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a b s t r a c t

We consider various data-analysis queries on two-dimensional points.We give new space/
time tradeoffs over previous work on geometric queries such as dominance and rectangle
visibility, and on semigroup and group queries such as sum, average, variance, minimum
and maximum. We also introduce new solutions to queries less frequently considered in
the literature such as two-dimensional quantiles, majorities, successor/predecessor, mode,
and various top-k queries, considering static and dynamic scenarios.
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1. Introduction

Multidimensional grids arise as natural representations to support conjunctive queries in databases [1]. Typical queries
such as ‘‘find all the employees with age between x0 and x1 and salary between y0 and y1’’ translate into a two-dimensional
range reporting query on coordinates age and salary. More generally, such a grid representation of the data is useful to carry
out a number of data analysis queries over large repositories. Both space and time efficiency are important when analyzing
the performance of data structures on massive data. However, in cases of very large data volumes the space usage can be
even more important than the time needed to answer a query. More or less space usage can make the difference between
maintaining all the data in main memory or having to resort to disk, which is orders of magnitude slower.

In this paper we study various problems on two-dimensional grids that are relevant for data analysis, focusing on
achieving good time performance (usually polylogarithmic) within the least possible space (even succinct for some
problems).
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Counting the points in a two-dimensional range Q = [x0, x1] × [y0, y1], i.e., computing Count(Q ), is arguably the most
primitive operation in data analysis. Given n points on an n × n grid, one can compute Count in time O(log n/ log log n)
using ‘‘linear’’ space, O(n) integers [2]. This time is optimal within space O(n polylog(n)) [3], and it has been matched using
asymptotically minimum (i.e., succinct) space, n + o(n) integers, by Bose et al. [4].

The k points in the range can be reported in time O(log log n + k) using O(n logϵ n) integers, for any constant ϵ > 0
[5]. This time is optimal within space O(n polylog(n)), by reduction from the colored predecessor problem [6]. With O(n)
integers, the time becomes O((k + 1) logϵ n) [7]. Within n + o(n) integers space, one can achieve time O(k log n

log log n ) [4].
We start with two geometric problems, dominance and rectangular visibility. These enable data analysis queries such

as ‘‘find the employees with worst productivity–salary combination within productivity range [x0, x1] and salary range
[y0, y1]’’, that is, such that no less productive employee earns more.

The best current result for the 4-sided variant of these problems (i.e.,where the points are limited by a general rectangle
Q ) is a dynamic structure byBrodal and Tsakalidis [8]. It requiresO(n log n)-integers space and reports the ddominant/visible
points in time O(log2 n + d). Updates take O(log2 n) time. They achieve better complexities for simpler variants of the
problem, such as some 3-sided variants.

Our results build on thewavelet tree [9], a succinct-space variant of a classical structure by Chazelle [10]. Thewavelet tree
has been used to handle various geometric problems, e.g., [11,12,4,13–15].We show in Section 3 how to usewavelet trees to
solve dominance and visibility problems using n + o(n) integers space and O((d + 1) log n) time. The dynamic version also
uses succinct space and requiresO((d+1) log2 n/ log log n) time, carrying out updates in timeO(log2 n/ log log n). Compared
to the best current result [8], our structure requires succinct space instead of O(n log n) integers, offers better update time,
and has a comparable query time (being faster for small d = O(log log n)).

The paper then considers a wide range of queries we call ‘‘statistical’’: The points have an associated value in [0,W ) =

[0,W − 1] and, given a rectangle Q , we consider the following queries:

Sum/Avg/Var: The sum/average/variance of the values in Q (Section 4).
Min/Max: The minimum/maximum value in Q (Section 5).
Quantile: The k-th smallest value in Q (Section 7).
Majority(α): The values appearing with relative frequency > α in Q (Sections 6 and 8).
Succ/Pred: The successor/predecessor of a value w in Q (Section 9).

These operations enable data-analysis queries such as ‘‘the average salary of employees whose annual production is
between x0 and x1 and whose age is between y0 and y1’’. The minimum operation can be used to determine ‘‘the employee
with the lowest salary’’, in the previous conditions. The α-majority operation can be used to compute ‘‘which are frequent
(≥20%) salaries’’. Quantile queries enable us to determine ‘‘which are the 10% highest salaries’’. Successor queries can be
used to find the smallest salary over $100,000 among those employees.

Other applications for such queries are frequently found in Geographic Information Systems (GIS), where the points have
a geometric interpretation and the values can be city sizes, industrial production, topographic heights, and so on. Yet another
application comes from Bioinformatics, where two-dimensional points with intensities are obtained fromDNAmicroarrays,
and various kinds of data-analysis activities are carried out on them. See Rahul et al. [16] for an ample discussion on some
of these applications and several others.

A popular set of statistical queries includes range sums, averages, and maxima/minima. Willard [17] solved two-
dimensional range-sum queries on finite groups within O(n log n)-integers space and O(log n) time. This includes Sum and
is easily extended to Avg and Var. Alstrup et al. [5] obtained the same complexities for the semigroupmodel, which includes
Min/Max. The latter can also be solved in constant time using O(n2)-integers space [18,19]. Chazelle [10] showed how to
reduce the space to O(n/ϵ) integers and achieve time O(log2+ϵ n) on semigroups, and O(log1+ϵ n) for the particular case of
Min/Max.

On this set of queries our contribution is to achieve good time complexities within linear and even succinct space. This is
relevant to handle large datasets inmainmemory.While the timeswe achieve are not competitivewhen usingO(n) integers
or more, wemanage to achieve polylogarithmic times within just n log n+ o(n log n) bits on top of the bare coordinates and
values, which we show is close to the information-theoretic minimum space necessary to represent n points.

As explained, we use wavelet trees. These store bit vectors at the nodes of a tree that decomposes the y-space of the grid.
The vectors track down the points, sorted on top by x-coordinate and on the bottom by y-coordinate. We enrich wavelet
trees with extra data aligned to the bit vectors, which speeds up the computation of the statistical queries. Space is then
reduced by sparsifying these extra data.

We also focus on more sophisticated queries, for which fewer results exist, such as quantile, majority, and predeces-
sor/successor queries.

In one dimension, the best result we know of for quantiles queries is a linear-space structure by Brodal and Jørgensen
[20], which finds the k-th element of any range in an array of length n in time O(log n/ log log n), which is optimal.

An α-majority of a range Q is a value that occurs more than α · Count(Q ) times inside Q , for some α ∈ [0, 1]. The α-
majority problemwas previously considered in one and two dimensions [21–23]. Durocher et al. [22] solve one-dimensional
α-range majority queries in time O(1/α) using O(n(1+ log(1/α))) integers. Here α must be chosen when creating the data
structure. A more recent result, given by Gagie et al. [23], obtains a structure of O(n2(H + 1) log(1/α)) bits for a dense n× n
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Table 1
Our static results on statistical queries, for n two-dimensional points with associated values in [0,W ); m = min(n,W ); 2 ≤ ℓ ≤ u and t ≥ 1 are
parameters. The space omits the mapping of the real (x, y) coordinates to the space [0, n), as well as the storage of the point values. The 4th column gives
simplified time assuming log n = Θ(logW ), any constant ϵ, and use of O(n log n) bits.

Operation Space per point (bits) Time Time in linear space Source

Sum, Avg, Var log n(1 + 1/t) O(min(t logW , log n)t logW log n) O(log3 n) Theorem 6
Min, Max log n(1 + 1/t) O(min(t logm, log n)t log n) O(log2 n) Theorem 8
Majority(α), fixed log n(2 + 1/t) + logm O(t logm log2 n) O(log3 n) Theorem 10
Quantile log n logℓ m + O(logm) O(ℓ log n logℓ m) O(nϵ) Theorem 11
Majority(α), variable log n logℓ m + O(logm) O( 1

α
ℓ log n logℓ m) O(nϵ) Theorem 12

Succ, Pred log n logℓ m + O(logm) O(ℓ log n logℓ m) O(nϵ) Theorem 13

Table 2
Our dynamic results on statistical queries, for n two-dimensional points on an U × U grid with associated values in [0,W ); 2 ≤ ℓ ≤ W , t ≥ 1 and
0 < ϵ < 1 are parameters. The space omits the mapping of the real x coordinates to [0, n), as well as the point values. The first line is proved in Theorem 7,
the second in Theorem 9, and the rest in Theorem 14.

Operation Space per point (bits) Query time Update time

Sum, Avg, Var logU(1 + o(1) + 1/t) O(logU log n(1 +
min(t logW ,logU)t logW

log log n )) O(logU log n)
Min, Max logU(1 + o(1) + 1/t) O(logU log n(1 +

min(t logW ,logU)t logW
log log n )) O(logU(log n + t logW ))

Quantile logU logℓ W (1 + o(1)) O(ℓ logU log n logℓ W/ log log n) O(logU log n logℓ W/ log log n)
Majority(α), var. logU logℓ W (1 + o(1)) O( 1

α
ℓ logU log n logℓ W/ log log n) O(logU log n logℓ W/ log log n)

Succ, Pred logU logℓ W (1 + o(1)) O(ℓ logU log n logℓ W/ log log n) O(logU log n logℓ W/ log log n)

matrix (i.e., every position contains an element), where H is the entropy of the distribution of elements. In this case α is also
chosen at indexing time, and the structure can answer queries for any β ≥ α. The resulting elements are not guaranteed to
be β-majorities, as the list may contain false positives, but there are no false negatives.

Other related queries have been studied in two dimensions. Rahul et al. [16] considered a variant of Quantile where
one reports the top-k smallest/largest values in a range. They obtain O(n log2 n)-integers space and O(log n+k log log n) time.
Navarro andNekrich [24] reduced the space toO(n/ϵ) integers, with timeO(log1+ϵ n+k logϵ n). Durocher andMorrison [25]
consider the mode (most repeated value) in a two-dimensional range. Their times are sublinear but super-polylogarithmic
by far.

Our contribution in this case is a data structure ofO(n log n) integers able to solve the three basic queries in timeO(log2 n).
The space can be stretched up to linear, but at this point the times grow to the form O(nϵ). Our solution for range majorities
lets α to be specified at query time. For the case of α known at indexing time, we introduce a new linear-space data structure
that answers queries in time O(log3 n), and up to O(log2 n) when using O(n log n) integers space.

In this case we build a wavelet tree on the universe of the point values. A sub-grid at each node stores the points whose
values are within a range. With this structure we can also solve mode and top-k most-frequent queries.

Table 1 shows the time and space results we obtain in this article for statistical queries. Several of our data structures can
be made dynamic at the price of a sublogarithmic penalty factor in the time complexities, as summarized in Table 2.

2. Wavelet trees

Wavelet trees [9] are defined on top of the basic Rank and Select functions. Let B denote a bitmap, i.e., a sequence of 0’s
and 1’s. Rank(B, b, i) counts the number of times bit b ∈ {0, 1} appears in B[0, i], assuming Rank(B, b, −1) = 0. The dual
operation, Select(B, b, i), returns the position of the i-th occurrence of b, assuming Select(B, b, 0) = −1.

Thewavelet tree represents a sequence S[0, n) over alphabetΣ = [0, σ ), and supports access to any S[i], as well as Rank
and Select on S, by reducing them to bitmaps. It is a complete binary tree where each node v may have a left child labeled
0 (called the 0-child of v) and a right child labeled 1 (called the 1-child). The sequence of labels obtained when traversing
the tree from the Root down to a node v is the binary label of v and is denoted L(v). Likewise we denote V (L) the node that
is obtained by following the sequence of bits L, thus V (L(v)) = v. The binary labels of the leaves correspond to the binary
representation of the symbols of Σ . Given c ∈ Σ we denote by V (c) the leaf that corresponds to symbol c. By c{..d} we
denote the sequence of the first d bits in c. Therefore, for increasing values of d, the V (c{..d}) nodes represent the path to
V (c).

Each node v represents (but does not store) the subsequence S(v) of S formed by the symbols whose binary code starts
with L(v). At each node v we only store a (possibly empty) bitmap, denoted B(v), of length |S(v)|, so that B(v)[i] = 0 iff
S(v)[i]{..d} = L(v) · 0, where d = |L(v)| + 1, that is, if S(v)[i] also belongs to the 0-child. A bit position i in B(v) can be
mapped to a position in each of its child nodes: we map i to position R(v, b, i) = Rank(B(v), b, i) − 1 of the b-child. We
refer to this procedure as the reduction of i, and use the same notation to represent a sequence of steps, where b is replaced
by a sequence of bits. Thus R(Root, c, i), for a symbol c ∈ Σ , represents the reduction of i from the Root using the bits in
the binary representation of c. With this notation we describe the way in which the wavelet tree computes Rank, which is
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summarized by the equation Rank(S, c, i) = R(Root, c, i)+1.We use a similar notation R(v, v′, i), to represent descending
from node v towards a given node v′, instead of explicitly describing the sequence of bits b such that L(v′) = L(v) · b and
writing R(v, b, i).

An important path in the tree is obtained by choosing R(v, B(v)[i], i) at each node, i.e., at each node we decide to go left
or right depending on the bit we are currently tracking. The resulting leaf is V (S[i]), therefore this process provides a way
to obtain the elements of S. The resulting position is R(Root, S[i], i) = Rank(S, S[i], i) − 1.

It is also possible to move upwards on the tree, reverting the process computed by R. Let node v be the b-child of v′.
Then, if i is a bit position in B(v), we define the position Z(v, v′, i), in B(v′), as Select(B(v′), b, i + 1). In general, when v′

is an ancestor of v, the notation Z(v, v′, i) represents the iteration of this process. For a general sequence, Select can be
computed by this process, as summarized by the equation Select(S, c, i) = Z(V (c), Root, i − 1).

Lemma 1 ([9,11,26]). The wavelet tree for a sequence S[0, n) over alphabet Σ = [0, σ ) requires at most n log σ + o(n) bits of
space.1 It solves Rank, Select, and access to any S[i] in time O(log σ).

Proof. Grossi et al. [9] proposed a representation using n log σ +O(
n log σ log log n

log n ) +O(σ log n) bits. Mäkinen and Navarro
showed how to use only one pointer per level, reducing the last term to O(log σ log n) = O(log2 n) = o(n). Finally, Golynski
et al. [26] showed how to support binary Rank and Select in constant time, while reducing the redundancy of the bitmaps
to O(n log log n/ log2 n), which added over the n log σ bits gives o(n) as well. �

2.1. Representation of grids

Consider a set P of n distinct two-dimensional points (x, y) from a universe [0,U) × [0,U). We map coordinates to
rank space using a standard method [10,5]: We store two sorted arrays X and Y with all the (possibly repeated) x and y
coordinates, respectively. Then we convert any point (x, y) into rank space [0, n) × [0, n) in time O(log n) using two binary
searches. Range queries are alsomapped to rank space via binary searches (in an inclusivemanner in case of repeated values).
This mapping time will be dominated by other query times.

Therefore we store the points of P on a [0, n)×[0, n) grid, with exactly one point per row and one per column.We regard
this set as a sequence S[0, n) and the grid is formed by the points (i, S[i]). Then we represent S using a wavelet tree.

The space of X and Y corresponds to the bare point data and will not be further mentioned; we will only count the space
to store the points in rank space, as usual in the literature. In Appendix A we show howwe can represent this mapping into
rank space so that, together with a wavelet tree representation, the total space is only O(n) bits over the minimum given by
information theory.

The information relative to a point p0 = (x0, y0) is usually tracked from the Root and denoted R(Root, y0{..d}, x0).
A pair of points p0 = (x0, y0) and p1 = (x1, y1), where x0 ≤ x1 and y0 ≤ y1, defines a rectangle; this is the typical
query range we consider in this paper. Rectangles have an implicit representation in wavelet trees, spanning O(log n) nodes
[11]. The binary representation of y0 and y1 share a (possibly empty) common prefix. Therefore the paths V (y0{..d}) and
V (y1{..d}) have a common initial path and then split at some node of depth k, i.e., V (y0{..d}) = V (y1{..d}) for d ≤ k and
V (y0{..d′

}) ≠ V (y1{..d′
}) for d′ > k. Geometrically, V (y0{..k}) = V (y1{..k}) corresponds to the smallest horizontal band of

the form [j · n/2k, (j + 1) · n/2k) that contains the query rectangle Q , for an integer j. For d′ > k the nodes V (y0{..d′
}) and

V (y1{..d′
}) correspond respectively to successively thinner, non-overlapping bands that contain the coordinates y0 and y1.

Given a rectangle Q = [x0, x1] × [y0, y1] we consider the nodes V (y0{..d} · 1) such that y0{..d} · 1 ≠ y0{..d + 1}, and
the nodes V (y1{..d} · 0) such that y1{..d} · 0 ≠ y1{..d + 1}. These nodes, together with V (y0) and V (y1), form the implicit
representation of [y0, y1], denoted imp(y0, y1). The size of this set is O(log n). Let us recall a well-known application of this
decomposition.

Lemma 2. Given n two-dimensional points, the number of points inside a query rectangle Q = [x0, x1] × [y0, y1], Count(Q ),
can be computed in time O(log n) with a structure that requires n log n + o(n) bits.

Proof. The result is


v∈imp(y0,y1)
R(Root, v, x1) − R(Root, v, x0 − 1). Notice that all the values R(Root, y0{..d}, x) and

R(Root, y1{..d}, x) can be computed sequentially, in total timeO(log n), for x = x1 and x = x0−1. For a node v ∈ imp(y0, y1)
the desired difference can be computed from one of these values in time O(1). Then the lemma follows. �

This is not the best possible result for this problem (a better result by Bose et al. [4] exists), but it is useful to illustrate
how wavelet trees solve range search problems.

3. Geometric queries

In this sectionwe usewavelet trees to solve,within succinct space, two geometric problems of relevance for data analysis.

1 From now on the space will be measured in bits and log will be to the base 2.
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Fig. 1. Dominance on wavelet tree coordinates. The grayed points dominate all the others in the rectangle. We also show the 4 directions.

Fig. 2. Rectangle visibility. For SW visibility the problem is the same as dominance. We grayed the points that are visible in the other 3 directions.

3.1. Dominating points

Given points p0 = (x0, y0) and p1 = (x1, y1), we say that p0 dominates p1 if x0 ≥ x1 and y0 ≥ y1. Note that one point can
dominate the other even if they coincide in one coordinate. Therefore, for technical convenience, in the reduction described
in Section 2.1, points with the same y coordinates must be ranked in Y by increasing x value, and points with the same x
coordinates must be ranked in X by increasing y value. A point is dominant inside a range if there is no other point in that
range that dominates it. In Fig. 1 we define the cardinal points N, S, E, W, SW, etc. We first use wavelet trees to determine
dominant points within rectangles.
Theorem 3. Given n two-dimensional points, the d dominating points inside a rectangle Q = [x0, x1]× [y0, y1] can be obtained
(in NW to SE order) in time O((d + 1) log n), with a data structure using n log n + o(n) bits.
Proof. Let v ∈ imp(y0, y1) be nodes in the implicit representation of [y0, y1]. We perform depth-first searches (DFS) rooted
at each v ∈ imp(y0, y1), starting from V (y1) and continuing sequentially to the left until V (y0). Each such DFS is computed
by first visiting the 1-child and then the 0-child. As a result, we will find the points in N to S order.

We first describe a DFS that reports all the nodes, and then restrict it to the dominant ones. Each visited node v′ tracks
the interval (R(Root, v′, x0 − 1), R(Root, v′, x1)]. If the interval is empty we skip the subtree below v′. As the grid contains
only one point per row, for leaves v′

= v(i) the intervals (R(Root, v(i), x0 − 1), R(Root, v(i), x1)] contain at most one value,
corresponding to a point p(i)

∈ P ∩ Q . Then x(i)
= Z(v(i), Root, R(Root, v(i), x1)) and p(i)

= (x(i), S[x(i)
]). Reporting k points

in this way takes O((k + 1) log n) time.
By restricting the intervals associated with the nodes we obtain only dominant points. In general, let v′ be the

current node, that is either in imp(y0, y1) or it is a descendant of a node in imp(y0, y1), and let (x(i), S[x(i)
]) be the last

point that was reported. Instead of considering the interval (R(Root, v, x0 − 1), R(Root, v, x1)], consider the interval
(R(Root, v, x(i)), R(Root, v, x1)]. This is correct as it eliminates points (x, y) with x < x(i), and also y < S[x(i)

], given the N
to S order in which we deliver the points. Fig. 1 illustrates a point (x(i), S[x(i)

]).
As explained, a node with an empty interval is skipped. On the other hand, if the interval is non-empty, it must produce

at least one dominant point. Hence the cost of reporting the d dominant points amortizes to O((d + 1) log n). �

3.2. Rectangle visibility

Rectangle visibility is another, closely related, geometric problem. A point p ∈ P is visible from a point q = (x0, y0),
not necessarily in P, if the rectangle defined by p and q as diagonally opposite corners does not contain any point of P.
Depending on the direction from q to p the visibility is called SW, SE, NW or NE (see Fig. 2). Next we solve visibility as a
variant of dominance.
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Theorem 4. The structure of Theorem 3 can compute the d points that are visible from a query point q = (x0, y0), in order, in
time O((d + 1) log n).

Proof. Note that SWvisibility corresponds precisely to determining the dominant points of the region [0, x0]×[0, y0]. Hence
we use the procedure in Theorem 3. We now adapt it to the three remaining directions without replicating the structure.

For NE or SE visibility, we change the definition of operation R to R(v, b, i) = Rank(B(v), b, i − 1) + 1, thus
Rank(S, c, i) = R(Root, c, i) + 1 if S[i] = c and Rank(S, c, i) = R(Root, c, i) otherwise. In this case we track the intervals
[R(Root, v′, x0), R(Root, v′, x1 + 1)). This R(Root, v′, x1 + 1) is replaced by R(Root, v′, x(i)) when restricting the search
with the last dominant point.

For NE or NW visibility, the DFS searches first visit the 0-child and then use the resulting points to restrict the search on
the visit to the 1-child, moreover they first visit the node V (y0) and move to the right.

Finally, for NW or SE visibility our point ordering in presence of ties in X or Y may report points with the same x or y
coordinate. To avoid this we detect ties in X or Y at the time of reporting, right after determining the pair p(i)

= (x, y) =

(x(i), S[x(i)
]). In the NW (SE) case, we binary search for the last (first) positions x′ such that X[x′

] = X[x] and y′ such that
Y [y′

] = Y [y]. Then we correct p(i) to (x′, y) (to (x, y′)). The subsequent searches are then limited by x′ instead of x = x(i).
We also limit subsequent searches in a new way: we skip traversing subsequent subtrees of imp(y0, y1) until the y values
are larger (NW) or smaller (SE) than y′. Still the cost per reported point is O(log n). �

3.3. Dynamism

We can support point insertions and deletions on a fixed U × U grid. Dynamic variants of the bitmaps stored at each
wavelet tree node raise the extra space to o(logU) per point and multiply the times by O(log n/ log log n) [27,28].

Lemma 5. Given n points on a U × U grid, there is a structure using n logU + o(n logU) bits, answering queries in time
O(t(logU) log n/ log log n), where t(h) is the time complexity of the query using static wavelet trees of height h. It handles
insertions and deletions in time O(logU log n/ log log n).

Proof. We use the same data structure and query algorithms of the static wavelet trees described in Section 2.1, yet
representing their bitmapswith the dynamic variants [27,28].We alsomaintain vectorX , but not Y ;weuse the y-coordinates
directly instead since thewavelet tree handles repetitions in y. Having awavelet tree of depth logU makes the time t(logU),
whereas using dynamic bitmaps multiplies this time by O(log n/ log log n),

Instead of an array, we use for X a B-tree tree with arity Θ(logU). Nodes are handled with a standard technique for
managing cells of different sizes [29], which wastes just O(log2 U) bits in total. As a result, the time for accessing a position
of X or for finding the range of elements corresponding to a range of coordinates is O(logU), which is subsumed by other
complexities. The extra space on top of that of the bare coordinates isO(n+log2 U) bits. This is o(n logU)unless n = o(logU),
in which casewe can just store the points in plain form and solve all queries sequentially. It is also easy to store differentially
encoded coordinates in this B-tree to reduce the space of mapping the universe of X coordinates to the same achieved in
Section 2.1.

When inserting a new point (x, y), apart from inserting x into X , we track the point downwards in the wavelet tree, doing
the insertion at each of the logU bitmaps. Deletion is analogous. �

As a direct application, dominance and visibility queries can be solved in the dynamic setting in time O((d +

1) logU log n/ log log n), while supporting point insertions and deletions in time O(logU log n/ log log n). The only issue
is that we now may have several points with the same y-coordinate, which is noted when the interval is of size more than
one upon reaching a leaf. In this case, as these points are sorted by increasing x-coordinate, we only report the first one (E)
or the last one (W). Ties in the x-coordinate, instead, are handled as in the static case.

4. Range sum, average, and variance

We now consider points with an associated value given by an integer function w : P → [0,W ). We define the se-
quence of valuesW (v) associated to each wavelet tree node v as follows: If S(v) = p0, p1, . . . , p|S(v)|, thenW (v) = w(p0),
w(p1), . . . , w(p|S(v)|). We start with a solution to several range sum problems on groups. In our results wewill omit the bare
n⌈logW⌉ bits needed to store the values of the points.

Theorem 6. Given n two-dimensional pointswith associated values in [0,W ), the sumof the point values inside a query rectangle
Q = [x0, x1] × [y0, y1], Sum(Q ), can be computed in time O(min(t logW , log n)t logW log n), with a structure that requires
n log n(1+1/t) bits, for any t ≥ 1. It can also compute the average and variance of the values, Avg(Q ) and Var(Q ) respectively.

Proof. We enrich the bitmaps of the wavelet tree for P. For each node v we represent its vector W (v) = w(p0), w(p1),
. . . , w(p|S(v)|) as a bitmap A(v), where we concatenate the unary representation of thew(pi)’s, i.e.,w(pi) 0’s followed by a 1.
These bitmaps A(v) are represented in a compressed format [30] that requires at most |S(v)| logW + O(|S(v)|) bits. With
this structure we can determine the sum w(p0) + w(p1) + . . . + w(pi), i.e., the partial sums, in constant time by means of
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Select(A(v), 1, i) queries,2 Wsum(v, i) = Select(A(v), 1, i + 1)−i is the sum of the first i + 1 values. In order to compute
Sum(Q ) we use a formula similar to the one of Lemma 2:

v∈imp(y0,y1)

Wsum(v, R(Root, v, x1)) − Wsum(v, R(Root, v, x0 − 1)). (1)

To obtain the tradeoff related to t , we call τ = t logW and store only every τ -th entry in A, that is, we store partial sums
only at the end of blocks of τ entries of W (v). We lose our ability to compute Wsum(v, i) exactly, but can only compute it
for i values that are at the end of blocks, Wsum(v, τ · i) = Select(A(v), 1, i + 1) − i. To compute each of the terms in the
sum of Eq. (1) we can use Wsum(v, τ · ⌊R(Root, v, x1)/τ⌋) − Wsum(v, τ · ⌈R(Root, v, x0 − 1)/τ⌉) to find the sum of the
part of the range that covers whole blocks. Then we must find out the remaining (at most) 2τ − 2 values w(pi) that lie at
both extremes of the range, to complete the sum.

In order to find out those values, we store the vectors W (v) explicitly at all the tree nodes v whose height h(v) is a
multiple of τ , including the leaves. If a node v ∈ imp(y0, y1) does not have stored its vector W (v), it can still compute any
w(pi) value by tracking it down for at most τ levels.

As a result, the time to compute a Sum(Q ) query is O(τ 2 log n), yet it is limited to O(τ log2 n) if τ > log n, as at worst we
have W (v) represented at the leaves. The space for the A(v) vectors is at most (|S(v)|/τ)(logW + O(1)) bits, which adds
up to n log n(logW + O(1))/τ bits. On the other hand, the W (v) vectors add up to n log n(logW )/τ = n(log n)/t bits. This
holds for any t even when we store always theW (v) vectors at the leaves: The space of thoseW (v) is not counted because
we take for free the space needed to represent all the values once, as explained.

The average insideQ is computed asAvg(Q ) = Sum(Q )/Count(Q ), where the latter is computedwith the same structure
by just adding up the interval lengths in imp(y0, y1). To compute variance we use, conceptually, an additional instance of
the same data structure, with values w′(p) = w2(p). Then Var(Q ) = Sum′(Q )/Count(Q ) − (Sum(Q )/Count(Q ))2, where
Sum′ uses the values w′. Note that in fact we only need to store additional (sampled) bitmaps A′(v) corresponding to the
partial sums of vectorsW ′(v) (these bitmaps may need twice the space of the A(v) bitmaps as they handle values that fit in
2 logW bits). Explicitly stored vectors W ′(v) are not necessary as they can be emulated with W (v), and we can also share
the same wavelet tree structures and bitmaps. This extra space fits within the same O(n(log n)/t) bits. �

Appendix B shows how to further reduce the constant hidden in the O notation. This is important because this constant
is also associated with the ⌈logW⌉ bits of the weights, that are being omitted from the analysis: In the case of w′ we have
2⌈logW⌉ bits per point.

Finite groups. The solution applies to finite groups (G, ⊕,−1 , 0). We store Wsum(v, i) = w(p0) ⊕ w(p1) ⊕ . . . w(pi),
directly using ⌈log |G|⌉ bits per entry. The terms Wsum(v, i) − Wsum(v, j) of Eq. (1) are replaced by Wsum(v, j)−1

⊕

Wsum(v, i).

4.1. Dynamism

A dynamic variant is obtained by using the dynamic wavelet trees of Lemma 5, a dynamic partial sums data structure
instead of A(v), and a dynamic array for vectorsW (v).

Theorem 7. Given n points on a U×U grid, with associated values in [0,W ), there is a structure that uses n logU(1+o(1)+1/t)
bits, for any t ≥ 1, that answers the queries in Theorem 6 in O(logU log n(1 + min(t logW , logU)t logW / log log n)) time,
and supports point insertions/deletions, and value updates, in time O(logU log n).

Proof. The algorithmson thewavelet tree bitmaps are carried out verbatim, nowon thedynamic data structures of Lemma5,
which add o(n logU) bits of space overhead and multiply the times by O(logU/ log log n). This adds O(min(t logW ,
logU)t logW logU log n/ log log n) to the query times.

Dynamic arrays to hold the explicit W (v) vectors can be implemented within |S(v)| logW (1 + o(1)) bits, and provide
access, insertions and deletions in O(log n/ log log n) time [28, Lemma 1]. This adds O(t logW log n/ log log n) to the query
times, which is negligible.

For insertions we must insert the new bits at all the levels as in Lemma 5, which costs O(logU log n/ log log n) time,
and also insert the new values in W (v) at 1 + (logU)/(t logW ) levels, which in turn costs time O((1 + (logU)/(t logW ))
log n/ log log n) (this is negligible compared to the cost of updating the bitmaps). Deletions are analogous. To update a value
we just delete and reinsert the point.

A structure for dynamic searchable partial sums [31] can be represented in n logW + o(n logW ) bits to store an array
of n values, and supports partial sums, as well as insertions and deletions of values, in time O(log n). Note that we carry out
O(logU) partial sum operations per query. We also perform O(logU) updates when points are inserted/deleted. This adds
O(logU log n) time to both query and update complexities.

Maintaining the sampled partial sums A(v) is the most complicated part. Upon insertions and deletions we cannot
maintain a fixed block size τ . Rather, we use a technique [32] that ensures that the blocks are of length at most 2τ and

2 Using constant-time Select structures on their internal bitmap H [30].
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two consecutive blocks add up to at least τ . This is sufficient to ensure that our space and time complexities hold. The
technique does not split or merge blocks, but it just creates/removes empty blocks, and moves one value to a neighboring
block. All those operations are easily carried out with a constant number of operations in the dynamic partial sums data
structure.

Finally, we need tomark the positionswhere the blocks start.We canmaintain the sequence ofO(|S(v)|/τ) block lengths
using again a partial sums data structure [31], which takes O((|S(v)|/τ) log τ) bits. The starting position of any block is
obtained as a partial sum, in time O(log n), and the updates required when blocks are created or change size are also carried
out in time O(log n). These are all within the same complexities of the partial sum structure for A(v). �

Finite groups and semigroups. The solution applies to finite groups (G, ⊕,−1 , 0). The dynamic structure for partial sums
[31] can be easily converted into one that stores the local ‘‘sum’’ w(pi) ⊕ w(pi+1) ⊕ . . . w(pj) of each subtree containing
leaves pi, pi+1, . . . pj. The only obstacle in applying it to semigroups is that we cannot move an element from one block to
another in constant time, because we have to recalculate the ‘‘sum’’ of a blockwithout the element removed. This takes time
O(τ ), so the update time becomes O(logU(log n + t logW )).

5. Range minima and maxima

For the one-dimensional problem there exists a data structure using just 2n+o(n) bits, which answers queries in constant
time without accessing the values [33]. This structure allows for a better space/time tradeoff compared to range sums.

For the queries that follow we do not need the exact w(p) values, but just their relative order. So we set up a bitmap
V [1,W ] where the values occurring in the set are marked. This bitmap can be stored within at most m log(W/m) + O(m)
bits [30], where m ≤ min(n,W ) is the number of unique values. This representation converts between actual value and
relative order in time O(logm), which will be negligible. This way, many complexities will be expressed in terms ofm.

Theorem 8. Given n two-dimensional points with associated values in [0,W ), the minimum of the point values inside a
query rectangle Q = [x0, x1] × [y0, y1], Min(Q ), can be found in time O(min(t logm, log n)t log n), with a structure using
n log n(1 + 1/t) bits, for any t ≥ 1 and m = min(n,W ). The maximum of the point values inside a query rectangle Q can be
found within the same time and space bounds.

Proof. We associate to each node v the one-dimensional data structure [33] corresponding toW (v), which takes 2|W (v)|+
o(|W (v)|) bits. This adds up to 2n log n + o(n log n) bits overall. We call Wmin(v, i, j) = arg mini≤s≤j W (v)[s] the one-
dimensional operation. Then we can find, in constant time, the position of the minimum value inside each v ∈ imp(y0, y1)
(without the need to store the values in the node). The range minimum is:

min
v∈imp(y0,y1)

W (v)[Wmin(v, R(Root, v, x0), R(v, Root, v, x1 + 1) − 1)].

To complete the comparison we need to compute the O(log n) values W (v)[s] of different nodes v. By storing the W (v)
vectors of Theorem 6 (in the range [1,m]) every τ = t logm levels, the time is just O(min(τ , log n) log n) because we have
to track down just one point for each v ∈ imp(y0, y1). The space is 3n log n + (n log n logm)/τ = 3n log n + (n log n)/t
bits. The second term holds for any t even when we always store n logm bits at the leaves, because adding these to the
m log(W/m) + O(m) bits used for V , we have the n⌈logW⌉ bits corresponding to storing the bare values and that are not
accounted for in our space complexities.

To reduce the space further, we splitW (v) into blocks of length r and create a sequenceW ′(v), of length |S(v)|/r , where
we take the minimum of each block, W ′(v)[i] = min{W (v)[(i − 1) · r + 1], . . . ,W (v)[i · r]}. The one-dimensional data
structures are built overW ′(v), notW (v), and thus the overall space for these isO((n/r) log n) bits. In exchange, to complete
the query we need to find the r values covered by the block where the minimum was found, plus up to 2r − 2 values in
the extremes of the range that are not covered by full blocks. The time is thus O(r min(τ , log n) log n). By setting r = t we
obtain the result.

ForMax(Q ) we use analogous data structures. �

Top-k queries in succinct space. We can now solve the top-k query of Rahul et al. [16] by iterating over Theorem 8. Let us
set r = 1. Once we identify that the overall minimum is some W (v)[s] from the range W (v)[i, j], we can find the second
minimum among the other candidate ranges plus the rangesW (v)[i, s−1] andW (v)[s+1, j]. As this is repeated k times, we
pay time O(τ (k + log n)) to find all the minima. A priority queue handling the ranges will perform k minimum extractions
and O(k+ log n) insertions, and its size will be limited to k. So the overall time is O(τ log n+ k(τ + log k)) by using a priority
queue with constant insertion time [34]. Using τ = t logm for any t = ω(1) we obtain time O(t logm log n+ kt logm log k)
and n log n + o(n log n) bits of space. The best current linear-space solution [24] achieves better time and linear space, but
the constant multiplying the linear space is far from 1.

5.1. Dynamism

We can directly apply the result on semigroups given in Section 4.1. Note that, while in the static scenario we achieve a
better result than for sums, in the dynamic case the result is slightly worse.
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Theorem 9. Given n points on an U ×U grid, with associated values in [0,W ), there is a structure using n logU(1+o(1)+1/t)
bits, for any t ≥ 1, that answers the queries in Theorem 8 in O(logU log n(1+min(t logW , logU)t logW/ log log n)) time, and
supports point insertions and deletions, and value updates, in O(logU(log n + t logW )) time.

6. Range majority for fixed α

In this section we describe a data structure that answers α-majority queries for the case where α is fixed at construction
time. Again, we enrich the wavelet tree with additional information that is sparsified. We obtain the following result.

Theorem 10. Given n two-dimensional points with associated values in [0,W ) and a fixed value 0 < α < 1, all the α-majorities
inside a query rectangle Q = [x0, x1] × [y0, y1], Majority(α,Q ), can be found in time O(t logm log2 n), with a structure using
n((2 + 1/t) log n + logm) bits, for any t ≥ 1 and m = min(n,W ).

Proof. We say that a set of values C is a set of α-candidates for S ′
⊂ S if each α-majority value w of S ′ belongs to C . In every

wavelet tree node v we store an auxiliary data structure A(v) that corresponds to elements ofW (v). The data structure A(v)
enables us to find the set ofα-candidates for any range [r1·s, r2·s] inW (v), for a parameter s = t logm.We implementA(v) as
a balanced binary range tree T (v) onW (v). Every leaf of T (v) corresponds to an interval ofW (v) of size s/α. The range of an
internal nodew of T is the union of ranges associated with its children. In every such node w, we store all α-majority values
for the range ofw (these are at most 1/α values). The space required by T (v) is (2|W (v)|/(s/α))(1/α) logm = O(|W (v)|/t)
bits, which added over all the wavelet tree nodes v sums to (n log n)/t bits.

Given an interval [r1 · t, r2 · t], we can represent it as a union of O(log n) ranges for nodes wi ∈ T (v). If a value is an
α-majority value for [r1 · t, r2 · t], then it is an α-majority value for at least one wi. Hence, a candidate set for [r1 · t, r2 · t] is
the union of values stored in wi. The candidate set contains O((1/α) log n) values and can be found in O((1/α) log n) time.

Moreover, for every value c , we store the grid G(c) of Lemma 2, which enables us to find the total number of elements
with value w in any range Q = [x0, x1] × [y0, x1]. Each G(c), however, needs to have the coordinates mapped to the rows
and columns that contain elements with value c. We store sequences Xc and Yc giving the value identifiers of the points
sorted by x- and y-coordinates, respectively. By representing them as wavelet trees, they take 2n logm + o(n) bits of space
and map in constant time any range [x0, x1] or [y0, y1] using rank operations on the sequences, in O(logm) time using the
wavelet trees. Then the local grids, which overall occupy other


c∈[1,m]

nc log nc +o(nc) ≤ n log(n/m)+o(n) bits, complete
the range counting query in time O(log n). So the total space of these range counting structures is n log n + n logm + o(n).

To solve an α-majority query in a range Q = [x1, x2] × [y1, y2], we visit each node v ∈ imp(y0, y1). We identify the
longest interval [r1 · s, r2 · s] ⊆ [R(Root, v, x0), R(Root, v, x1)]. Using A(v) the candidate values in [r1 · s, r2 · s] can be found
in time O((1/α) log n). Thenwe obtain the values of the elements in [R(Root, v, x0), r1 · s) and (r2 · s, R(Root, v, x1)], in time
O(s log n) by traversing the wavelet tree. Added over all the v ∈ imp(y0, y1), the cost to find the (1/α + s) log n candidates
is O((1/α + s log n) log n). Then their frequencies in Q are counted using the grids G(c) in time O((1/α + s) log2 n), and the
α-majorities are finally identified.

Thus the overall time isO(t logm log2 n). The space is n(2 log n+logm+(log n)/t), higher than for the previous problems
but less than the structures to come. �

A slightly better (but messier) time complexity can be obtained by using the counting structure of Bose et al. [4] instead
of that of Lemma 2, storing value identifiers every s tree levels, O(t logm log n(min(t logm, log n) + log n/ log log n)). The
space increases by o(n log(n/m)). On the other hand, by using s = t = 1 we increase the space to O(n log n) integers and
reduce the query time to O(log2 n).

7. Range median and quantiles

We compute the median element, or more generally, the k-th smallest value w(p) in an area Q = [x0, x1] × [y0, y1] (the
median corresponds to k = Count(Q )/2).

From now on we use a different wavelet tree decomposition, on the universe [0,m) of w(·) values rather than on y
coordinates. This can be seen as a wavelet tree on grids rather than on sequences: the node v of height h(v) stores a grid
G(v) with the points p ∈ P such that ⌊w(p)/2h(v)

⌋ = L(v{..⌈logm⌉ − h(v)}). Note that each leaf c stores the points p with
value w(p) = c.

Theorem 11. Given n two-dimensional points with associated values in [0,W ), the k-th smallest value of points within a
query rectangle Q = [x0, x1] × [y0, y1], Quantile(k,Q ), can be found in time O(ℓ log n logℓ m), with a structure using
n log n logℓ m + O(n logm) bits, for any ℓ ∈ [2,m] and m = min(n,W ).

Proof. We use the wavelet tree on grids just described, representing each grid G(v)with the structure of Lemma 2. To solve
this query we start at root of the wavelet tree of grids and consider its left child, v. If t = Count(Q ) ≥ k on grid G(v), we
continue the search on v. Otherwise we continue the search on the right child of the root, with parameter k − t . When we
arrive at a leaf corresponding to value c , then c is the k-th smallest value in P ∩ Q .

Notice that we need to reduce the query rectangle to each of the grids G(v) found in the way. We store the X and Y
arrays only for the root grid, which contains the whole P. For this and each other grid G(v), we store a bitmap X(v) so
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that X(v)[i] = b iff the i-th point in x-order is stored at the b-child of v. Similarly, we store a bitmap Y (v) with the same
bits in y-order. Therefore, when we descend to the b-child of v, for b ∈ {0, 1}, we remap x0 to Rank(X(v), b, x0) and x1 to
Rank(X(v), b, x1 + 1) − 1, and analogously for y0 and y1 with Y (v).

The bitmaps X(v) and Y (v) add up to O(n logm) bits of space. For the grids, consider that each point in each grid
contributes at most log n + o(1) bits, and each p ∈ P appears in ⌈logm⌉ − 1 grids (as the root grid is not really necessary).

To reduce space, we store the grids G(v) only every ⌈log ℓ⌉ levels (the bitmaps X(v) and Y (v) are still stored for
all the levels). This gives the promised space. For the time, the first decision on the root requires computing up to ℓ
operations Count(Q ), but this gives sufficient information to directly descend log ℓ levels. Thus total time adds up to
O(ℓ log n logℓ m). �

Again, by replacing our structure of Lemma 2 by Bose et al.’s counting structure [4], the time drops to O(ℓ log n logℓ m/
log log n) when using n log n logℓ m(1 + o(1)) + O(n logm) bits of space.

The basic wavelet tree structure allows us to count the number of points p ∈ Q whose values w(p) fall in a given range
[w0, w1], within time O(ℓ log n logℓ m) or O(ℓ log n logℓ m/ log log n). This is another useful operation for data analysis, and
can be obtained with the formula


v∈imp(w0,w1)

Count(Q ).

As a curiosity, we have tried, just as done in Sections 4 and 5, to build a wavelet tree on the y-coordinates and use a one-
dimensional data structure. We used the optimal linear-space structure of Brodal and Jørgensen [20]. However, the result is
not competitive with the one we have achieved by building a wavelet tree on the domain of point values.

8. Range majority for variable α

We can solve this problem, where α is specified at query time, with the same structure used for Theorem 11.

Theorem 12. The structures of Theorem 11 can compute all the α-majorities of the point values inside Q , Majority(α,Q ), in
time O( 1

α
ℓ log n logℓ m), where α can be chosen at query time.

Proof. For α ≥
1
2 we find the median c of Q and then use the leaf c to count its frequency in Q . If this is more than

α · Count(Q ), then c is the answer, else there is no α-majority. For α < 1
2 , we solve the query by probing all the

(i · α)Count(Q )-th elements in Q . �

Once again, we attempted to build a wavelet tree on y-coordinates, using the one-dimensional structure of Durocher
et al. [22] at each level, but we obtain inferior results.

Culpepper et al. [35] show how to find the mode, and in general the kmost repeated values inside Q , using successively
more refinedQuantile queries. Let the k-thmost repeated value occur α ·Count(Q ) times inQ , thenwe require atmost 4/α
quantile queries [35]. The same result can be obtained by probing successive values α = 1/2i with Majority(α) queries.

9. Range successor and predecessor

The successor (predecessor) of a value w in a rectangle Q = [x0, x1] × [y0, y1] is the smallest (largest) value larger
(smaller) than, or equal to, w in Q . We also have an efficient solution using our wavelet trees on grids.

Theorem 13. The structures of Theorem 11 can compute the successor and predecessor of a value w within the values of the
points inside Q , Succ(w,Q ) and Pred(w,Q ), in time O(ℓ log n logℓ m).

Proof. We consider the nodes v ∈ imp(w, +∞) from left to right, tracking rectangle Q in the process. The condition for
continuing the search below a node v that is in imp(w, +∞), or is a descendant of one such node, is that Count(Q ) > 0
on G(v). Succ(w,Q ) is the value associated with the first leaf found by this process. Likewise, Pred(w,Q ) is computed
by searching imp(−∞, w) from right to left. To reduce space we store the grids only every ⌈log ℓ⌉ levels, and thus
determining whether a child has a point in Q may cost up to O(ℓ log n). Yet, as for Theorem 11, the total time amortizes
to O(ℓ log n logℓ m). �

Once again, storing one-dimensional data structures [36,37] on a y-coordinate-based wavelet tree does not yield
competitive results.

10. Dynamism

Our dynamic wavelet tree of Lemma 5 supports range counting and point insertions/deletions on a fixed grid in time
O(logU log n/ log log n) (other tradeoffs exist [2]). If we likewise assume that our grid is fixed in Theorems 11–13, we can
also support point insertions and deletions (and thus changing the value of a point).

Theorem 14. Given n points on a U×U grid, with associated values in [0,W ), there is a structure using n logU logℓ W (1+o(1))
bits, for any ℓ ∈ [2,W ], that answers the queries Quantile, Succ and Pred in time O(ℓ logU log n logℓ W/ log log n), and the
Majority(α) operations in timeO( 1

α
ℓ logU log n logℓ W/ log log n). It supports point insertions and deletions, and value updates,

in time O(logU log n logℓ W/ log log n).
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Proof. We use the data structure of Theorems 11–13, modified as follows.We build the wavelet tree on the universe [0,W )
and thus do not map the universe values to rank space. The grids G(v) use the dynamic structure of Lemma 5, on global y-
coordinates [0,U).Wemaintain the global array X of Lemma 5 plus the vectors X(v) of Theorem11, the latter using dynamic
bitmaps [27,28]. The time for the queries follows immediately. For updates we track down the point to insert/delete across
the wavelet tree, inserting or deleting it in each grid G(v) found in the way, and also in the corresponding vector X(v). �

11. Conclusions

We have demonstrated how wavelet trees [9] can be used for solving a wide range of two-dimensional queries that are
useful for various data analysis activities. Wavelet trees have the virtue of using little space. By enriching themwith further
sparsified data, we support various complex queries in polylogarithmic time and linear space, sometimes even succinct.
Other more complicated queries require slightly superlinear space.

We believe this work just opens the door to the possible applications to data analysis, and that many other queries may
be of interest. A prominent one lacking good solutions is to find themode, that is, themost frequent value, in a rectangle, and
its generalization to the top-k most frequent values. There has been some recent progress on the one-dimensional version
[38] and even in two dimensions [25], but the results are far from satisfactory.

Another interesting open problem is how to support dynamism while retaining time complexities logarithmic in the
number of points and not in the grid size. This is related to the problem of dynamic wavelet trees, in particular supporting
insertion and deletion of y-coordinates (on which they build the partition). Dynamic wavelet trees would also solve many
problems in other areas.

Finally, a natural question is which are the lower bounds that relate the achievable space and time complexities for the
data analysis queries we have considered. These are well known for the more typical counting and reporting queries, but
not for these less understood ones.
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Appendix A. Optimal-space representation of grids

We analyze the representation described in Section 2.1, showing how it can be made near-optimal in the information-
theoretic sense. Recall that our representation of a set of points of [0,U)2 consists in storing two sorted arrays X and Y ,
which reduce the [0,U) values to [0, n). The points in the [0, n) × [0, n) grid have exactly one point per row and one per
column.

An optimal-space representation of the above data uses the data structure of Okanohara and Sadakane [30] for mapping
the sorted X coordinates (where point X(i) is represented as a bit set at position i+X(i) in a bitmap of length n+U), a similar
structure for the Y coordinates, and a wavelet tree for the grid of mapped points. The former occupies n log n+U

n + O(n) =

log
U+n

n


+ O(n) bits of space, gives constant-time access to the real coordinate of any point X(i) = select1(i) − i, and

takes O(log U+n
n ) time to map any value x to rank space at query time; and similarly for Y . The wavelet tree requires

n log n + o(n) = log n! + O(n) bits. Overall, if we ignore the O(n)-bit redundancies, the total space is log

n!

U+n
n

2
bits.

Hence our representation can be in any of n!
U+n

n

2
configurations. Note that we can represent repeated points, which is

useful in some cases, especially when they can have associated values. We show now that our number of configurations is
not much more than the number of possible configurations of P even if repeated points are forbidden, i.e., n distinct points
from [0,U)2 can be in

U2

n


≤

U+n
n

2
n! configurations. The difference is not so large because

U+n
n

2
n! ≤

U2

n


cn, for any c ≥ 4.

In terms of bits this means that 2 log
U+n

n


+ log n! ≤ log

U2

n


+n log c and therefore our representation is at most O(n) bits

larger than an optimal representation, aside from the O(n) bits we are already wasting with respect to log

n!

U+n
n

2
.

To see this, notice that
U+n

n

2
n! = ((U + n)!/(n!U !))2n! = ((U + n)!/U !)2/n! = (

n−1
i=0 (U + n − i)2)/n!. For sufficiently

large c , this is ≤(
n−1

i=0 c(U2
− i))/n! = cnU2

!/((U2
− n)!n!) =

U2

n


cn.

We need c ≥ (U + n − i)2/(U2
− i) for any 0 ≤ i < n. We next show that, if n ≤ U , then (U + n)2/U2

≥

(U+n− i)2/(U2
− i), and thus it is enough to choose c ≥ (U+n)2/U2. Simple algebra shows that the condition is equivalent

to i ≤ 2(U + n) − (1 + (n/U))2. Since we assume for now that n/U ≤ 1, the inequality is satisfied if i ≤ 2(U + n) − 4.
Since i < n, the inequality always holds (as U, n ≥ 1). Thus it is sufficient that c ≥ (U + n)2/U2, which is no larger than 4
if n ≤ U .
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Let us now consider the case n > U . Our analysis still holds, up large enough n. Since i ≤ n − 1, it is sufficient that
n−1 ≤ 2(U +n)− (1+ (n/U))2. Simple algebra shows this is equivalent to the cubic inequality 2U3

+nU2
−2nU −n2

≥ 0.
As a function of U this function has three roots, the only positive one at U =

√
n. Therefore it is positive for U ≥

√
n, i.e.,

n ≤ U2, which covers all the possible values of n.

Appendix B. Reducing space for variance

We now discuss how to bring the 2⌈logW⌉ space factor associated to storing weights w′(p) = w(p)2 closer to ⌈log V⌉,
where V is the overall variance.

Instead of storing w′(p), we can store w′′(p) = (w(p) − ⌈T/n⌉)2, where T/n is the average of all the points. To obtain
Var(Q ) from the sum of thew′′ inQ notice that (w(p)−(TQ /q))2 = (w(p)−⌈T/n⌉)2−2(w(p)−⌈T/n⌉)(⌈T/n⌉−(TQ /q))+
((T/n) − (TQ /q))2, where TQ = Sum(Q ) and q = Count(Q ). This formula makes use of the stored w′′(p) values, as well as
queries Sum(Q ) and Count(Q ). Note that rounding is used to keep the values as integers, hence limiting the number of bits
necessary in its representation.

To avoid numeric instability and wasted space, it is better that T/n is close to Tq/q. This simultaneously yields smaller
(w(p) − ⌈T/n⌉)2 values and reduces the (⌈T/n⌉ − (TQ /q)) factor in the subtraction. To ensure this we may (logically)
partition the space and use the local average, instead of the global one. Each level of the wavelet tree partitions the space
into horizontal non-overlapping bands, of the form [j · n/2k, (j + 1) · n/2k), for some k. At every level we use the average
of the band in question. This allows us to compute variances for rectangles whose y coordinates are aligned with the bands,
while the x coordinates are not restricted. For a general rectangle Q we decompose it into band-aligned rectangles, just as
with any other query on the wavelet tree (recall Eq. (1)). Alternatively, we can use a variance update formula [39,40] that is
stable and further reduces the instability of the first calculation. We rewrite the update formula of Chan et al. [39] in terms
of sets, since originally it was formulated in one dimension.

Lemma 15 ([39, Eq. 2.1]). Given two disjoint sets A and B, which have values w(p) associated with element p, where TA =

Sum(A), TB = Sum(B), m = Count(A), n = Count(B), SA =


p∈A(w(p) − TA/m)2 and SB =


p∈B(w(p) − TB/n)2, the
following equalities hold:

TA
B = TA + TB (B.1)

SA
B = SA + SB +

m
n(m + n)

 n
m

TA − TB
2

. (B.2)

Notice that Var(A) = SA.
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