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ABSTRACT. The entropy and mutual information index are important concepts developed by
Shannon in the context of information theory. They have been widely studied in the case of the
multivariate normal distribution. We first extend these tools to the full symmetric class of multi-
variate elliptical distributions and then to the more flexible families of multivariate skew-elliptical
distributions. We study in detail the cases of the multivariate skew-normal and skew-t distributions.
We implement our findings to the application of the optimal design of an ozone monitoring station
network in Santiago de Chile.
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1. Introduction

The mathematical theory of communication introduced by Shannon (1948) describes logarith-
mic measures of information and has stimulated a tremendous amount of study in engineer-
ing fields on the subject of information theory. It is a branch of applied probability and statis-
tics that is relevant to statistical inference and therefore should be of basic interest to statisti-
cians (Kullback, 1978). Information theory seeks the quantification of information. One goal
of information theory is the development of coding schemes that provide good performance
in comparison with the optimal performance given by the theory. It works under the assump-
tion of a strongly stationary random process to define an information quantity contained in
a multivariate probability density function, for example, the multivariate normal distribution
(Kullback, 1978; Silva & Quiroz, 2003; Misra et al., 2005; Cover & Thomas, 2006). This
quantity allows to measure the cumulative information of a multivariate data set, or more
specifically, to quantify the mutual information between two random variables or vectors. On
the other hand, the entropy is a notion of information provided by a random process about
itself and it is sufficient to study the reproduction of a marginal process through a noiseless
environment. For a systematic and comprehensive account of these and related concepts, see,
for example, Cover & Thomas (2006).

Defined according to Cover & Thomas (2006) from discrete to continuous variables,
we consider the following concepts of entropy and mutual information index. Let X ∈ Rn
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and Y ∈ Rm be two random vectors with joint and marginal probability density functions
pX,Y(x, y), pX(x) and pY(y), respectively. The mutual information index between X and Y is
defined by

IXY =E
[

log
{

pX,Y(X, Y)
pX(X)pY(Y)

}]
=
∫

Rm

∫
Rn

log
{

pX,Y(x, y)
pX(x)pY(y)

}
pX,Y(x, y) dx dy. (1)

Moreover the (differential) entropy of a random vector Z∈Rk with probability density func-
tion pZ(z) is defined by

HZ =−E
[
log {pZ(Z)}]=−

∫
Rk

log{pZ(z)}pZ(z) dz. (2)

The entropy concept is attributed to uncertainty of information or mathematical con-
trariety of information. From (1) and (2), it is straightforward to see that the mutual infor-
mation index IXY between X and Y can be computed as

IXY =HX +HY −HXY, (3)

where HXY, HX and HY are joint and marginal entropies of (X, Y), X and Y, respectively. By
definition, IXY =0 when the random vectors X and Y are independent; otherwise, this index
is positive (Cover & Thomas, 2006), and it increases with the degree of dependence between
the components of X and Y. In other words, the mutual information index provides a gen-
eralized measure of association between X and Y, which is particularly convenient in those
models where the correlation is not defined.

Several research studies have used information theory to design a network in situations
where specific objectives are hard to define or may be unforeseen, especially in monitoring
networks design (Silva & Quiroz, 2003; Ainslie et al., 2009), transmission of bits information
(Shannon, 1948) and other applications. However, studies such as Silva & Quiroz (2003) have
assumed a multivariate normality condition on the variables under transformations which
restricts the real information given by the data set.

Although recently, Javier & Gupta (2008, 2009) have studied the mutual information for
non-normal distributions belonging to the family of continuous multivariate location-scale
distributions, their results are concerned only with three specific distributions and are
derived in terms of infinite series. Some other entropy expressions for multivariate distribu-
tions can be found in Ahmed & Gokhale (1989). We propose in this paper a general and
unified theory of the mutual information for flexible and tractable families of continuous
multivariate distributions, in which the multivariate normal and further well-known sym-
metric distributions, such as the Student’s t, are particular members. Specifically, we con-
sider the multivariate elliptical and skew-elliptical families of distributions; see the books
by Fang et al. (1990) and Genton (2004), respectively. We give special attention to the par-
ticular cases of the multivariate skew-normal and skew-t distributions that allow to model
skewness.

The organization of this paper is as follows. Section 2 presents the entropy and mutual
information index for multivariate elliptical distributions, with the multivariate normal and
Student’s t distributions as special cases. Section 3 presents the entropy and mutual infor-
mation index for multivariate skew-elliptical distributions, with the multivariate skew-normal
and skew-t distributions as special cases. Section 4 reports numerical results on the evaluation
of the skew-normal and skew-t entropies as a function of the skewness. Section 5 presents
the application of our results to the optimal design of an ozone monitoring station network
in Santiago de Chile. This paper ends with a discussion in section 6.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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2. Entropy and mutual information for multivariate elliptical distributions

2.1. Location-scale models

In this paper, our interest lies in the computation of the mutual information index for loca-
tion-scale models. In this sense, lemma 1 shows that for any distribution in this class, the
entropy (and hence the mutual information index) does not depend on where it is localized.
In other words, for these distributions, the location parameter is irrelevant to compute the
entropy and the mutual information index.

Lemma 1. Let pZ(z)= |�|−1/2pZ0{�−1/2(z−�)} be a location-scale probability density function,
where � ∈ Rk is the location vector and � ∈ Rk×k is the dispersion matrix. Let Z0 =
�−1/2(Z − �) be a standardized version of Z, with standardized probability density function
pZ0 (z0) that does not depend on (�, �). Then,

HZ = 1
2

log |�|+HZ0 , (4)

where HZ0
=−E[log{pZ0 (Z0)}] is the entropy of the standardized random vector Z0.

Proof. The result is immediate from E[log{pZ(Z)}]=−(1/2) log |�|+E[log{pZ0 (Z0)}].

2.2. Multivariate elliptical distributions

The multivariate elliptical family of distributions defines one of the most important classes
of symmetric location-scale models. It contains the normal model and preserves most of its
main properties. For a systematic review of this family, see, for example, Fang et al. (1990).
In this section, we give the ingredients to compute the elliptical mutual information index.

Let Z ∼ ECk(�, �, h(k)) be an elliptical random vector in Rk , with location vector �∈ Rk ,
dispersion matrix � ∈ Rk×k and density generator function h(k), whose probability density
function is

pZ(z)≡ fk(z;�, �, h(k))= |�|−1/2h(k){(z −�)T�−1(z −�)}, z ∈Rk .

Here, the density generator function h(k) is a non-negative real-valued function such that

g(s)= �k/2

�(k/2)
sk/2−1h(k)(s), s > 0,

is a valid probability density function. Note that pZ(z)= |�|−1/2h(k)(zT
0 z0), where z0 =

�−1/2(z − �). Hence, for this class, the standardized random vector Z0 =�−1/2(Z − �) has a
spherical probability density function pZ0 (z0)=h(k)(zT

0 z0), z0 ∈Rk , for which

HECk
Z0

=−E[log{h(k)(ZT
0 Z0)}].

This expectation depends on the distribution of the squared radial random variable S =
ZT

0 Z0 = (Z−�)T �−1(Z−�), which has the probability density function g(s) given above. As
in Arellano-Valle et al. (2006b), we call the distribution of S a squared-radial distribution
and we denote it by R2(h(k)). Hence, for the entropy of Z0 we have

HECk
Z0

=−E[log{h(k)(S)}]=−
∫ ∞

0
[log{h(k)(s)}]g(s) ds.

Thus, the entropy of Z ∼ ECk(�, �, h(k)) can be obtained from (4). Moreover, the mutual
information between two random vectors X and Y with elliptical joint distribution can be

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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computed using (3) and considering that if(
X
Y

)
∼ECn+m

((
�X

�Y

)
,
(

�XX �XY

�YX �YY

)
, h(n+m)

)
,

then the respective marginal random vectors are distributed as X ∼ ECn(�X, �XX, h(n)) and
Y ∼ECm(�Y, �YY, h(m)). In fact, it is clear from the above results that the respective marginal
and joint entropies are

HECn
X = 1

2
log |�XX|−E[log{h(n)(SX)}],

HECm
Y = 1

2
log |�YY|−E[log{h(m)(SY)}],

HECn+m
XY = 1

2
log |�|−E[log{h(n+m)(SXY)}],

where SX ∼ R2(h(n)), SY ∼ R2(h(m)) and SXY ∼ R2(h(n+m)). The determinant of the joint dis-
persion matrix � can be computed as

|�|=
∣∣∣∣�XX �XY

�YX �YY

∣∣∣∣= |�YY||�XX||In −BX·YBY·X|,

where BX·Y =�−1
XX�XY and BY·X =�−1

YY�YX are the matrices of regression coefficients asso-
ciated with the regression functions of X | Y =y and Y | X =x, respectively. Note here that
0≤| In −BX·YBY·X | ≤1. Hence, we obtain that the elliptical mutual information index between
X and Y is

I ECn +m
XY (�, h)=E[log{h(n+m)(SXY)}]−E[log{h(n)(SX)}]−E[log{h(m)(SY)}]

− 1
2

log |In −BX·YBY·X|. (5)

The last term in (5) represents the information due the dispersion matrix �, which is the
same for the whole elliptical class. A similar fact occurs with the correlation matrix induced
by �, which means that within the elliptical family, the correlation does not depend on the
specific elliptical density generator h. As a consequence from (5), the elliptical mutual infor-
mation depends on both � and h, allowing differences for the association between X and Y
through the different elliptical joint distributions.

The multivariate normal distribution, namely Z∼Nk(�, �), is a particular member of the
elliptical family. In this case, E(Z)=� and var(Z)=�. Moreover, for the normal density gen-
erator function, we have h(k)

N (s)= (2�)−k/2 e−s/2, s > 0, and for the distribution of the normal
squared radial random variable, we have S = (Z−�)T �−1(Z−�)∼χ2

k , the chi-squared distri-
bution with k degrees of freedom. Another important member is the multivariate Student’s
t distribution Z ∼ Tk(�, �, �), where �> 0 is the degrees of freedom, for which E(Z)=� for
�> 1 and var(Z)= �/(�−2)� for �> 2. Also, for the Student’s t distribution, we have h(k)

T (s)=
�{(�+k)/2}/{�(�/2)(��)k/2}(1+ s

�

)−(�+k)/2
and S/k ∼Fk,�, the Fisher distribution with k and

� degrees of freedom. Further properties of these distributions can be found in the book of
Fang et al. (1990) and in Arellano-Valle et al. (2006b). For the particular case of the Student’s
t distributions, see Arellano-Valle & Bolfarine (1995). The normal and Student’s t distribu-
tions are, however, particular cases of the so-called scale mixtures of normal distributions,
a subclass of elliptical distributions, for which the density generator function can be repre-
sented as

h(k)(u)=
∫ ∞

0
vk/2h(k)

N (
√

vu) dF (v),

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.



46 R. B. Arellano-Valle et al. Scand J Statist 40

where h(k)
N is the aforementioned normal density generator function and F is a cumulative

distribution function on (0, ∞) that does not depend on k. This is equivalent to representing
stochastically the spherical random vector Z0 =�−1/2(Z−�) as Z0

d=V −1/2Z0N , where V ∼F ,
Z0N ∼Nk(0, Ik) and they are independent. As a consequence of this fact, we have S

d=V −1SN ,
where SN ∼χ2

k and is independent of V. We study the normal and Student’s t special cases
in the next sections.

2.3. The multivariate normal distribution

We give an alternative proof of the multivariate normal Shannon entropy (Kullback, 1978;
Misra et al., 2005; Cover & Thomas, 2006) by considering lemma 1. Let Z ∼ Nk(�, �) de-
note a k-dimensional normal random vector, with mean vector E(Z)=� ∈ Rk and covari-
ance matrix var(Z)=�∈Rk×k . We have Z=�+�1/2Z0, where Z0 ∼Nk(0, Ik). The probability
density function of Z0 is pZ0 (z0)=�k(z0)= (2�)−k/2 exp{−(1/2)zT

0 z0}. Thus, since in this case
S =ZT

0 Z0 ∼χ2
k , and so E(S)=k, we have

HNk
Z0

= k
2

log(2�)+ 1
2

E(S)= k
2

{1+ log(2�)}.

Therefore, by lemma 1:

HNk
Z = 1

2
log |�|+ k

2
{1+ log(2�)}. (6)

Now let(
X
Y

)
∼Nn+m

((
�X

�Y

)
,
(

�XX �XY

�YX �YY

))
.

It is well-known that the marginal distributions are X ∼Nn(�X, �XX) and Y ∼Nm(�Y, �YY).
Hence, SX ∼χ2

n, SY ∼χ2
m and SXY ∼χ2

n+m, and therefore

HNn
X = 1

2
log |�XX|+ n

2
{1+ log(2�)},

HNm
Y = 1

2
log |�YY|+ m

2
{1+ log(2�)},

HNn+m
XY = 1

2
log |�|+ n+m

2
{1+ log(2�)}.

Thus, we obtain from (3), or directly from (5), that the normal mutual information index
between X and Y is

I Nn+m
XY (�)= 1

2
log
( |�XX||�YY|

|�|
)

=−1
2

log |In −BX·YBY·X|.

Hence, the normal mutual information and Shannon entropy depend only on the covari-
ance matrix �. That is, similar to the correlation coefficients, Shannon’s mutual information
index measures multivariate linear dependence between X and Y.

2.4. The multivariate Student’s t distribution

Let Z ∼ Tk(�, �, �) denote a k-dimensional Student’s t random vector with location vector
�∈Rk , dispersion matrix �∈Rk×k and � degrees of freedom, that is, with probability density
function

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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pZ(z)≡ tk(z;�, �, �)= �
(

�+k
2

)
�
(

�
2

) |�|1/2(��)k/2

(
1+ 1

�
zT

0 z0

)−(�+k)/2

, z ∈Rk ,

where as before z0 =�−1/2(z − �). For this case, we have Z0 =�−1/2(Z − �) ∼ Tk(0, Ik , �) and
ZT

0 Z0 ∼kFk,�. Thus, considering that

log{h(k)(s)}= log
{

�

(
�+k

2

)}
− log

{
�
( �

2

)}
− k

2
log(��)− �+k

2
log
(

1+ s
�

)
,

we have HTk
Z0

=E[log{h(k)(S)}] where S ∼ kFk,�. Using now the well-known fact that S
d=

k(S1/k)/(S2/�), where S1 ∼χ2
k , S2 ∼χ2

� , and they are independent, and consequently S1 +S2 ∼
χ2

k + �, it is straightforward to see that

E
{

log
(

1+ S
�

)}
=E{log(S1 +S2)}−E{log(S2)}=�

(
�+k

2

)
−�

( �
2

)
,

where �(x)=d/dx log{�(x)} is the digamma function. We find for the entropy of Z0 ∼
Tk(0, Ik , �) that

HTk
Z0

=− log

{
�
(

�+k
2

)
�
(

�
2

)
(��)k/2

}
+ �+k

2

{
�

(
�+k

2

)
−�

( �
2

)}
. (7)

Now let(
X
Y

)
∼Tn+m

((
�X

�Y

)
,
(

�XX �XY

�YX �YY

)
, �
)
.

From Arellano-Valle & Bolfarine (1995), the marginal distributions are X ∼ Tn(�X, �XX, �)
and Y∼Tm(�Y, �YY, �). Hence, from (3) and (7), we deduce that the mutual information index
for the Student’s t case is

I Tn+m
XY (�, �)= I Nn+m

XY (�)+ log

[
�
(
�/2
)
�{(�+n+m)/2}

�{(�+n)/2}�{(�+m)/2}

]
− �+m

2
�

(
�+m

2

)

− �+n
2

�

(
�+n

2

)
+ �+n+m

2
�

(
�+n+m

2

)
+ �

2
�
( �

2

)
.

It is interesting to notice that the information due to � arises only from I Nk
XY(�), and the

information due to � comes from the remaining terms. It is also clear that as � increases, the
Student’s t mutual information converges to the normal mutual information.

3. Entropy and mutual information for multivariate skew-elliptical distributions

3.1. Multivariate skew-elliptical distributions

A flexible class of location-scale models is defined by the so-called skew-elliptical family of
distributions; see Branco & Dey (2001), Azzalini & Capitanio (1999, 2003), Arellano-Valle
& Azzalini (2006), Arellano-Valle & Genton (2005, 2010a, 2010b), and the book edited by
Genton (2004). It allows for modelling skewness in the distribution of the data. In this
section, we extend the previous results to this more general class.

We say that a random vector Z∈Rk has a skew-elliptical distribution, with location vector
�∈ Rk , dispersion matrix �∈ Rk×k , shape/skewness parameter �∈ Rk and density generator
function h(k +1), denoted by Z∼SEk(�, �, �, h(k +1)), if its probability density function is

pZ(z)=2fk(z;�, �, h(k))F (�T (z −�); h(1)
s ), z ∈Rk , (8)

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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where fk(z;�, �, h(k))= |�|−1/2h(k)(s) with s = zT
0 z0 and z0 =�−1/2(z−�), that is, the probability

density function of an ECk(�, �, h(k)) distribution, and F (x; h(1)
s )=∫ x

−∞ h(1)
s (w) dw is the uni-

variate cumulative distribution function induced by the conditional density generator func-
tion h(1)

s (u)=h(k +1)(s +u)/h(k)(s).
Let �̄=�1/2�. In terms of z0 =�−1/2(z −�), the skew-elliptical probability density function

(8) can be rewritten as pZ(z)= |�|−1/2pZ0 (z0), where

pZ0 (z0)=2h(k)(zT
0 z0)F (�̄T z0; h(1)

s )

is the probability density function of Z0 =�−1/2(Z−�)∼SEk(0, Ik , �̄, h(k +1)); see, for example,
Arellano-Valle & Genton (2010a). Then, lemma 1 yields the following result.

Proposition 1. The entropy of a skew-elliptical random vector Z∼SEk(�, �, �, h(k +1)) is

HSEk
Z =HECk

ZEC
−E[log{2F (�̄T Z0; h(1)

S )}],

where HECk
ZEC

is the entropy of ZEC ∼ECk(�, �, h(k)), Z0 ∼SEk(0, Ik , �̄, h(k +1)) and S =ZT
0 Z0.

It follows from proposition 1 that to compute the entropy HSEk
Z0

, we need only the joint dis-
tribution of U = �̄T Z0 and S =ZT

0 Z0, where Z0 ∼SEk(0, Ik , �̄, h(k +1)). For this, the next result
is necessary, the proof of which is given in the Appendix.

Proposition 2. Let U = �̄T Z0 and S =ZT
0 Z0, where Z0 ∼ SEk(0, Ik , �̄, h(k +1)). Then, (U, S)

d=
(‖�̄‖W , S), where ‖�̄‖= �̄T �̄= (�T ��)1/2, and for k ≥2, the joint probability density function of
(W , S) can be computed as pW,S(u, s)=pW |S = s(u)pS(s), where

pW |S = s(u)= 2√
s

(
1− u2

s

) k−1
2 −1

F (‖�̄‖u, h(1)
s ), |u|<

√
s,

and

pS(s)≡g(s)= �k/2

�( k
2 )

s
k
2 −1h(k)(s), s > 0.

3.2. The multivariate skew-normal distribution

The multivariate skew-normal distribution has been introduced by Azzalini & Dalla Valle
(1996). This model and its variants have focalized the attention of an increasing number of
research. For simplicity of exposition, we consider here a slight variant of the original defi-
nition. We say that a random vector Z ∈ Rk has a skew-normal distribution with location
vector �∈Rk , dispersion matrix �∈Rk×k and shape/skewness parameter �∈Rk , denoted by
Z∼SNk(�, �, �), if its probability density function is

pZ(z)=2�k(z;�, �)�{�T (z −�)}, z ∈Rk , (9)

where �k(z;�, �)= |�|−1/2�k(z0) is the probability density function of the k-variate Nk(�, �)
distribution, z0 =�−1/2(z−�), �k(z0) is the Nk(0, Ik) probability density function and � is the
univariate N1(0, 1) cumulative distribution function.

We can rewrite (9) as

pZ(z)= |�|−1/2pZ0 (z0), with pZ0 (z0)=2�k(z0)�(�̄T z0), (10)

where �̄=�1/2�. Hence, we can apply lemma 1 to obtain the entropy for the skew-normal
model. For this, we need the following preliminary result to simplify the computation of this

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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entropy. Its proof can be found in Arellano-Valle & Genton (2010a, c). Let Z0 ∼ SNk(�) ≡
SNk(0, Ik , �) denote the standardized k-variate skew-normal distribution with probability
density function pZ0 (z0)=2�k(z0)�(�T z0).

Lemma 2. Let Z ∼ SNk(�, �, �) and Z0 =�−1/2(Z − �). Let also Z0N ∼ Nk(0, Ik) and W ∼
SN1(‖�̄‖). Then, Z0 ∼SNk(0, Ik , �̄)≡SNk(�̄), �T (Z−�)= �̄T Z0

d=‖�̄‖W and g(Z0)
d=g(Z0N ) for

any even function g.

From lemmas 1 and 2, we have the following result.

Proposition 3. The entropy of a skew-normal random vector Z∼SNk(�, �, �) is

HSNk
Z =HNk

ZN
−E

[
log{2�(‖�̄‖W )}],

where HNk
ZN

is the entropy of ZN ∼Nk(�, �) given in (6), and W ∼SN1(‖�̄‖).

Proof. Let Z0 =�−1/2(Z−�). By lemmas 1 and 2 and by (10), we have

E[log{pZ(Z)}]=−(1/2) log |�|+E[log{2�k(Z0)�(�̄T Z0)}]

=−(1/2) log |�|+E[log{�k(Z0)}]+E[log{2�(�̄T Z0)}]

=−(1/2) log |�|+E[log{�k(Z0N )}]︸ ︷︷ ︸
−H

Nk
ZN

+E[log{2�(‖�̄‖W )}],

because E[log{�k(Z0)}]=E[log{�k(Z0N )}], since the function �k is even, and because
E[log{2�(�̄T Z0)}]=E[log{2�(‖�̄‖W )}], since �̄T Z0

d=‖�̄‖W .

To derive the mutual information index of the multivariate skew-normal distribution, we
need the following result about its marginal distributions. Let(

X
Y

)
∼SNn+m

((
�X

�Y

)
,
(

�XX �XY

�YX �YY

)
,
(

�X

�Y

))
.

Then X ∼SNn(�X, �XX, �X(Y)) and Y ∼SNm(�Y, �YY, �Y(X)) where

�X(Y) =
�X +�−1

XX�XY�Y√
1+�T

Y�YY·X�Y

and �Y(X) =
�Y +�−1

YY�YX�X√
1+�T

X�XX·Y�X

.

Consequently, by proposition 1, we obtain the following results for the marginal and joint
skew-normal entropies.

Proposition 4. Let(
X
Y

)
∼SNn+m

((
�X

�Y

)
,
(

�XX �XY

�YX �YY

)
,
(

�X

�Y

))
.

Then,

HSNn
X = 1

2
log |�XX|+ n

2
{1+ log(2�)}−E

[
log{2�(‖�̄X(Y)‖WX)}],

HSNm
Y = 1

2
log |�YY|+ m

2
{1+ log(2�)}−E

[
log{2�(‖�̄Y(X)‖WY)}],

HSNn+m
XY = 1

2
log |�|+ n+m

2
{1+ log(2�)}−E

[
log{2�(‖�̄XY‖WXY)}],
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with WX ∼SN1(‖�̄X(Y)‖), WY ∼SN1(‖�̄Y(X)‖) and WXY ∼SN1(‖�̄XY‖), where

‖�̄X(Y)‖= (�T
X(Y)�XX�X(Y))

1/2, ‖�̄Y(X)‖= (�T
Y(X)�YY�Y(X))

1/2

and

‖�̄XY‖= (�T
X(Y)�XX�X(Y) +�T

Y(X)�YY�Y(X) +2�T
X(Y)�XY�Y(X))

1/2.

Thus, we obtain from (3) that the skew-normal mutual information index between X and Y
is

I SNn+m
XY = I Nn+m

XY (�)+E
{

log
(

VXY

VX(Y)VY(X)

)}
,

where VXY =2�(‖�̄XY‖WXY), VX(Y) =2�(‖�̄X(Y)‖WX(Y)) and VY(X) =2�(‖�̄Y(X)‖WY(X)). An
alternative way to compute the term E[log{2�(�WSN)}], where WSN ∼ SN1(�), is given by
the following result.

Proposition 5. Let WSN ∼SN1(�) and WN ∼N1(0, 1). Then,

E[log{2�(�WSN)}]=E[2�(�WN )log{2�(�WN )}].

Proof. We have directly that

E[log{2�(�W )}]=
∫ ∞

−∞
log{2�(�w)}2�(�w)�(w) dw=E[2�(�WN ) log{2�(�WN )}].

From proposition 5, we then have

I SNn+m
XY = I Nn+m

XY (�)+E
{

log
(

UXY

UX(Y)UY(X)

)}
,

where

UXY =2�(‖�̄XY‖WN ) log {2�(‖�̄XY‖WN )},
UX(Y) =2�(‖�̄X(Y)‖WN ) log

{
2�(‖�̄X(Y)‖WN )

}
,

UY(X) =2�(‖�̄Y(X)‖WN ) log
{

2�(‖�̄Y(X)‖WN )
}
.

In Fig. 1, we can see that f (�, w)= log{2�(�w)}2�(�w)�(w) is 0 when w→ ±∞ for any �. In
particular for �> 0, the probability density function �(w) tends to 0 when w→±∞. Hence,
this allows the convergence of the integral in proposition 3.

3.3. The multivariate skew-t distribution

We say that a random vector Z ∈ Rk has a skew-t distribution with location vector �∈ Rk ,
dispersion matrix �∈ Rk×k , shape/skewness parameter �∈ Rk and �> 0 degrees of freedom,
denoted by Z∼STk(�, �, �, �), if its probability density function is

pZ(z)=2|�|−1/2tk(z0; �)T

(√
�+k

�+‖z0‖2
�̄T z0; �+k

)
,

where as before z0 =�−1/2(z − �), tk(x; �) is the tk(0, Ik , �) probability density function and
T (x; �+k) is the T1(0, 1, �+k) cumulative distribution function; see Branco & Dey (2001),
Azzalini & Capitanio (2003), Gupta (2003) and Ma & Genton (2004).
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Fig. 1. Behaviour of f (�, w)= log{2�(�w)}2�(�w)�(w).

For this model, we have Z0 ∼ STk(0, Ik , �̄, �), with probability density function pZ0 (z0)=
2tk(z0; �)T

(√
�+k

�+‖z0‖2 �̄T z0; �+k
)

, so that in (4) we obtain

HSTk
Z0

=HTk
Z0

−E

[
log

{
2T

(√
�+k

�+‖Z0‖2
�̄T Z0; �+k

)}]
,

[Correction made here after
initial online publication]

(11)

where HTk
Z0

is given by formula (7). To compute the last factor in the skew-t entropy (11)
by integration in only one dimension, we need the following result whose proof is given by
Arellano-Valle (2010).

Lemma 3. Let Z0 ∼STk(0, Ik , �̄, �). Then,√
�+k

�+‖Z0‖2
�̄T Z0

d=
√

�+k‖�̄‖WST√
�+k −1+W 2

ST

,

where WST ∼ST1(0, 1, ‖�̄‖, �+k −1).

Since for large values of � the multivariate Student’s t, and hence the skew-t, distributions
converge to the normal and skew-normal ones, respectively, it is straightforward to see from
(11) that the HSTk

Z0
entropy converges to HSNk

Z0
for any values of �̄ as �→∞. The behaviour

of this convergence and the respective entropies are simulated/reported for several values of
�=‖�̄‖ and � in the next section.

The following results are related with the marginal distributions from a multivariate skew-t
distribution. For the proof of the latter, see Lee et al. (2010) or Arellano-Valle & Genton
(2010a). Let(

X
Y

)
∼STn+m

((
�X

�Y

)
,
(

�XX �XY

�YX �YY

)
,
(

�X

�Y

)
, �
)
.
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Then X ∼STn(�X, �XX, �X(Y), �) and Y ∼STm(�Y, �YY, �Y(X), �). By lemma 3, we have

E

[
log

{
2T

(√
�+k

�+‖Z0‖2
�̄T Z0; �+k

)}]
=E

⎡
⎣log

⎧⎨
⎩2T

⎛
⎝ √

�+k‖�̄‖WST√
�+k −1+W 2

ST

; �+k

⎞
⎠
⎫⎬
⎭
⎤
⎦,

where WST ∼ ST1(0, 1, ‖�̄‖, �+k − 1). So, considering the above results, we can deduce the
mutual information index for the skew-t case as follows.

Proposition 6. Let(
X
Y

)
∼STn+m

((
�X

�Y

)
,
(

�XX �XY

�YX �YY

)
,
(

�X

�Y

)
, �
)
.

Then,

I STn+m
XY = I Tn+m

XY +E
{

log
(

CXY

CX(Y)CY(X)

)}
,

where

CXY =2T

⎛
⎝ √

�+n+m‖�̄XY‖WST√
�+n+m−1+W 2

ST

; �+n+m

⎞
⎠,

CX(Y) =2T

⎛
⎝√

�+n‖�̄X(Y)‖WST√
�+n−1+W 2

ST

; �+n

⎞
⎠,

CY(X) =2T

⎛
⎝√

�+m‖�̄Y(X)‖WST√
�+m−1+W 2

ST

; �+m

⎞
⎠,

and WST ∼ST1(0, 1, ‖�̄‖, �+k −1).

4. Numerical results

A convenient and fast method to compute the entropies presented in this paper is based
on the numerical integration Quadpack (a Subroutine Package for Automatic Integration)
implemented in the integrate R (R Development Core Team, 2010) function.

The results are shown in Fig. 2 for the dimension k =1, dispersion matrix �=1, skewness
parameter �∈ [0.1, 20], integration interval [−103, 103] and degrees of freedom �=1, 2, . . ., 185
to illustrate the entropies:

HSN1
X (�)= 1

2
{1+ log(2�)}−E

[
log{2�(�WSN)}], (12)

HST1
X (�, �)=− log

{
�
(

�+1
2

)
�
(

�
2

)√
��

}
+ �+1

2

{
�

(
�+1

2

)
−�

( �
2

)}

−E

[
log

{
2T

(√
�+1

�+W 2
ST

�WST; �+1

)}]
, (13)

where, as were defined before, WSN ∼SN1(�) and WST ∼ST1(0, 1, �, �).
We can see in Fig. 2 that the numerical implementation suggests the convergence of the

integrals involved in (12) and (13). The Quadpack method is more precise and efficient in
terms of computational time than other methods such as Monte Carlo.
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Fig. 2. Plots of the skew-t entropy HST1
X (�, �) for �=1, 2, . . ., 185 degrees of freedom and the skew-

normal entropy HSN1
X (�) (denoted by hsn) as a function of �.

The convergence of the skew-t entropy to the skew-normal entropy is obtained quickly for
values of �≥12. In other words, greater values of the marginal skew-t entropy are produced
by small values of �. As expected, for the normal and Student’s t marginal cases (�=0), we
have that the entropy is maximized and decreasing for greater values of �. When �→∞, the
entropy tends to a constant and for �> 20, it is almost that of a half-normal distribution
already.

5. Application to a network design

The design of optimal networks is a crucial problem in engineering and environmental
pollutant analysis. Among several existing methods, the computation of the Shannon infor-
mation index (Silva & Quiroz, 2003) and Bayesian entropy (Ainslie et al., 2009) are useful to
design a meteorological monitoring network. A practical illustration of our methodology is
provided in this section on a subset (see reference about the MACAM network in Seremi de
Salud, 2006) of time series of ozone concentrations at seven monitoring stations denoted by
XY ={F, L, M, N, O, P, Q} with n=7×24×31=5208 hourly observations in March 2006. In
this case, the pollutant data contain abnormalities in the observations, specifically skewness
in the empirical distribution. Therefore, standard distributions are very limited to represent
such data. In this study, we proceed to analyse the optimization of this monitoring network
as follows:

1. We define the moving average smoothing (MAs) with seasonal parameter s for station
j at time t:

T s
t, j =

1
s

t∑
i = t−s

yij ,
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Fig. 3. Left: Graphic of original data (s =1) with the transformations of moving average (MAs) for
s ={8, 16, 24, 32} hours and daily average (DA) for 1 March 2006 to 7 March 2006 of station L. Right:
Several histograms for the transformed ozone data mentioned before.

where yij is the observation for station j at the ith time. For small values of s, the smoothing
detects the influence of the minimum and maximum values; however, for larger values of s,
the transformation T s

t, j decreases the variance of the time series (see Fig. 3, left panel).
2. In this application, we consider a multivariate data set XY of seven stations, a subset X

of six monitoring stations and we choose one non-monitoring station Y to be removed from
XY for each value of s. We compute the mutual information index IXY related to multivariate
normal, skew-normal and skew-t distributions.

3. To find or not evidence to reject the null hypothesis about the marginal variable Y having
skew-normal or skew-t distributions, it is possible to compute the p-values according to the
goodness-of-fit test proposed by Kolmogorov–Smirnov, for all s and the variables defined in
step 2. Alternatively, it is possible to create a PP-plot and compare the performance of these
fitted distributions.

4. We calculate the maximum likelihood estimators (MLEs) of the location, dispersion and
shape/skewness parameters using the sn library of R (Azzalini, 2008) for variables defined
in the previous steps, for each value of s. From Azzalini & Capitanio (1999), for a sam-
ple of independent observations Zi ∼SNk(�, �, �), i =1, . . ., n, we estimate the parameters by
numerically maximizing the log-likelihood function:

log L(�SN)∝−n
2

log |�|− n
2

tr(�−1Ṽ)+
n∑

i =1

log[�{�T (zi −�)}],

where �SN ={�, �, �} and Ṽ = 1
n

∑n
i =1(zi −�)(zi −�)T . Now, if Zi ∼STk(�, �, �, �), i =1, . . ., n,

we use the reparameterization and log-likelihood of Azzalini & Capitanio (2003). Let �=
(AT DA)−1, where A is an upper triangular k × k matrix with diagonal terms equal to 1,
D=diag(e−2�) and �∈Rk . For the parameter set �ST ={�, A, �, �, log(�)}, we obtain

log L(�ST) ∝ n
2

log |D|+
n∑

i =1

log{tk(zi −�; �)}+
n∑

i =1

log

{
T

(
�T (zi −�)

√
�+k
�+ si

; �+k

)}
,

where si = (zi − �)T �−1(zi − �). So, from �̂ST =arg max�ST{log L(�ST)}, we can obtain the
MLEs {�̂, �̂, �̂, �̂}.
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Table 1. P-values for Mardia’s goodness-of-fit test of multivariate normality applied to the joint XY and
to the X multivariate variables, and p-values for Shapiro’s test for the Y marginal variables. All tests
are for daily average transformation of the original data. The p-values higher than the probability (0.05)
related to a 5 per cent confidence level (marked in bold) lead to multivariate normality used in the last
column to compute the mutual information index (I N6+1

XY ) for this distribution (the first- and second-largest
values are marked in bold)

Monitored stations H0 :�1,k =0 H0 :�2,k =k(k +2) Shapiro’s test Normal

Yes (X) No (Y ) XY X XY X Y I
N6+1
XY

L, M, N, O, P, Q F 0.429 0.140 0.115 0.970
F, M, N, O, P, Q L 0.710 0.136 0.481 0.963
F, L, N, O, P, Q M 0.299 0.218 0.991 0.514
F, L, M, O, P, Q N 0.765 0.785 0.056 0.059 0.025 1.107
F, L, M, N, P, Q O 0.935 0.028 0.096 0.769
F, L, M, N, O, Q P 0.927 0.078 0.706 0.312
F, L, M, N, O, P Q 0.468 0.138 0.275 1.280

Table 2. P-values for the Kolmogorov–Smirnov goodness-of-fit test
of multivariate skew-normality applied to marginal variables. The
p-values marked in bold are higher than the probability (0.05) related
to a 5 per cent confidence level

Skew-normal

s F L M N O P Q

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.004 0.000

16 0.005 0.017 0.026 0.013 0.026 0.001 0.009
24 0.060 0.000 0.096 0.000 0.102 0.002 0.000
32 0.913 0.382 0.945 0.297 0.534 0.361 0.167
40 0.170 0.711 0.944 0.483 0.746 0.255 0.770

5. For the variables selected in step 2, let pX,Y represent the multivariate normal, skew-
normal or skew-t joint probability density function between X and Y. The multivariate
Student’s t case is not included in this application because the estimation of the skewness
parameter in the skew-t case is clearly larger than zero. Let pX and pY be the corresponding
marginal densities. Then, the Shannon mutual information index has been derived in sec-
tions 2 and 3. If X and Y are independent, then IXY =0. We can interpret this as when the
monitoring stations do not provide information on the chosen non-monitoring station and
vice versa (Silva & Quiroz, 2003). Then, from the MLEs obtained in step 4, we can obtain
the terms ‖�̄X(Y )‖, ‖�̄Y (X)‖ and ‖�̄XY ‖ mentioned in proposition 4. So, we can compute the
skew-normal and skew-t mutual information index for all s values from the MLEs in step 4
according to propositions 2 and 3.

6. We compare our approach with the normal case used by Silva & Quiroz (2003). That
study analysed daily averaged data at eight stations during July 1998 (there exists an extra
B station until 2003). However, other authors such as Ainslie et al. (2009) used a moving
average according to government policies of their countries. In this work, we analyse an up-
dated data in the Summer of 2006, because the ozone produces its minimum and maximum
variabilities in that season. So, we proceed as follows: (a) we calculate the daily average (DA)
of observations corresponding to fixed average of 24 hours; (b) we use the Box–Cox trans-
formation to obtain near multivariate normality in the data:

y(�) =
{

y� −1
�

, if � /=0,

log(�), if �=0;
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Fig. 4. Multivariate normal, skew-normal and skew-t PP-plots of (A) original data (s =1); and trans-
formed data with (B) s =8, (C) s =16, (D) s =24, (E) s =32 and (F) s =40.

(c) we test multivariate normality according to Mardia (1985)’s test based on the measures of
multivariate skewness (�1,k) and multivariate kurtosis (�2,k) with k =7 (XY : complete moni-
toring network with seven stations), k =6 (X: monitoring network with six stations and one
station removed) and k =1 (Y : removed station); and (d) we compute the multivariate nor-
mal Shannon index for this case according to section 2.3.

Figure 3 illustrates the behaviour of the transformations DA and MA, and the original
data. Given that the period of the time series is 24 hours, values of s less than 24 preserve the
variance of the original data but values higher than 24 decrease the variability. The amplitude
of the data increases for the case of moving average s =16 and 32. About the distribution of
the data, small values of s present heavy tails in the data, specifically for a moving average of
s =1 and 8. For the cases of s =24 and DA, the distribution tends to be normal, and finally,
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ST6+1
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from the network X. The vertical dotted grey lines correspond to s ={8, 16, 24, 32}.

the case s =32 presents skewness and light tail in the distribution. These considerations are
submitted to an analysis of distribution fit.

The results of the multivariate and univariate tests for joint and marginal variables for
several transformations s described in steps 1 and 2 are shown in Tables 1 and 2 and in
Fig. 4. They illustrate the flexibility of the class of the skew-t over skew-normal and normal
distributions. We can see in Table 2 that for the transformations MAs with s ={32, 40},
the Kolmogorov–Smirnov test’s p-values are higher than 0.05 in all marginal variable cases
for the skew-normal distribution. On the other hand, the PP-plot (see Fig. 4) shows that the
skew-t presents a better performance in the fit to the empirical distributions. However, in the
cases of s ={1, 8, 16, 24}, the null hypothesis is rejected in some marginal variables for the
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Table 3. Summary of results for skew-normal and skew-t distributions and different network configura-
tions. The highest values for each transformation are marked in bold

Skew-normal Skew-t

s F L M N O P Q F L M N O P Q

1 1.348 1.539 0.963 1.370 1.425 0.959 1.492 4.021 4.259 3.463 3.930 4.032 3.652 4.230
8 1.800 2.189 1.498 1.680 1.995 1.145 2.261 3.700 3.980 3.325 3.561 3.880 2.874 4.122

16 1.752 1.997 1.425 1.665 1.931 0.895 2.187 3.338 3.543 2.993 3.327 3.529 2.376 3.766
24 1.293 1.353 0.926 1.324 1.326 0.490 1.498 2.857 2.916 2.477 2.920 2.919 1.915 3.088
32 1.530 1.687 1.257 1.585 1.683 0.634 1.873 2.974 3.142 2.743 3.026 3.046 2.122 3.362
40 1.530 1.674 1.299 1.626 1.655 0.548 1.872 2.932 3.115 2.716 3.021 3.042 2.072 3.341

skew-normal case. In addition, the multivariate and univariate data are normally distributed
for the DA transformation according to Mardia’s (joint cases) and Shapiro’s (marginal cases)
tests (see Table 1).

We can see in Fig. 5 (left panel) through the log-likelihood values that the AIC=−2 ×
{log L(�) − np} of the skew-t model are smaller than the skew-normal model values (the
number of parameters np is irrelevant for these quantities). However, between s =32 and
42, both log-likelihoods tend to be equal. Indeed, in Fig. 5 (right panel) when the period s
increases, the � parameter increases too but for the values s ={20, . . ., 42}, � increases quickly
to 120. This behaviour may be explained by the good fit of the skew-normal for these s values
according to the performance of the skew-t distribution fit (see Fig. 4D–4F).

The mutual information index is maximized when the station L is removed from the net-
work XY for the original data and for both skew-normal and skew-t distributions (see Fig. 6
and Table 3). However, for the cases of s ={8, 16, 24, 32, 40}, when the station Q is removed
from the network, the mutual information index is maximized in both distribution cases; then,
this induces a constant decision. It is then interesting to note that the mutual information
index is maximum for the first value of s. As expected, both mutual information indexes
have a seasonal effect of 24 hours in relation with the diurnal change of the ozone pollutant.
However, if we look for the second-largest mutual information index for s =1, we have that
it is the Q station that needs to be removed. According to the procedure of Silva & Quiroz
(2003) in the case of the normal distribution, the largest mutual information index is when
the station Q is removed and, in the second place, when the station N is removed.

Different meteorological factors are not considered in this study but may be important in
the decision to design an optimal network. However, our statistical tool uses the contained
information of a selected appropriate data set and preserves some features of the data distri-
bution such as skewness and heavy tails, necessary to make a better decision.

6. Conclusions

We have proposed an alternative way to compute the Shannon entropy and mutual infor-
mation index for data with skewness and heavy tails. The calculation of this index produces
a similar expression as for the normal and Student’s t cases except for a new term repre-
sented by a one dimensional integral that can easily and quickly be computed by standard
numerical methods. Moreover, a numerical study showed the convergence of this integral
and in fact of the skew-normal and skew-t mutual information indexes. Finally, an analysis
of an optimal network design of a classical pollutant was presented. The principal objec-
tive is to choose a network design in an optimal way through established methods of max-
imizing Shannon’s index. We conclude from this analysis that the consideration of skewness
and heavy tails in the model to fit the untransformed data produces different conclusions/
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decisions than those obtained by applying the normal model to the transformed data. More-
over, data transformation to achieve multivariate normality is known to be challenging. The
correct fit of the original data ensures the optimal maximization of the mutual information
index and determines a better optimization network design. In this paper, we have given the
tools to compute this new information index. Other methods could be derived from this
index, for example, the effectiveness index, or to remove more than one station at a time
(Silva & Quiroz, 2003).

The skew-elliptical entropy and mutual information index can be explored further by con-
sidering the whole class of selection elliptical distributions introduced by Arellano-Valle et al.

(2006a). In fact, since a selection random vector Z∈Rk is defined by Z
d= (V |U ∈C), where

U ∈ Rl and V ∈ Rk are correlated vectors and C ⊂ Rl is a proper selection set, we have that
the probability density function pZ of Z having a selection distribution (SLCT) is (provided
that V has a density pV):

pZ(z)=pV(z)
P(U ∈C | V = z)

P(U ∈C)
.

Therefore, we have from (2) that the entropy of Z is

HSLCTk
Z =HV −E[log{P(U ∈C | V)}− log{P(U ∈C)}].

The last term in the above selection entropy is justly the contribution of the selection mechanism.
For selection skew-elliptical distributions, for example, we have V ∼ ECk(xV, �VV, h(k)) and
U | V∼ECl (�U·V, �UU·V, h(l)

SV
), where �U·V=�U +�UV�−1

VV(V−�V), �UU·V=�UU −�UV�−1
VV�VU

and SV = (V − �V)T �−1
VV(V − �V). Hence, HV =HECk

V = (1/2) log |�VV|− E{log h(k)(SV)}, while
the computation of the contribution of the selection mechanism requires the specification
of the selection set C. In our case, we have l =1, �U =0, �UU =1, �VU =� and C = (0, ∞),
so that the probability density function of the selection random vector Z reduces to (8),
with �=xV, �=�VV and �=�−1�/

√
1−�T �−1�, and therefore HSLCTk

Z becomes HSEk
Z as in

proposition 1.
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Appendix: Proof of proposition 2

Let Zc =�Z0 and W = �T Zc, where � ∈ Rk×k is an orthogonal matrix such that ��̄=‖�̄‖�

and the vector � ∈ Rk is such that �T �̄=‖�̄‖ and ‖�‖=1. Note that W = �T Zc = �T Z0 and
Sc =‖Zc‖2 =‖Z0‖2 =S since ��T = Ik . Thus, considering also that Z0 =�T Zc and the abso-
lute value of the determinant of �T equals 1, the Jacobian method yields fZc (z)=2h(k)(s) ×
F (‖�̄‖w, h(1)

s ), where s =‖zT z‖2 and w= �T z, that is, Zc ∼SEk(0, Ik , ‖�̄‖�, h(k +1)), and by prop-
osition 4.1 in Arellano-Valle & Genton (2010a), we have W = �T Zc ∼SE1(0, 1, ‖�̄‖, h(k +1)). On
the other hand, since (see, e.g., Arellano-Valle & Azzalini, 2006; Arellano-Valle et al., 2006a)

Zc
d= �̄|X0|+ (Ik − �̄�̄

T
)1/2X,

where

�̄= �̄√
1+‖�̄‖2

and
(

X
X0

)
∼ECk +1

((
0
0

)
,
(

Ik 0
0T 1

)
, h(k +1)

)
,

we have W
d=‖�̄‖|X0|+

√
1−‖�̄‖2X1, where X1 = �T X∼EC1(0, 1, h(1)) is distributed as the first

component of X. Thus, since we can assume without loss of generality that � is the first
column of �, we find

Zc
d= �W + (Ik − ��T )1/2X = (W , X2, . . ., Xk)T ,

where X2, . . ., Xk are the last k −1 components of X. Consider now the transformation

U1 =W , Uj =Xj , 2≤ j ≤k −1, and R =
√√√√W 2 +

k∑
j =2

X 2
j .

This transformation has two inverses given by

w=u1, xj =uj , 2≤ j ≤k −1, and xk =±
√√√√r2 −

k−1∑
j =1

u2
j .

The corresponding Jacobians are

J1 = r√
r2 −∑k−1

j =1 u2
j

,

J2 =−J1.

Thus, we obtain for k ≥2 that

fU1,U2, ...,Uk−1,R(u1, u2, . . ., uk−1, r)= 4rh(k)(r2)F (1)(‖�̄‖u1; h(1)
r2 )√

(r2 −u2
1)(r2 −∑k−1

j =1 u2
j )

,

where
∑k−1

j =2 u2
j < r2 −u2

1, |u1|< r and r > 0. Considering now the change of variables

wj = uj√
r2 −u2

1

= uj∑k
j =2 u2

j

, 2≤ j ≤k −1, k ≥2,
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we have

fU1,R(u1, r)=4rk−2

(
1− u2

1

r2

)( k−1
2 −1

)

h(k)(r2)F (‖�̄‖u1; h(1)
r2 )

×
∫

{w2, ...,wk−1:0 <
∑k−1

j =2 w2
j < 1}

⎛
⎝1−

k−1∑
j =2

w2
j

⎞
⎠−1/2

dw2 · · · dwk−1

= 4�k/2−1

�( k
2 )

rk−2

(
1− u2

1

r2

)( k−1
2 −1

)

h(k)(r2)F (‖�̄‖u1; h(1)
r2 ).

Thus, the change of variables (W , S)= (U1, R2) implies the result.
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