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Abstract. We study the wavefront solutions of the scalar reaction-diffusion

equations ut(t, x) = ∆u(t, x)−u(t, x) + g(u(t−h, x)), with monotone reaction

term g : R+ → R+ and h > 0. We are mostly interested in the situation
when the graph of g is not dominated by its tangent line at zero, i.e. when the

condition g(x) ≤ g′(0)x, x ≥ 0, is not satisfied. It is well known that, in such a

case, a special type of rapidly decreasing wavefronts (pushed fronts) can appear
in non-delayed equations (i.e. with h = 0). One of our main goals here is to

establish a similar result for h > 0. To this end, we describe the asymptotics

of all wavefronts (including critical and non-critical fronts) at −∞. We also
prove the uniqueness of wavefronts (up to a translation). In addition, a new

uniqueness result for a class of nonlocal lattice equations is presented.

1. Introduction. In this work, we focus our efforts on the study of the existence,
uniqueness and asymptotics of positive monotone bounded traveling wave solutions
u(t, x) = φ(ν · x+ ct), φ(−∞) = 0, to the scalar reaction-diffusion equation

ut(t, x) = ∆u(t, x)− u(t, x) + g(u(t− h, x)), x ∈ Rm. (1)

It is assumed that ν ∈ Rm, |ν| = 1, that the wave velocity c is positive and the
continuous monotone nonlinearity g : R+ → R+ satisfies the following assumption

(H) g is strictly increasing and the equation g(x) = x has exactly two nonnegative
solutions: 0 and κ > 0. Moreover, g is differentiable at the equilibria with g′(0) > 1,
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g′(κ) < 1, and g is C1-smooth in some neighborhood of κ. In addition, there exist
C > 0, θ ∈ (0, 1], δ > 0 such that

|g(u)/u− g′(0)| ≤ Cuθ, u ∈ (0, δ]. (2)

Perhaps, model (1) is one of the simplest and most studied monostable delayed
reaction-diffusion equations. See [1, 5, 15, 16, 18, 21, 23, 24, 27, 35, 36, 37, 38, 41]
and references therein for more detail regarding (1) and its non-local versions. In
fact, the last decade of studies has lead to almost complete description of the exis-
tence, uniqueness and stability properties of wavefronts to (1) whenever g satisfies
(H) and the following quite important sub-tangency condition

g(x) ≤ g′(0)x, x ≥ 0. (3)

The latter inequality was already used in the celebrated work by A. Kolmogorov,
I. Petrovskii and N. Piskunov [20] , where it was assumed that g′(x) < g′(0) for
all x ∈ (0, κ]. Roughly speaking, inequality (3) amounts to the dominance of the
‘linear component’ within essentially non-linear model (1). From the technical point
of view, (3) together with the monotonicity of g allows to simplify enormously the
analysis of traveling waves. Below we will illustrate this point in greater detail
by discussing such key issues as the minimal (critical) speed of propagation, the
stability, existence and uniqueness of waves, the asymptotic properties of wave
profiles. In fact, none of these issues has been satisfactory investigated in that
strongly nonlinear case when (3) does not hold, g is not monotone and h > 01. The
situation becomes more encouraging if we assume the monotonicity of g. In such
a case, it is possible to apply the general theory of spreading speeds for abstract
monostable evolution systems developed recently by X. Liang and X.-Q. Zhao in
[21, 22]. In particular, the following result can be easily deduced from [22, Theorems
4.3, 4.4 and Remark 4.1] (see also [21, Section 5]):

Proposition 1. Assume that g, g′(0) > 1, is increasing and continuous and that
equation g(x) = x has exactly two nonnegative solutions: 0 and κ > 0. Then the
spreading speed c∗ exists and it coincides with the minimal wave speed for (1).

The Liang and Zhao approach was developed within the general framework of
monotone semiflows that makes it possible to substantially weaken the smoothness
conditions on g, especially at the neighborhoods of 0, κ. Actually conditions similar
to (2) can be found in almost all works concerning the front existence problem.2 On
the other hand, equation (1) determines a semiflow even without the requirement
of Lipschitz continuity of g. This is due to the special form of equation (1). Indeed,
to find a solution of the initial value problem u(θ, x) = u0(θ, x), θ ∈ [−h, 0], x ∈ R,
for (1) on the interval [0, h], it suffices to integrate a linear inhomogeneous equation.

In order to appreciate more the above Liang and Zhao result, we would like
to stress the following fact: the existence of a positive c∗ splitting R+ on subsets
of admissible and non-admissible (semi-)wavefront3 speeds remains an unsolved
problem when g is non-monotone and non-subtangential.

1If h = 0, the wavefront problem for (1) is essentially bi-dimensional in many aspects and it

is rather well understood, cf. [2, 13, 17, 19, 31, 42]. Next, since −u + g(v) is negative for some
u, v ≥ 0, Schaaf’s results [30] can not be applied to (1). In any event, the question of pushed

waves was not considered in [30].
2Works [18, 36, 37] show that, after using an appropriate regularization argument, (2) can be

dropped even in non-monotone case. However, this trick works only if g is subtangential.
3For non-monotone g, it is necessary to introduce some adjustments to the definition of traveling

front, replacing it with the concept of semi-wavefront solution, see [35, 37]
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One of our main objectives here is to complement Proposition 1 by considering
other important open questions: the uniqueness, the asymptotics of wavefronts as
well as the continuous dependence of c∗ on g when condition (3) is not assumed.
Our approach is different from [21, 22] and requires more restrictive hypothesis (H).

At this stage of discussion, it is instructive to raise the same questions but for a
different family of delayed evolution equations

ut(t, x) = [u(t, x+ 1) + u(t, x− 1)− 2u(t, x)]− u(t, x) + g(u(t− h, x)), x ∈ R. (4)

It is obtained from (1), m = 1, by a formal discretization of the Laplace operator.
Equivalently, we can consider the lattice differential equations

u′n(t) = [un+1(t) + un−1(t)− 2un(t)]− un(t) + g(un(t− h)), n ∈ Z. (5)

Equations (4), (5) are special cases of more general nonlocal lattice population model
proposed in [40]. Fortunately, when g is as in Proposition 1, the Liang and Zhao
theory applies to equation (5) and to its non-local version (13) as well. In particular,
this guarantees the existence of the minimal speed of propagation of traveling fronts.
The existence, uniqueness, monotonicity and stability of wavefronts for the above
equations were also analyzed by Ma and Zou in [25]. Once again, (3) together
with (H) were assumed in the cited work. One of the noteworthy features of [25]
consists in its novel (and non-trivial) proof of the wave uniqueness. This proof does
not impose any restriction on sup{g′(x), x ∈ [0, κ]} what is quite remarkable in the
case of delayed equations, cf. Subsection 1.2.

On the other hand, starting from the pioneering work of Zinner, Harris and
Hudson [44], significant progress has been achieved in the understanding of waves
solutions to non-delayed versions of (4), (5). See [8, 9, 25, 44] for more information
and further references. Non-delayed equation (4) can be also viewed as a particular
case of the following differential equation with convolution

ut(t, x) = (J ∗ u)(t, x)− u(t, x) + g(u(t, x)), x ∈ R, (6)

which was introduced by Kolmogorov et al in [20]. Equation (6) was thoroughly
investigated during the past three decades using various techniques, see [1, 7, 10, 11,
32] and references therein. Remarkably, sub-tangency condition (3) was avoided in
the recent important contributions by Chen et al. [8, 9] and by Coville et al. [10, 11].
Our present work was nourished in part by several ideas and approaches developed
in the mentioned four papers. For example, our analysis of the dependence c∗ =
c∗(g) is based on the lower-upper solution method. Once again, the main difficulty
consists in finding a ’good’ upper solution (which additionally has to dominate lower
solution), cf. consonant ideas expressed in [8, pp. 125-126] and [33]. As in [8], we
will construct a new upper solution (for some velocity c′ close to a given velocity c)
from a given wavefront φ(t, c). In this way, φ(t, c) is considered as a skeleton (we
call it ’a base function’) for creating an upper solution by its suitable modification.4

However, in difference with [8], our upper solution is not only formal but also
true upper solution appearing in pair with an appropriate lower solution. Next,
two noteworthy differences appear while comparing (1) and (6). First of them is
technical: the presence of the second derivatives in (1) complicates the construction
of the lower and upper solutions for (1) (these solutions must be C1-smooth or
satisfy additional conjugacy relations at the discontinuity points of the derivative,
cf. [3, 6, 33, 41]). The other difficulty is more essential: the presence of positive

4A similar idea was successfully applied to a model of the Belousov-Zhabotinskii reaction [33].
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delay h can lead to the non-monotonicity of traveling fronts [4, 16, 28, 35, 37] while
such monotonicity seems to be crucial for the applicability of various approaches,
e.g. of the sliding solution method [3, 9, 10, 11]. Precisely in order to avoid front
oscillations around κ, we will consider strictly increasing g in (H). It should be
mentioned that monotonicity of g is not obligatory when h = 0: this is because
function g(u(t− h)) + ku(t) is monotone in u(t) for k � 1, h = 0, cf. [1].

Before going back to more detailed analysis of the main problems addressed in
this paper, we would like to state some useful results concerning the wavefronts to
equation (1) considered under assumption (H). Set g′+ := supx>0 g(x)/x ≥ g′(0) >
1 and define c# [respectively, c∗] as the unique positive number c for which the
characteristic equation

χ(z, c) := z2 − cz − 1 + pe−zch = 0 (7)

with p = g′(0) [respectively, with p = g′+] has a double positive root. It is easy to see
that c# ≤ c∗. Note that c# = c∗ coincides with the minimal speed of propagation
c∗ whenever (3) is satisfied. If c > c# then the characteristic equation (7) with
p = g′(0) has exactly two real solutions 0 < λ2 < λ1, λj = λj(c).

Proposition 2. Assume (H). Then, for each c ≥ c∗ equation (1) has at least one
monotone positive traveling front u(t, x) = φ(ν ·x+ct, c). Next, for c < c# equation
(1) does not possess any positive bounded wave u(t, x) = ψ(ν · x+ ct), ψ(−∞) = 0.
Moreover, each positive bounded wave to (1) (if exists) is in fact a monotone front
with profile satisfying φ′(s) > 0, s ∈ R. Finally, if c 6= c#, then the following
asymptotic representation is valid (for appropriate s0, j ∈ {1, 2} and some ς > 0):

(φ, φ′)(t+ s0, c) = eλjt(1, λj) +O(e(λj+ς)t), t→ −∞. (8)

If c = c# then besides (8) it may happen that

(φ, φ′)(t+ s0, c) = −teλjt(1, λj) +O(eλjt), t→ −∞. (9)

Proof. The existence of fronts for c ≥ c∗ follows from [36, Theorem 4] while their
non-existence for c < c# is a well known fact (e.g. see [36, Theorem 1]). Due to
[35, Corollary 12], the wave profiles ψ are monotone, with ψ′(s) > 0, s ∈ R. The
exponential convergence ψ(t) → 0, t → −∞, is a consequence of the Diekmann-
Kaper theory, see [12] and [1, Lemma 3]. Therefore there is δ > 0 such that

g(ψ(t− ch)) = [g′(0) + r(t)]ψ(t− ch), where r(t) :=
g(ψ(t− ch))

ψ(t− ch)
− g′(0) = o(eδt).

On the other hand, it is easy to see that the convergence ψ(t)→ 0, t→ −∞, is not
super-exponential, cf. [37, Theorem 5.4 and Remark 5.5]. Now we can proceed as in
[37, Remark 5.5] (where [26, Proposition 7.2] should be used) to obtain asymptotic
formulas (8), (9).

Remark 1. Assuming that g′(κ) < 1 and that |g′(κ)− g′(x)| ≤ C|x− κ|θ for all x
from some left neighborhood of κ, we can also derive an asymptotic representation
of (φ, φ′)(t) at +∞. Indeed, it is a standard exercise to check that the characteristic
function χ(z, c) with p ∈ (0, 1) has exactly to real roots µ1(c) < 0 < µ2(c) while
<µj(c) < µ1(c) for each complex root of χ(z, c). Therefore the positive equilibrium
κ is hyperbolic and we can apply arguments developed in [16, Lemma 16] to obtain

(κ− φ,−φ′)(t+ s0, c) = eµ1t(1, µ1) +O(e(µ1−ς)t), t→ +∞. (10)
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1.1. A continuity property of the minimal speed of propagation. Due to
Proposition 2, if we assume (3) then the minimal speed c∗ can be computed from
characteristic equation (7) taken with p = g′(0). Without (3), the computation of
c∗ represents a very difficult task even for non-delayed models [2, 17, 42]. In such
a case, the value of c∗ = c∗(g) depends not only on g′(0) but also on the whole
monotone nonlinearity g. It is easy to realize that this dependence is lower semi-
continuous with respect to the uniform convergence. In addition, it is immediate
to find a sequence of strictly monotone smooth functions gn, gn(0) = 0, gn(κ) = κ,
maxx∈[0,κ] |gn(x) − g0(x)| → 0, n → ∞, such that lim c∗(gn) > c∗(g0). It is also
known that the function c∗ = c∗(g) is monotone: c∗(g1) ≤ c∗(g2) if g1(x) ≤ g2(x),
x ∈ [0, κ], cf. [22, Lemma 3.5]. However, we are unaware of conditions sufficient
for the continuity of c∗(g) with respect to a reasonable convergence in the space
of strictly increasing functions g. In this section, we provide a first result in this
direction by considering sequences {gn}n≥0 of functions satisfying assumption (H)
with (2) replaced with the slightly more restrictive inequality

|g′(κ− u)− g′(κ)|+ |g′(u)− g′(0)| ≤ Cuθ, u ∈ [0, δg]. (11)

Theorem 1.1. Suppose that each continuous gn satisfies (11) (with a suitable δgn)
and (H). If, additionally, there exists some small r > 0 such that gn → g0 in
C1[0, r], in C1[κ− r, κ] and in C[0, κ], then lim c∗(gn) = c∗(g0).

Remark 2. 1. We believe that the convergence of strictly increasing functions
gn → g0 in C1[0, r] and in C[0, κ] could be well enough to have lim c∗(gn) = c∗(g0).
2. The proof of Theorem 1.1 contains a new approach to the problem of the existence
of the minimal speed c∗, see [34, Theorem 1.1] for more details. 3. For the reader
convenience, the asymptotics of noncritical wavefronts obtained in the proof of
Theorem 1.1 are presented in the first part of Theorem 1.4.

1.2. Uniqueness of wavefronts. More subtle aspects of uniqueness and stability
of wavefronts in (1) were studied so far under the geometric conditions even more
restrictive than (3). For example, g′′(s) ≤ 0 was required in the main stability
theorem of [27]. Similarly, uniqueness (up to a shift) of each non-critical (i.e. c 6= c∗)
monotone traveling front of equation (1) can be deduced from [38, Corollary 4.9]
whenever g meets the conditions: (A1) g ∈ C2[0, κ], g(x) > 0, x ∈ (0, κ); (A2)
g′(κ) < 1 and (3) holds; (A3) For every δ ∈ (0, 1), there exist a = a(δ) > 0, α =
α(δ) ≥ 0 and β = β(δ) ≥ 0 with α+β > 0 such that for any θ ∈ (0, δ] and v ∈ [0, κ],

(1− θ)g(v)− g((1− θ)v) ≤ −aθκαvβ .
Let us show that (A3) is stronger than (3). Indeed, after dividing the latter in-
equality by θ and taking limit as θ → +0, we find that

−g(v) + g′(v)v ≤ −aκαvβ < 0, v ∈ [0, κ].

Therefore g′(v) < g(v)/v, v ∈ (0, κ], that, after an easy integration, yields

0 ≤ g′(v) <
g(v)

v
≤ g(u)

u
≤ g′(0+) = lim

u→+0

g(u)

u
, v ≥ u.

It is clear that the above inequalities are stronger that the Lipshitz condition

|g(u)− g(v)| ≤ g′(0)|u− v|, u, v ∈ [0, κ], (12)

which in turn is more restrictive than (3).
Inequality (12) is one of the basic conditions of the uniqueness theory developed

by Diekmann and Kaper, see contributions [12] and [1]. Suppose, for instance,
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that g ∈ C1,q in some neighborhood of 0. Then (12) implies the uniqueness of all
non-critical [12] as well as critical [1] wavefronts to (1). Additionally, [1] establishes
the uniqueness of all fronts propagating at the velocity c > cu where cu can be
computed (similarly to c∗ in the sub-tangential case) from the equation

z2 − cz − 1 + ess sup
v∈[0,κ]

g′(v)e−zch = 0.

An alternative approach to the uniqueness problem is based on the sliding method
developed by Berestycki and Nirenberg [3]. This technique was successfully applied
in [8, 10, 11, 25] to prove the uniqueness of monotone wavefronts without imposing
any Lipshitz condition on g.5 In the present paper, inspired by a recent Coville’s
work [10], we use the sliding method to prove the following assertion:

Theorem 1.2. Assume that (H) is satisfied. Fix some c ≥ c∗, and suppose that
u1(t, x) = φ(ν · x+ ct), u2(t, x) = ψ(ν · x+ ct) are two traveling fronts of equation
(1). Then φ(s) = ψ(s+ s0), s ∈ R, for some s0.

We note that, when h > 0, we were not able to drop the condition of strict
monotonicity on g imposed in Theorem 1.2 (even while considering only monotone
wavefronts). If h = 0, the monotonicity of g is not obligatory.

The ideas behind the proof of Theorem 1.2 combined with asymptotic descrip-
tion of wavefronts given in [1] also allow to derive a new uniqueness result for the
following nonlocal lattice system

u′n(t) = D[un+1(t)+un−1(t)−2un(t)]−un(t)+
∑
k∈Z

β(n−k)g(uk(t−h)), n ∈ Z, (13)

where D > 0, β(k) ≥ 0,
∑
k∈Z β(k) = 1. Let γ# be an extended non-negative real

number such that B(z) :=
∑
k∈Z β(k)e−zk is finite when z ∈ [0, γ#) and is infinite

when z > γ#. By Cauchy-Hadamard formula, γ# = − lim supk→+∞ k−1 lnβ(−k),

where we adopt the convention that ln(0) = −∞. Our requirement is that such γ#

is positive and that B(γ#−) = +∞.

Theorem 1.3. Assume (H) except for the strict character of the monotonicity of
g. Suppose that wj(t) = φ(j + ct), vj(t) = ψ(j + ct) are traveling fronts to nonlocal
lattice eqution (13) and c 6= 0. Then there is s0 such that φ(s) = ψ(s+ s0), s ∈ R.
Remark 3. In Theorem 1.2, the inequality g′(κ) < 1 is formally required. However,
our proof uses more weak restriction g′(s) ≤ 1, s ∈ [κ− σ, κ] for some σ > 0.

Remark 4. In various aspects, Theorem 1.3 improves and generalizes on the non-
local case the main uniqueness theorem from [25]. In contrast with the mentioned
result, we do not impose sub-tangency condition (3) and we allow for critical (min-
imal) waves. Next, the uniqueness result of [25] is valid only for profiles having
prescribed asymptotic behavior at −∞. Note also that our proof is rather short
and does not use the monotonicity of profiles. Now, condition c 6= 0 seems to be
essential, as Proposition 6.7 of work [11] suggests the possibility of infinitely many
wave solutions (perhaps, discontinuous) for c = 0. On the other hand, Theorem
1.3 complements the main result of [14] (which is valid only for non-critical waves),
where (12) was assumed together with the symmetry β(k) = β(−k). Even though
[14] (see also [1, 43] for several improvements) allows to consider non-monotone
nonlinearity g.

5In difference, the Diekmann-Kaper theory can be applied to the non-monotone waves and
nonlinearities.
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1.3. Asymptotic formulas for the wave profiles. It is well known [13] that in
non-delayed case each critical wavefront which propagates at the velocity c∗ > c#
(i.e. so called pushed wavefront) has its profile converging to 0 more rapidly than
the near (i.e. propagating with the speeds c ≈ c∗) non-critical wavefront profiles.
This contrasts with the case c∗ = c#, when the profile of the critical front (so called
pulled wavefront) converges to 0 approximately at the same rate as the profile of
each near wavefront does. Similar asymptotics were also established for wavefront
solutions of lattice equation (4) without delay, see [9, Theorem 3]. Our third main
result shows that the pushed fronts to (1) obey the same principle:

Theorem 1.4. Assume (H) and let u(t, x) = φ(ν · x + ct) be a traveling front
to equation (1). Then the following asymptotic represantions are valid (for an
appropriate s0 and some σ > 0):

1) if c > c∗ then φ(s+ s0) = eλ2t +O(e(λ2+σ)t), t→ −∞,
2) if c = c∗ > c#, then φ(s+ s0) = eλ1t +O(e(λ1+σ)t), t→ −∞.

The proof of the second formula is the most difficult part of this theorem. In
order to establish that the pushed fronts to (1) satisfy 2), it suffices to show that
each wavefront having asymptotic behavior as in 1) is ‘robust’ with respect to
small perturbations of the velocity c. This would imply the existence of wavefronts
propagating at the velocity c′ < c∗ provided that the critical front behaves as in 1).
The necessary perturbation result is demonstrated here with the use of upper-lower
solutions method. Note that, due to the use of a discontinuous upper solution, the
application of this method in the paper is different from a standard procedure.

2. Proof of Theorem 1.1. Fix some h > 0 and let functions {g̃n}n≥0 satisfy
conditions of Theorem 1.1. Then the sequence g′+,n := supx∈(0,κ] g̃n(x)/x, n ≥
0, is bounded and therefore, by Proposition 2, the sequence of positive numbers
c∗(g̃n), n ≥ 0, is also bounded. Alternatively, the boundedness of c∗(g̃n), n ≥ 0, can
be deduced from the convergence g̃n → g̃0 and the monotonicity property of c∗(g̃),
see Subsection 1.1.

Hence, without loss of generality, we can suppose that lim c∗(g̃n) exists. Then
lim c∗(g̃n) ≥ c∗(g̃0) because of the lower semi-continuity property of c∗(g). Suppose,
for a contradiction, that lim c∗(g̃n) > c∗(g̃0). Set gn(x) = max{g̃0(x), g̃n(x)}, n ≥ 0,
then gn(x) ≥ g̃n(x) and therefore, without restricting the generality, we can assume
that, with some intermediate c0, it holds c′′ := lim c∗(gn) > c0 > c∗(g0). By
Proposition 1, equation (1) has a wavefront u(t, x) = φ(ν ·x+ c0t) with φ satisfying

φ′′(t)− c0φ′(t)− φ(t) + g(φ(t− c0h)) = 0.

Here and subsequently we are dropping the index 0 in g0 = g̃0. Next, λ2,n(c) will
denote the smallest positive zero of the characteristic function χn(z, c) := z2 −
cz − 1 + g′n(0)e−zch. Since lim g′n(0) = g′(0), the value λ2,n(c) is well defined
for all large n and c ≥ c0. Observe also that λ2,n(c) is a decreasing continuous
function of c and that limλ2,n(c) = λ2(c). To simplify the notation, we will write
λ′ := λ2,n(c′), λ := λ2(c0).

Now, due to Proposition 2 and Remark 1, there exist S1 < S2 such that φ(S1) < r,
φ(S2−c0h) = κ−r and φ′(t)/φ(t) ≥ λ/2 for all t ≤ S1, while φ′(t)/(κ−φ(t−c0h)) >
−0.5µ1(c0)ec0hµ1(c0) if t ≥ S2. The eigenvalue µ1(c0) < 0 was defined in Remark 1.
By our assumptions, G(u) := g(u)/u is C1-smooth function within some connected
left neighborhood of κ. Since G′(κ) = (g′(κ)− 1)/κ < 0, we can suppose that

G(u)−G(v) = G′(ω)(u− v) < 0, u > v, (14)
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for u, v, ω ∈ [κ− r, κ] (after choosing appropriately small r).

Fix m large enough and c′−c0 > 0 small enough to satisfy c′ < c′′, (1+θ)λ′ > λ,
λ′ < λ, c∗(gm) > c′, χm(λ, c′) < 0, |g̃m − g|C[0,κ] + (c0 − c′)φ′(t) < 0, t ∈ [S1, S2],

c′ − c0 � 2λ−1|g̃m − g|C1[0,r] − 2µ−11 (c0)|g̃m − g|C1[κ−r,κ]e
−c0hµ1(c0).

Then, for each t ∈ R, we obtain that

Gm(t) := gm(φ(t− c0h))− g(φ(t− c0h)) + (c0 − c′)φ′(t) ≤

≤

 φ(t)|g̃m − g|C1[0,r] + (c0 − c′)φ′(t) < 0, if t ≤ S1;
|g̃m − g|C[0,κ] + (c0 − c′)φ′(t) < 0, if t ∈ [S1, S2];
(κ− φ(t− c0h))|g̃m − g|C1[κ−r,κ] + (c0 − c′)φ′(t) < 0, if t ≥ S2.

The remainder of the proof is divided in several parts.

Step I (Construction of a base function). Set φσ(t) := σφ(t), where σ ∈
(1, 2) is close to 1. We have

Em(t, σ) := φ′′σ(t)− c′φ′σ(t)− φσ(t) + gm(φσ(t− c′h)) ≤ φ′′σ(t)− c0φ′σ(t)− φσ(t)+

σg(φ(t− c0h)) + [(c0 − c′)φ′σ(t) + gm(φσ(t− c0h))− σg(φ(t− c0h))] =

(c0 − c′)φ′σ(t) + gm(φσ(t− c0h))− σg(φ(t− c0h)).

By our assumptions, gm(x) = g′m(0)x+ o(x), x→ 0. Therefore, for t→ −∞,

|gm(φσ(t− c0h))− σg(φ(t− c0h))| ≤ σ|gm(φ(t− c0h))− g(φ(t− c0h))|+

|gm(φσ(t− c0h))− σgm(φ(t− c0h))| ≤ σφ(t− c0h)|g̃m − g|C1[0,r] + o(φ(t− c0h)).

On the other hand, we infer from Proposition 2 that

(c0 − c′)φ′σ(t) = (c0 − c′)ζσφ(t)(1 + o(1)) = (c0 − c′)ζσeζc0hφ(t− c0h)(1 + o(1)).

for ζ ∈ {λ1(c0), λ2(c0)}. As a consequence, there exists S0 (which does not depend
on σ) such that, for all σ close to 1,

Em(t, σ) < 0, t ≤ S0.

Due to (14) and Remark 1, we obtain, for φσ(t−c0h), φ(t−c0h) ∈ [κ−r, κ], t ≥ S2,
that

(c0−c′)φ′σ(t)+gm(φσ(t−c0h))−σg(φ(t−c0h)) = gm(φσ(t−c0h))−g(φσ(t−c0h))+

(c0 − c′)φ′σ(t) + σφ(t− c0h)(G(φσ(t− c0h))−G(φ(t− c0h))) <

(κ− φ(t− c0h))|g̃m − g|C1[κ−r,κ] + (c0 − c′)φ′(t) < 0.

Hence, if S′2(σ) is defined as a unique point at which φσ(S′2(σ)− c0h) = κ, then
for all σ close to 1,

Em(t, σ) < 0, t ∈ [S2, S
′
2(σ)].

Finally, since uniformly on [S0, S2]

lim
σ→1

((c0 − c′)φ′σ(t) + gm(φσ(t− c0h))− σg(φ(t− c0h))) = Gm(t) < 0,

we conclude that Em(t, σ) < 0 for all σ close to 1 and all t such that σφ(t−c0h) ≤ 1.

Step II (Construction of an upper solution). Fix σ such that Em(t, σ) < 0

and for a := b2, b ∈ (0, 1], set φb(t) := φσ(t) + aeλ
′t + beλt. Let S3 = S3(b) be that
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unique point where φb(S3(b)) = κ. It is clear that φ′b(S3) > 0 and S3 < S′2(σ)−c0h.
Next,

E+(t, b) := φ′′b (t)− c′φ′b(t)− φb(t) + gm(φb(t− c′h)) = Em(t, σ) + bχm(λ, c′)eλt+

gm(φσ(t− c′h) + aeλ
′(t−c′h) + beλ(t−c

′h))− gm(φσ(t− c′h))−

g′m(0)(aeλ
′(t−c′h) + beλ(t−c

′h)) ≤ Em(t, σ) + bχm(λ, c′)eλt+

C(aeλ
′(t−c′h) + beλ(t−c

′h))(φσ(t− c′h) + aeλ
′(t−c′h) + beλ(t−c

′h))θ ≤ Em(t, σ)+

beλt
(
χm(λ, c′) + 3Ce−λc

′h(be(λ
′−λ)(t−c′h) + 1)(φθσ(t− c′h) + 2bθeλ

′θ(t−c′h))
)
≤

Em(t, σ) + beλt
(
χm(λ, c′) + C1φ

θ
σ(t− c′h) + C2b

θe(λ
′(1+θ)−λ)(t−c′h)+

C3bφ
θ
σ(t− c′h)e(λ

′−λ)t
)
≤ Em(t, σ) + beλt

(
χm(λ, c′) + C4e

νt
)
, t ≤ S4,

for some positive ν, Cj and negative S4 (which does not depend on b). Since
χm(λ, c′) < 0, we may choose S4 is such a way that E+(t, b) < 0 for all t ≤ S4,
b ∈ (0, 1]. On the other hand, we know that, uniformly on each compact interval,
E+(t, b) → Em(t, σ), b → 0+. Therefore E+(t, b) < 0, t < S′2(σ) = c0h + S3(0) for
all sufficiently small b.
Now, let us define an upper solution φ+ by φ+(t) := min{κ, φb(t)}. It is clear that
φ+(t) is continuous and piece-wise C1 on R, being t0 := S3(b) the unique point of
discontinuity of the derivative where ∆φ′+|t0 := φ′+(t0+)−φ′+(t0−) = −φ′b(t0−) < 0.

Step III (Construction of a lower solution). Consider the following concave
monotone linear rational function

p(x) :=
g′m(0)x

1 +Ax
≤ g′m(0)x, x ≥ 0, A := 2

g′m(0)− 1

κ
, p(0) = 0, p(

κ

2
) =

κ

2
,

and set g−(x) := min{gm(x), p(x)}. Clearly, g− is continuous and increasing, and

g′−(0) = g′m(0), g−(0) = 0, g−(κ/2) = (κ/2), g−(x) ≤ g′m(0)x, x ≥ 0.

Moreover, after some straightforward but tedious computations, one can check that
function g−(x) = min{p(x),max{g̃m(x), g(x)}} meets the smoothness condition of
(H) in some right neighborhood of 0. This implies the existence of a monotone
positive function φ−, φ−(−∞) = 0, φ−(+∞) = κ/2, satisfying the equation

φ′′−(t)− c′φ′−(t)− φ−(t) + g−(φ−(t− c′h)) = 0,

e.g., see [36, Theorem 4]. Due to the property g−(x) ≤ g′m(0)x, x ≥ 0, we also
know that, for a small ζ > 0,

(φ−, φ
′
−)(s+ s0, c) = eλ

′t(1, λ′) +O(e(λ
′+ζ)t), t→ −∞.

Finally, since g−(x) ≤ gm(x) we obtain that

φ′′−(t)− c′φ′−(t)− φ−(t) + gm(φ−(t− c′h)) ≥ 0.

Step IV (Iterations). Comparing asymptotic representations of monotone
functions φ−(t) and φ+(t) at −∞, we find easily that

φ−(t+ s1) ≤ φ+(t), t ∈ R,

for some appropriate s1. Simplifying, we will suppose that s1 = 0. In the next stage
of the proof, we need the following simple result:
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Lemma 2.1. Let ψ : R → R be a bounded classical solution of the second order
impulsive equation

ψ′′ − cψ′ − ψ = f(t), ∆ψ|tj = αj , ∆ψ′|tj = βj , (15)

where {tj} is a finite increasing sequence, f : R→ R is bounded and continuous at
every t 6= tj and the operator ∆ is defined by ∆w|tj := w(tj+) − w(tj−). Assume

that equation z2 − cz − 1 = 0 has two real roots ξ1 < 0 < ξ2, ξj = ξj(c). Then

ψ(t) =
1

ξ1 − ξ2

(∫ t

−∞
eξ1(t−s)f(s)ds+

∫ +∞

t

eξ2(t−s)f(s)ds

)
(16)

+
1

ξ2 − ξ1

∑
t<tj

eξ2(t−tj)(ξ1αj − βj) +
∑
t>tj

eξ1(t−tj)(ξ2αj − βj)

 , t 6= tj .

Proof. See [33]. Alternatively, it can be checked by a straightforward substitution
that ψ defined by (16) verifies equation (15).

Similarly to [41], we also consider the monotone integral operator

(Aφ)(t) :=
1

ξ′12

(∫ t

−∞
eξ
′
1(t−s)gm(φ(s− c′h))ds+

∫ +∞

t

eξ
′
2(t−s)gm(φ(s− c′h))ds

)
where ξ′12 := ξ′2 − ξ′1, ξ′j := ξj(c

′). Using properties of functions φ−(t) and φ+(t),
we deduce from Lemma 2.1 that

φ−(t) ≤ (Aφ−)(t) ≤ (A2φ−)(t) ≤ · · · ≤ (A2φ+)(t) ≤ (Aφ+)(t) ≤ φ+(t), t ∈ R.

The latter implies (see [41] for more detail) the existence of a monotone function
φ(t) such that

(Aφ)(t) = φ(t), φ−(t) ≤ φ(t) ≤ φ+(t), t ∈ R.

This amounts to the existence of a wavefront for equation (1) (considered with
the birth function gm) propagating at velocity c′. Moreover, the latter estimations
shows that, for some s0 and positive δ,

φ(s+ s0) = eλ
′t +O(e(λ

′+δ)t), t→ −∞. (17)

Hence, inequality c∗(gm) > c′ can not be true and therefore lim c∗(gn) = c∗(g0). �

3. Proof of Theorem 1.2. In our proof which was inspired by Coville work [10],
we invoke the sliding method developed by Berestycki and Nirenberg [3, 8, 10, 11].

Lemma 3.1. Fix some c ≥ c∗ and suppose that φ, ψ are two wavefront profiles such
that, for some finite T ,

φ(t) < ψ(t), t < T. (18)

Then φ(t) < ψ(t) for all t ∈ R.

Proof. Set a∗ = inf A where

A := {a ≥ 0 : ψ(t) + a ≥ φ(t), t ∈ R}.

Note that A 6= ∅ since [κ,+∞) ⊂ A. Moreover, a∗ ∈ A.
Now, if a∗ = 0 then ψ(t) ≥ φ(t), t ∈ R. We claim that, in fact, ψ(t) > φ(t), t ∈ R.

Indeed, otherwise we can suppose that T is such that φ(T ) = ψ(T ). In this way,
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the difference ψ(t)− φ(t) ≥ 0 reaches its minimal value 0 at T , while ψ(T − ch) >
φ(T − ch). But then we get a contradiction:

0 = (ψ′′(T )− φ′′(T ))− c(ψ′(T )− φ′(T ))− (ψ(T )− φ(T )) +

(g(ψ(T − ch))− g(φ(T − ch))) > 0. (19)

In this way, Lemma 3.1 is proved when a∗ = 0 and consequently we may assume
that a∗ > 0. Let σ > 0 be small enough to satisfy

max
s∈[κ−σ,κ]

g′(s) ≤ 1.

Case I. First, we assume that T is such that, additionaly

φ(t), ψ(t) ∈ (κ− σ, κ), t ≥ T − ch. (20)

In such a case non-negative function

w(t) := ψ(t) + a∗ − φ(t), w(±∞) = a∗ > 0,

reaches its minimal value 0 at some leftmost point tm, where

ψ(tm)− φ(tm) = −a∗, ψ′(tm)− φ′(tm) = 0, ψ′′(tm)− φ′′(tm) ≥ 0.

Since ψ(tm) < φ(tm), we have that tm > T , so that

ψm := ψ(tm − ch), φm := φ(tm − ch) ∈ (κ− σ, κ).

In consequence, for some θ ∈ (κ− σ, κ),

0 = (ψ′′(tm)− φ′′(tm))− c(ψ′(tm)− φ′(tm))− (ψ(tm)− φ(tm)) +

(g(ψm)− g(φm)) ≥ a∗ + g(ψm)− g(φm) ≥ (21){
a∗ > 0, if ψm ≥ φm;
a∗ + g′(θ)(ψm − φm) > 0, if ψm − φm ∈ [−a∗, 0),

a contradiction. Observe that the strict inequality in the last line can be explained
in the following way. The sign “≥” can be replaced with “=” in

a∗ + g(ψ(tm − ch))− g(φ(tm − ch)) = a∗ + g′(θ)(ψ(tm − ch)− φ(tm − ch)) ≥ 0,

if and only if g′(θ) = 1 and ψ(tm − ch) − φ(tm − ch) = −a∗. This, however, is
impossible due to the definition of tm as the leftmost point where w(tm) = 0.

Case II. If (20) does not hold, then, due to the convergence of profiles at +∞, we
can find large τ > 0 and T1 > T such that

ψ(t+ τ) > φ(t), t < T1, φ(t), ψ(t+ τ) ∈ (κ− σ, κ), t ≥ T1 − ch.
Therefore, in view of the result established in Case I, we obtain that

ψ(t+ τ) > φ(t), t ∈ R. (22)

Define now τ∗ by

τ∗ := inf{τ ≥ 0 : inequality (22) holds}.
It is clear that ψ(t+ τ∗) ≥ φ(t), t ∈ R. Since, in addition,

ψ(t+ τ∗) ≥ ψ(t) > φ(t), t < T,

we conclude that ψ(t+ τ∗) > φ(t), t ∈ R, cf. (19). Now, if τ∗ = 0, then Lemma 3.1
is proved. Otherwise, τ∗ > 0 and for each ε ∈ (0, τ∗) there exists a unique Tε > T
such that

ψ(t+ τ∗ − ε) > φ(t), t < Tε, ψ(Tε + τ∗ − ε) = φ(Tε).
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It is immediate to see that limTε = +∞ as ε → 0+. Indeed, if Tεj → T ′ for some
finite T ′ and εj → 0+, then we get a contradiction: ψ(T ′+ τ∗) = φ(T ′). Therefore,
if ε is small, then

ψ(t+ τ∗ − ε), φ(t) ∈ (κ− σ, κ), t ≥ Tε − ch,

that is ψ(t+ τ∗− ε) and φ(t) satisfy condition (20) required in Case I. Thus we get
ψ(t+ τ∗−ε) > φ(t) for all t ∈ R, a contradiction to the definition of τ∗. This means
that τ∗ = 0 and the proof of Lemma 3.1 is completed.

Corollary 1. For a fixed c ≥ c∗, both φ and ψ have the same type of asymptotic
behaviour at −∞ described in Proposition 2.

Proof. For example, suppose that φ(t) ∼ eλ1t and ψ(t) ∼ eλ2t as t → −∞. Then
for every fixed τ ∈ R there exists T (τ) such that ψ(t + τ) > φ(t) for all t < T (τ).
Applying Lemma 3.1, we obtain that ψ(s) > φ(t) for every s := t + τ, t ∈ R, what
is clearly false.

Proof of Theorem 1.2. By Corollary 1, we can suppose that ψ(t) and φ(t) have the
same type (described in Proposition 2) of asymptotic behavior at −∞. Conse-
quently, ψ(t + τ), φ(t) satisfy condition (18) of Lemma 3.1 for every small τ > 0.
But then ψ(t + τ) > φ(t) for every small τ > 0 that yields ψ(t) ≥ φ(t), t ∈ R. By
symmetry, we also find that φ(t) ≥ ψ(t), t ∈ R, and Theorem 1.2 is proved.

4. Proof of Theorem 1.3. It is easy to see that each wave profile ϕ verifies

cϕ′(t) = D[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]− ϕ(t) +
∑
k∈Z

β(k)g(ϕ(t− k − ch)). (23)

First we note that ϕ(t) takes its value in (0, κ). Indeed, suppose for a moment that
s0 is the leftmost point where M := ϕ(s0) = sups∈R ϕ(s) ≥ κ. Then ϕ′(s0) = 0
and ϕ(s0 + 1) + ϕ(s0 − 1)− 2ϕ(s0) < 0, g(ϕ(s0 − k − ch)) ≤ g(M). Consequently,
M < g(M), M ≥ κ, a contradiction.

Second, we claim that ϕ(t) is strictly increasing at −∞ (we believe that ϕ is
monotone on R, cf. [25]: however, for our purpose it suffices to establish the
monotonicity of ϕ(t) on some of intervals (−∞, ρ)). Consider the characteristic
function

χ̃(z, c) := 1 + 2D + cz −D(ez + e−z)− g′(0)e−chz
∑
k∈Z

β(k)e−kz

and the bilateral Laplace transform Φ(z) :=
∫
R e
−zsϕ(s)ds. For each fixed c 6= 0

function χ̃(z, c) is analytic in the region Π1 = {0 < <z < γ#} of the complex plane
C and has a finite number of roots in any subregion {0 < ε < <z < γ# − ε}, see
[14, Lemma 3.1]. Next, it was proved in [1] that, under the conditions of Theorem
1.3, Φ(z) is analytic in some maximal vertical strip Π = {0 < <z < λ} ⊂ Π1

where λ < γ# is a positive root (in difference with [14], not necessarily minimal and
simple) of the equation χ̃(z, c) = 0. Again using [14, Lemma 3.1] (or, alternatively,
[1, Lemma 2]), we obtain that there exists r > 0 such that

{λ} = {z ∈ C : χ̃(z, c) = 0, λ− r < <z < λ+ r}. (24)

Moreover, ϕ(t) = O(eγt), t → −∞, for each γ ∈ (0, λ). See Corollaries 1,3 and
Theorem 6 in [1] for more detail. Yet we will need a stronger result:
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Lemma 4.1. Under assumptions of Theorem 1.3, we have that

ϕ(s+ s0, c) = (a− t)jeλt +O(e(λ+σ)t), ϕ′(t) = λϕ(t)(1 + o(1)), t→ −∞.

for appropriate a, s0, j ∈ {0, 1} and some σ > 0. As a consequence, ϕ is strictly
increasing on some maximal open interval (−∞, ρ).

Proof. Here, we follow the proof of Theorem 3 (Step I) in [1]. Set

D(t) :=
∑
k∈Z

β(k)(g′(0)ϕ(t− k − ch)− g(ϕ(t− k − ch))),

Take C, δ, θ as in (H). Observe that without restricting the generality, we can
assume that (1 + θ)λ < γ#. Since equation (23) is translation invariant, we can
suppose that ϕ(t) < δ for t ≤ 0. Applying the bilateral Laplace transform to (23),
we obtain that

χ̃(z, c)Φ(z) =

∫
R
e−ztD(t)dt =: D(z), z ∈ Π.

We claim that, in fact, function D is analytic in the region Πα = {z : <z ∈
(0, (1 + θ)λ)}. Indeed, we have

D(x+ iy) =

∫
R
e−iyt[e−xtD(t)]dt.

Given x := <z ∈ (0, (1 + θ)λ), we choose x′ sufficiently close from the left to λ to

satisfy −x+ (1 + θ)x′ > 0. Then ϕ(t) ≤ Cxex
′t, t ∈ R, for some positive Cx and

|D(t)| ≤ C
∑

k≥t−ch

β(k)|ϕ(t− k − ch)|1+θ + κ(1 + g′(0))
∑

k<t−ch

β(k) ≤

e(1+θ)x
′tC1

∑
k≥t−ch

β(k)e−x
′(1+θ)(k+ch) + κ(1 + g′(0))

∑
k<t−ch

β(k)e−x
′(1+θ)(k+ch−t) ≤

e(1+θ)x
′t [C2 + κ(1 + g′(0))]

∑
k∈Z

β(k)e−x
′(1+θ)k ≤ C∗e(1+θ)x

′t, t ∈ R.

Since clearly D(t) is bounded on R, we find that e−xtD(t) belongs to Lk(R), for
each k ∈ [1,∞] and x ∈ (0, (1 + θ)λ). In consequence, D is analytic in Πα. In
addition, for each x ∈ (0, (1 + θ)λ) the function dx(y) := D(x+ iy) is bounded and
square integrable on R. Also, for each vertical line Lx := {x + it, t ∈ R} where
χ̃(x + it) 6= 0, we have that χ̃(x + it) ∼ cit, |t| → ∞. Thus 1/χ̃(x + it) is square
integrable on R as well. Consequently, for each fixed x ∈ (0, (1 + θ)λ) such that Lx
does not contain zeros of χ̃(z), function D(x+ iy)/χ̃(x+ iy) is integrable on R .

As we have mentioned, χ̃(z, c) is analytic in the domain Πα, while Φ(z) =
D(z)/χ̃(z, c) is analytic in <z ∈ (0, λ) and meromorphic in Πα. In virtue of (24),
we can suppose that Φ(z) has a unique singular point λ in Πα which is either simple
or double pole.

Now, for some x′′ ∈ (0, λ), using the inversion theorem for the Laplace transform,
we obtain that

ϕ(t) =
1

2πi
lim

N→+∞

∫ x′′+iN

x′′−iN

eztD(z)

χ̃(z, c)
dz, t ∈ R.

If x ∈ (λ, (1 + θ)λ) then
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∫ x′′+iN

x′′−iN

eztD(z)dz

χ̃(z, c)

=

(∫ x+iN

x−iN
+

∫ x−iN

x′′−iN
−
∫ x+iN

x′′+iN

)
eztD(z)dz

χ̃(z, c)
− 2πiResz=λ

eztD(z)

χ̃(z, c)
.

Since, by [1, Corollary 2],

lim
N→+∞

max
z∈[x′′±iN,x±iN ]

(|D(z)|+ |1/χ̃(z, c)|) = 0,

we conclude that, for each fixed t ∈ R

lim
N→+∞

∫ x±iN

x′′±iN

eztD(z)

χ̃(z, c)
dz = 0.

Observe also that function χ̃(z, c) does not have zero other than λ in a small strip
centered at <z = λ. Therefore

ϕ(t) = −Resz=λ
eztD(z)

χ̃(z, c)
+
ext

2π

∫
R

eiytdx(y)

χ̃(x+ iy, c)
dy.

Since

Resz=λ
eztD(z)

χ̃(z, c)
=
eλtD(λ)

χ̃′(λ, c)
, if χ′(λ, c) 6= 0,

Resz=λ
eztD(z)

χ̃(z, c)
=

2eλt

χ̃′′(λ, c)

(
tD(λ) + D′(λ)−D(λ)

χ̃′′′(λ, c)

3χ̃′′(λ, c)

)
, if χ′(λ, c) = 0,

we get the desired representation. It should be noted here that χ̃′′(λ, c) < 0, that

lim
|t|→+∞

∫
R

eiytdx(y)

χ̃(x+ iy, c)
dy = 0, Resz=λ

eztD(z)

χ̃(z, c)
6= 0.

Indeed, if the latter residue were equal to 0, then Φ(z) would not have a pole at λ.
Finally, it is easy to check that cϕ′(t) = D[ϕ(t + 1) + ϕ(t − 1) − 2ϕ(t)] − ϕ(t)

+
∑
k∈Z β(k)g′(0)ϕ(t− k − ch) +D(t) = cλϕ(t)(1 + o(1)), t→ −∞.

Next, we claim that the statement of Lemma 3.1 is also valid for solutions of
(23). Regardless the fact that we do not know whether wavefronts are monotone on
whole real line or they are not, the proof of Case II can be repeated almost literally.
The monotonicity of wavefronts on (−∞, ρ) will be sufficient for this purpose. For
instance, let us prove the following

Lemma 4.2. Under the assumptions of Lemma 3.1, there are large τ > 0 and
T1 > T such that

ψ(t+ τ) > φ(t), t < T1, φ(t), ψ(t+ τ) ∈ (κ− σ, κ), t ≥ T1 − ch.

Proof. Due to the monotonicity of φ and ψ at −∞, we find that for every τ ≥ 0
there exists T (τ) such that

ψ(t+ τ) > φ(t), t < T (τ), φ(T (τ)) = ψ(T (τ) + τ).

Let us prove that T (τ) is bounded from below on R+. Indeed, otherwise there exists
a converging sequence τj such that T (τj)→ −∞. In turn, this forces T (τj) + τj →
−∞. But then we can use the monotonicity properties of φ, ψ in order to get a
contradiction:

φ(T (τ)) = ψ(T (τ) + τ) > ψ(T (τ)).
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Since φ(s) < κ, s ∈ R, we deduce in a similar way that the sequence {T (τj)}
can not have a finite limit as τj → +∞. Thus T (τ) → +∞ as τ → +∞. Since
φ(+∞) = ψ(+∞) = κ, the remainder of the proof is straightforward.

Now, the following main changes should be introduced in the proof of Lemma 3.1:

1. Set ∆(t) = ψ(t)−φ(t). Instead of (19), we then have that ∆(T ) = ∆′(T ) = 0,

0 = D[∆(T + 1) + ∆(T − 1)− 2∆(T )]−∆(T ) +∑
k∈Z

β(k) (g(ψ(T − k − ch))− g(φ(T − k − ch))) > 0.

Here (non-strict) monotonicity of g is sufficient because of

∆(T + 1) + ∆(T − 1)− 2∆(T ) ≥ ∆(T − 1) > 0, g(ψ(s)) ≥ g(φ(s)), s ∈ R.

2. If a∗ > 0, we take small positive σ > 0 and integer N1 > 0 such that

κ
∑
|k|≥N1

β(k) ≤ 0.5a∗(1− max
s∈[κ−σ,κ]

g′(s))

and then we assume additionally that T is such that

φ(t), ψ(t) ∈ (κ− σ, κ), t ≥ T −N1 − ch.

3. Similarly, in (21), the expression g(ψ(tm−ch))−g(φ(tm−ch)) should be replaced
with∑
k∈Z

β(k) (g(ψ(tm − k − ch))− g(φ(tm − k − ch))) ≥ −0.5a∗(1− max
s∈[κ−σ,κ]

g′(s))+

∑
|k|<N1

β(k)g′(θk)(ψ(tm − k − ch)− φ(tm − k − ch)) ≥ −0.5a∗(1 + max
s∈[κ−σ,κ]

g′(s)).

As a result, we get again a contradiction:

0 = D[∆(tm + 1) + ∆(tm − 1)− 2∆(tm)]−∆(tm) +∑
k∈Z

β(k) (g(ψ(tm − k − ch))− g(φ(tm − k − ch))) > 0.5a∗(1− max
s∈[κ−σ,κ]

g′(s)) ≥ 0.

To finalize the proof of Theorem 1.3, it suffices to repeat the last two paragraphs
of the third section.

5. Proof of Theorem 1.4. In virtue of the front uniqueness, the first statement
of Theorem 1.4 was already proved in the previous section (cf. (17) with gm = g)
so we have to consider the case c = c∗ only. Suppose, contrary to our claim, that

φ(t+ s0) = eλ2t +O(e(λ2+δ)t), t→ −∞, λj := λj(c∗),

(without restricting the generality, we can assume that s0 = 0), take some c′ < c∗
close to c∗ and consider the following piecewise continuous function

φ+(t) :=

 Meρt + aeλ
′
2t, when t ≤ T1,

φ(t) + ε, when t ∈ (T1, T2],
κ, when T > T2,

where λ′2 := λ2(c′) > λ2, ρ = λ2(1 + θ) > λ′2, M, a, ε > 0, a� ε� 1, M � 1, and

MeρT1 + aeλ
′
2T1 = φ(T1), φ(T2) + ε = κ.



2184 ELENA TROFIMCHUK, MANUEL PINTO AND SERGEI TROFIMCHUK

For sufficiently large M and small ε > 0, the above definitions yield large negative
T1 = T1(M,a) and large positive T2(ε). Therefore, if M is sufficiently large and
a, c∗ − c′ > 0 are sufficiently small, then we can suppose that, for all t ≤ T1,

E+ := E+(t, ε, a,M, c′) := φ′′+(t)− c′φ′+(t)− φ+(t) + g(φ+(t− c′h)) =

Meρt
(
χ(ρ, c′) +

[
g(φ+(t− c′h))

φ+(t− c′h)
− g′(0)

]
e−ρc

′h

)
+

aeλ
′
2t

[
g(φ+(t− c′h))

φ+(t− c′h)
− g′(0)

]
e−λ

′
2c
′h < 0.5Meρtχ(ρ, c′)+C1ae

λ′2t
[
Meρt + aeλ

′
2t
]θ

≤ 0.5Meρtχ(ρ, c′) + C1ae
λ′2(1+θ)t

[
Me(ρ−λ

′
2)t + a

]θ
≤

0.5Meρtχ(ρ, c′) + C1aMeλ
′
2(1+θ)t < Meρt(0.5χ(ρ, c′) + C1a) < 0.

Moreover, since ρ > λ2, we also can choose |T1| � a in such a way that

φ′+(T1−) ≈ ρφ+(T1) > φ′+(T1+) ≈ λ2φ+(T1), Meρs+aeλ
′
2s < φ(s), s ∈ [T1−h, T1).

Indeed, we can first determine (large negative) T̄1 as the leftmost root of equation
φ(t) = Meρt (with M large and positive). This corresponds to the limit case a = 0.
The inequality φ′+(T̄1−) > φ′+(T̄1+) is obvious in such a case. To prove the second

inequality, suppose that for a moment that, for some S ∈ [T̄1 − h, T̄1),

MeρS = φ(S), Meρt < φ(t), t ∈ (S, T̄1).

Then ρMeρS ≤ φ′(S) so that (assuming that M is large)

ρ ≤ φ′(S)/φ(S) ≈ λ2,
a contradiction. Since a� 1 can considered as a small perturbation parameter, we
deduce that the mentioned properties hold for all small a (where T1 is close to T̄1).

Let σ > 0 be such that γ := max{g′(s) : s ∈ [κ − σ, κ]} < 1. From now on, we
fix M,T1 chosen above and take 0 < a� c∗ − c′ � ε < 1 small enough to satisfy

φ′+(T1+)−φ′+(T1−) < ε
c∗ −

√
c2∗ + 4

2
< 0, −ε(1−γ)+(1+γh) max

s∈R
φ′(s)(c∗−c′) < 0.

If t ∈ [T1, T1 + c′h], then

E+(t, ε, c′) = (c∗ − c′)φ′(t)− ε+ g(φ+(t− c′h))− g(φ(t− c∗h)).

Next, for t ∈ [T1 + c′h, T2], we have

E+(t, ε, c′) = φ′′(t)− c′φ′(t)− φ(t)− ε+ g(φ(t− c′h) + ε) =

(c∗ − c′)φ′(t)− ε+ g(φ(t− c′h) + ε)− g(φ(t− c∗h)).

Let us define T+
1 from

φ(T+
1 − 2c∗h) = κ− σ.

Observe that T+
1 does not depend on ε, c′ (thus we may assume that T+

1 < T2) and
that, for some θ1 ∈ [κ− σ, κ] and θ2 > T+

1 − 2c∗h,

−ε+ g(φ(t− c′h) + ε)− g(φ(t− c∗h)) = g′(θ1)(ε+ φ′(θ2)(c∗ − c′)h)− ε ≤

−ε(1− γ) + γhmax
s∈R

φ′(s)(c∗ − c′), t ∈ [T+
1 , T2].

As a consequence, we obtain that E+(t, ε, c′) < 0 for all t ∈ [T+
1 , T2]. On the other

hand, if t ≥ T2 + c′h then E+(t, ε, c′) = 0, and if t ∈ [T2, T2 + c′h), it holds

E+(t, ε, c′) = −κ+ g(φ(t− c′h) + ε) < 0.
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Hence, if c′ is close to c∗ we find that

E+(t, ε, c′) ≤ 0, t ∈ R \ [T1, T
+
1 ],

sup
t∈[T1,T

+
1 ]

E+(t, ε, c′) = ω(c′, ε), lim
(c′,ε)→(c∗,0)

ω(c′, ε) ≤ 0. (25)

Next, Lemma 2.1 assures that

φ+(t) =
1

ξ′2 − ξ′1

(∫ t

−∞
eξ
′
1(t−s)g(φ+(s− c′h))ds+

∫ +∞

t

eξ
′
2(t−s)g(φ+(s− c′h))ds

−
∫ t

−∞
eξ
′
1(t−s)E+(s)ds−

∫ +∞

t

eξ
′
2(t−s)E+(s)ds

)

+
1

ξ′2 − ξ′1

∑
t<Tj

eξ
′
2(t−Tj)(ξ′1αj − βj) +

∑
t>Tj

eξ
′
1(t−Tj)(ξ′2αj − βj)

 ,
where β2 < 0, α2 = 0, α1 = ε, and β1 < 0 does not depend on ε. Consider

E(t) := −
∫ t

−∞
eξ
′
1(t−s)E+(s)ds−

∫ +∞

t

eξ
′
2(t−s)E+(s)ds+∑

t<Tj

eξ
′
2(t−Tj)(ξ′1αj − βj) +

∑
t>Tj

eξ
′
1(t−Tj)(ξ′2αj − βj).

Since there exists ν > 0 (independent on small ε, c∗ − c′) such that ξ′1α1 − β1 > ν,
ξ′2α1 − β1 > ν, we infer from (25) that, for t ≤ T1 and small positive ε, c∗ − c′,

E(t) > −
∫ T+

1

T1

eξ
′
2(t−s)E+(s)ds+ eξ

′
2(t−T1)ν ≥ eξ

′
2(t−T1)(ν − ω(c′, ε)

ξ′2
) > 0.

Next, for t ∈ [T1, T
+
1 ] and small positive ε, c∗ − c′, we have that

E(t) > −
∫ t

T1

eξ
′
1(t−s)E+(s)ds−

∫ T+
1

t

eξ
′
2(t−s)E+(s)ds+ eξ

′
1(t−T1)ν ≥

eξ
′
1(T

+
1 −T1)ν − ω(c′, ε)

√
(c′)2 + 4 > 0.

Similarly, if t ≥ T+
1 then

E(t) > −
∫ T+

1

T1

eξ
′
1(t−s)E+(s)ds+ eξ

′
1(t−T1)ν = eξ

′
1(t−T

+
1 )(eξ

′
1(T

+
1 −T1)ν− ω(c′, ε)

|ξ′1|
) > 0.

Therefore, for all t ∈ R and small c∗ − c′, ε > 0,

φ+(t) >
1

ξ′2 − ξ′1

(∫ t

−∞
eξ
′
1(t−s)g(φ+(s− c′h))ds+

∫ +∞

t

eξ
′
2(t−s)g(φ+(s− c′h))ds

)
.

To finalize the proof of Theorem 1.4, it suffices now to repeat Steps III and IV of
Section 2. The construction of a lower solution is possible because of c∗ > c#: this
inequality assures the existence of two positive real roots λ2(c′) < λ1(c′) for all c′

close to c∗.



2186 ELENA TROFIMCHUK, MANUEL PINTO AND SERGEI TROFIMCHUK

Acknowledgments. We are very grateful to the anonymous referee of this work.
His valuable suggestions helped us to significantly improve the first version [34] of
the paper. In particular, we have rewritten parts related to the existence of the
minimal speed of propagation in the monotone monostable systems since this prob-
lem was already settled in [21, 22, 39]. The research was supported by FONDECYT
(Chile), projects 1080034, 1120709 (E.T. and M.P.), 1110309 (S.T.) S. Trofimchuk
was partially supported by CONICYT (Chile) through PBCT program ACT-56.

REFERENCES

[1] M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts (Diekmann-

Kaper theory of a nonlinear convolution equation re-visited), Math. Ann., 354 (2012), 73–109.

[2] R. D. Benguria and M. C. Depassier, Variational characterization of the speed of propagation
of fronts for the nonlinear diffusion equation, Comm. Math. Phys., 175 (1996), 221–227.

[3] H. Berestycki and L. Nirenberg, Traveling waves in cylinders, Ann. Inst. H. Poincare Anal.

Non. Lineaire, 9 (1992), 497–572.
[4] H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation:

travelling waves and steady states, Nonlinearity, 22 (2009), 2813–2844 .
[5] A. Boumenir and V.M. Nguyen, Perron theorem in the monotone iteration method for trav-

eling waves in delayed reaction-diffusion equations, J. Differential Equations, 244 (2008),

1551–1570.
[6] A. Calamai, C. Marcelli and F. Papalini, A general approach for front-propagation in func-

tional reaction-diffusion equations, J. Dynam. Differential Equations, 21 (2009) 567–392.

[7] J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,
Proc. Amer. Math. Soc., 132 (2004), 2433–2439.

[8] X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear

monostable dynamics, Math. Ann., 326 (2003), 123–146.
[9] X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monos-

table dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233–258.

[10] J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion
equation, Ann. Mat. Pura Appl., 185 (2006), 461–485.

[11] J. Coville, J. Dávila and S. Mart́ınez, Nonlocal anisotropic dispersal with monostable nonlin-
earity, J. Differential Equations, 244 (2008), 3080–3118.

[12] O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation,

Nonlinear Anal., 2 (1978), 721–737.
[13] U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic

convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1–99.
[14] J. Fang, J. Wei and X.-Q. Zhao, Uniqueness of traveling waves for nonlocal lattice equations,

Proc. Amer. Math. Soc., 139 (2011), 1361–1373.

[15] J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone

integral equations with applications, J. Differential Equations, 248 (2010), 2199–2226.
[16] T. Faria and S. Trofimchuk, Non-monotone traveling waves in a single species reaction -

diffusion equation with delay, J. Differential Equations, 228 (2006), 357–376.
[17] B. Gilding and R. Kersner, “Travelling Waves in Nonlinear Diffusion-Convection Reaction,”

Birkhauser, 2004.

[18] C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear
convolution equation, preprint arXiv:1204.5760.

[19] K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations, J. Math. Biol.,

2 (1975), 251–263.
[20] A. Kolmogorov, I. Petrovskii and N. Piskunov, Study of a diffusion equation that is related

to the growth of a quality of matter, and its application to a biological problem, Byul. Mosk.

Gos. Univ. Ser. A Mat. Mekh., 1 (1937) 1–26.
[21] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone

semiows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40. Erratum: 61(2008),

137–138.
[22] X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evo-

lution systems, J. Functional Anal., 259 (2010), 857–903.

http://www.ams.org/mathscinet-getitem?mr=MR1370094&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1191008&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2557449&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2404431&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2575363&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2052422&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1981615&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2217316&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2231034&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2420515&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0512163&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1787406&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2748428&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2595719&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2254435&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2081104&return=pdf
http://arxiv.org/pdf/1204.5760
http://www.ams.org/mathscinet-getitem?mr=MR0411693&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2270161&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2652175&return=pdf


PUSHED TRAVELING FRONTS IN MONOSTABLE DELAYED EQUATIONS 2187

[23] S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,
J. Differential Equations, 171 (2001), 294–314.

[24] S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J.

Differential Equations, 237 (2007), 259–277.
[25] S. Ma, X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-

diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54–87.
[26] J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,

J. Dynam. Differential Equations, 11 (1999), 1–48.

[27] M. Mei, Ch. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal
time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 233–258.

[28] G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The

case of the nonlocal Fisher equation, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 553–557.
[29] F. Rothe, Convergence to pushed fronts, Rocky Mountain J. Math. , 11 (1981), 617–633.

[30] K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differ-

ential equations, Trans. Amer. Math. Soc., 302 (1987), 587–615.
[31] A.N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosciences, 31

(1976), 307–315.

[32] K. Schumacher, Travelling-front solutions for integro-differential equations. I , J. Reine
Angew. Math., 316 (1980), 54–70.

[33] E. Trofimchuk, M. Pinto and S. Trofimchuk, Traveling wavefronts for a model of the Belousov-
Zhabotinskii reaction, preprint arXiv:1103.0176v2.

[34] E. Trofimchuk, M. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations

with monotone delayed reaction, preprint arXiv:1111.5161v1.
[35] E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single

species reaction-diffusion equation with delay, J. Differential Equations, 245 (2008), 2307–

2332.
[36] E. Trofimchuk, P. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a

delayed reaction-diffusion equation, J. Differential Equations, 246 (2009), 1422–1444.

[37] E. Trofimchuk and S. Trofimchuk, Admissible wavefront speeds for a single species reaction-
diffusion equation with delay, Discrete Contin. Dyn. Syst., 20 (2008), 407–423.

[38] Z.-C. Wang, W.T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal

delayed effects, J. Dynam. Differential Equations, 20 (2008), 573–607.
[39] H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal.,

13 (1982), 353–396.
[40] P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice

delay differential equation with global interaction, IMA J. Appl. Math., 68 (2003), 409–439.

[41] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam.
Differential Equations, 13 (2001), 651–687.

[42] J. Xin, Front propagation in heterogeneous media, SIAM Review, 42 (2000), 161–230.
[43] Z.-X. Yu, Uniqueness of critical traveling waves for nonlocal lattice equations with delays,

Proc. Amer. Math. Soc., 140 (2012), 3853–3859.

[44] B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher’s equation

J. Differential Equations, 105 (1993), 46–62.

Received November 2011; revised August 2012.

E-mail address: trofimch@imath.kiev.ua

E-mail address: pintoj@uchile.cl

E-mail address: trofimch@inst-mat.utalca.cl

http://www.ams.org/mathscinet-getitem?mr=MR1818651&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2330948&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2170528&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1680463&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2745791&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2802923&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0639447&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0891637&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0682241&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0581323&return=pdf
http://arxiv.org/pdf/1103.0176v2
http://arxiv.org/pdf/1111.5161v1
http://www.ams.org/mathscinet-getitem?mr=MR2446193&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2488691&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2358264&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2429437&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0653463&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1988153&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1845097&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1778352&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2944726&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1237977&return=pdf
mailto:trofimch@imath.kiev.ua
mailto:pintoj@uchile.cl
mailto:trofimch@inst-mat.utalca.cl

	1. Introduction
	1.1. A continuity property of the minimal speed of propagation
	1.2. Uniqueness of wavefronts
	1.3. Asymptotic formulas for the wave profiles

	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	4. Proof of Theorem 1.3
	5. Proof of Theorem 1.4
	Acknowledgments
	REFERENCES

