
2
012

D2 = 0 (3.23)

and β3D3 − β6E0τ012 D1 = 0, (3.24)

where Ii, i = 1, 2, . . . , 11 are given from (2.14), (2.15)

I1 = I3 = I5 = 0, I2 = 2τ 2
012

, I4 = E2
0, I6 = τ 2

012
E2

0, I7 = D2
1 + D2

2 + D2
3 (3.25)

and

I8 = 2τ012 D1D2, I9 = τ 2
012

(D2
1 + D2

2), I10 = D2
1E2

0, I11 = τ 2
012

E2
0D2

2. (3.26)

From (3.23) and (3.24), in general, D2 and D3 are different from zero, unlike the previous problem
studied in §3a.

Regarding the continuity conditions (2.7), the assumption is that the mechanical traction is
applied at the surfaces x1 = ±L1/2. For these surfaces, on using (2.5)2, we find that D1 = Do

1 and
so from (2.3), we obtain Eo

1 = ε−1
0 Do

1 = ε−1
0 D1. Regarding (2.5)2, from (3.19), we obtain Eo

2 = Eo
3 = 0

at x1 = ±L1/2. Because L1 � L2 and L1 � L3, the surfaces x2 = ±L2/2 and x3 = ±L3/2 are far away,
and thus we do not check the continuity conditions (2.5) at those surfaces.
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4. Non-homogeneous distribution of stresses
In this section, for the sake of simplicity, only the constitutive relations given by (2.16) will be
considered, which in the case of isotropic functions f̂, l̂ reduce to (2.12) and (2.17). For the class
of problem discussed here, complex ordinary differential equations will be obtained, which are
solved using numerical methods; therefore, some additional assumptions are needed regarding
the constitutive equations (2.16) in order to obtain closed form solutions.

We assume there exists a scalar function Ω = Ω(τ , E) such that

ε = ∂Ω

∂τ
, D = −∂Ω

∂E
. (4.1)

This assumption has been made with the purpose of facilitating the development of
prototypical expressions for the functions α̂i and β̂j, i = 0, 1, . . . , 5 and j = 0, 1, 2 in (2.11) and (2.17).
The function Ω has not been obtained on the basis of thermodynamic arguments; such an analysis
is beyond the scope of this work.

For an isotropic function Ω = Ω(I1, I2, I3, I4, I5, I6), where Ik, k = 1, 2, . . . , 6 are defined in (2.14).
Using the chain rule for the derivative (in index notation for a Cartesian coordinate system) from
(4.1), we have εij = ∂Ω/∂τij =∑6

k=1(∂Ω/∂Ik)(∂Ik/∂τij) and Di = −∑6
k=1(∂Ω/∂Ik)(∂Ik/∂Ei), which

after some algebraic manipulations become

ε = ∂Ω

∂I1
I + 2

∂Ω

∂I2
τ + 3

∂Ω

∂I3
τ 2 + ∂Ω

∂I5
E ⊗ E + ∂Ω

∂I6
(E ⊗ τE + τE ⊗ E) (4.2)

and

D = −2
(

∂Ω

∂I4
E + ∂Ω

∂I5
τE + ∂Ω

∂I6
τ 2E

)
, (4.3)

with the following relationships holding:

α̂0 = ∂Ω

∂I1
, α̂1 = 2

∂Ω

∂I2
, α̂2 = 3

∂Ω

∂I3
, α̂3 = ∂Ω

∂I5
, α̂4 = ∂Ω

∂I6
, α̂5 = 0 (4.4)

and

β̂0 = −2
∂Ω

∂I4
, β̂1 = −2

∂Ω

∂I5
, β̂2 = −2

∂Ω

∂I6
. (4.5)

We shall consider the resolution of boundary value problems in electro-elasticity, wherein the
class of bodies of interest exhibit two characteristics: the first is the strain limiting behaviour that
is exhibited by a large class of electro-elastic bodies, the second is the saturation phenomenon for
the polarization field P in terms of the intensity of the electric field. Thus, it is imperative that one
picks constitutive relations that reflect such characteristics.

In Bustamante & Rajagopal [24] (see also Ortiz et al. [25]), a scalar function Ω was proposed
so that the model exhibits ‘strain-limiting’ behaviour; the specific form chosen for Ω is −α[I1 −
(1/β) ln(1 + βI1)] + (αγ /ι)

√
1 + ιI2, where α, β, γ and ι are constants. An interesting feature of

such a function is that it is not only strain limiting but the model also exhibits different response
with regard to compression and tension. From the point of view of numerical computations,
some difficulties arise when I1 < 0, especially when βI1 → −1; therefore, a modified version of
the function presented in Bustamante & Rajagopal [24] is used here, that is Ω is of the form
−α[I1 − ∫I1

0 (1/(1 + β(� 2)b)) d� ] + (αγ /ι)
√

1 + ιI2, where b is a constant with b > 1
2 .

In Bustamante [26], an expression for an energy function was proposed for the equivalent
magnetoelastic problem, which produces the saturation phenomena (in that case for the
magnetization) discussed within the context of fig. 1 in Bustamante & Rajagopal [1], such a
function has the form (for isotropic bodies): (elastic part)(g0 + g1I4) − ln[cosh(

√
I4/m1)]m0m1 −

(ζ0/2)I4 + (ε0ζ1/2)I5, where g0, g1, m0, m1, ζ0 and ζ1 are constants.
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Table 1. Values for the constants in (4.6).

α 10−8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β 10−3 1

Pa2b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ 10
1
Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ι 5 × 10−7 1

Pa2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g1 −10−10 V
m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m0 10−2 VC
m3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m1 103
V
m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζ0 10−7 Nm
2

C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζ1 10−8 1
Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε0 8.854 × 10−12 Nm
2

C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b 0.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In view of the previous discussion concerning the function Ω , we propose

Ω(I1, I2, I4, I5) =
{

−α

[
I1 −

∫ I1

0

1
(1 + β(� 2)b)

d�

]
+ αγ

ι

√
1 + ιI2

}
(g0 + g1I4)

− ln
[

cosh
(√

I4

m1

)]
m0m1 − ζ0

2
I4 + ε0ζ1

2
I5, (4.6)

where the term (g0 + g1I4) and (ε0ζ1/2)I5 would be the coupling between the stresses and the
electric fields.

For the different constants that appear in (4.6), the values presented in table 1 are used.
Consider the problem of the uniaxial extension of a bar, where a constant distribution of

normal axial stress σ and electric field E are assumed. For this problem from (4.6), we obtain

ε = −α

{
1 − 1

[1 + β(σ 2)b]

}
(g0 + g1E2) + αγ√

1 + ισ 2
(g0 + g1E2)σ + ε0ζ1E2 (4.7)

and

D = 2
{
αg1

[
σ −

∫ σ

0

1
(1 + β(� 2)b)

d� − γ

ι

√
1 + ισ 2

]
+ tanh

(
E

m1

)
m0

2E
+ ζ0

2

}
E − ε0ζ1σE, (4.8)

where ε and D are the axial component of the linearized strain and the electric displacement,
respectively. In figures 1 and 2, the behaviour of ε and P as functions of the stress and electric
field are depicted. A limiting strain behaviour for ε for higher values for the stress is observed,
and in this case the application of an electric field produces the shrinking of the bar. In figure 2,
a plot for P(E) is presented (see (2.4)), where a behaviour similar to the saturation phenomenon
can be observed.

While with the particular expression for Ω (see (4.6)), there is coupling between the stress and
strains, and the electric field and the electric displacement, from figures 1 and 2 we see that with
the values for the constants from table 1, the influence of the stress on the electric displacement
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Figure 1. Behaviour of the axial strain as a function of the axial stress for different magnitudes of the electric field in V m−1.
(Online version in colour.)
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Figure 2. Behaviour of the polarization field as a function of the electric field for different magnitudes of the axial stress. The
unit for the stress is Pa. (Online version in colour.)

is rather weak; in order for the curve P(E) to be influenced by the stress, it is necessary to apply
relatively high stresses.

(a) Radial inflation of a thin circular plate
Let us next study a boundary value problem in the following domain defined in cylindrical
coordinates through

ri ≤ r ≤ ro, 0 ≤ z ≤ L. (4.9)

In this first case, we assume L � ri, i.e. we have thin circular plate, which is under the effect of
the following stress distribution and electric field (in terms of the electric scalar potential (2.18)
ϕ = ϕ(r)):

τ = τrr(r)er ⊗ er + τθθ (r)eθ ⊗ eθ , E = −dϕ

dr
er, (4.10)

i.e. this is a plane stress problem (described in this case in terms of the polar coordinates r, θ ).
If τ is of the form (4.10)1, then in cylindrical coordinates, the only equilibrium equation (2.19)3

that needs to be considered is
dτrr

dr
+ τrr − τθθ

r
= 0, (4.11)

which has the solution

τθθ = d
dr

(rτrr). (4.12)
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On using (4.6) in (4.2) by appealing to (4.10), we obtain

εrr = −α

{
1 − 1

[1 + β(I2
1)

b]

}
(g0 + g1I4) + αγ√

1 + ιI2
(g0 + g1I4)τrr + ε0ζ1E2

r , (4.13)

εθθ = −α

{
1 − 1

[1 + β(I2
1)

b]

}
(g0 + g1I4) + αγ√

1 + ιI2
(g0 + g1I4)τθθ (4.14)

and εzz = −α

{
1 − 1

[1 + β(I2
1)

b]

}
(g0 + g1I4), (4.15)

where

I1 = τrr + d
dr

(rτrr), I2 = τ 2
rr +

[
d
dr

(rτrr)

]2
, I4 =

(
dϕ

dr

)2
. (4.16)

In order for the strain components (4.13)–(4.15) to have an associated continuous displacement
field, certain compatibility conditions must be satisfied. Because in this problem εij = εij(r), the
relevant compatibility equations are (Saada [27, p. 142])

d2εrr

dr2 + 2
r

dεθθ

dr
− dεrr

dr
= 0 ⇔ r

dεθθ

dr
+ εθθ − εrr = c (4.17)

and
1
r

dεzz

dr
= 0,

d2εzz

dr2 = 0, (4.18)

where c is a constant. These two last equations are satisfied if (dεzz/dr) = 0.
Because the plate is thin, that is because L is much smaller than ri, we shall make the

approximation that the normal strain in the z-direction εzz can be neglected. In virtue of this,
we shall not solve equation (4.18) and thus solve only equation (4.17).

Regarding the electric displacement, in virtue of (4.3), on using (4.10) we obtain

Dr = 2

{
αg1

[
I1 −

∫ I1

0

1
(1 + β(� 2)b)

d� − γ

ι

√
1 + ιI2

]
+ tanh

(√
I4

m1

)
m0

2
√

I4
+ ζ0

2

}
Er − ε0ζ1τrrEr.

(4.19)
and Dθ = Dz = 0. Because D = Drer, (2.2)2 leads to

dDr

dr
+ Dr

r
= 0. (4.20)

Therefore, it is necessary to solve the two (in general nonlinear) second-order ordinary
differential equations (4.17) and (4.20) to obtain solutions for τrr(r) and ϕ(r).

(i) Boundary conditions

Regarding the boundary conditions, because the equations to be solved are of second order in
τrr(r) and ϕ(r), four boundary conditions are needed so that the problem is well posed. There is an
inherent difficulty with regard to the specification of traction boundary conditions as the traction
caused by the mechanical interactions with the external world coexists with the traction caused
by the interaction of the electrical field with the body (which leads to the Maxwell stresses). We do
not have a compelling argument for how the total traction is apportioned between the mechanical
and Maxwell traction. In view of this difficulty, the traction owing to the electric field that induces
the Maxwell stresses is included in the definition of the external mechanical traction (see the
comments at the end of §2c).

At the inner surface of the plate r = ri, we assume that

ϕ(ri) = ϕ̃i, τrr(ri) = −pi, (4.21)
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where ϕ̃i is a given value for the electric potential, and pi is a radial normal stress applied
on the inner surface of the plate, which incorporates in its definition the force owing to the
electromagnetic field (see (2.8) and (2.9)).

At the outer surface r = ro, for ϕ, the simplest condition that can be considered is

ϕ(ro) = ϕ̃o, (4.22)

where ϕ̃o is a given value for the electric potential for the outer surface.
For τrr on the outer surface of the plate, it is assumed there is no external load; therefore

τrr(ro) = 0. (4.23)

From (2.8) and (2.9), we see that in the case the surface r = ro would be in contact only with
vacuum, then the Maxwell stresses have to be considered as the external load. From (2.9) using
(2.3), the Maxwell stresses can be expressed as

τm = ε−1
0 [Do ⊗ Do − 1

2 (Do · Do)I], (4.24)

where Do is the electric displacement calculated at r = ro in vacuum. In virtue of the continuity
condition (2.5)2 Do

r (ro) = Dr(ro), Do
θ (ro) = 0 and from (4.24) and (2.8), we have

τrr(ro) = ε−1
0
2

(Dr(ro))2. (4.25)

The boundary condition (4.25) is nonlinear because Dr(ro) must be obtained by solving (4.20).
The use of (4.25) may cause some additional difficulties with regard to the convergence of the
Newton method; therefore, the simpler condition presented in (4.23) has been used as a first
approximation. In (4.23), we are assuming that the body is in contact with another external body
so that the mechanical traction ta can be adjusted to eliminate τmn (see (2.8)).

In §7 of Vu & Steinmann [19] (see also [28]), there is a discussion regarding the effect of
considering the surrounding free space (in particular the Maxwell stresses), and in situations
wherein such influence can be neglected from the analysis.

Regarding the continuity condition for the electric field (2.5), if the plate is very thin, then we
can consider the approximation wherein we need to only impose (2.5) at z = 0 and z = L with
ri ≤ r ≤ ro, and we can neglect the conditions at the other surfaces. If the electric field outside is
denoted by Eo = Eo

r er, then (2.5)1 is satisfied on the surfaces z = 0 and z = L if Eo
r = Er. Because

the azimuthal component of the electric field inside is zero, by the continuity condition Eo
θ = 0.

Finally, because D = Drer, in order for (2.5)2 to be satisfied we need Do
z = 0, where Do

z is the radial
component of the electric displacement outside the plate, because for free space (2.3) holds as a
consequence Eo

z = 0. Therefore, one solution in free space for which (2.5) is satisfied is

Eo = Ere = −dϕ

dr
er. (4.26)

(ii) Numerical results

In this section, we present the numerical results obtained using the finite-element method to solve
equations (4.17) and (4.20) subject to (4.13), (4.14) and (4.19). The systems of coupled equations
(4.17) and (4.20) have been solved using the finite-element method and the program COMSOL v.
3.4 [29], where τrr(r) and ϕ(r) are the functions to be found. A mesh sensitivity analysis was carried
out, but for the sake of brevity it is not presented here. There are 15 363 degrees of freedom, and
the elements are Lagrange cubic. Finally, ri = 0.1 m and ro = 0.2 m. In figure 3, we have results for
the plate for three different cases.

1. In figure 3a(i,ii), results for the plate under the effect of an internal radial normal stress
pi = 1.3 × 103 Pa applied on the surface ri are presented, in the case, there is no difference
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Figure 3. From top to bottom. (a) Case pi = 1.3 × 103 Pa and ϕo = 0 (there is no electric field), (i) normalized components
of the stress (see equation (4.27)), (ii) components of the strain tensor. (b) Case pi = 1.3 × 103 Pa and ϕo = 6 × 102 V,
(i) normalized components of the stress, (ii) components of the strain, (iii) normalized electric field and (iv) normalized electric
displacement (see equation (4.28)). (c) Case pi = 0 (there is no external mechanical load) and ϕo = 106 V, (i) components
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displacement. (Online version in colour.)

of potential between the inner and the outer radii, i.e. ϕi = ϕo = 0. In figure 3a(i), we have
the depiction of the normalized radial and azimuthal components of the total stress tensor
in terms of the normalized radius, where

τ̄rr = τrr

pi
, τ̄θθ = τθθ

pi
, r̄ = r

ri
. (4.27)

In figure 3a(ii), a similar plot is shown for the radial and azimuthal components of the
strain tensor.
For the class of constitutive equations used in this work, if there is no external electric field
(in this case due to the fact that there is no difference in the applied electric potential), then
there is no electric displacement (see (2.17) or (4.19) and consider the case E = 0).
The particular value for pi used here was the maximum magnitude for the pressure for
which convergence of the Newton method was achieved.

2. In figure 3b(i)–(iv), results are presented for the case of the same radial normal stress pi =
1.3 × 103 Pa applied on the surface ri, and, additionally, an electric field appears owing to
a difference in the electric potential ϕi = 0 on ri and ϕo = 6 × 102 V on ro. In these figures,
the same normalized radial position r̄ defined in (4.27)3 is used. In figure 3b(i,ii), results
are shown for the normalized components of the stress tensor (defined in (4.27)2,3) and
the components of the strain tensor. One can note that the application of an electric field
causes an increase in the magnitude of the azimuthal component of the total stress tensor,
in particular in a narrow zone near r̄ = 1. Despite this rapid increment in the magnitude of
the stress, from figure 3b(ii), it is observed that the components of the strain remain small.
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In figure 3b(iii,iv), we have plots for the radial component of the normalized electric field
and the electric displacement, which have been defined through

Ēr = Er

(ϕo − ϕi)/(ro − ri)
, D̄r = Dr

ε0(ϕo − ϕi)/(ro − ri)
, (4.28)

where Er = −dϕ/dr.
The particular value ϕo = 6 × 102 V on ro was the maximum magnitude for the electric
potential for which the numerical method converges.

3. In figure 3c(i–iv), results for the stresses, strain, electric field and electric displacement are
plotted, when there is no external mechanical load applied, but an electric field is present
due to a difference of electric potential, in this case ϕi = 0 on ri and ϕo = 106 V on ro. It is
worth observing that a relatively high value of ϕo is used in this case in comparison with
the value used to obtain the results shown in figure 3b(iii–iv). For the results depicted in
figure 3c(i,iv), it was possible to apply a higher value for ϕo without difficulty with regard
to the convergence of the Newton method.
In figure 3c(i), a plot of the components of the total stress tensor (not normalized) is
presented. The stresses are not normalized, because there is no internal radial normal
stress that can be used to define such normalized quantities. From figure 3c(ii), we observe
that the magnitude of the components of the strain is similar to the cases shown in
figure 3a(ii) and b(ii), but the behaviour is rather different, because the radial component
of the strain is positive, and the azimuthal component of the strain is negative.

(b) Inflation and extension of a very long cylindrical tube
Consider the boundary value problem corresponding to the same geometry defined previously,
namely ri ≤ r ≤ ro, 0 ≤ z ≤ L, but now in the limit L → ∞, i.e. the tube is very long. As an
approximation, the boundary conditions (2.5) are not required to be satisfied at the surfaces z = 0,
z = L. We assume that the tube is under the effect of the stress distribution of the form

τ = τrr(r)er ⊗ er + τθθ (r)eθ ⊗ eθ + τzz(r)ez ⊗ ez, (4.29)

and an electric field of form (4.10)2. If the total stress is of this form, the only equilibrium equation
to be satisfied is (4.11), and the solution (4.12) is also valid here. Regarding τzz(r), this component
of the total stress is not arbitrary as is shown later on.

If the same constitutive equation defined through (4.6) is used in this problem (with the values
for the constants presented in table 1), using (4.29) and (4.10)2 the same components for the strains
εrr, εθθ as in (4.13) and (4.14) are obtained; however, in the present case, (2.14)1,2 becomes

I1 = τrr + d
dr

(rτrr) + τzz, I2 = τ 2
rr +

[
d
dr

(rτrr)

]2
+ τ 2

zz. (4.30)

Regarding the component εzz, from (4.2), we obtain that

εzz = −α

{
1 − 1

[1 + β(I2
1)

b]

}
(g0 + g1I4) + αγ√

1 + ιI2
(g0 + g1I4)τzz. (4.31)

The rest of the components of the strain tensor are zero. As for D, this is given by (4.19) using I1
from (4.30)1.

In order to have a continuous displacement field associated with the components of the
strain tensor, considering that εij = εij(r), the compatibility equations (4.17) and (4.18) have to
be satisfied, and in the present problem (4.18) cannot be neglected.

To summarize, we need to solve equations (4.17) and (4.18) that are equivalent to
dεzz/dr = 0 and equation (4.20). These equations are solved to find three functions: τrr(r),
τzz(r) and ϕ(r).
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Figure 4. From top to bottom. (a) Case pi = 1.3 × 103 Pa, ϕo = 6 × 102 V and εzz = 3 × 10−5, (i) normalized
components of the stress, (ii) components of the strain tensor. (b) Case pi = 1.3 × 103 Pa, ϕo = 6 × 102 V and
εzz = 0, (i) normalized components of the stress, (ii) components of the strain. (c) Case pi = 1.3 × 103 Pa, ϕo =
6 × 102 V and εzz = −3 × 10−5, (i) normalized components of the stress, (ii) components of the strain. (Online
version in colour.)

Regarding the equation dεzz/dr = 0, after integrating, we find εzz(r) = εzz0 , where εzz0 is a
constant. This is a nonlinear algebraic equation, which has to be solved along with (4.17) and
(4.20). For the results presented in this section, εzz0 is given. Equations (4.17), (4.20) and εzz(r) =
εzz0 are solved using the finite-element program COMSOL [29], and the same statistic for the mesh
is used as in the previous problem.

Results for five different cases are presented.

1. In figure 4, we depict the results for three cases.

— In figure 4a(i,ii), results are presented for the normalized stresses (see
equation (4.27)) with τ̄zz = τzz/pi, in the case a radial normal stress pi = 1.3 × 103 Pa
is applied on the surface r = ri, if there is a difference in the electric potential
ϕi = 0, ϕo = 6 × 102 V, and the tube is uniformly stretched in the axial direction with
εzz0 = 3 × 10−5.
In figure 4a(ii), we provide a plot of the constant axial strain, in order to compare
it with the behaviour of the radial and azimuthal components of the strain. In
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Figure 5. Normalized electric field and electric displacement for the cases presented in figure 4. (Online version in colour.)

figure 4a(i,ii) and in the other figures, one can observe that the azimuthal component
of the stress presents a rapid increase in its value near r = ri, but the magnitude of
the different components of the strain remain bounded.

— In figure 4b(i)(ii), results are presented for the normalized stresses and the
components of the strain, for the same internal radial normal stress and difference
in the electric potential, when εzz0 = 0.

— In figure 4c(i)(ii), results are presented for the case pi = 1.3 × 103 Pa, ϕi = 0, ϕo = 6 ×
102 V and εzz0 = −3 × 10−5, i.e. the tube is being compressed.

Because the use of (4.6) with the constants from table 1 implies that the stresses have
a weak influence in the distribution of electric field and electric displacement, for the
electric variables only two plots are shown in figure 5.

2. In figure 6, results are presented for the case when an internal radial stress pi = 2 × 103 Pa
and an axial strain εzz0 = 3 × 10−5 V are applied. For the plot showing the normalized
components of the stress (figure 6 upper side on the left), there is a very rapid increase
in the azimuthal and axial components of the stress near r = ri. In the plot on the right,
the same components of the stress are depicted for a narrower region near that point. The
concentration for the stress in the case of the azimuthal component is of the order 200.
The strains remain bounded and small.

3. Finally, in figure 7, results are portrayed for the case pi = 0, ϕi = 0, ϕo = 3 × 103 V and
εzz0 = 3 × 10−5. Because there is no internal radial normal stress, the components of
the stress tensor are not shown normalized. The magnitude of the axial component
of the stress is quite high compared with the other components; therefore, the different
components of the total stress tensor are shown separately. The components of the electric
field and the electric displacement are normalized as in equation (4.28).

5. Final remarks
In this paper, we studied boundary value problems, within the context of the electro-elastic
constitutive relations presented in part I [1]. The constitutive relations allow for the nonlinear
coupling between the stresses, linearized strain, electric field and the electric displacement,
an impossibility within the context of theories for electro-elastic materials that are currently
available. We studied several different boundary value problems with the view of determining
the efficacy of the model developed in part I. We were particularly interested in depicting the
strain limiting and the polarization saturation characteristics of electro-elastic behaviour that has
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been observed and we were able to confirm such behaviour. Several boundary value problems
were studied within the context of the constitutive relations. The first class of problems concerned
homogeneous states of stress; and, in this case, the response of a slab in a state of uniform
stress subject to traction, shear and an electric field was analysed. The second class of problems
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concerned inhomogeneous states of stress, and for such states of stress, we studied the response
of a thin circular plate and a long cylindrical tube subject to inflation and an electric field. We
were able to show that the bodies exhibited limiting strain and saturation of the polarization that
is observed in such electro-elastic bodies.

R.B. expresses his gratitude for the financial support provided by FONDECYT (Chile) under grant no.
1120011. K.R.R. thanks the National Science Foundation and the Office of Naval Research for support of this
work.
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