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Abstract In this paper we obtain regularity results for elliptic integro-differential equations
driven by the stronger effect of coercive gradient terms. This feature allows us to construct
suitable strict supersolutions from which we conclude Hölder estimates for bounded subso-
lutions. In many interesting situations, this gives way to a priori estimates for subsolutions.
We apply this regularity results to obtain the ergodic asymptotic behavior of the associated
evolution problem in the case of superlinear equations. One of the surprising features in our
proof is that it avoids the key ingredient which are usually necessary to use the strong maxi-
mum principle: linearization based on the Lipschitz regularity of the solution of the ergodic
problem. The proof entirely relies on the Hölder regularity.
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1 Introduction

In [13], Capuzzo-Dolcetta, Leoni and Porretta prove a surprising regularity result for sub-
solutions of superquadratic second-order elliptic equations which can be described in the
following way. We consider the model equation

λv − T r(A(x)D2v(x))+ b(x)|Dv(x)|m = f (x) in �, (1.1)

where � is an open subset of R
N , A, b, f are continuous functions in �, A taking values in

the set of nonnegative matrices and b, f are real valued, with b(x) ≥ b0 > 0 in�, m > 2 and
λ ≥ 0. The function v : � → R is a real-valued solution and Dv, D2v denote its gradient
and Hessian matrix. In [13], the authors prove that, if u : � → R is a bounded viscosity
subsolution of (1.1) then u is locally Hölder continuous with exponentα := (m−2)(m−1)−1

and the local Hölder seminorm depends only on the datum (L∞ bounds on A, f and b0) but
not on any L∞ bound nor oscillation of u. Actually this result provides, in many interesting
situations, an estimate on the L∞ norm of u.

The starting point of the present work was to investigate how such a result could be
extended to the case of nonlocal elliptic equations like

λu(x)− Ix (u, x)+ H(x, Du(x)) = 0 in �, (P)

where λ ≥ 0 and H : �× R
N → R is a continuous nonlinearity having the same properties

as b(x)|p|m − f (x) above. The term Ix is a nonlocal operator playing the role of the diffusion,
defined as follows: for x, y ∈ R

N and φ : R
N → R a bounded continuous function which is

C2 in a neighborhood of y, we write

Ix (φ, y) =
∫

RN
[φ(y + z)− φ(y)− 1B〈Dφ(y), z〉]νx (dz), (1.2)

where B denotes the unit ball and {νx }x∈RN is a family of Lévy measures, see (M1)–(M2)
below for precise assumptions. An important example of such nonlocal operator is the case
when νx = ν for all x ∈ R

N , with

ν(dz) = CN ,σ |z|−(N+σ)dz,

where σ ∈ (0, 2) and CN ,σ is a normalizing constant. In that case, for all x ∈ R
N , −Ix =

(−�)σ/2 is the fractional Laplacian of order σ (see [22]). By the form of Ix in (1.2), we
point out that subsolutions of (P) must be defined on R

N or at least in a large enough domain
(depending on νx ) in order that the nonlocal operator is well-defined.

In [13] and even more in the simplified version given in [4], the authors take advantage
of the superquadratic gradient term to construct locally a strict supersolution to (1.1) using
power-like functions. The power profile of such supersolutions gives the (local) Hölder reg-
ularity for bounded subsolutions of the equation. This proof is based on the leading effect of
the gradient term more than on the ellipticity, resembling the behavior of first-order coercive
equations (see [3]). The Hölder exponent (m − 2)(m − 1)−1 just comes from a simple bal-
ance of powers in (1.1) and this Hölder regularity can be extended up to the boundary of the
domain if it is regular enough (see also [4]).

All these arguments seem extendable to the nonlocal framework, and in particular, if we
think the nonlocal term as an operator of order σ ∈ (0, 2). But here is a key difference which
is going to play a double role: first, depending on the support of the measure νx (dz), the
operator may use values of u outside�. This arises, typically, when Eq. (P) is complemented
by an exterior Dirichlet condition (see [8]). Of course, and this is very natural in the case
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of exterior Dirichlet condition, these outside values cannot be controlled by the equation.
Hence, in that case, it is clearly impossible to have results which are independent of the L∞
norm or oscillation of u.

On the contrary, this analysis shows that, in principle, this could be possible in the case
when the support of the measure is such that the integral of Ix (u, y) only takes into account
points such that y + z ∈ �, typically when

Ix (φ, y) = CN ,σ

∫
y+z∈�

[φ(y + z)− φ(y)− 1B〈Dφ(y), z〉]|z|−(N+σ)dz . (1.3)

These type of operators are related to “censored processes” in the probabilistic literature:
in this context, it means that the jumps processes cannot jump from � to �c. We refer to
e.g. [11,23–25,28,29] for more details on such processes. In [11,25], the censored fractional
Laplacian appears in connection with Dirichlet forms; they also appear in the analysis lit-
erature as regional Laplacians ([27]) and very naturally in the study of Neumann boundary
conditions ([7]). We therefore call censored operators (with respect to�) the operators which
satisfy

x + supp{νx } ⊂ �, for all x ∈ �.
Actually, we remark that we can always reduce to the case of a censored operator by

incorporating the integral over the complement of� into the right-hand side f (see Lemma 2.1
below and/or [34]). This “censoring” procedure modifies the right-hand side into a function
which blows up at the boundary of�with a rate which is controlled in terms of the singularity
of the measure (the σ in the fractional Laplacian case) and the oscillation of u. Thus, as it
can be seen in [13], the presence of these unbounded ingredients in the equation restricts the
expected values of the Hölder exponent if we wish a result which holds up to the boundary.
Moreover, the same effect arises even for nonlocal operators which are originally censored,
since the proof of the Hölder regularity consists in localizing, typically in some ball included
in� and, at this step also, the values of u outside the ball creates essentially the same difficulty
as the one described above: if we want to write the nonlocal equation as a censored equation
in the ball, then this mechanically changes the “natural” Hölder exponent because of the
right-hand side which blows up at the boundary of the ball.

All these difficulties explain all the different formulations we give for some results but
also the nature of the Hölder exponent we obtain. To be more specific, we consider the basic
model equation

λu(x)+ a(x)(−�)σ/2u(x)+ b(x)|Du(x)|m = f (x) in �, (1.4)

where λ, b, f are as in (1.1) and a is a continuous real-valued function with a ≥ 0 in�. The
role of the superquadraticity in (1.1) is played by a superfractional growth condition on the
gradient, which is encoded by m in (1.4) through the assumption

m > σ, (1.5)

and the strict positivity requirement on b. The difficulties we mention above on the nonlocality
have a price and this price is a “less natural” Hölder exponent (m − σ)/m for subsolutions
to (1.4). Nevertheless, we can get interior Hölder regularity results with “more natural”
exponents (m − σ)/(m − 1) if σ > 1, Lipschitz continuity if σ < 1, and any exponent in
(0, 1) for σ = 1, since localization arguments are unnecessary in this situation. Finally, we
point out that in the case of censored operators [here if (−�)σ/2 is replaced by the operator
given by (1.3)], we recover a complete control on the oscillation of u on� as a consequence
of the form of the estimates (see Corollary 2.1 below).

123



G. Barles et al.

It is worth pointing out that our results share (with some limitations we described above)
the same interesting consequence as the ones of [13], namely a control on the oscillation
of (sub)solutions to (1.1) inside � (i.e. at least locally) which is stable as λ → 0+. This
feature has important applications on the study of large time behavior for associated parabolic
problems and homogenization because of the importance of the ergodic problem.

We are able to provide global oscillation bounds satisfying this stability property for some
class of problems (P) as, for example, equations associated to censored operators and obvi-
ously for equations set in the whole space R

N . This contrasts with the results obtained by
Cardaliaguet and Rainer [15] (see also [14]), where the authors obtain very interesting regu-
larity results for (parabolic) superquadratic integro-differential equations using a probabilistic
approach, but where their Hölder estimates depend on the L∞ norm of the solution.

In the second part of this paper, we present an application of our regularity results to the
study of the large time behavior for Cauchy problems

∂t u(x, t)− Ix (u(·, t), x)+ H(x, Du(x, t)) = 0 in Q, (CP)

where Q = R
N × (0,+∞). The asymptotic behavior of the nonlocal evolution problem is

also motivated by its second-order parallel, as the model equation

∂t u(x, t)− Tr(A(x)D2u(x, t))+ b(x)|Du(x, t)|m = f (x) in Q. (1.6)

In the superquadratic case m > 2, this evolution equation is also influenced by the stronger
effect of the first-order term. This can be seen in the paper of Barles and Souganidis [10],
where the authors study general equations including (1.1) and (1.6), obtain Lipschitz bounds
for the solutions and prove that, in the periodic setting, the solution approaches to the solution
of the so-called ergodic problem as t → +∞. This ergodic problem is solved by passing to
the limit as λ → 0+ in Eq. (1.1), which is possible by the compactness given by the Lipschitz
bounds which are independent of λ. A second key ingredient in the analysis of the ergodic
problem and the large time behavior of (1.6) is the strong maximum principle ([2]).

Similar methods and results to [10] are obtained in [33] in the context of Cauchy–Dirichlet
second-order evolution problems in bounded domains. In the nonlocal context, analogous
ergodic large time behavior for evolution problems are available. For instance, in [6] the
authors follow the arguments of [10], using the Lipschitz regularity results given in [5],
which allows to “linearize” the equation in order to apply the strong maximum principle
of [17].

In this paper we also follow the lines of [10] to prove the ergodic asymptotic behavior.
However, contrarily to [10] or [6], we do not use the strong maximum principle in the same
way: we do not perform any “linearization” of the equation (which would have required
Lipschitz bounds) and therefore we are able to provide results which just use the Hölder
regularity of the solutions. This proof requires slightly stronger assumptions on the nonlocal
operator since we have to be able to use the strong maximum principle à la Coville [18,19]
and to do so, we need the support of the measure defining the nonlocal operator to satisfy an
“iterative covering property”. Though a restriction, this property allows us to study the large
time behavior for equations associated to very degenerate x-dependent nonlocal operators
and x-dependent Hamiltonians with a higher degree of coercivity.

Of course, comparison principles are of main importance in this method and for this reason
we should focus on a particular class of x-dependent nonlocal operators in Lévy–Ito form
[see (2.43)]. We refer to [9] for comparison results associated to these operators.
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The paper is organized as follows: Sect. 2 is entirely devoted to the regularity results for
the stationary problem. In Sect. 3 we provide the comparison principle and well-possedness
of the evolution problem. Finally, the large time behavior for this problem is presented in
Sect. 4, where the mentioned version of the strong maximum principle is established.
Basic notation

For x ∈ R
N and r > 0, we denote Br (x) as the open ball centered at x with radius r . We

just write Br for Br (0) and B for B1(0).
Let � ⊂ R

N . We denote as d� the signed distance function to ∂� which is nonnegative
in �̄. For δ > 0, we also denote �δ = {x ∈ � : d�(x) > δ}. For any u : � → R, the
oscillation of u over � is defined by

osc�u = sup
�

u − in f
�

u.

For x, ξ, p ∈ R
N , A ⊂ R

N and φ a bounded function, we define

Iξ [A](φ, x, p) =
∫

RN ∩A
[φ(x + z)− φ(x)− 1B〈p, z〉]νξ (dz). (1.7)

We write in a simpler way Iξ [A](φ, x) = Iξ [A](φ, x, Dφ(x)) when φ ∈ L∞(RN ) ∩
C2(Bδ) for some δ > 0, Iξ (φ, x, p) = Iξ [RN ](φ, x, p)when A = R

N and I = Iξ if νξ = ν

does not depend on ξ . Note that with these notations, Ix (φ, x) = Ix [RN ](φ, x, Dφ(x)) for
φ bounded and smooth at x [see (1.2)].

This paper is based on the viscosity theory to get the results. We refer to [3,20,30] for the
definition and main results of the classical theory, and to [1,8,9,31,32] for the nonlocal setting.
Following the definition introduced in the mentioned references, we always assume a viscosity
subsolution is upper semicontinuous and a viscosity supersolution is lower semicontinuous
in the set where the equation takes place.

2 Regularity

2.1 Assumptions and main regularity results

Let σ ∈ (0, 2) fixed. Recalling Ix defined in (1.2), we assume the following conditions over
the family {νx }x

(M1) For all R > 0 and α ∈ [0, 2], there exists a constant CR > 0 such that, for all
δ > 0 we have

sup
x∈B̄R

∫
Bc
δ

min{1, |z|α}νx (dz) ≤ CRhα,σ (δ),

where hα,σ (δ) is defined for δ > 0 as

hα,σ (δ) =
⎧⎨
⎩
δα−σ if α < σ

| ln(δ)| + 1 if α = σ

1 if α > σ,

(2.1)

and where we use the convention |z|α = 1, z ∈ R
N when α = 0.

(M2) For all R > 0 and α ∈ (σ, 2] there exists a constant CR > 0 such that, for all
δ ∈ (0, 1) we have

sup
x∈B̄R

∫
Bδ

|z|ανx (dz) ≤ CRδ
α−σ .
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Assumptions (M1) and (M2) say the nonlocal operator Ix is at most of order σ , locally in
x ∈ R

N . Concerning this last fact, we remark that in the case νx is symmetric and σ ∈ (0, 1),
Ix defined in (1.2) can be written as

Ix (φ, y) =
∫

RN
[φ(y + z)− φ(y)]νx (dz), (2.2)

for all y ∈ R
N and φ bounded and C1 in a neighborhood of y. Since our interest is to keep

Ix as a nonlocal operator of order σ , we adopt this formula as a definition for Ix in the case
σ ∈ (0, 1), even if νx is not symmetric.

In order to expand the application of our results, we consider an open set � ⊆ R
N not

necessarily bounded, and H satisfying the growth condition

H(x, p) ≥ b0|p|m − A(d�(x)
−θ + 1), for x ∈ �, p ∈ R

N , (2.3)

where b0, A > 0 and 0 ≤ θ < m.
We first concentrate in regularity results in the superlinear case

m > max{1, σ },
which encodes the coercivity of the Hamiltonian, see Theorems 2.1 and 2.2 below. Note that,
in Sect. 2.5, we state also a result in the sublinear case and, in Sect. 2.6, we extend our results
in the superlinear case to Lévy–Ito operators.

Over the exponent θ , we assume 0 ≤ θ < m in order to state the blow-up behavior at the
boundary of the right-hand side. Thus, our arguments rely over the (more general) equation

− Ix (u, x)+ b0 |Du(x)|m = A(d�(x)
−θ + 1), x ∈ �. (P′)

In principle, due to the nonlocal nature of Ix , the function u satisfying the above equation
should be defined not only in � but on the set

�ν = � ∪
⋃
x∈�̄

{x + supp{νx }}, (2.4)

which, loosely speaking, represents the reachable set from � through ν.
The following result states the regularity up to the boundary for subsolutions of prob-

lem (P′).

Theorem 2.1 Let � ⊆ R
N be a bounded domain, A, b0 > 0 and σ ∈ (0, 2). Let {νx }x∈RN

be a family of measures satisfying (M1)–(M2) relative to σ , and Ix defined as in (1.2) if σ ≥ 1
and as (2.2) if σ < 1, associated to {νx }x∈RN . Let m > max{1, σ }, θ ∈ [0,m), and define

γ0 = min{(m − σ)/m, (m − θ)/m}. (2.5)

Then, any bounded viscosity subsolution u : R
N → R to the problem (P′) is locally Hölder

continuous in � with Hölder exponent γ0 as in (2.5), and Hölder seminorm depending on
�, the data and osc�ν (u), with �ν defined as in (2.4).

Moreover, if� has a C1,1 boundary, then u can be extended to �̄ as a Hölder continuous
function of exponent γ0.

A second result states interior Hölder regularity for subsolutions of (P′) with a Hölder
exponent which is more natural to the balance between the order of the nonlocal operator
and the Hamiltonian.
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Theorem 2.2 Let � ⊆ R
N be a bounded domain, A, b0 > 0 and σ ∈ (0, 2). Let {νx }x∈RN

be a family of measures satisfying (M1)–(M2) relative to σ , and Ix defined as in (1.2) if σ ≥ 1
and as (2.2) if σ < 1, associated to {νx }x∈RN . Let m > max{1, σ } and θ ∈ [0,m). Define

γ̃0 = γ̃0(σ,m) =
⎧⎨
⎩
(m − σ)/(m − 1) if σ > 1
∈ (0, 1) if σ = 1
1 if σ < 1,

(2.6)

and consider
γ0 = min{γ̃0, (m − θ)/m}. (2.7)

Then, any bounded viscosity subsolution u : R
N → R to the Eq. (P′) is locally Hölder

continuous in � with exponent γ0 given by (2.7), and Hölder seminorm depending on the
data, � and osc�ν (u), where �ν is defined as in (2.4).

Note that for the same data, γ0 defined in (2.7) is always bigger or equal than γ0 defined
in (2.5), and therefore, the interior Hölder exponent given by Theorem 2.2 is better than the
one given by Theorem 2.1.

Remark 2.1 Theorems 2.1 and 2.2 can be extended to unbounded domains. In fact, if � is
unbounded, arguing over a bounded set �′ ⊂ � we can apply the method used in the above
theorems to conclude the corresponding local Hölder regularity results for �. Moreover, if
∂� has uniform C1,1 bounds, and if (M1)-(M2) hold with CR independent of R, then we
have global Hölder estimates for bounded subsolutions to (P′), in the flavour of Theorem 2.1.

Since our aim is to include in our regularity results nonlocal operators of censored nature,
we provide here a more accurate definition of such an operator. Recalling definition (2.4),
we say that Ix is of censored nature relative to � if the family {νx }x∈RN defining Ix satisfies
the condition

�ν = �. (2.8)

The idea is to set up the problem to provide an unified proof of Theorem 2.1 for censored
and noncensored operators. This is possible after a “censoring” procedure we explain now.
Let {νx }x∈RN a family of Lévy measures and � ⊆ R

N an open set. For each ξ ∈ R
N we

define the censored measure respect to � and ξ as

ν̃ξ (dz) = 1�−ξ (z)νξ (dz). (2.9)

For ξ, x ∈ R
N , δ > 0 and a bounded function φ ∈ C2(B̄δ(x)), we define

Ĩξ (φ, x) = ∫
RN [φ(x + z)− φ(x)− 1B〈Dφ(x), z〉]ν̃ξ (dz)

= ∫
�−ξ [φ(x + z)− φ(x)− 1B〈Dφ(x), z〉]νξ (dz). (2.10)

Of special interest is the censored operator I� defined as

I�(φ, x) = Ĩx (φ, x), x ∈ �̄, (2.11)

from whose definition we note that I�(φ, x) = Ix [�− x](φ, x).
Note that if {νx }x∈RN satisfies (M1) and (M2), then {ν̃x }x∈RN satisfies (M1) and (M2) with

the same constants CR . Thus, the next lemma allows us to reduce general nonlocal equations
like (P′) to the censored case.

Lemma 2.1 (Censoring the Equation) Let � ⊂ R
N open and bounded, σ ∈ (0, 2) and

{νx }x∈RN a family of measures satisfying (M1)–(M2) related to σ . Let Ix be as in (1.2), (2.2)

123



G. Barles et al.

associated to {νx }x∈RN . Let m > σ, β0 > 0 and for f : � → R locally bounded, let
u : R

N → R be a bounded viscosity subsolution to

− Ix (u, x)+ β0|Du(x)|m = f (x), x ∈ �. (2.12)

Then, there exists C > 0 (depending on � and β0) such that the function u restricted to
� satisfies, in the viscosity sense, the inequality

−I�(u, x)+ β0

2
|Du(x)|m ≤ f (x)+ C(osc�ν (u)+ 1)d�(x)

−σ , x ∈ �,

where I� is defined in (2.11) and �ν is defined in (2.4).

Proof For simplicity, we present the proof for classical subsolutions. The rigorous proof
follows easily by using classical viscosity techniques (for instance, see [34]). We also focus
on the case σ ≥ 1.

Using (2.12), for each x ∈ � we have

−I�(u, x)+ β0|Du(x)|m

≤ f (x)+
∫
�c−x

(u(x + z)− u(x))νx (dz)+ |Du(x)|
∫

B∩(�c−x)
|z|νx (dz)

≤ f (x)+ C
(

osc�ν (u)d�(x)
−σ + |Du(x)|h1,σ (d�(x))

)
,

where C > 0 comes from the application of (M1) and depends only on �. Now, by Young’s
inequality, there exists C(β0) such that

|Du(x)|d�(x)1−σ ≤ β0

2
|Du(x)|m + C(β0)h1,σ (d�(x))

m/(m−1).

At this point, we note that since m > σ we have m(1−σ)/(m −1) ≥ −σ . Then, if σ > 1,
using (2.1) we can write

h1,σ (d�(x))
m/(m−1) = d�(x)

m(1−σ)/(m−1) ≤ d�(x)
−σ ,

meanwhile if σ = 1, we get

h1,σ (d�(x))
m/(m−1) = (| log(d�(x))| + 1)m/(m−1) ≤ Cd�(x)

−σ ,

where C > 0 depends only on m. Thus, using these estimates we conclude the result for the
case σ ≥ 1.

The case σ < 1 follows the same ideas but with easier computations because of the first
order finite difference of the integrand defining Ix , see (2.2). ��
2.2 Key technical lemmas

We start with some notation: for r > 0 and x0 ∈ R
N , define

d0(x) = |x − x0| and dr (x) = r − d0(x), (2.13)

that is, for x ∈ Br (x0), d0(x) represents the distance of x to the center of the ball, meanwhile
dr (x) = dBr (x0)(x) is the distance of x to the boundary of the ball. We define w as

w = w1 + w2, (2.14)
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where, for C1, γ > 0 and C2 ≥ 0 we consider

w1(x) =
{

C1d0(x)γ x ∈ B̄r (x0)

C1rγ x ∈ B̄c
r (x0)

w2(x) =
{

C1(rγ − dr (x)γ ) x ∈ B̄r (x0)

C1rγ + C2 x ∈ B̄c
r (x0).

(2.15)

We note that w1 and w2 (when C2 = 0) are Hölder continuous in R
N with exponent γ . If

C2 > 0, w2 is γ -Hölder in Br (x0) and it has a discontinuity on ∂Br (x0). In any case, both
w1 and w2 (for any C2 ≥ 0) are smooth in Br (x0)\{0}.

For x ∈ Br (x0) consider ρ defined as

ρ(x) = 1

4
min{d0(x), dr (x)}. (2.16)

Of course, w depends on the particular choice of γ, r, x0,C1,C2, meanwhile ρ depends
on r and x0, but we omit these dependences for simplicity of the notation.

We remark that if |x − x0| ≤ r/2 then ρ(x) = d0(x)/4, meanwhile if |x − x0| > r/2 we
have ρ(x) = dr (x)/4.

The goal is to prove that w is a supersolution of (P′). The following key lemma gives us
a first useful estimate for the nonlocal term applied to w.

Lemma 2.2 Let σ ∈ (0, 2) and a family of measures {νx }x∈RN satisfying (M1), (M2) relative
to σ . Let Ix as in (1.2), (2.2) associated to {νx }x∈RN . Let x0 ∈ R

N , r ∈ (0, 1), γ ∈ (0, 1],
C1 > 0, C2 ≥ 0, and consider w as in (2.14) and ρ as in (2.16) associated to these
parameters. Then, there exists a constant C > 0 (not depending on r, C1 and C2) such that

sup
ξ∈B1(x)

{Iξ (w, x)} ≤ C

⎧⎨
⎩

C1ρ
γ−1(x)h1,σ (ρ(x)) if C2 = 0, σ ≥ 1

C1hγ,σ (ρ(x)) if C2 = 0, σ < 1
(C1 + C2)ρ(x)−σ if C2 > 0

, (2.17)

for each x ∈ Br (x0)\{x0}.
Proof Denote R = |x0| + 1. We remark that CR in the arguments to come is a generic
constant depending on R through the constants arising in (M1) and (M2). The constant C
arising in the proof is a positive constant independent of x, R, r,C1 or C2.

Consider x ∈ Br (x0)\{x0}. For each ξ ∈ B1(x), by definition of w we can write

Iξ (w, x) = Iξ (w1, x)+ Iξ (w2, x),

where wi , i = 1, 2 are defined in (2.15). In what follows, we are going to estimate the
integrals in the right-hand side of the above expression.

1. Estimate for Iξ (w1, x). We can split this integral term as

Iξ (w1, x) = Iξ [Bρ(x)](w1, x)+ Iξ [Bc
ρ(x)](w1, x).

Note that for each z ∈ Bρ(x) we have

w1(x + z)− w1(x) = 〈Dw1(x + t z), z〉,
w1(x + z)− w1(x)− 〈Dw1(x), z〉 = 1

2
〈D2w1(x + sz)z, z〉,

for some s, t ∈ (0, 1). We recall that the first equality is used in the integral defining
Iξ [Bρ(x)](w1, x) when σ < 1, and the second is used in the case σ ≥ 1. Now, direct
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computations on the derivatives of w1 drives us to

〈D2w1(x + sz)z, z〉 ≤ C1γ d0(x)γ−2|z|2
〈Dw1(x + t z), z〉 ≤ C1γ d0(x)γ−1|z|.

for all z ∈ Bρ(x), s, t ∈ (0, 1). Thus, using these inequalities on the corresponding form of
Iξ [Bρ(x)](w1, x), using that ρ(x) ≤ d0(x) and applying (M2), we arrive at

Iξ [Bρ(x)](w1, x) ≤ CRC1ρ(x)
γ−σ . (2.18)

Concerning the estimate of Iξ [Bc
ρ(x)](w1, x), we write

Iξ [Bc
ρ(x)](w1, x) ≤

∫

Bc
ρ(x)

[w1(x + z)− w1(x)]νξ (dz)+ |Dw1(x)|
∫

B\Bρ(x)

|z|νξ (dz),

and we suppress the last integral term in the case σ < 1. Using the definition of w1 we get
from the above inequality that

Iξ [Bc
ρ(x)](w1, x) ≤

∫
B\Bρ(x)

[w1(x + z)− w1(x)]νξ (dz)+ C1rγ
∫

Bc
νξ (dz)

+ C1γ d0(x)
γ−1

∫
B\Bρ(x)

|z|νξ (dz),

where, as before, the last integral does not exist if σ < 1. Since w1 is γ -Hölder continuous
we havew1(x + z)−w1(x) ≤ C1|z|γ . Using this together with (M1) [see (2.1)] we can write

Iξ [Bc
ρ(x)](w1, x) ≤ CRC1

(
hγ,σ (ρ(x))+ rγ + d0(x)

γ−1h1,σ (ρ(x))
)
,

where the last term inside the parentheses is suppressed if σ < 1. Noting that ρ(x) ≤ d0(x) <
r < 1, we conclude that

Iξ [Bc
ρ(x)](w1, x) ≤ CRC1

{
hγ,σ (ρ(x))+ ρ(x)γ−1h1,σ (ρ(x)), if σ ≥ 1
hγ,σ (ρ(x)), if σ < 1.

At this point, we note that if σ ≥ 1 and γ ∈ (0, 1], we always have hγ,σ (ρ) ≤
ργ−1h1,σ (ρ), for all ρ ∈ (0, 1). Taking this into account we get

Iξ [Bc
ρ(x)](w1, x) ≤ CRC1

{
ρ(x)γ−1h1,σ (ρ(x)), if σ ≥ 1
hγ,σ (ρ(x)), if σ < 1.

and joining this last inequality and (2.18) we conclude that

Iξ (w1, x) ≤ CRC1

{
ρ(x)γ−1h1,σ (ρ(x)), if σ ≥ 1
hγ,σ (ρ(x)), if σ < 1.

(2.19)

2. Estimate for Iξ (w2, x). Analogously as the previous estimate, we write

Iξ (w2, x) = Iξ [Bρ(x)](w2, x)+ Iξ [Bc
ρ(x)](w2, x).

We start with Iξ [Bρ(x)](w2, x). By recalling (2.15), direct computations drive us to

Dw2(x) = C1γ dγ−1
r (x)Dd0(x),

D2w2(x) = C1γ dr (x)
γ−2d0(x)

−1

×
(

dr (x)IN + [(1 − γ )d0(x)− dr (x)]Dd0(x)⊗ Dd0(x)
)
,
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and therefore, using the above computations as a Taylor expansion of the finite difference in
the integral defining Iξ [Bρ(x)](w2, x), we claim that

Iξ [Bρ(x)](w2, x) ≤ CRC1ρ(x)
γ−σ . (2.20)

In fact, when σ < 1, using (2.2) and the above expression for Dw2, we have

Iξ [Bρ(x)](w2, x) = C1γ

∫ 1

0

∫
Bρ(x)

dγ−1
r (x + sz)〈Dd0(x + sz), z〉νξ (dz)ds,

but for all s ∈ (0, 1) and z ∈ Bρ(x), we have dr (x + sz) ≥ ρ(x). Thus, we have

Iξ [Bρ(x)](w2, x) ≤ CC1ρ
γ−1(x)

∫
Bρ(x)

|z|νξ (dz),

and applying (M1) we conclude (2.20).
Now we deal with the case σ ≥ 1. Since in this case

Iξ [Bρ(x)](w2, x) = 1

2

∫ 1

0

∫
Bρ(x)

〈D2w2(x + sz)z, z〉ν(dz)ds,

using the explicit form of D2w2 we get

Iξ [Bρ(x)](w2, x) ≤ CC1r
∫ 1

0

∫
Bρ(x)

dr (x + sz)γ−2d0(x + sz)−1|z|2νξ (dz)ds, (2.21)

and we estimate this last integral by cases. If d0(x) ≥ r/2 we have ρ(x) = dr (x)/4. Then,
for z ∈ Bρ(x) and s ∈ (0, 1)we have 3ρ(x) ≤ dr (x + sz) and r/4 ≤ d0(x + sz). Using these
estimates into (2.21), we conclude

Iξ [Bρ(x)](w2, x) ≤ CC1ρ(x)
γ−2

∫
Bρ(x)

|z|2νξ (dz) ≤ CRC1ρ(x)
γ−σ ,

where we have used (M2). On the other hand, if d0(x) < r/2 we have ρ(x) = d0(x)/4.
Then, for z ∈ Bρ(x) and s ∈ (0, 1)we have r/4 ≤ dr (x + sz) and 3ρ(x) ≤ d0(x + sz). Using
these estimates into (2.21), we get

Iξ [Bρ(x)](w2, x) ≤ CC1rγ−1ρ(x)−1
∫

Bρ(x)
|z|2νξ (dz) ≤ CRC1ρ(x)

γ−σ ,

where we have used that ρ(x) ≤ r and (M2). This concludes (2.20).
Concerning the estimate of Iξ [Bc

ρ(x)](w2, x), we should be careful with the fact that C2

may be strictly positive.
At one hand, if C2 = 0, then as in the computations relative to w1, we have

w2(x + z)− w2(x) ≤ C1|z|γ for all z ∈ Bc
ρ(x),

and therefore, we can write

Iξ [Bc
ρ(x)](w2, x) ≤

∫
Bc
ρ(x)

[w2(x + z)− w2(x)]νξ (dz)

+|Dw2(x)|
∫

B\Bρ(x)
|z|νξ (dz)

≤ C1

∫
Bc
ρ(x)

|z|γ νξ (dz)+ C1dr (x)
γ−1

∫
B\Bρ(x)

|z|νξ (dz),
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where the last integral is suppressed if σ < 1. Thus, applying (M1) and using that r < 1, we
obtain from the above inequality that

Iξ [Bc
ρ(x)](w2, x) ≤ CRC1

(
hγ,σ (ρ(x))+ dr (x)

γ−1h1,σ (ρ(x))
)
,

where the last term does not exist if σ < 1. Finally, since ρ(x) ≤ dr (x) we conclude

Iξ [Bc
ρ(x)](w2, x) ≤ CR C1

{
ρ(x)γ−1h1,σ (ρ(x)), if σ ≥ 1
hγ,σ (ρ(x)), if σ < 1.

(2.22)

On the other hand, if C2 > 0, then we have the inequality

w2(x + z)− w2(x) ≤ C1 + C2 for all z ∈ Bc
ρ(x).

Using this, now we can write

Iξ [Bc
ρ(x)](w2, x) ≤

∫
Bc
ρ(x)

[w2(x + z)− w2(x)]νξ (dz)

+|Dw2(x)|
∫

B\Bρ(x)
|z|νξ (dz)

≤ (C1 + C2)

∫
Bc
ρ(x)

νξ (dz)+ C1dr (x)
γ−1

∫
B\Bρ(x)

|z|νξ (dz),

where the last integral is suppressed if σ < 1. Applying (M1) and using that ρ(x) ≤ dr (x)
we conclude in this case that

Iξ [Bc
ρ(x)](w2, x) ≤ CR(C1 + C2)ρ(x)

−σ + CRC1ρ
γ−1(x)h1,σ (ρ(x)),

where the last term does not exist if σ < 1. Thus, since γ > 0 we get

Iξ [Bc
ρ(x)](w2, x) ≤ CR(C1 + C2)ρ(x)

−σ . (2.23)

In summary, when C2 = 0, joining (2.22) and (2.20) we have

Iξ (w2, x) ≤ CR C1

{
ρ(x)γ−1h1,σ (ρ(x)), if σ ≥ 1
hγ,σ (ρ(x)), if σ < 1,

(2.24)

meanwhile, when C2 > 0, using (2.23) and (2.20) we conclude that

Iξ (w2, x) ≤ CR(C1 + C2)ρ(x)
−σ . (2.25)

3. Conclusion The estimate (2.17) comes from (2.19) and (2.24) when C2 = 0, and
from (2.19) and (2.25) when C2 > 0. The proof is complete. ��

Using the last lemma we are able to provew is a strict supersolution for a problem ad-hoc
to (P′). This is established in the following two lemmas, whose main difference is whether
C2 is strictly positive or not.

Lemma 2.3 (Strict Supersolution, Case C2 > 0 ) Let x0 ∈ R
N , σ ∈ (0, 2) and {νx }x∈RN

a family of measures satisfying (M1), (M2) relative to σ . Consider Ix as in (1.2), (2.2)
associated to {νx }x∈RN . Let m > max{1, σ }, θ ∈ [0,m) and γ0 given in (2.5).

Then, for each A, b0,C2 > 0, there exists C1 > 0 large enough such that, for all r ∈ (0, 1)
and γ ∈ (0, γ0], the function w defined in (2.14) (relative to x0, γ,C1,C2 and r) satisfies
the inequality

− sup
ξ∈B1(x)

{Iξ (w, x)} + b0|Dw(x)|m ≥ Aρ(x)−θ for x ∈ Br (x0) \ {x0}, (2.26)
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where ρ defined in (2.16) is associated to x0 and r.

Proof Let x ∈ Br (x0)\{x0}. Direct computations over w1, w2 defined in (2.15) give us the
expression

Dw(x) = C1γ (d0(x)
γ−1 + dr (x)

γ−1)
x − x0

|x − x0| ,
concluding that

|Dw(x)| = C1γ (d0(x)
γ−1 + dr (x)

γ−1) ≥ CC1ρ(x)
γ−1.

Using this together with the estimates given by Lemma 2.2 for the nonlocal term in the
case C2 > 0, we obtain the existence of an universal constant C̄ > 0 such that for all C1,C2

and b0, and for all x ∈ Br (x0)\{x0} we have

− sup
ξ∈B1(x)

{Iξ (w, x)} + b0|Dw(x)|m

≥ C̄
(

b0Cm
1 ρ(x)

m(γ−1) − (C1 + C2)CRρ(x)
−σ)

. (2.27)

But since γ0 = min{m − σ,m − θ}/m and γ ≤ γ0 we have m(γ − 1) ≤ min{−σ,−θ}.
Then, we conclude from (2.27) that

− sup
ξ∈B1(x)

{Iξ (w, x)} + b0|Dw(x)|m ≥ C̄ρ(x)m(γ−1) (b0Cm
1 − (C1 + C2)CR

)
.

Hence, we arrive at (2.26) by taking

C1 = (
4A(C̄b0)

−1)1/m +
(

4C2CRb−1
0

)1/m +
(

2CRb−1
0

)1/(m−1)
,

that is, we should take C1 satisfying

C1 ≥ C
(

A1/m + C1/m
2 + 1

)
, (2.28)

where C > 0 is a constant not depending on C2 or A. ��
Next lemma deals with the case C2 = 0.

Lemma 2.4 (Strict Supersolution, Case C2 = 0) Let x0 ∈ R
N , σ ∈ (0, 2) and {νx }x∈RN

a family of measures satisfying (M1), (M2) relative to σ . Consider Ix as in (1.2), (2.2)
associated to {νx }x∈RN . Let m > max{1, σ }, θ ∈ [0,m) and γ0 defined in (2.7). Assume
C2 = 0.

Then, for each A, b0 > 0, there exists C1 > 0 large enough such that, for all r ∈ (0, 1)
and γ ∈ (0, γ0], the function w defined in (2.14) (relative to x0, γ,C1 and r) satisfies the
inequality (2.26).

The proof of this lemma follows exactly as Lemma 2.3 using the estimate given by
Lemma 2.2 in the case C2 = 0 and the definition of γ0 given in (2.7).

Remark 2.2 As we mentioned in the introduction, the power profile ofw gives us the Hölder
regularity for subsolutions to (P′). The different uses of Lemmas 2.3 and 2.4 can be described
as follows: as it can be seen in the proof of Theorem 2.1 below, the application of Lemma 2.3
under a correct choice of C2 > 0 allows us to localize the arguments to obtain an interior
Hölder regularity with a Hölder seminorm (cast by C1) which is independent of the distance
to the boundary, a key fact to conclude the regularity up to the boundary. However, the
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discontinuity of w due to C2 > 0 implies a “worse” bound for Ix (w) (see Lemma 2.2),
restricting the values of the Hölder exponent if we look for regularity up to the boundary, no
matter the nonlocal operator has censored nature or not.

On the other hand, Lemma 2.4 is used in the proof of Theorem 2.2, where no localization
is needed. Thus, the “better” bounds for Ix (w) given by Lemma 2.2 allows to obtain interior
Hölder regularity with “more natural” exponents.

2.3 Proofs of the main theorems

We start with the regularity result up to the boundary.

Proof of Theorem 2.1 Applying Lemma 2.1, we see that u satisfies the censored equation

−I�(u, x)+ b0

2
|Du|m ≤ A(d�(x)

−θ + 1)+ C(osc�ν (u)+ 1)d�(x)
−σ , x ∈ �,

where C > 0 is the constant given in Lemma 2.1. If we define η = max{σ, θ}, in particular
we see that u satisfies the viscosity inequality

− I�(u, x)+ b0

2
|Du|m ≤ Ãd�(x)

−η, x ∈ �, (2.29)

where
Ã = A(1 + diam(�)η)+ C(osc�ν (u)+ 1). (2.30)

From this point, we will argue over Eq. (2.29).
Let x0 ∈ � and denote R = |x0| + 1. Consider γ0 as in (2.5), and for C1,C2 > 0 to be

fixed later and r = min{1, d�(x0)}/4, consider w as in (2.14) (with γ = γ0) associated to
these parameters.

Denote
M := sup{u(x)− u(x0)− w(x) : x ∈ �̄}.

The aim is to prove that for suitable C1 > 0 we get M ≤ 0, which implies easily the
Hölder continuity of u. We argue by contradiction, assuming that M > 0. Choosing

C2 ≥ osc�ν (u), (2.31)

by definition of w, for each x ∈ �̄\ B̄r (x0) we have

u(x)− u(x0)− w(x) ≤ osc�ν (u)− (2C1rγ + osc�ν (u)) < 0.

Hence, by the upper semicontinuity of u −w, it follows that the supremum defining M is
attained in B̄r (x0). Moreover, since w(x0) = 0, the point attaining the maximum in M is in
B̄r (x0)\{x0}.

Let A0 > 0 be fixed later. By Lemma 2.3, we can consider C1 large enough in order to
have

− sup
ξ∈B1(x)

{ Ĩξ (w, x)} + b0

2
|Dw(x)|m ≥ A0ρ(x)

−η, x ∈ Br (x0) \ {x0}, (2.32)

in fact, by (2.28) it is sufficient to take

C1 ≥ C
(

A1/m
0 + C1/m

2 + 1
)

(2.33)

for some universal constant C > 0. Doubling variables and penalizing, we consider

Mε := sup{�(x, y) : (x, y) ∈ �̄× �̄},
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where �(x, y) = u(x)− u(x0)− w(y)− ε−2|x − y|2.
By classical arguments in the viscosity theory, we have Mε ≥ M > 0 for all ε > 0 and

the supremum in Mε is attained at (x̄, ȳ) ∈ �̄× �̄ with ȳ ∈ B̄r (x0) \ {x0}, which in addition
satisfies the following properties

ε−2|x̄ − ȳ|2 → 0; x̄, ȳ → x∗; u(x̄) → u(x∗), as ε → 0, (2.34)

where x∗ ∈ B̄r (x0)\{x0} attains the supremum defining M . In particular, ȳ �= x0 for all
ε > 0. Moreover, note that the function

−�(x̄, ·) : y �→ w(y)− (u(x̄)− u(x0)− ε−2|x̄ − y|2)
has a global minimum point at ȳ ∈ B̄r (x0)\ {x0} for all ε > 0. We claim that this fact
implies ȳ /∈ ∂Br (x0) for each ε > 0. Otherwise, denoting ξ = (x0 − ȳ)/|x0 − ȳ| we have
ȳ + sξ ∈ Br (x0) for each 0 < s < r . Therefore −�(x̄, ȳ) ≤ −�(x̄, ȳ + sξ), which implies
by definition of w in (2.14)

0 ≤ s−1(w(ȳ)− w(ȳ + sξ)) ≤ ε−2(−2〈x̄ − ȳ, ξ 〉 + s)

and
0 ≤ C1(s

−1(rγ − (r − s)γ )+ sγ−1) ≤ ε−2(−2〈x̄ − ȳ, ξ 〉 + s).

Making s → 0 we arrive at a contradiction, concluding the claim. Hence, for all ε > 0,
there exists rε ∈ (0, r) such that rε < |ȳ − x0| < r − rε .

On the other hand, using that (x̄, ȳ) is a maximum point for �, denoting h = x − y and
h̄ = x̄ − ȳ we have

u(h + y)− w(y)− ε−2|h|2 ≤ u(h̄ + ȳ)− w(ȳ)− ε−2|h̄|2,
for each y ∈ �̄ and h such that y + h ∈ �̄. Hence, we conclude

ū(y)− w(y) ≤ ū(ȳ)− w(ȳ) for all y ∈ �− h̄,

where ū(y) := u(h̄ + y) for each y ∈ �− h̄. In particular, ȳ is a maximum point for ū −w in
�− h̄. Now, a simple translation argument over Eq. (2.29) allows us to prove that ū satisfies
the equation

− Ĩx+h̄(ū, x)+ b0

2
|Dū(x)|m ≤ Ãd−η

� (x + h̄), x ∈ �− h̄,

in the viscosity sense. Since |h̄| → 0 as ε → 0, for all ε small enough we have ȳ ∈ Br (x0) ⊂
�− h̄. Recalling w is smooth at ȳ we can use it as a test function for ū at ȳ, concluding the
inequality

− Ĩ ȳ+h̄(w, ȳ)+ b0

2
|Dw(ȳ)|m ≤ Ãd−η

� (ȳ + h̄),

but since ȳ + h̄ ∈ B1(ȳ) for ε small enough, using (2.32) we get

A0ρ
−η(ȳ) ≤ Ãd−η

� (ȳ + h̄).

Note that for each x ∈ Br (x0) we have ρ(x) ≤ d�(x) and since η ≥ 0, we get from the
above inequality that

A0d−η
� (ȳ) ≤ Ãd−η

� (ȳ + h̄).

At this point, recalling h̄ → 0 and ȳ → x∗ ∈ B̄r (x0) as ε → 0, taking limits in the above
inequality we arrive at a contradiction previously fixing

A0 ≥ Ã + 1. (2.35)
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Thus, for each x0 ∈ � and r ≤ d�(x0)/4, we have

|u(x)− u(y)| ≤ C1|x − y|γ0 for all x, y ∈ Br (x0),

from which we conclude the local Hölder continuity. In the case the boundary is C1,1, from
the above inequality we note that for each Br (x0) ⊂ �, the Hölder exponent and seminorm
of u in Br (x0) does not depend on r , and applying the method used by Barles in [4] (see
also [13]) we can extend the Hölder regularity up to the boundary.

Finally, we recall that by (2.35), (2.30), (2.33) and the choice of C2 in (2.31), the constant
C1 leading to the contradiction has the form

C1 ≥ C(A1/m + osc�ν (u)
1/m + 1), (2.36)

for some constant C > 0 depending on the data. ��
A very important consequence of the previous result is the following control of the oscil-

lation.

Corollary 2.1 (Oscillation Bound) Let � ⊂ R
N be open and bounded with a C1,1 bound-

ary, and assume the hypotheses of Theorem 2.1 hold. Assume further the nonlocal operator
has a censored nature, that is, the family of measures {νx }x∈RN satisfies the censored con-
dition (2.8). Then, there exists K > 0 such that, for each bounded viscosity subsolution u
of (P′), we have

osc�(u) ≤ K .

Proof The choice of C1 given by (2.36) in Theorem 2.1 leads us to

|u(x)− u(y)| ≤ C(A1/m + osc�ν (u)
1/m + 1)|x − y|γ0 , for all x, y ∈ �̄,

where γ0 is given by (2.5). Now, by (2.8) we have osc�ν (u) = osc�(u) and by compactness
of �̄, there exists x, x̄ ∈ �̄ such that osc�(u) = u(x̄)− u(x). Then, we can write

osc�(u) ≤ C(A1/m + osc�(u)
1/m + 1),

from where we obtain the result since m > 1. ��
Note that for noncensored problems, we can provide global oscillation bounds as in the

last corollary if we a priori know that osc�ν (u) = osc�(u).

Proof of Theorem 2.2 Let x0 ∈ �, denote R = |x0| + 1 and fix r = min{1, d�(x0)}/4.
Consider γ0 as in (2.7) and for C1 > 0 to be fixed later, define w as in (2.14) (with γ = γ0)
associated to these parameters.

Since the proof follows the same lines of Theorem 2.1, we will be sketchy in the current
proof bringing light on its contrasts. The first difference is that this time we do not censorize
the equation (since it would restrict the Hölder exponent, see Lemma 2.1).

Denote
M := sup{u(x)− u(x0)− w(x) : x ∈ R

N }. (2.37)

The aim is to prove that for suitable C1 > 0 we get M ≤ 0. We argue by contradiction,
assuming that M > 0. Note that choosing

C1rγ0 ≥ osc�ν (u), (2.38)

and by the upper semicontinuity of u − w we have the supremum defining M is attained in
B̄r (x0).
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Let A0 > 0 be fixed later. Enlarging C1 if it is necessary, by Lemma 2.4 we can write

− sup
ξ∈B1(x)

{Iξ (w, x)} + b0|Dw(x)|m ≥ A0ρ(x)
−θ , x ∈ Br (x0) \ {x0}. (2.39)

Doubling variables and penalizing, we consider

Mε := sup{�(x, y) : (x, y) ∈ R
N × R

N },
where�(x, y) = u(x)−u(x0)−w(y)−ε−2|x − y|2. By classical arguments in the viscosity
theory, we have Mε ≥ M > 0 for all ε > 0 and the supremum in Mε is attained at (x̄, ȳ)with
x̄, ȳ ∈ R

N with ȳ ∈ B̄r (x0)\{x0}, which in addition satisfies (2.34) where x∗ ∈ Br (x0)\{x0}
attains the supremum in (2.37).

If γ0 < 1, then we can prove that ȳ /∈ ∂Br (x0) in the same way as in Theorem 2.1 using
that w satisfies a state constraint problem on ∂Br (x0). If γ0 = 1 (which is the case of θ = 0
and σ < 1), then we considerwwith γ < γ0 and continue with the proof, taking into account
that the Hölder seminorm does not change as γ → γ0.

From this point, we follow the remaining lines of Theorem 2.1, taking A0 large in terms
of A arising in (P′) . ��
2.4 Examples

In this section we provide some examples of nonlocal terms and Hamiltonians for which our
results hold.

We start with the assumptions over the nonlocal term. As we mentioned before, assump-
tions (M1) and (M2) are intended as a restriction on the order of the operator, which is less
or equal than σ . In the case of x-independent operators, that is the case when there exists
a measure ν such that the family {νx }x∈RN defining Ix satisfies νx = ν for each x ∈ R

N ,
the operator may range from zero order operators (when ν is finite, see [16]) to the factional
Laplacian of order s for s ≤ σ , passing through operators which are not uniformly elliptic
in the sense of Caffarelli and Silvestre [12], as it is the case of measures with the form

ν(dz) = 1H+(z)|z|−(N+s)dz,

where 0 < s ≤ σ and H+ = {(z′, zN ) ∈ R
N : zN > 0}. Another interesting example of

such non-uniformly elliptic operators is given by operators with “orthogonal diffusion”, for
example in the case ν has the form

ν(dz) = |z2|−(N+s2)dz2 ⊗ δ0(z1)dz1 + |z1|−(N+s1)dz1 ⊗ δ0(z2)dz2 (2.40)

where z = (z1, z2) with zi ∈ R
di , i = 1, 2 and N = d1 + d2, and 0 < s1, s2 ≤ σ . Here δ0

denotes the Dirac measure supported at 0 and ⊗ denotes the measure product. In this case,
such a measure gives rise to an operator which is the sum of fractional Laplacians in each
direction zi , i = 1, 2.

Concerning x-dependent nonlocal operators, the classical example comes from measures
νx with the form

νx (dz) = K (x, z)ν(dz),

where ν is an x-independent Lévy measure and K : R
N ×R

N → R is a nonnegative function
such that K (·, z) ∈ L∞

loc(R
N ) for all x ∈ R

N , and K (x, ·) ∈ L∞(RN ) for all x ∈ R
N . As a

particular case we have the weighted fractional Laplacian

−Ix (u, x) = K (x)(−�)σ u(x),
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where K is bounded and nonnegative.
We highlight that in view of Lemma 2.1, the regularity results apply to censored operators

defined in (2.11), where we recall that the measures defining them has the form (2.9).
Concerning H , we note that the structure of the Hamiltonian is encoded by the inequal-

ity (2.3). Thus, given σ and m > max{1, σ }, our results apply to H with the form

H(x, p) = b(x)|p|m + a1(x)|p|l + 〈a2(x), p〉 − f (x), (2.41)

where x, p ∈ R
N , b ≥ b0 > 0, 0 < l < m and a1, a2, f bounded. In the case m ≤ 1 we can

consider
H(x, p) = b(x)|p|m + a1(x)|p|l − f (x), (2.42)

with b, a1, l and f as above. Of course, we can replace the main power |p|m by φ(x, p)|p|m ,
where the function φ : R

N × R
N → R satisfies φ ≥ φ0 for some constant φ0 > 0.

2.5 Regularity results for the sublinear case

In this subsection we provide a regularity results in the case σ < m ≤ 1.

Theorem 2.3 Let� ⊆ R
N be a bounded domain and σ ∈ (0, 1). Let Ix as in (2.2) associated

to a family of measures {νx }x∈RN satisfying (M1), (M2) relative to σ . Let m ∈ (σ, 1], θ ∈
[0,m) and γ0 as in (2.5).

Then, for each b0, A > 0 and γ < γ0, any bounded viscosity subsolution u : R
N → R to

the equation (P′) is locally Hölder continuous in � with Hölder exponent γ . If � has C1,1

boundary, then u is γ -Hölder continuous in � and can be extended as a Hölder continuous
function on �̄.

The Hölder seminorm depends on the data and osc�ν (u), where �ν is defined in (2.4).

Proof As in Theorem 2.1, we start with the analogous of Lemma 2.3. Let r > 0, consider
x0 ∈ R

N , define d0, dr as in (2.13) and ρ as in (2.16). Let w defined in (2.14) associated
to these parameters and γ < γ0. Let A, b0 > 0. Performing the same computations as in
Lemma 2.3 we arive at inequality (2.27), that is

− sup
ξ∈B1(x)

{Iξ (w, x)} + b0|Dw(x)|m

≥ C̄
(

b0Cm
1 ρ(x)

m(γ−1) − (C1 + C2)CRρ(x)
−σ)

,

for all x ∈ Br (x0)\ {x0}. Since this time m(γ −1) < −σ and ρ(x) ≤ r for each x ∈ Br (x0),
we can take r = r(C1,C2, b0) small such that

− sup
ξ∈B1(x)

{Iξ (w, x)} + b0|Dw(x)|m ≥ C̄b0Cm
1

2
ρ(x)m(γ−1), x ∈ Br (x0) \ {x0}.

By the choice of γ < γ0, we see that m(γ − 1) ≤ −θ , and therefore w satisfies

− sup
ξ∈B1(x)

{Iξ (w, x)} + b0|Dw(x)|m ≥ C̄Cm
1 ρ(x)

−η, x ∈ Br (x0) \ {x0},

with η = max{σ, θ}. From this point, we proceed exactly as in the proof of Theorem 2.1,
where the last inequality plays the role of (2.32), concluding the result by taking C1 large in
terms of A. ��
Remark 2.3 Since m ≤ 1, the parameter r depends on C2 in the proof of Theorem 2.3 and
therefore we have a Hölder seminorm which does not give a control of the oscillation in the
general case.
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Interior regularity results for the sublinear case in the flavour of Theorem 2.2 can be
obtained in the same way as the previous theorem.

Theorem 2.4 Let� ⊆ R
N be a bounded domain. Let σ ∈ (0, 1), Ix as in (2.2) associated to

a family of measures {νx }x∈RN satisfying (M1), (M2) relative to σ . Let m ∈ (σ, 1], θ ∈ [0,m)
and γ0 as in (2.7).

Then, for each b0, A > 0 and γ < γ0, any bounded viscosity subsolution u : R
N → R

to the equation (P′) is locally Hölder with Hölder exponent γ . Moreover, for each δ > 0, the
Hölder seminorm of u in �δ depends on the data and osc�ν (u)δ

−γ .

2.6 Extension to Lévy–Ito operators

We present an important extension of our regularity results over equations associated to
nonlocal operators in Lévy–Ito form: for x ∈ R

N and a bounded function φ ∈ C2(B̄δ(x))
for some δ > 0, we consider I j

x defined as

I j
x (u, x) =

∫
RN

[u(x + j (x, z))− u(x)− 1B〈Du(x), j (x, z)〉]ν(dz), (2.43)

where ν is a positive regular measure in R
N . The function j : R

N × R
N → R

N should be
understood as a jump function, whose basic assumption concerns the following bound for
the jumps, which is uniform in x .

(J1) There exists C j > 0 such that, for all x ∈ R
N

| j (x, z)| ≤ C j |z|.
We remark that given ν and j as above, it is possible to define the associated x-dependent

measure ν j
x as the push forward of the measure ν through the function j (x, ·). That is, ν j

x is
defined as ∫

RN
f (y)ν j

x (dy) =
∫

RN
f ( j (x, z))ν(dz), (2.44)

for each measurable function f satisfying | f (z)| ≤ C min{1, |z|2} for some C > 0. It is
important to remark that if ν satisfies (M1),(M2) and j satisfies (J1), then {ν j

x }x∈RN satisfies
(M1), (M2) too, where the associated constants now depend on C j .

We also notice that in the case the family of measures {ν j
x }x satisfies (M1)–(M2) with

σ ∈ (0, 1), then we do not need to compensate the integrand and I j
x is defined as

I j
x (u, x) =

∫
RN

[u(x + j (x, z))− u(x)]ν(dz). (2.45)

For sake of shortness, from this point we mainly argue over I j
x with the form (2.43), but

all the results are valid for I j
x with the form (2.45) when σ ∈ (0, 1).

The following result states the regularity result up to the boundary for Lévy–Ito problems.

Theorem 2.5 Let� ⊆ R
N be a bounded domain, A, b0 > 0, σ ∈ (0, 2), a measure ν satisfy-

ing (M1)–(M2) relative to σ , and a jump function j satisfying (J1). Let I j
x as in (2.43), (2.45)

associated to ν and j . Let m > max{1, σ } and θ ∈ [0,m).
Then, any bounded viscosity subsolution u : R

N → R to the problem

− I j
x (u, x)+ b0 |Du(x)|m ≤ Ad�(x)

−θ , x ∈ � (2.46)

123



G. Barles et al.

is locally Hölder continuous in � with Hölder exponent γ0 given in (2.5), and Hölder semi-
norm depending on �, the data and osc�

ν j (u), where �ν j is defined as in (2.4) relative to

the familty of measures {ν j
x }x∈RN given by (2.44).

Moreover, if � has a C1,1 boundary, then u can be extended as a Hölder continuous
function to �̄ with Hölder exponent γ0.

Proof This proof follows the lines of Theorem 2.1 and therefore we provide only a sketch
of the proof in order to show how to treat the Lévy–Ito form.

1. Technical lemmas in the Lévy–Ito context Under the current assumptions, considering
x0 ∈ R

N , C1,C2, r > 0 and γ0 as in (2.5), w defined in (2.14) (with γ = γ0) satisfies the
inequality

sup
ξ∈B1(x)

{I j
ξ (w, x)} ≤ C(C1 + C2)ρ

−σ (x), for all x ∈ Br (x0) \ {x0},

where ρ is defined in (2.16) and this time the constant C depends also on C j arising in (J1).
This is accomplished replacing ρ by

ρ̃(x) = min{d0(x), dr (x)}/(4C j ),

in the proof of Lemma 2.2. Once we get this estimate, taking C1 > 0 as in (2.36) (with C
now depending on C j ) we conclude

− sup
ξ∈B1(x)

{I j
ξ (w, x)} + b0|Dw(x)|m ≥ Aρ−θ (x) for x ∈ Br (x0) \ {x0},

following directly the arguments given in Lemma 2.3.
2. Censored Lévy–Ito operators Let u be a bounded subsolution to (2.46). Arguing as in

Lemma 2.1, the Lévy–Ito analogous to inequality (2.29) reads as

−I j
�(u, x)+ b0

2
|Du|m ≤ Ad�(x)

−θ + C(osc
�

j
ν
(u)+ 1)d−σ

� (x), x ∈ �,

where C depends on C j and the censored Lévy–Ito operator I j
� is defined as

I j
�(u, x) =

∫
x+ j (x,z)∈�

[u(x + j (x, z))− u(x)− 1B〈Du(x), j (x, z)〉]ν(dz).

3. Conclusion Once we localize the equation inside �, we follow exactly the same lines
of the proof of Theorem 2.1. The corresponding inequality (2.36) this time reads as

C1 ≥ C(A1/m + osc
�

j
ν
(u)+ 1), (2.47)

where C depends on C j . ��
The immediate consequence of this theorem is the corresponding control of the oscillation.

Its proof follows the same lines of the one of Corollary 2.1 by using the above theorem.

Corollary 2.2 Let � ⊂ R
N open and bounded, and assume the hypotheses of Theorem 2.5

hold. Assume further the nonlocal operator has a censored nature, that is, the family of
measures {ν j

x }x∈RN defined in (2.44) satisfies the censored condition (2.8). Then, there exists
K > 0 such that, for each bounded viscosity solution of (2.46) we have

osc�(u) ≤ K .
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Following the directions given in Theorem 2.5, it is possible to provide an interior regular-
ity result in the flavour of Theorem 2.2, as well as regularity results for sublinear Hamiltonians
in the flavour of Theorems 2.3 and 2.4, both in the Lévy–Ito framework. Additionally, we
can provide extensions for the mentioned results associated to Lévy–Ito operators when the
domain is unbounded (see Remark 2.1). We omit the details.

3 Well-posedness for the Cauchy problem in Lévy–Ito form

The x-dependence of the nonlocal term represents a serious difficulty in the statement of
the comparison principle for integro-differential equations (see [9]), and this comparison
principle is a key tool in the study of the large time behavior of evolution equations. However,
we are able to prove it in the interesting case of nonlocal operators in Lévy–Ito form defined
in (2.43) and (2.45). It is why, from now on, we consider the Cauchy problem in Lévy–Ito
form

∂t u(x, t)− I j
x (u(·, t), x)+ H(x, Du(x, t)) = 0 (x, t) ∈ Q, (3.1)

u(·, 0) = u0 x ∈ R
N , (3.2)

where we recall that Q = R
N × (0,∞).

We start with the assumptions. Over ν we require the classical assumption
(M) There exists Cν > 0 such that

∫
RN

min{1, |z|2}ν(dz) ≤ Cν .

We also require the following compatibility condition among j and ν.
(J2) For each δ > 0, there exists Cδ > 0 such that, for each x, y ∈ R

N we have
∫

Bδ
| j (x, z)− j (y, z)|2ν(dz) ≤ Cδ|x − y|2,∫

B\Bδ
| j (x, z)− j (y, z)|ν(dz) ≤ Cδ|x − y|.

Concerning the Hamiltonian we assume the following conditions.
(H1) There exists m > 1 and moduli of continuity ζ1, ζ2 such that, for all x, y, p, q ∈ R

N

we have

H(y, p + q)− H(x, p) ≤ ζ1(|x − y|)(1 + |p|m)+ ζ2(|q|)|p|m−1.

(H2) Let m be as in (H1). There exists A, b0 > 0 such that for all μ ∈ (0, 1) we have

H(x, p)− μH(x, μ−1 p) ≤ (1 − μ)
(
b0(1 − m)|p|m + A

)
.

Note that a measure ν satisfying (M1)–(M2) satisfies (M).
Concerning (J1)–(J2), let us give an example. Consider

j (x, z) = g(x)z for all x, z ∈ R
N . (3.3)

If g : R
N → R is bounded then (J1) holds but (J2) may fail. If, in addition, g is Lipschitz

continuous and the measure |z|ν(dz) is finite away the origin, then (J2) holds.
If m > 1, assumption (H2) implies (2.3). Examples of Hamiltonians satisfying (H1) and

(H2) are provided in Sect. 2.4, see (2.41), (2.42).
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Remark 3.1 In this section we will argue over nonlocal operators I j
x with the form (2.43)

(that is, nonlocal operators of order σ ≥ 1). However, the same arguments can be used to get
the results related to I j

x with the form (2.45), replacing (M) by the condition
∫

RN
min{1, |z|}ν(dz) ≤ Cν < +∞.

Our comparison principle reads as follows.

Proposition 3.1 Let ν be a Lévy measure satisfying (M), j satisfying (J1) and both satisfying
(J2). Let I j

x defined as in (2.43) associated to ν and j . Assume H satisfies (H1),(H2) and
u0 ∈ Cb(R

N ).
For each T > 0, denote QT = R

N × (0, T ]. Let u, v ∈ L∞(Q̄T ) for each T > 0 be
respective viscosity sub and supersolution to (3.1)–(3.2). Then, u ≤ v in Q̄.

We would like to mention that comparison principles for problem (3.1)–(3.2) for the
sublinear case [that is m ≤ 1 in (H1)] are proven in [9] and for this reason we concentrate
only in the superlinear case.

The following lemma states the initial condition for viscosity sub and supersolutions is
satisfied in the classical sense.

Lemma 3.1 Let I j
x defined in (2.43) with ν satisfying (M), j satisfying (J1) and H satisfy-

ing (H1). Let u, v be respectively a viscosity sub and supersolution to problem (3.1)–(3.2),
satisfying local boundedness in Q. Then, u(x, 0) ≤ u0(x) ≤ v(x, 0) for all x ∈ R

N .

We refer to [21] for a proof of the corresponding result in the second-order setting. The
proof for the current case can be obtained by adjusting the arguments showed in [21] to the
nonlocal framework.

We prove Proposition 3.1 in a rather indirect way by using the following lemma, which
will be also used to prove a version of the Strong Maximum Principle valid for our problem
in Sect. 4.1.

Lemma 3.2 Let σ ∈ (0, 2) and let I j
x defined in (2.43) with ν satisfying (M), j satisfying

(J1) and both satisfying (J2). Assume further that j (·, z) ∈ C(RN ) for each z ∈ R
N . Let

H satisfying (H1),(H2). Let u, v ∈ L∞(Q̄T ) for all T > 0 be respectively a sub and
supersolution to (CP). Then, there exists c̄ > 0 such that, for each μ ∈ (0, 1), the function

ω(x, t) := μu(x, t)− v(x, t)

satisfies, in the viscosity sense, the equation

∂tω − I j
x (ω(·, t), x)− c̄

ζ2(|Dω|)m
(1 − μ)m−1 ≤ C A(1 − μ) in Q, (3.4)

where A > 0 appears in (H2), ζ2 appears in (H1), c̄ = (mmbm−1
0 )−1 and C > 0 is an

universal constant.

Proof We start noting that if u is a viscosity subsolution to (3.1), denoting ū = μu we have

∂t ū − I j
x (ū, x)+ μH(x, μ−1 Dū) ≤ 0 in Q, (3.5)

in the viscosity sense.
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Let (x0, t0) ∈ Q and φ a smooth function such that ω − φ has a strict maximum point at
(x0, t0). Let ε > 0. Doubling variables we consider the function

�(x, y, s, t) := ū(x, s)− v(y, t)− φ̃(x, y, s, t),

where φ̃(x, y, s, t) = φ(y, t)+ ε−2|x − y|2 + ε−2(s − t)2. By its upper semicontinuity, �
attains its maximum over the set

K := B̄2C j (x0)× B̄2C j (x0)× [0, t0 + 1] × [0, t0 + 1]
at a point (x̄, ȳ, s̄, t̄). Moreover, classical argument in the viscosity theory allows us to get
that, as ε → 0

x̄, ȳ → x0; s̄, t̄ → t0; ε−2|x̄ − ȳ|2, ε−2(s̄ − t̄)2 → 0;
ū(x̄, s̄) → ū(x0, t0), v(ȳ, t̄) → v(x0, t0), (3.6)

Concluding that for all ε suitably small, s̄, t̄ ∈ (0, t0 + 1) and x̄, ȳ ∈ B̄2C j (x0). Hence, using
that (x, s) �→ �(x, ȳ, s, t̄) has a local maximum point at (x̄, s̄) and (y, t) �→ �(x̄, y, s̄, t)
has a local minimum point at (ȳ, t̄), we can subtract the viscosity inequality for v at (ȳ, t̄)
to the viscosity inequality for ū [given by (3.5)] at (x̄, s̄) to conclude, for each δ′ > 0, the
inequality

A − I δ
′ ≤ 0, (3.7)

where for δ′ > 0 we denote

I δ
′ = I j

x̄ [Bc
δ′ ](ū(·, s̄), x̄, p̄)− I j

ȳ [Bc
δ′ ](v(·, t̄), ȳ, q̄)

+ I j
x̄ [Bδ′ ](φ̃(·, ȳ, s̄, t̄), x̄)− I j

ȳ [Bδ′ ](−φ̃(x̄, ·, s̄, t̄), ȳ),

with

p̄ := Dx φ̃(x̄, ȳ, s̄, t̄) = 2ε−2(x̄ − ȳ),

q̄ := −Dy φ̃(x̄, ȳ, s̄, t̄) = p̄ − Dφ(ȳ, t̄),

and

A = (∂t φ̃ − ∂s φ̃)(x̄, ȳ, s̄, t̄)+ μH(x̄, μ−1 p̄)− H(ȳ, q̄).

We estimate each term of the inequality (3.7) to get the result. We start with A, noting
that taking ε = ε(μ) small enough, we have

(1 − μ)(m − 1)b0 − ζ1(|x̄ − ȳ|) > 0.

Then, from (H1), (H2) we get

μH(x̄, μ−1 p̄)− H(ȳ, q̄)

≥ μH(x̄, μ−1 p̄)− H(x̄, p̄)+ H(x̄, p̄)− H(ȳ, q̄)

≥ (1 − μ)(m − 1)b0| p̄|m − A(1 − μ)− ζ1(|x̄ − ȳ|)(1 + | p̄|m)− ζ2(|Dφ(ȳ, t̄)|)| p̄|m−1

≥ inf
θ≥0

{
((1 − μ)(m − 1)b0 − ζ1(|x̄ − ȳ|)) θm/(m−1) − ζ2(|Dφ(ȳ, t̄)|)θ

}

−A(1 − μ)− ζ1(|x̄ − ȳ|),
that is, denoting c̃ = (m − 1)m−1/mm , we obtain

μH(x̄, μ−1 p̄)− H(ȳ, q̄) ≥ −c̃
ζ2(|Dφ(ȳ, t̄)|)m

((1 − μ)(m − 1)b0 − ζ1(|x̄ − ȳ|))m−1

− A(1 − μ)− ζ1(|x̄ − ȳ|),
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from which we conclude

A ≥ ∂tφ(ȳ, t̄)− c̃
ζ2(|Dφ(ȳ, t̄)|)m

((1 − μ)(m − 1)b0 − ζ1(|x̄ − ȳ|))m−1

−A(1 − μ)− ζ1(|x̄ − ȳ|). (3.8)

Now we address the estimate for I δ
′
in (3.7). Using the smoothness of φ, (M) and (J1) we

clearly have

I j
x̄ [Bδ′ ](φ̃(·, ȳ, s̄, t̄), x̄)− I j

ȳ [Bδ′ ](−φ̃(x̄, ·, s̄, t̄), ȳ)

≤ I j
ȳ [Bδ′ ](φ(·, t̄), ȳ)+ ε−2oδ′(1). (3.9)

On the other hand, since (x̄, ȳ, s̄, t̄) is a maximum point for� in K, and since x̄, ȳ → x0

as ε → 0, for all ε small enough, by (J1) we have the inequality

ū(x̄ + j (x̄, z), s̄)− v(ȳ + j (ȳ, z), t̄)− (ū(x̄, s̄)− v(ȳ, t̄))

≤ φ(ȳ + j (ȳ, z), t̄)− φ(ȳ, t̄)+ ε−2(|x̄ − ȳ + j (x̄, z)− j (ȳ, z)|2 − |x̄ − ȳ|2),
for each z ∈ B1. Hence, for each 0 < δ′ < δ < 1, using this inequality we conclude that

I j
x̄ [Bc

δ′ ](ū(·, s̄), x̄, p̄)− I j
ȳ [Bc

δ′ ](v(·, t̄), ȳ, q̄)

≤ J δ −
∫

B\Bδ
〈 p̄, j (x̄, z)− j (ȳ, z)〉ν(dz)

+I j
ȳ [Bδ \ Bδ′ ](φ(·, t̄), ȳ)+ 2ε−2

∫
Bδ\Bδ′

| j (x̄, z)− j (ȳ, z)|2ν(dz),

where

J δ =
∫

Bc
δ

[
ū(x̄ + j (x̄, z), s̄)− v(ȳ + j (ȳ, z), t̄)− (ū(x̄, s̄)− v(ȳ, t̄))

−1B〈Dφ(ȳ, t̄), j (ȳ, z)〉
]
ν(dz). (3.10)

Fixing δ > 0 and using (J2) together with (3.6), we conclude that

I j
x̄ [Bc

δ′ ](ū(·, s̄), x̄, p̄)− I j
ȳ [Bc

δ′ ](v(·, t̄), ȳ, q̄)

≤ J δ + I j
ȳ [Bδ \ Bδ′ ](φ(·, t̄), ȳ)+ Cδoε(1).

Hence, joining the last inequality and (3.9) in the definition of I δ
′
, we conclude that for

all 0 < δ′ < δ

I δ
′ ≤ J δ + I j

ȳ [Bδ](φ(·, t̄), ȳ)+ Cδ oε(1)+ ε−2oδ′(1),

with J δ defined in (3.10). Replacing the last inqueality and (3.8) into (3.7), we conclude that

∂tφ(ȳ, t̄)− I j
ȳ [Bδ](φ(·, t̄), ȳ)− J δ − c̃

ζ2(|Dφ(ȳ, t̄)|)m
((1 − μ)(m − 1)b0 − ζ1(|x̄ − ȳ|))m−1

≤ (1 − μ)A + C j,δoε(1)+ ε−2oδ′(1)+ ζ1(|x̄ − ȳ|). (3.11)

But by (J2), the continuity assumption over j , the semicontinuity and boundedness of ū, v
in each Q̄T , by using (3.6) we apply Fatou’s Lemma concluding that for each δ > 0 fixed,
we get

lim sup
ε→0

J δ ≤ I j
x0 [Bc

δ ](ω(·, t0), x0, Dφ(x0, t0)).
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Hence, letting δ′ → 0 and ε → 0 in (3.11), and recalling (3.6) we conclude the desired
viscosity inequality leading to (3.4). ��

We also require the following

Lemma 3.3 Let I j
x defined in (2.43) with ν satisfying (M) and j satisfying (J1). Let ψ ∈

C2
b (R

d) satisfying ||ψ ||C2(Rd ) ≤ Λ for some Λ > 0. For β > 0, define the function

ψβ(x) = ψ(β2x), x ∈ R
N . (3.12)

Then, ψβ satisfies

||Dψβ ||∞ ≤ Λβ2, ||D2ψβ ||∞ ≤ Λβ4, ||I j
x (ψβ, ·)||∞ ≤ Λoβ(1),

where oβ(1) → 0 as β → 0.

Proof The estimates concerning Dψβ, D2ψβ are direct. Concerning the estimate of the
nonlocal term, for each x ∈ R

d we have

I j (ψβ, x) ≤ Λβ4
∫

B
| j (x, z)|2ν(dz)+Λβ2

∫
B1/β\B

| j (x, z)|ν(dz)+ 2Λ
∫

Bc
1/β

ν(dz).

Hence, using (M) and (J1) in the right-hand side of the last inequality, we get

I j
x (ψβ, x) ≤ C2

j CνΛβ
4 + C jΛβ

2
∫

B1/β\B
|z|ν(dz)+ 2Λ oβ(1).

Finally, using that |z| ≤ 1/β in the integral term of the last inequality and applying (M),
we conclude the estimate for the nonlocal term. ��

Using the last three lemmas we are in position to prove the comparison principle for (3.1)–
(3.2).

Proof of Proposition 3.1 Let T > 0. We will argue over the finite horizon problem
{
∂t u − I j

x (u, x)+ H(x, Du) = 0 in QT

u(x, 0) = u0(x) x ∈ R
N ,

from which the general result follows by the fact that T is arbitrary.
We assume by contradiction that

M := sup
QT

{u − v} > 0. (3.13)

Denote R = 2(||u||L∞(Q̄T )
+ ||v||L∞(Q̄T )

) and consider ψ ∈ C2
b (R

N ) a nonnegative

function with ψ = 0 in B, R ≤ ψ ≤ 2R in Bc
2 and satisfying ||Dψ ||∞, ||D2ψ ||∞ ≤ Λ for

some Λ > 0. For this function ψ and β > 0, consider ψβ as in (3.12).
Now, for η,μ ∈ (0, 1), consider the function

ω̄(x, t) = μu(x, t)− v(x, t)− ηt, (x, t) ∈ Q.

Noting that ω̄−ψβ → u −v locally uniform in Q̄T as η, β → 0 andμ → 1, by (3.13) we
see that ω̄−ψβ is strictly positive at some point in Q̄T for all η, β close to 0 and μ close to
1. Hence, by construction of ψβ , ω̄−ψβ attains its maximum in Q̄T at some point (x∗, t∗),
and by Lemma 3.1, taking η, β smaller and μ larger if it is necessary, we have t∗ > 0 for all
such as parameters. At this point, we fix η > 0 satisfying the above facts.
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Now, by Lemma 3.2, ω̄ is a viscosity subsolution of

∂t ω̄ − I j
x (ω̄(·, t), x)− c̄

ζ2(|Dω̄|)m
(1 − μ)m−1 ≤ C A(1 − μ)− η in QT ,

and therefore we can use ψβ as a test function for ω̄ at (x∗, t∗), concluding that

−I j
x (ψβ, x∗)− c̄

ζ2(|Dψβ(x∗)|)m
(1 − μ)m−1 ≤ C A(1 − μ)− η.

Using Lemma 3.3, we conclude from the above inequality that

−(1 + c̄(1 − μ)1−m)oβ(1) ≤ C A(1 − μ)− η.

Letting β → 0 and then μ → 1, we get the contradiction with the fact that η > 0. ��
As it is classical in the viscosity solution’s theory, Proposition 3.1 allows the application of

Perron’s method to conclude the existence. In this task, we introduce the additional asumption
(H0) There exists a constant H0 > 0 such that ||H(·, 0)||∞ ≤ H0.
This assumption allows us to build sub and supersolutions for (3.1). The existence result

is the following

Corollary 3.1 Let I j
x defined as in (2.43), with ν satisfying (M), j satisfying (J1) and both

satisfying (J2). Assume H ∈ C(RN ×R
N ) satisfies (H0)-(H2). Let u0 ∈ Cb(R

N ). Then, there
exists a unique viscosity solution u ∈ C(Q̄)∩ L∞(Q̄T ) for all T > 0 to problem (3.1)–(3.2).

A priori bounds for the solution given in Corollary 3.1 can be derived from the application
of comparison principle. Using ad-hoc sub and supersolutions, if u is the solution of (3.1)–
(3.2), then

||u(·, t)||L∞(RN ) ≤ H0 t + ||u0||∞, (3.14)

which means that for fixed time t , the function x �→ u(x, t) is globally bounded in R
N .

Similar results can be given for the stationary problem (P) in the Lévy–Ito setting, namely
equations with the form

λu − I j
x (u, x)+ H(x, Du) = 0 in R

N . (3.15)

Proposition 3.2 Let λ > 0, I j
x defined in (2.43) with ν satisfying (M), j satisfying (J1) and

both satisfying (J2). Assume H satisfies (H0)–(H2). Let u, v be bounded viscosity sub and
supersolution to Eq. (3.15). Then, u ≤ v in R

N .
Moreover, if in addition we assume (H0), then there exists a unique viscosity solution

u ∈ Cb(R
N ) to Eq. (3.15), which satisfies

||u||∞ ≤ λ−1 H0. (3.16)

4 Application to periodic equations: large time behavior

In this section we provide the large time behavior result for the problem (3.1)–(3.2) in the
case the data are Z

N -periodic. Hence, we will argue over the problem

∂t u − I j
x (u(·, t), x)+ H(x, Du) = 0 in Q := T

N × (0,+∞), (4.1)

u(·, 0) = u0 in T
N , (4.2)

123



Regularity results and asymptotic behavior for integro-differential equations

where I j
x is a nonlocal operator in Lévy–Ito form defined in (2.43) (replacing R

N by T
N ). Of

course, the results obtained in this section can be readily extended to the case the Lévy–Ito
operator has the form (2.45), provided the measure ν is such that I j

x has order strictly less
than 1 (see Remark 3.1).

Since problem (4.1)–(4.2) is a particular case of (3.1)–(3.2), comparison principle, exis-
tence and uniqueness hold for this problem under the conditions on the data given in the
statement of Proposition 3.1. In particular, for the solution u of (4.1)–(4.2) we have the a
priori estimate (3.14).

4.1 Strong maximum principle

We need some notation for the statement of the strong maximum principle: let ν, j in the
definition of I j

x and for x ∈ R
N we define inductively

X0(x) = {x}, Xn+1(x) =
⋃

ξ∈Xn(x)

{ξ + j (ξ, supp{ν})}, for n ∈ N,

and
X (x) =

⋃
n∈N

Xn . (4.3)

The strong maximum principle presented here relies in the nonlocallicity of the operator
under the “iterative covering property”

X (x) = T
N , for all x ∈ T

N . (4.4)

We can provide three interesting examples where this condition clearly holds. Of
course, (4.4) depends on both ν and j , but we mainly focus on the structure of ν for which
this condition is valid, and therefore we assume in the following examples that j (x, z) = z
for all x, z ∈ R

N . In this context, the most basic example is the case where there exists r > 0
such that

Br ⊂ supp{ν}.
A second example where the previous property does not hold, but (4.4) remains valid, is

when ν has the form (2.40), namely

ν(dz) = |z2|−(N+σ)dz2 ⊗ δ0(z1)dz1 + |z1|−(N+σ)dz1 ⊗ δ0(z2)dz2,

where δ0 is the Dirac measure supported at 0 and ⊗ is the measure product.
The third example strongly takes into account the topology of the torus. In (say) T

2,
consider L ⊂ T

2 a line of irrational slope, that is, L : z2 = αz1, with α irrational. Let ν̃ be
the 1-dimensional Haussdorff measure in T

2 and let l ⊂ L with ν̃(l) > 0. Then, the measure
ν = 1l(z)ν̃(dz) satisfies the assumption (4.4).

The strong maximum principle is stated through the following

Proposition 4.1 Let σ ∈ (0, 2) and let I j
x defined in (2.43) with ν satisfying (M), j satisfying

(J1) with j (·, z) ∈ C(TN ) for each z ∈ R
N , and ν, j satisfying (J2) and (4.4). Consider

H satisfying (H0)–(H2), with ζ2 in (H1) such that ζ2(s) = c|s| for some c > 0. Let u be
a Z

N -periodic viscosity subsolution to (4.1), and v a Z
N -periodic viscosity supersolution

to (4.1), such that there exists (x0, t0) ∈ Q satisfying

(u − v)(x0, t0) = sup
Q

{u − v}.
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Then, the function u − v is constant in T
n × [0, t0]. Moreover, we have

(u − v)(x, t) = sup
x∈TN

{u(x, 0)− v(x, 0)}, for all (x, t) ∈ Q̄.

The following lemma is a consequence of the comparison principle, see [10].

Lemma 4.1 Assume assumptions of Proposition 3.1 hold. Let u, v be locally bounded sub
and supersolution to Eq. (4.1) and for t ∈ [0,+∞), define

κ(t) = sup
x∈TN

{u(x, t)− v(x, t)}. (4.5)

Then, for all 0 ≤ s ≤ t , we have κ(t) ≤ κ(s).

Now we are in position to prove the strong maximum principle.

Proof of Propostion 4.1 We divide the proof in several parts.
1. Preliminaries Under the definition of κ in (4.5), we must prove that for each (x, t) ∈

T
N × [0, t0]

(u − v)(x, t) = κ(0).

However, since κ(t0) is a global maximum value of κ in [0,+∞), by Lemma 4.1 we have
κ(t) = κ(0) for all t ∈ [0, t0]. Hence, it is sufficient to prove that for each τ ∈ (0, t0) we
have

u(x, τ )− v(x, τ ) = κ(τ), for all x ∈ T
N ,

which implies the result up to τ = 0 and τ = t0 by upper-semicontinuity.
We fix τ ∈ (0, t0) and define the set

Mτ = {x ∈ T
N : (u − v)(x, τ ) = κ(τ)},

which is nonempty by upper-semicontinuity of u − v. Hence, with the above facts the proof
follows by proving that Mτ = T

N .
2. Localization on time τ For η > 0 we consider the function

(x, t) �→ W̃ (x, t) := u(x, t)− v(x, t)− η(t − τ)2.

Note that for each (x, t) ∈ Q, we have

W̃ (x, t) ≤ κ(t)− η(t − τ)2 ≤ κ(τ) = (u − v)(x1, τ ) = W̃ (x1, τ ),

for some x1 ∈ Mτ , and therefore the supremum of W̃ in Q is achieved, and each such as
maximum point has the form (x, τ ) for some x ∈ Mτ . Hence, we clearly have

κ(τ) = sup
(x,t)∈Q

W̃ (x, t).

3. Localization around a point in Mτ From this point we fix xτ ∈ Mτ and introduce a
function ψ ∈ C2

b (R) with ψ(0) = 0, ψ > 0 in R \ {0} and ψ(x) = 4R if |x | ≥ 1, with

R = ||u||L∞(TN ×[0,t0+1]).

For ε > 0, x ∈ T
N define ψε(x) = ψ(|x − xτ |/ε). We remark that ψε ∈ C2

b (T
N ),

ψε(xτ ) = 0, ψε > 0 in R
N \ {xτ } and for each ε > 0 its first and second derivatives are

bounded, depending on ε.
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We take 0 < μ < 1, denote ū = μu and ωμ = ū − v as in Lemma 3.2, and consider the
function

(x, t) �→ Wμ(x, t) := ωμ(x, t)− η|t − τ |2 − (1 − μ)ψε(x).

By upper-semicontinuity of Wμ, there exists (xμ, tμ) ∈ T
N × [0, t0 + 1] such that

Wμ(xμ, tμ) = sup
TN ×[0,t0+1]

Wμ,

and since Wμ → W̃ locally uniform on Q̄ asμ → 1 we have, up to subsequences, (xμ, tμ) →
(x∗, τ ) as μ → 1, where x∗ = x∗(ε) ∈ Mτ .

In fact, since (xμ, tμ) is maximum for Wμ, for all (x, t) ∈ T
N × [0, t0 + 1] we have

Wμ(xμ, tμ) = (u − v)(xμ, tμ)+ (μ− 1)(u + ψε)(xμ, tμ)− η(tμ − τ)2

≥ (u − v)(x, t)+ (μ− 1)(u + ψε)(x, t)− η(t − τ)2.

In particular, taking the point (x, t) = (xτ , τ ) in the right-hand side we obtain

(u − v)(xμ, tμ)+ (μ− 1)(u + ψε)(xμ, tμ) ≥ κ(τ)+ (μ− 1)u(xτ , τ ). (4.6)

Now, since tμ ∈ [0, t0 + 1] for all μ close to 1, we have

(u − v)(xμ, tμ) ≤ κ(tμ) ≤ κ(τ),

and replacing this into (4.6) we get

u(xμ, tμ)+ ψ(|xμ − xτ |/ε) ≤ u(xτ , τ ),

that is ψ(|xμ − xτ |/ε) ≤ 2R. By the choice of ψ we conclude that xμ ∈ Bε(xτ ) for all μ
close to 1. Since xμ → x∗ ∈ Mτ , we conclude x∗ ∈ B̄ε(xτ ).

4. Using the viscosity inequality for ωμ From the above facts, we see that the function
(x, t) �→ φ(x, t) := (1 − μ)ψε(x) + η(t − τ)2 is a test function for ωμ at (xμ, tμ). Then,
by Lemma 3.2, for each δ, ε > 0 we have

2η(tμ − τ)− I j
xμ [Bc

δ ](ωμ(·, tμ), xμ)− I j
xμ [Bδ]((1 − μ)ψε, xμ)

−c̄(1 − μ)|Dψε(xμ)|m ≤ C A(1 − μ),

but by (M) and (J1) we have

I j
xμ [Bδ](ψε, xμ) ≤ C j |D2ψε|∞.

From this, it follows that

2η(tμ − τ)− I j
xμ [Bc

δ ](ωμ(·, tμ), xμ)

−(1 − μ)
(
C j |D2ψε|∞ + c̄|Dψε(xμ)|m + C A

) ≤ 0. (4.7)

Note that for all ε > 0, by the smoothness of ψε the term in parenthesis in (4.7) remains
bounded as μ → 1, meanwhile tμ → τ . On the other hand, by the continuity of j and (M),
by Dominated Convergence Theorem we get

I j
xμ [Bc

δ ](ωμ(·, tμ), xμ) → I j
x∗ [Bc

δ ]((u − v)(·, τ ), x∗) as μ → 1,

where x∗ ∈ Mτ is such that x∗ ∈ B̄ε(xτ ). Recalling that (u − v)(x∗, τ ) = κ(τ), letting
μ → 1 in (4.7) we arrive at∫

Bc
δ

[(u − v)(x∗ + j (x∗, z), τ )− κ(τ)]ν(dz) = 0,
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and since x∗ ∈ B̄ε(xτ ), letting ε → 0 we finally conclude
∫

Bc
δ

[(u − v)(xτ + j (xτ , z), τ )− κ(τ)]ν(dz) = 0. (4.8)

5. Conclusion Since δ > 0 is arbitrary, we conclude (u − v)(x, τ ) = κ(τ) for all x ∈
X1(xτ ). Hence, we can proceed in the same way as above, concluding by induction that
(u − v)(x, τ ) = κ(τ) for all x ∈ ⋃

n∈N
Xn(xτ ). Finally, by upper-semicontinuity of u − v

and (4.4) we conclude the result. ��
Remark 4.1 In Proposition 4.1, the assumption on the continuity of j can be dropped. For
instance, it is used to pass to the limit in (4.8). In this direction, note that if g ∈ C(TN ) we
can write

|g(x∗ + j (x∗, z))− g(xτ + j (xτ , z))| ≤ ζ(x∗ + j (x∗, z)− xτ − j (xτ , z)),

where ζ is the modulus of continuity of g. However, it is known that a modulus of continuity
may be assumed to satisfy that ζ(t) ≤ ζ(ρ)+ ρ−1t for each t, ρ > 0 (see [26]). Using this,
we conclude

|g(x∗ + j (x∗, z))− g(xτ + j (xτ , z))| ≤ ζ(ρ)+ ρ−1(|x∗ − x1| − | j (x∗, z)− j (xτ , z)|)
for all ρ > 0. Hence, using (J1) we can make x∗ → xτ and then letting ρ → 0 to get the
desired convergence without asking continuity on j .

Additionally, instead of assuming ζ2(s) = c|s|, it is enough to ask that

ζ2(s)s
(1−m)/m → 0 as s → 0.

4.2 The ergodic problem

Roughly speaking, solving the ergodic problem means pass to the limit as λ → 0 in the
stationary periodic problem

λu − I j
x (u, x)+ H(x, Du) = 0 x ∈ T

N , (4.9)

whose existence and uniqueness for λ > 0 holds by Proposition 3.2. Hence, the required
compactness of the family of solutions {uλ} is typically obtained by regularity results which
are independent of λ.

Proposition 4.2 Let σ ∈ (0, 2) and I j
x defined in (2.43) with ν satisfying (M1), (M2) associ-

ated to σ , j satisfying (J1) with j (·, z) ∈ C(TN ) for each z ∈ R
N , and that ν, j satisfy (J2)

and (4.4). Assume H satisfies (H0)-(H2), with m > max{1, σ } in (H1). Then, there exists a
unique constant c ∈ R for which the stationary ergodic problem

− I j
x (u, x)+ H(x, Du) = −c, in T

N (4.10)

has a solutionw ∈ C (m−σ)/m(TN ). Moreover,w is the unique continuous solution of (4.10),
up to an additive constant.

Proof of Proposition 4.2 Let λ > 0 and consider the periodic stationary problem (4.9). By
Proposition 3.2 we have the existence and uniqueness of a solution uλ to this problem which,
by (3.16), satisfies the estimate ||uλ||∞ ≤ λ−1 H0. Thus, by Theorem 2.5 we show that
uλ ∈ C (m−σ)/m(TN ) with Hölder seminorm independent of λ or ||uλ||∞.
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Now, denote wλ = uλ − uλ(0) which satisfies the equation

λu − I j
x (u, x)+ H(x, Du) = −λuλ(0), in T

N . (4.11)

Using Theorem 2.5 we see that the family {wλ}λ∈(0,1) is uniformly bounded and that this
family is equi-Hölder with exponent (m − σ)/m. Hence, by Arzela-Ascoli Theorem, there
exists w ∈ C (m−σ)/m(TN ) such that wλ → w as λ → 0, uniformly on T

N . Additionally, we
have the existence of a constant c ∈ R such that λuλ(0) → c as λ → 0. By standard stability
results for viscosity solutions (see [1,9] and [20]), we have the pair (w, c) found above is a
(viscosity) solution to (4.10).

If (wi , ci ), i = 1, 2 are two solutions for (4.10), then we see that vi (x, t) = wi (x, t) +
ci t, i = 1, 2 are two solutions to the Cauchy problem (4.1) with initial data wi . Hence, by
comparison principle we conclude that

v1(x, t)− ||w1 − w2||∞ ≤ v2(x, t), for all (x, t) ∈ Q,

and therefore, we obtain (c1 − c2)t ≤ 2||w1 −w2||∞. Dividing by t and letting t → +∞ we
obtain that c1 ≤ c2. Exchanging the roles of w1 and w2, we get c1 = c2 = c and therefore c
is unique. Moreover, for each t ∈ [0,+∞) we have

sup
x∈TN

{v1(x, t)− v2(x, t)} = sup
Q

{v1 − v2} = sup
TN

{w1 − w2} =: m,

and therefore, by Proposition 4.1 we conclude that for each x ∈ T
N

w1(x) = w2(x)+ m,

concluding the proof. ��
4.3 Large time behavior

The main result of this section is the following

Theorem 4.1 Assume assumptions of Proposition 4.2 hold. Let u be the unique solution to
problem (4.1)–(4.2). Then, there exists a pair (w, c) solution to (4.10) such that

u(x, t)− ct − w(x) → 0, as t → +∞,

uniformly in T
N .

Proof Here we follow closely the arguments given in [10,33] in the local framework and [6]
in the nonlocal one.

We assume first that u0 ∈ C2(TN ). In this case, by using comparison principle it is possible
to prove that u is Lipschitz in t (see [33]), with Lipschitz constant

C∗ = || − I j
x (u0, ·)+ H(·, Du0)||L∞(TN ) < ∞.

Now, by recalling that (H2) implies (2.3), for each t ∈ (0,+∞) the function x �→ u(x, t)
is a viscosity subsolution to the problem

−I j
x (u, x)+ b0|Du|m ≤ C∗ + H0,

with H0 given by (H0). Using Theorem 2.5 we conclude the unique solution to u of prob-
lem (4.1)–(4.2) is in Cγ0,1(Q), with γ0 defined in (2.5).
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Note that u and the function (x, t) �→ w(x) + ct are solutions to (4.1). Hence, by com-
parison principle we have

||u(·, t)− w − ct ||∞ ≤ ||u0 − w||∞, (4.12)

meanwhile, if we define
κ(t) = max

TN
{u(·, t)− w − ct}, (4.13)

by Lemma 4.1 we see that κ is nonincreasing. Since in addition it is bounded there exists
κ̄ ∈ R such that κ(t) → κ̄ as t → +∞.

Now, define the function (x, t) �→ v(x, t) := u(x, t)− ct . Using (4.12) we obtain

||v(·, t)||∞ ≤ ||w||∞ + ||u0 − w||∞, for each t ≥ 0,

and by the fact that the family {v(·, t)}t is equi-Hölder (with exponent γ0), by Arzela-Ascoli
we can extract a subsequence {v(·, tk)}k with tk → ∞ as k → ∞ such that

v(·, tk) → v̄, uniformly in T
N as k → +∞.

Define vk(x, t) = v(x, t + tk). Recalling that vk is solution to
{
∂tvk − I j

x (vk(·, t), x)+ H(x, Dvk) = −c in Q

vk(x, 0) = v(x, tk) x ∈ T
N ,

and using comparison principle we conclude {vk}k satisfies the inequality

||vk − vk′ ||L∞(Q) ≤ ||v(·, tk)− v(·, tk′)||∞, (4.14)

for all t ≥ 0 and k, k′ ∈ N. Hence, {vk}k is an uniformly bounded Cauchy sequence in C(Q)
and therefore, up to a subsequence, we conclude vk → ṽ in C(Q) as k → ∞, where ṽ solves

{
∂t ṽ − I j

x (ṽ(·, t), x)+ H(x, Dṽ) = −c in Q

ṽ(x, 0) = v̄ x ∈ T
N ,

Using the definition of κ given in (4.13), for each t ≥ 0 we obtain

κ(t + tk) = max
TN

{vk(·, t)− w},

and since {vk}k is uniformly convergent, we can pass to the limit as k → ∞ concluding that

κ̄ = max
TN

{ṽ(·, t)− w} for each t ∈ [0,+∞),

and applying Proposition 4.1, for each (x, t) ∈ Q we have

ṽ(x, t) = w(x)+ κ̄,

and therefore we have v̄ = w + κ̄ in T
N . This implies that v(x, t) → w + κ̄ . But by using

the definition of v we have

||u(·, t)− ct − w − κ̄||∞ = ||v(·, t)− v − κ̄||∞ → 0

as t → ∞. Replacing w by w + κ̄ , we conclude the result in the case the initial data is
smooth.

The general result for u0 ∈ C(TN ) follows by an approximation argument using a
sequence of smooth initial data uε0 satisfying uε0 → u0 uniformly in T

N as ε → 0. We
refer to [33] for details. ��
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