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The main advantage of a procurement combinatorial auction (CA) is that it allows suppliers to express cost
synergies through package bids. However, bidders can also strategically take advantage of this flexibility, by

discounting package bids and “inflating” bid prices for single items, even in the absence of cost synergies; the
latter behavior can hurt the performance of the auction. It is an empirical question whether allowing package
bids and running a CA improves performance in a given setting. In this paper, we develop a structural esti-
mation approach that estimates the firms’ cost structure using bidding data and use these estimates to evaluate
the performance of the auction. To overcome the computational difficulties arising from the large number of
bids observed in large-scale CAs, we propose a novel simplified model of bidders’ behavior based on pricing
package characteristics. We apply our method to the Chilean school meals auction, in which the government
procures half a billion dollars’ worth of meal services every year and bidders submit thousands of package bids.
Our estimates suggest that bidders’ cost synergies are economically significant in this application (∼ 5%), and
the current CA mechanism achieves high allocative efficiency (∼ 98%) and reasonable margins for the bidders
(∼ 5%). Overall, this work develops the first practical tool to evaluate the performance of large-scale first-price
CAs commonly used in procurement settings.
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1. Introduction
In many important procurement settings, suppliers
face cost synergies; for example, transportation ser-
vice providers can lower costs by coordinating mul-
tiple deliveries in the same route, and producers
can lower average costs by spreading a fixed cost
across several units. Motivated by these types of set-
tings, auction mechanisms that allow bidders to sub-
mit package bids for multiple units so that they can
express their synergies have received much recent
attention in practice and the academic literature.
Indeed, these multiunit auctions, typically referred
to as combinatorial auctions (CAs), have been imple-
mented in many procurement applications. For exam-
ple, Elmaghraby and Keskinocak (2004), Sandholm
et al. (2006), and Hohner et al. (2003) describe applica-
tions at the Home Depot, Procter & Gamble, and Mars
Inc., respectively. These types of auctions have also

been implemented in nonprocurement settings, most
notably in the auctions for wireless spectrum run
by the Federal Communications Commission (FCC)
(McDuff 2003).1

A central auction design question in multiunit
settings is how allowing bidders to submit bids
for packages of units impacts the performance of
the mechanism. From the perspective of an auction
designer, there are typically two measures that are
relevant when evaluating performance: (1) efficiency,
which compares the actual bidders’ costs realized in
the auction allocation relative to the minimum possi-
ble cost allocation that can be achieved; and (2) opti-
mality, which relates to the total payment to the
bidders by the auctioneer. The above design question
is crucial because allowing for package bidding via a

1 Cramton et al. (2006) provide an overview on CAs.
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CA can have countering effects on the performance
under these two measures, as we describe next.

On one hand, allowing package bids can enhance
the performance especially in the presence of cost
synergies. In many procurement applications, such
as the examples mentioned above, bidders may have
cost synergies due to economies of scale, which depend
on the volume allocated to a given supplier, and
economies of density, which depend on the proximity
of the units in an allocation. If bidders were allowed
only to submit bids for each unit separately, they
would face the risk of winning some units but not
others. This phenomenon, known as the exposure prob-
lem, may induce bidders to be less aggressive in
expressing the economies of scale and density that
arise from supplying multiple units. Enabling pack-
age bidding through a CA eliminates this risk, poten-
tially leading to more efficient outcomes and lower
procurement costs.

However, allowing package bids could also hurt
the performance. As pointed out by Cantillon and
Pesendorfer (2006) and Olivares et al. (2012), with
a first-price rule, bidders can engage in strategic
bundling in which they submit package discounts
even in the absence of cost synergies. One motivation
to do so may be to leverage a relative cost advantage
in a unit (for which the bidder is the cost-efficient
provider) into another unit (for which the bidder is
not the efficient provider). The firm may attempt to
win both units by submitting a “discounted” pack-
age bid for the bundle and “inflating” both single-unit
bids. If the bidder wins the package, it will lead to
an inefficient allocation in which a unit is not served
by the lowest-cost supplier. In addition, package bid-
ding can also lead to the threshold problem, in which
“local” suppliers bidding for small packages free ride
on each other to outbid “global” suppliers submitting
bids on larger packages; this free riding can lead to
less competitive bidding, higher margins, and thereby
higher payments for the auctioneer. Milgrom (2000)
and Baranov (2010) provide examples of the threshold
problem.

Given the aforementioned trade-off, we expect that
a CA should enhance the performance, relative to
auction mechanisms that preclude package bidding,
if cost synergies are strong and the incentives for
the types of strategic behavior mentioned above are
weak. However, analyzing the actual performance of
a CA requires evaluating cost efficiency and the mar-
gins of the winning bidders, which is typically private
and sensitive information of the bidders. Moreover,
existing theory is not conclusive on how large the
incentives for strategizing are in a specific application.
Thus motivated, in this paper we develop and apply
an empirical approach to evaluate the performance of

first-price CAs based on observed bid data, and use
it to inform the auction design.

A reduced-form analysis of the bid data like the one
in Olivares et al. (2012) can be used to provide a direct
measurement of the package discounts relative to
single-unit bids observed in a CA. However, the pres-
ence of package discounts is not conclusive about the
performance of the auction. Bid discounts may reflect
cost synergies, but they could also reflect the types
of strategic behavior alluded to above; bidders could
inflate their single-unit bids relative to package bids
to increase the probability of winning larger pack-
ages with relatively high margins, even in the absence
of cost synergies. These strategic markup reductions
also result in package discounts and a reduced-form
analysis of the bid data cannot directly distinguish
between this and a cost synergy-based explanation.
This is limiting when evaluating the efficiency of the
auction, since we expect a CA to perform well only
if package bid discounts are mostly explained by cost
synergies. Moreover, since a reduced-form analysis
does not identify bidders’ cost information from the
observed bids, it cannot be used to evaluate alterna-
tive mechanism designs.

To overcome these limitations, we introduce a
structural estimation approach that imposes a model
of bidder’s behavior to estimate bidders’ supplying
costs, and therefore disentangle cost synergies and
strategic markup reductions from the observed bid
discounts. Our method is based on the influential
work of Guerre et al. (2000) for single-unit auctions
that was later extended by Cantillon and Pesendorfer
(2006) and was applied to the London bus routes CAs
with two or three units. More specifically, Cantillon
and Pesendorfer (2006) conduct the structural estima-
tion of first-price CAs in two steps. In the first step,
a statistical distribution of the competitors’ bids is
estimated from bidding data. In the second step, the
first-order conditions from the bidder’s profit maxi-
mization problem are used to find the imputed costs
that would rationalize the bids observed in the data.
These first-order conditions involve beliefs about the
competitors’ bidding behavior, and the distribution
estimated in the first step is used to sample com-
petitors’ bids and form these beliefs. The estimated
costs enable the calculation of the cost efficiency and
bidders’ margins in the CA to evaluate its perfor-
mance. They also allow to evaluate alternative auction
designs. We show, however, that this approach can-
not be directly applied to large-scale CAs with many
units, because of the high dimensionality of the bid
vectors. This is an important limitation for many real-
world procurement applications of CAs; for exam-
ple, Caplice and Sheffi (2006) and Bichler et al. (2006)
report CAs for transportation and procurement of
inputs that typically involve hundreds of units.
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Consequently, an important methodological contri-
bution of our work is the development of a novel
approach to apply structural estimation to large-scale
first-price CAs. We introduce a “simplified” version
of the bidder’s problem where the markups charged
on package bids are chosen based on a reduced set of
package characteristics. With this simplification, the
first-order conditions of the bidder’s problem become
computationally and econometrically tractable. We
impose reasonable restrictions to the structure of the
markups that reduce the complexity of the bidders
problem but still provide sufficient flexibility to cap-
ture strategic behavior that can hurt the performance
of a CA. In addition, we introduce a parsimonious,
yet flexible parametric description of the distribution
of competitors’ bids for CAs that involve heteroge-
neous units, and scale and density discounts. This
specification makes the estimation of the distribution
of competitors’ bids tractable. Overall, these two sim-
plifications make the structural estimation feasible in
large-scale CAs.

We apply our method to the Chilean school meals
CA in which the government procures half a bil-
lion dollars’ worth of meal services every year to
feed 2.5 million children daily. This is one of the
largest and most important social programs run by
the Chilean government. The application fits well
within the class of large-scale CAs: each auction has
about 30 units, and firms submit hundreds of bids (for
more details on the auction, see Epstein et al. 2002).
This application serves as a template to illustrate how
to apply our method and shows how its results can
provide managerial insights into the auction design.
In particular, the government officials running this
auction have considered revising its format and we
use the structural approach developed here to inform
this question.

Our results show that cost synergies are significant.
Package discounts can be as large as 6% of the aver-
age bid price, and our estimates show that most of the
discounts (79%–86%) represent cost synergies, which
amount to 5% of the average cost. The rest of the bid
discounts are explained by strategic markup reduc-
tions, and we also use the estimation results to pin-
point the package bids for which bidders engage in
strategic bundling. Overall, the estimated costs reveal
that the CA achieves a high efficiency (in the order
of 98%–99%) and reasonable margins for the bidders
(in the order of 4%–5%). Drivers of this result are
the relatively large cost synergies and the high level
of competition in the auction; there is a reasonable
number of firms and most firms compete in all units
and submit many package bids. For this reason, firms
do not seem to have enough market power to sig-
nificantly harm efficiency by using the flexibility that
package bidding provides with strategic motivations.

In summary, our results suggest that allowing pack-
age bidding and running a CA seems appropriate in
this setting. Further, to the best of our knowledge, this
is the first paper to show that a CA performs well in
a real-world application. Finally, we also use the cost
estimates to evaluate the performance of a Vickrey-
Clarke-Groves mechanism, showing that it achieves
a reasonable total procurement cost, which counters
recent theoretical results.

The structural estimation approach is prevalent in
the economics literature and has been used to study
multiunit auctions, such as wholesale electricity auc-
tions (Reguant 2011), FCC spectrum auctions (Fox
and Bajari 2013), and treasury auctions (Hortaçsu and
McAdams 2010, Kastl 2011). Athey and Haile (2006),
Hendricks and Porter (2007), and Paarsch and Hong
(2006) provide comprehensive surveys about struc-
tural estimation of auction models. To the best of
our knowledge, we are the first to develop a struc-
tural approach to tackle large-scale CAs and test it
with a real application. Our work is also related
to the growing literature in operations management
that uses structural estimation; for example, it has
been used to estimate customer waiting costs (Allon
et al. 2011, Akşin et al. 2013), overage/underage costs
of a newsvendor (Olivares et al. 2008), and con-
sumer forward-looking behavior in the airline indus-
try (Li et al. 2014). We add to this stream of research
by applying structural estimation in a service pro-
curement setting, an important area in operations and
supply chain management where this approach has
not been used.

2. Structural Estimation Approach for
Combinatorial Auctions

This section develops a structural estimation frame-
work to estimate the primitives of first-price single-
round sealed-bid CAs. The standard structural
approach to estimate auctions was pioneered by
Guerre et al. (2000) (hereafter, GPV) for single-unit
auctions. Cantillon and Pesendorfer (2006) (hereafter,
CP) extended this approach to CAs and applied
it to the London bus route auctions with three
or fewer units. The structural approach introduced
below closely follows the approach in CP, with some
differences that we specify. In addition, at the end of
this section, we discuss the limitations of applying
this approach to large-scale CAs, because of the high
dimensionality of the bid vectors.

First, we describe the basic setting of a CA. Let U
denote the set of N units to be procured by an auc-
tioneer. There is a set F of supplier firms, referred to
as bidders and indexed by f . A package or combina-
tion, indexed by a, is a nonempty subset of units in U .
We let A denote the set of all possible packages and
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A = �A�4= 2N − 15 be the total number of them. Let
baf denote the bid price asked by bidder f to supply
package a, and bf = 8baf 9a∈A the bid vector containing
all bids from that bidder.

The following assumption describes the auction
format.

Assumption 1 (Auction Format). The auction has
a first-price single-round sealed-bid format, so that bidders
submit their bids simultaneously and winning bidders are
paid their submitted bid prices for the packages awarded
to them. The auction mechanism determines the winning
bids by solving the following mathematical integer pro-
gram, referred to as the winner determination problem:

minimize
∑

a∈A1 f∈F

baf xaf

subject to x ∈X1 xaf = 801191 ∀a ∈A1 f ∈ F 1

(1)

where xaf is a binary decision variable that is equal to one
if and only if package a is assigned to bidder f , and x =

8xaf 9a∈A1 f∈F . We denote by X the set of feasible allocations;
the set imposes that each unit is allocated to exactly one
bidder, that each bidder can win at most one package, and
potentially some additional allocative constraints.

The winner determination problem (1) minimizes
the total procurement cost of the auctioneer, given
the submitted bids. We note that the additional con-
straints in the set of feasible allocations could impose,
for example, market share constraints that limit the
maximum package size that a single bidder can be
awarded, which may be used to keep a diversi-
fied supplier base. In §5 and the online appendix
(available at http://www.columbia.edu/~gyw2105),
we provide more details on the winner determination
problem and its integer program formulation in the
context of our specific empirical application.

The structural estimation approach is based on an
auction model with private information and requires
assumptions on the bidders’ information structure
and bidding behavior in order to identify their costs.

Assumption 2 (Bidders’ Costs). Bidders have inde-
pendent private costs. In particular, given an auction, each
bidder f ∈ F gets an independent random draw of a cost
vector cf = 8caf 9a∈A, in which caf is the cost of supplying
package a for bidder f .

Before submitting its bid, each bidder observes its
own vector of costs, but does not observe the costs’
realizations of its competitors. Moreover, because
costs are private, a bidder’s costs only depend on its
own private signal and it is not a function of the costs’
realizations of other bidders. Based on this informa-
tion structure, we make the following assumption on
the bidders’ bidding strategies.

Assumption 3 (Strategies). Bidders are risk neutral
and play pure bidding strategies. In particular, for a given
auction, a bidder’s strategy is a function bf 2 <A

+
7→ <A

+

that depends on its own costs cf . Bidders place bids on all
possible combinations of units.

In our sealed-bid format, bidders submit their bids
in a game of incomplete information without directly
observing the bids nor the cost realizations of their
competitors. Therefore, bidders face uncertainty on
whether they will win any given package. For each
bidder, we capture this uncertainty with the vector
Gf 4bf 5 = 8Gaf 4bf 59a∈A, where Gaf 4bf 5 is the probabil-
ity that bidder f wins package a with bid vector bf .
Using vector notation, we can then write a bidder’s
expected profit maximization problem as

maximize
b∈<A

+

4b− c5TG4b51 (2)

where vT denotes the transpose of a vector v. Note
that each bidder has its own optimization problem
with its own cost and winning probability vectors. To
simplify the notation, we omit the subscript f when-
ever clear from the context.

To formulate the optimization problem above, a
bidder needs to form expectations about the bidding
behaviors of its competitors, so that it can evaluate
the vector of winning probabilities G4b5, for a given
value of b. Note that if bidder f anticipates that bid-
der f ′ uses a bidding strategy bf ′4 · 5, bidder f ′’s bids
are random from bidder f ’s perspective; they corre-
spond to the composition bf ′4cf ′5, where cf ′ is the cost
vector for bidder f ′. Note that cf ′ is random from
bidder f ’s perspective, because it is private informa-
tion. Assumption 4, described next, formalizes this.
Assumptions 1–4 are kept throughout the paper, and
we discuss their validity in the context of our appli-
cation in §5.1.

Assumption 4 (Bid Distributions). (a) Consider a
given auction and any bidder f ∈ F . From the perspec-
tive of other bidders, the bid vector of firm f , bf = bf 4cf 5,
is random and is given by the composition of the strat-
egy used by firm f in the auction and its random cost
vector cf (see Assumptions 2 and 3). Accordingly, denote
by Hf 4· �Z5 the distribution of bf , where Z is a vector of
observable bidders and auction characteristics. This distri-
bution is common knowledge among bidders.

(b) For all bidders f ∈ F , the competitors’ random
bid vectors 8bf ′9f ′ 6=f are mutually independent conditional
on Z.

(c) For all bidders f ∈ F , the distributions of competi-
tors’ bids 8Hf ′4· � Z59f ′ 6=f and the winner determination
problem (1) induce the beliefs on the winning probabilities
Gf 4bf 5, for any given bf .

(d) For all bidders f ∈ F , Hf 4· � Z5 has a continuous
density everywhere.
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We note that whereas Assumptions 1–3 (or simi-
lar variations of them) are commonly made in the
literature, Assumption 4 departs from the standard
structural approach followed by CP and GPV in the
following sense. The standard approach assumes that
the primitives of the model such as the number of bid-
ders, the probability distribution of costs, and the util-
ity functions are common knowledge and that bidders
play a Bayes Nash equilibrium (BNE) of the game
induced by the auction. In many settings, such as the
first-price single-unit auction studied in GPV, this is
well justified because under mild conditions a unique
symmetric pure strategy BNE always exists. However,
there is no theoretical result available that guaran-
tees existence of a pure strategy BNE in a CA. As we
describe next, Assumption 4 is weaker than assuming
BNE play, but still lends itself to using the two-step
estimation approach in CP.2

More specifically, note that assuming pure strategy
BNE play imposes two conditions for each bidder:
(i) the bidder correctly anticipates the strategies of
its competitors, and therefore correctly estimates the
vector of winning probabilities given its own bids;
and (ii) the bidder selects a bid vector that maximizes
its expected profit, given its costs and the winning
probabilities function. Although conditions (a)–(c) in
Assumption 4 are weaker than condition (i) in a pri-
vate cost setting, they impose the same restriction
over bidders’ beliefs that we use in our structural esti-
mation approach: bidders in the auction can correctly
anticipate their winning probabilities. This follows
because Assumption 4 imposes that bidders’ beliefs
on winning probabilities are induced by the distri-
butions 8Hf 4· � Z59f∈F , which are constructed with the
correct strategies used by the competitors in the auc-
tion together with their actual costs’ distributions. We
also make a weaker assumption relative to the afore-
mentioned condition (ii) imposed by BNE: we will
only assume that each bidder selects a bid vector
that satisfies the necessary first-order conditions of
the expected profit maximization problem (2). Despite
these differences in the formulation of the structural
model, the first-order conditions introduced below in
§2.1 are the same as the ones used by CP to identify
bidders’ costs.

Condition (d) in Assumption 4 guarantees the dif-
ferentiability of the winning probability vector G4 · 5
that is needed to use the first-order conditions for esti-
mation. Note that this assumption is over the bids’
distributions, which are endogenously determined

2 An alternative would be to assume that bidders play a mixed strat-
egy BNE in the CA; this is guaranteed to exist. However, we believe
that formulating a structural model in terms of pure strategies is
more transparent, has a clearer interpretation, and yields simpler
identification arguments.

in the auction game. Although we would prefer to
make assumptions over model primitives that imply
the assumptions on behavior, the lack of theoretical
results regarding the existence and characterization of
pure strategy equilibria in CAs does not allow us to
follow this approach. We formalize the differentiabil-
ity of G4 · 5 in the following proposition. The proof of
this proposition as well as all other proofs are pro-
vided in the online appendix.

Proposition 1. In a given auction, the winning prob-
ability vector Gf 4b5 is continuous and differentiable at all
b, for all bidders f ∈ F .

2.1. A Two-Step Structural Estimation Method
For a given bidder, the necessary first-order condi-
tions of the optimization problem (2) are given by the
matrix equation

c = b+ 86DbG4b57T 9−1G4b51 (3)

where Db refers to the Jacobian matrix operator with
respect to the variable vector b so that the ijth ele-
ment is 6DbG4b57ij = 4¡/¡bj5Gi4b5.3 For a given auc-
tion, there is one first-order-condition matrix equation
per bidder. The standard structural approach assumes
that the observed bid vector of each bidder satis-
fies Equation (3). An important difference between
first-price single-unit auctions and CAs is that in the
former this first-order condition is necessary and suf-
ficient for optimality, whereas in the latter it is only
necessary. However, in principle it is possible to test
computationally whether the observed bid vector that
satisfies (3) is locally or globally optimal for optimiza-
tion problem (2). We provide more details in the con-
text of our application.

The first-order conditions (3), evaluated at the
observed bid vector in the data, are the basis to point
identify that bidder’s cost vector, because the right-
hand side only depends on the observed bid vector b,
the winning probabilities G4b5, and their derivatives.
Note that Assumption 4 implies that bidders have the
correct expectations about the vector of winning prob-
abilities G4b5. Hence, these winning probabilities must
be consistent with the actual auction play, and there-
fore can be potentially estimated using bidding data
from all bidders. For example, in the first-price single-
unit auction analyzed by GPV, the winning probabil-
ity distribution—which in this case corresponds to the
tail distribution of the competitors’ minimum bid—
and its derivative can be estimated nonparametrically.
GPV replace these estimates in the first-order condi-
tions to obtain point estimates of bidders’ costs.

3 The Jacobian DbG4b5 is a square matrix that can have nonzero
off-diagonal elements because bids from the same bidder compete
against each other.
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In a CA setting, Gf 4 · 5 is a vector of probabilities
determined by the bid distributions of competitors
8Hf ′4· � Z59f ′ 6=f and the winner determination prob-
lem (1), which has no analytical solution. CP use a
simulation-based two-step method to estimate Gf 4 · 5
and to then use the first-order conditions to obtain
point estimates of the bidders’ costs. This procedure
can be summarized as follows:

Step 1. Use bid data to estimate the distribution of
bids, Hf ′4· �Z5, for all firms f ′ ∈ F .

Step 2. To obtain the cost vector of firm f , cf , esti-
mate via simulation the vector of winning probabil-
ities Gf 4b5�b=bf

and its Jacobian matrix DbGf 4b5�b=bf

evaluated at the observed bid vector submitted by
firm f , bf . Replace these on Equation (3) to obtain a
point estimate of cf .

In Step 2, winning probabilities are estimated via
simulation, where each simulation run r = 11 0 0 0 1R,
consists of the following:

• Fix the bid vector by firm f , bf , and for each com-
petitor f ′ 6= f , independently sample the competitor’s
bids from the distribution Hf ′4· � Z5 estimated in the
first step. Let 8brf ′9f ′ 6=f be the bids sampled for each
competitor firm in simulation run r .

• Solve the winner determination problem with
bid vectors 4bf 1 8b

r
f ′9f ′ 6=f 5. Record the package won by

firm f , if any, with indicators 16winr
af 7= 1 if and only

if firm f wins package a in run r .
The winning probabilities are estimated with the

empirical frequency of wins over all runs in the sim-
ulation, that is, Ĝaf 4bf 5 = 1/R

∑R
r=1 16winr

af 7, where R
is an appropriately chosen large number. The Jaco-
bian matrix of Gf 4bf 5 is computed numerically using
a similar simulation technique together with a finite-
difference method.4

2.2. Identification
It is helpful to understand what patterns in the bid
data drive the identification of the cost estimates
from Equation (3). This first-order condition equation
implies that the bid vector is equal to a cost plus
a markup vector, where the markup vector for bid-
der f , −86DbG4b57T 9−1G4b5, depends implicitly on the
competitors’ bid distributions estimated in the first
step of the structural method, 8Hf ′9f ′ 6=f , from the bid
data. It is therefore useful to analyze how these dis-
tributions affect the estimated markups and the cost
estimates. For this purpose, we conducted numerical

4 To calculate the ath row and sth column element of the Jacobian,
one can use a central finite-difference method 6DbGf 4b5�b=bf

7as =

4¡/¡bs5Gaf 4b5�b=bf
≈ 4Gaf 4bf + hes5 − Gaf 4bf − hes55/42h5, where es is

the sth canonical vector—the sth component of es is its only nonzero
element with size one. The step-size h is an appropriately chosen
small value (see, e.g., Glynn 1989). The estimations of Gaf 4bf +hes5
and Gaf 4bf −hes5 can be obtained via simulation as above.

experiments to analyze how a firm’s optimal bid vec-
tor depends on the distribution of competitors’ bids.
The online appendix describes the details of these
experiments and the rest of this section provides the
main insights derived from them.

Specifically, the experiments seek to understand the
impact of different quantities that describe the dis-
tribution of competitors’ bids on strategic markup
reductions; we consider the average unit prices, their
correlation, and the magnitude of package discounts.
We used a multivariate normal distribution to model
the unit prices of competitors’ bids and analyzed how
the optimal bid prices of a focal bidder change as we
vary the parameters of this distribution in small-scale
instances. Because the costs of the focal firm are kept
constant across the experiments, changes in the opti-
mal bids are purely driven by changes in markups.

The results reveal that strategic markup reduc-
tions become larger (1) as the competitors’ average
unit prices increase, because the focal firm becomes
more competitive and can more easily exert market
power; and (2) as the correlation among single-unit
prices becomes more negative; this effect is related
to bundling motives for a multiproduct monopolist.
The results also suggest that changes in the magni-
tude and variance of competitors’ package discounts
(within a reasonable range) do not affect much the
markup reductions.

These numerical experiments calculate the optimal
bid vector given the firm’s costs and the distribu-
tion of competitors’ bids. In our estimation proce-
dure, we perform the opposite process; we find the
costs that rationalize the observed bids using the
first-order conditions of the bidders’ optimization
problem. In this regard, the results in the numerical
experiments provide useful insights about identifica-
tion of costs. Recall that observed package discounts
are the sum of cost synergies plus strategic markup
reductions. Hence, the results suggest that as the
means of the estimated distribution of competitors’
bids become larger, and as the correlation among indi-
vidual prices become smaller, the estimated markup
reductions should increase, and therefore, the fraction
of the package discounts explained by cost synergies
should decrease. In summary, when estimating the
distribution of competitors’ bids, correctly capturing
the correlation and the heterogeneity of unit prices
plays an important role in the estimation of the bid-
ders’ cost structures.

2.3. Limitations in Large-Scale CAs
CP were able to effectively use the previous approach
in auctions of at most three units. However, there
are two significant limitations in using the standard
approach in large-scale CAs with more units.

First, in large-scale CAs that are typically found in
practice (including our empirical application), firms
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may submit hundreds or even thousands of bids.
In that case, the bid vectors 8bf 9f∈F , and therefore the
distributions 8Hf 4· � Z59f∈F that need to be estimated
in the first step, are high dimensional. For this reason,
parametric restrictions need to be imposed to make
the estimation tractable. However, it is important to
allow for sufficient flexibility in these restrictions. In
their application, CP developed a reasonable para-
metric model that balances flexibility with feasibility
in the estimation. We extend their approach to large-
scale CAs. In particular, in §4 we provide more details
about a parsimonious, yet flexible parametric descrip-
tion of the distributions of competitors’ bids for CAs
that involve geographically dispersed and heteroge-
neous units as well as scale and density discounts.
These distributions are then taken as an input for the
second step.

Second, there is a limitation in the second step of
the CP approach when applied to large-scale CAs: the
high dimensionality of the first-order conditions (3).
The dimension of this matrix equation is determined
by the number of bids, which increases exponentially
with the number of units in the CA. As the num-
ber of bids submitted by a bidder gets large, the
winning probability of each bid is likely to become
very small and the simulation errors in estimating
these rare-event probabilities become large. Moreover,
Equation (3) requires taking derivatives over a large
number of variables; the simulation errors in these
quantities may be even larger. These problems may
not be resolved by simply increasing the length of
the simulation runs, because in the course of these
runs one needs to repeatedly solve the winner deter-
mination problem, which gets increasingly expensive
computationally as the scale increases.5 Hence, com-
putation of G4b5 and DbG4b5 via simulation becomes
quickly intractable as the number of units auctioned
increases. The difficulties in estimating G4b5 make it
also unreasonable to assume that bidders would be
able to solve (2) optimally.

An important methodological contribution of this
paper is to address the second problem—the high
dimensionality of the first-order conditions (3). Our
approach imposes reasonable restrictions in the struc-
ture of the markups that allow us to reduce the
dimensionality of the problem. We describe this
approach in detail in the next section.

5 The winner determination problem in a CA is known to be NP-
hard. Using state-of-the-art solvers for integer programming, it
takes in the order of seconds to solve a single instance of the win-
ner determination problem in our application—we used CPLEX
V12.1 called by a C routine and ran on Columbia Business School’s
shared cluster, where each machine has eight 2.4 GHz CPUs.

3. The Characteristic-Based Markup
Approach for Large-Scale CAs

Our model is based on the approach described
in §2. As mentioned above, a significant complica-
tion of using this model in large-scale CAs is that
the dimensionality of the first-order conditions is
too large. We develop an approach to reduce the
dimensionality of the problem by imposing addi-
tional assumptions on the bidders’ bidding behavior
that have behavioral appeal and make the estimation
approach econometrically and computationally feasi-
ble in large-scale CAs.

Notice that in the first-order conditions (3), the
markup term −86DbG4b57T 9−1G4b5 provides the flex-
ibility to the bidder to assign a different and sep-
arate markup to each package. Hence, we refer to
this model as the full-dimension model. In contrast,
we propose that the markup of each bid is speci-
fied through a reduced set of package characteristics.
Specifically, let wa be a row vector of characteristics
describing package a, with dimension dim4wa5 = d
that could be potentially much smaller than A. The
markup for package a is given by the linear func-
tion wa�, where � is a (column) vector of dimension
d specifying the markup components associated with
each package characteristic. Instead of choosing the
markup for each package, the bidder now chooses �.
Let W ∈ <A×d be a matrix containing the characteris-
tics of all packages, so that the ath row of W is wa.
The following assumption, kept throughout the paper,
formalizes this simplification to the bidders’ bidding
behavior.

Assumption 5 (Characteristic-Based Markups).
Consider a given bidder in a particular auction. Its bid
vector is determined by b = c + W�, where W is a fixed
4A× d5-dimensional matrix of package characteristics and
� is a d-dimensional vector of decision variables chosen by
the bidder.

Under this assumption, the bidder’s optimization
problem becomes6

maximize
�∈<d

4W�5TG4W�+ c51 (4)

whose first-order conditions yield

6D�W
TG4W�+ c57T � = −W TG4W�+ c50 (5)

Here again the ijth element of the Jacobian matrix
above is 6D�W

TG4W�+c57ij = 4¡/¡�j56W
TG4W�+c57i =

4¡/¡�j5W
T
i G4W�+c5, where Wi is the ith column of

matrix W . Rearranging and replacing terms, we can
solve for the decision vector � as follows:

� = −
{

6D�W
TG4b57T

}−1
W TG4b50 (6)

6 Note that our approach allows the specification of W to vary
across bidders.
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As in GPV and CP, this first-order-condition equa-
tion constitutes the basis of identification in our struc-
tural model. Again, note that in each auction there is
one first-order-condition matrix equation per bidder
and different bidders may have different character-
istic matrices W . For each bidder, under Assump-
tion 5, the cost is given by c = b − W�. Hence, costs
are uniquely determined by �, and moreover, if the
matrix D�W

TG4b5 is invertible, Equation (6) uniquely
identifies the markup vector �. Therefore, Equation (6)
provides an alternative to (3) to estimate costs.7 We
formalize this discussion with the following assump-
tion that is kept throughout the paper.

Assumption 6 (First-Order Conditions). The ob-
served bid vector of a given bidder in the auction satisfies
the necessary first-order conditions of the characteristic-
based markup model given by Equation (5).

As with Equation (3), the right-hand side of Equa-
tion (6) can be estimated purely from observed bid-
ding data. In fact, our approach using Equation (6)
closely follows the two-step method described in §2.1.
However, the reduced dimensionality of Equation (6)
significantly simplifies the computational burden in
the second step, making it feasible in large-scale
applications.

To see this, note that (6) is similar to (3), with
the winning probability vector G4b5 and its Jacobian
matrix DbG4b5 replaced by the vector W TG4b5 and
its Jacobian matrix D�W

TG4b5, which is now with
respect to the markup vector �. The first simplifica-
tion is that the derivatives are now taken with respect
to d �A variables, effectively reducing the dimension
of the problem. Second, in the specifications we pro-
pose later, we will see that each element of the vector
W TG4b5 is a (weighted) sum of winning probabili-
ties over many packages. These aggregate probabili-
ties are larger than the winning probabilities of each
individual package, and therefore easier to estimate
via simulation. Besides, there are fewer probabilities
to be estimated; altogether these make the second step
computationally tractable.

One apparent limitation of Assumption 5 is that
the markup is additive as oppose to multiplicative to
costs, which may be more appropriate in some appli-
cations. A multiplicative markup, however, would
lead to different first-order conditions from which it
is mathematically intractable to identify bidders’ costs
using bid data. A relatively simple way to make the
additive assumption less restrictive is to include pack-
age characteristics in W which are related to costs,
so that the markup can be scaled based on these
cost-related characteristics. This approach is effective

7 In §3.3 and the online appendix, we provide conditions for the
invertibility of this matrix.

when the cost heterogeneity across packages can be
captured, at least partially, by a reduced set of known
variables. We come back to this point in the sequel.

Note that the characteristic-based markup model
is very general and flexible in the specification
of markup structures. For example, if we specify
the package-characteristic matrix W as the identity
matrix, each package has its own markup and we
are back to the full-dimension problem (2). On the
opposite extreme, one could choose d = 1 so that the
markups of all packages are determined by a single
decision variable; although this specification signifi-
cantly reduces the dimension of the problem, this may
be too restrictive. Between these two extremes there
are many possible specifications for W . Different spec-
ifications may be chosen depending on the details of
the large-scale application at hand. Next, we describe
an approach to specify W that is sufficiently flexible
to capture strategic markup reductions that arise in
package bidding, but that at the same time is parsi-
monious and maintains computational tractability.

3.1. Specifying Markup Restrictions
Recall from our discussion in the introduction that
an important objective of our structural estimation
approach is to measure what portion of the observed
package discounts can be attributed to cost syner-
gies versus strategic markup reductions. Therefore, in
order for the structural estimation to provide mean-
ingful estimates of cost synergies, it is crucial that the
markup restrictions are sufficiently flexible to incor-
porate the main drivers of strategic bidding behavior.
Previous literature suggests that scale is likely to be
the main driver of these strategic markup reductions
(see the references in the introduction, in particular
Olivares et al. 2012, for a more detailed discussion).
Hence, we focus on developing a specification that
allows for markups to vary on the size of the pack-
ages, which allows separating what portion of the vol-
ume discounts observed in the bid data arises from
strategic markup reductions vis-à-vis cost synergies.

Recall that the key idea in our estimation approach
is to impose restrictions on the markup structure
to reduce the dimensionality of the bidders’ prob-
lem. A special case of the characteristic-based markup
approach is to create a partition of the set of all pack-
ages, and allow each group (or set) of the partition to
have its own separate markup parameter. This group
markup parameter then determines the markup of
all the packages in the corresponding group. This
approach, referred to as the group-based markup model,
is defined formally as follows.

Definition. A markup specification follows a
group-based markup model if each row of the package-
characteristic matrix W is composed by zeroes except
for one and only one positive component.
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Consider the following group-based markup
model. Let 8As9

S
s=1 be a partition that covers all pos-

sible packages. From this partition, a potential candi-
date for the package-characteristic matrix W ∈ <A×S

can be generated using indicator variables Was =

16package a belongs to set As7. With this specifica-
tion, the term W TG4b5 in Equation (6) has the follow-
ing form:

W TG4b5=













W T
1 G4b5

W T
2 G4b5
000

W T
S G4b5













=











probability of winning any package in A1
probability of winning any package in A2

000
probability of winning any package in AS











0

As seen above, the group-based markup model
could significantly reduce the dimensionality of the
problem; if S �A, there are much less probabilities to
estimate, as well as derivatives to take in the Jacobian
matrix. Moreover, whereas the winning probability of
any given package a is typically small and hard to
estimate via simulation, the winning probability of a
group of packages aggregates these individual proba-
bilities over a potentially large set of packages and,
therefore, is often much larger. For this reason, we
require fewer simulation runs to obtain precise esti-
mates of these aggregate probabilities. All this makes
the computation of the right-hand side of the first-
order conditions (6) tractable.

A special case of the group-based markup model
is when the packages are grouped by their sizes. For
some defined measure of package size (e.g., the num-
ber of units in the package), let As be the set of all
packages of size s. The markup parameter �s repre-
sents the common markup charged to all packages of
size s; the bidder chooses S different markups, one
for each possible size. This is referred to as the pure
size-based markup model. Recall that we want to disen-
tangle what portion of the observed bid discounts is
explained by markup reductions when bidders sub-
mit larger packages. The pure size-based markup
model provides the minimum level of flexibility to
capture such strategic markup reductions, and there-
fore, we believe it is a reasonable starting point to
impose markup restrictions in our approach.

Now, we seek to understand whether the pure size-
based markup model provides a good approximation
to the estimates of the full-dimension model. To do so,
we provide an analytical comparison of the markups

estimated by the full-dimension model with those
estimated via the group-based markup approach.

Proposition 2. Consider a bidder submitting a bid
vector b in a CA. Assume that all bids in b have strictly
positive probabilities of winning.

(a) Suppose the CA has A packages. Let �a, a = 11
0 0 0 1A, be the estimated markup for package a by the full-
dimension model (3), and �u be the common markup esti-
mated by the group-based markup model (6) when the A
packages form a single group, that is, ba = ca + �u, a =

11 0 0 0 1A. Then, �u =
∑A

a=1 �a�a, for appropriately defined
weights �a ≥ 0, a= 11 0 0 0 1K, that satisfy

∑A
a=1 �a = 1.

(b) Suppose the CA has two units. Let 4�11 �21 �125
be the estimated markup vector by the full-dimension
model (3) and let 4�u1 �v5 be the estimated markup vector
by the pure size-based markup model (6), where �u is the
common markup for single units and �v is the markup for
the package. Then, �u = ��1 + 41 − �5�2 and �v = �12 +

�4�1 −�25, for appropriately defined constants �≥ 0 and �.

We provide the proof of the above proposition in
the online appendix, as well as the detailed expres-
sions for the constants �’s and �. The results from
Proposition 2 provide important insights regarding
the implications on the group-based markup esti-
mates. First, from the result in part (b), we observe
that grouping the units affect the estimated markup
of the package, where the impact depends on the
coefficient � and the difference of the individual unit
markups. If the unit markups are very close to each
other, the effect of grouping on the package markup
will be negligible. Moreover, note that if � is small,
the effect of having a common markup for the units
has a negligible effect on the estimated markup for
the package. In fact, extensive numerical experiments
have shown that in our application, grouping a set of
packages so that they share a common markup merely
affects the markups of other packages that are not in
that particular group.8

The previous discussion together with part (a) in
the proposition can be summarized as follows. Con-
sider a situation in which the packages in the set
As are grouped together, and let �s be the common
markup estimated by the group-based markup model.
Let �a be the individual markup for package a ∈ As

estimated by the full-dimension model. Then, the pre-
vious discussion basically suggests that

�s ≈
∑

a∈As

�a�a1

where �a ≥ 0, ∀a ∈ As , are appropriately defined
weights that satisfy

∑

a∈As
�a = 1. The result is useful

8 We validate these observations empirically in §6.1 using real data
from small-scale CAs.
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because it suggests that the estimated common
markup is a convex combination of the individual
markups we would obtain from the full-dimension
model (if we were able to estimate them). Moreover,

��a − �s� ≈

∣

∣

∣

∣

�a −
∑

a′∈As

�a′�a′

∣

∣

∣

∣

≤
∑

a′∈As1 a
′ 6=a

�a′ ��a − �a′ �1

∀ a ∈As0

Therefore, the estimated common markup would be
a good approximation to the individual markup esti-
mates from the full-dimension model if the latter
markups are close to each other. Of course, checking
this condition is computationally intractable, because
we would need to solve the full-dimension model.
The next section describes a computationally tractable
heuristic that aims at providing more flexibility in
the markup restrictions without increasing much the
computational burden of the method.

3.2. A Refinement of the Size-Based
Markup Model

As suggested above, the main issue with the size-
based markup model would be whether or not the
packages in the same size group are significantly het-
erogeneous. For example, if one package has a signifi-
cantly different markup to the rest of the group in the
full-dimension model (if we were able to estimate it),
it ideally should not be a part of the group.

Recall that one of the difficulties in the full-
dimension model arises in the computation of a large
number of small winning probabilities via simula-
tion. However, for a given firm, there still may be
a small number of packages with reasonably large
winning probabilities that can actually be computed
with precision—we refer to these as “special pack-
ages.” It is then possible to assign and estimate a
separate markup for these special packages, without
forcing them into a group and therefore alleviating
the potential biases previously discussed. Given their
high winning probabilities, special packages are also
more likely to be part of the winning CA allocation,
so it is useful to obtain more precise estimates for
their markups. Finally, in §6.1 we provide empiri-
cal evidence in the context of our application that
high winning probability packages tend to have larger
estimated per-volume markups in the full-dimension
model relative to the rest in their corresponding size
groups. Hence, removing them from the groups and
estimating a separate markup for each of them is
likely to reduce the bias associated with grouping in
a significant way.

Another extreme alternative would be to estimate
the model with special packages only, ignoring the
rest of the packages. Although the cost information

of bids with small winning probabilities may be less
important for the estimation of the performance mea-
sures (since they are less likely to be part of the
winning CA allocation), they cannot be entirely elim-
inated in the estimation procedure. One reason is that
these packages may have significant winning proba-
bility in aggregate, and therefore ignoring them in the
first-order conditions (6) can result in an inaccurate
estimation for the costs of the large winning proba-
bility bids. In fact, we have estimated models with
and without the packages with small winning prob-
abilities and found that the markup estimates of the
special packages changed substantially.

In addition, in some applications (including the one
analyzed in this work) the units of the same group can
be heterogeneous and this could lead to differences
in markups, even after separating the special pack-
ages. In our application, units differ in their volume
and so packages with the same number but different
composition of units could have different markups. To
account for this heterogeneity, let vi be the volume of
unit i and define va =

∑

i∈a vi as the total volume of the
package. The package-characteristic matrix W can be
specified as Was = va · 1[package a has s units], which
is also in the class of group-based markups. With this
specification, the packages in the same size group will
share the same markup parameter �s , which is the per
unit of volume markup, so that the markup of pack-
age a is va�s . Also, the sth element of the vector W TG
is equal to the expected volume of winning packages
of size s. Overall, this specification makes the additive
nature of Assumption 5 less restrictive.

Based on the previous insights, we propose the fol-
lowing heuristic to build the package-characteristic
matrix W for a given firm:

1. Group packages according to their sizes and let
Was = va · 1[package a has s units], so that initially all
packages with the same number of units share the
same markup per unit of volume.

2. Run a simulation to obtain rough estimates of
the winning probabilities of each package; this sim-
ulation is quicker to run than solving for the first-
order conditions. For each size group, identify bids
that have high winning probabilities relative to the
rest. Each of these packages is associated with a sep-
arate individual markup parameter.

3. For each size, further divide the rest of the bids
into two groups: medium and low winning probabil-
ity groups. This step is motivated by the observation
discussed in §6.1 that winning probability is related
to the magnitude of markups. In that section, we fur-
ther justify this step with empirical evidence in the
context of our application.

Through this heuristic procedure, we construct the
corresponding package-characteristic matrix W for
each firm allowing for separate markups for each
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of the specified groups (including the groups with
a single special package). We refer to this approach
to define the package-characteristic matrix as the
extended size-based markup model, which is a particular
case of a group-based markup model.9 For each firm,
we use this specification within a two-step method
similar to the one described in §2.1. In the first
step, we parametrically estimate the distributions of
competitors’ bids. This procedure requires a separate
treatment and is described in detail in §4. In the sec-
ond step, we use the specification of W given by the
previously described heuristic in the first-order con-
ditions (6) to obtain a point estimate of �, and hence
of c.

Our heuristic based on the extended size-based
markup model aims to improve the approximation
to the full-dimension model starting from the pure
size-based markup model. However, it is important to
provide some empirical validation of this claim. For
this purpose, we collected data from two exception-
ally small CAs in our application. The full-dimension
approach was feasible to implement in these smaller
auctions and was compared with the results provided
by the extended size-based model using our heuristic
method described above. Notably, the results of this
analysis presented in §6.1, suggest that the markups
estimated with the two approaches are very similar,
providing support for our method.10

3.3. Further Requirements on the
Package-Characteristics Matrix

We finish this section by discussing issues related to
identification that are important for the specification
of W . In particular, we provide conditions for which
D�W

TG4b5 is invertible in Equation (6), and there-
fore, the first-order conditions uniquely identify the
markup vector �, and hence the costs.

In some applications, including the one analyzed
in this paper, bidders may not submit bids on all
packages.11 This case can still be handled with our

9 We try to have as many markup parameters as possible to the
extent that computational tractability is maintained. In our actual
estimation, we use the threshold probability of 10−3 to identify
the high probability special package bids. Packages with winning
probabilities above 10−4 are categorized in the medium probability
groups, and the rest in the low probability groups. With this group-
ing procedure, a typical firm has a markup vector with dimension
d = 20.
10 We note that in the related context of multiproduct monopolist
pricing, Chu et al. (2011) provide computational and empirical evi-
dence of the effectiveness of size-based pricing in some settings.
They also show examples where this restricted pricing strategy is
used in practice.
11 In fact, in our empirical application, firms do not place bids on
all possible combinations because of two reasons: (1) firms have
limits on the maximum number of units that can be included in a
package (these limits depend on the firm’s financial capacity); and
(2) the number of possible combinations is too large.

proposed approach by treating the missing packages
as bids with very high prices that have no chances
of winning. We refer to the bids that never win as
irrelevant bids. In addition, submitted bids with zero
probability of winning are also considered irrelevant.
In contrast, a relevant bid has a strictly positive prob-
ability of winning.

CP show that in the full-dimension model, irrele-
vant bids do not play a role in the first-order condi-
tions, and one can identify the markups for relevant
bids after eliminating irrelevant bids from the estima-
tion. This result extends to the group-based markup
model, as long as each group has at least one relevant
bid. Theorem 1 in the online appendix provides nec-
essary and sufficient conditions for the invertibility of
the Jacobian matrix D�W

TG4b5. A practical implica-
tion of the theorem is that when implementing the
heuristic described in §3.2 one needs to make sure
that each group of packages must include at least one
relevant bid. After we imposed this, we were always
able to invert the Jacobian matrix computationally.
Another implication of the theorem and the related
discussion in the online appendix is that the proposed
method can only identify the cost structure of pack-
ages associated with relevant bids, because irrelevant
bids provide no information to the first-order condi-
tions. We come back to this point in §6 in the context
of our application.

Finally, an important assumption needed for our
approach is that bidders can win at most one package.
This is a frequent requirement in many real-world
CAs, especially in settings with rich and expressive
package bidding. Without this requirement, it may
not be possible to point identify costs. For example,
consider a CA with two units and suppose a bid-
der only submits bids for the individual units. Sup-
pose the bidder has a positive chance of winning both
individual bids simultaneously, which is equivalent to
winning the two-unit package. Then, we have three
unknowns to estimate (the cost for each individual
unit and the cost for the package), but only two equa-
tions (the two first-order conditions with respect to
the individual bid prices).

4. Estimating the Distribution of
Competitors’ Bids

Let us first recapitulate the two-step approach intro-
duced in §2. In the first step, we need to estimate
the distributions of competitors’ bids, 8Hf 4· � Z59f∈F ,
which are then used in the simulation-based routine
in the second step to sample competitors’ bids and
estimate the terms in the first-order conditions given
by Equation (6). Section 3 addressed the complexity
introduced in the second step due to the large-scale
nature of the auction. In particular, we simplified
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the first-order conditions of the bidder’s problem by
imposing some structure in their markups. It was
important that the structure was flexible enough to
allow for strategic markup reductions.

The complication in the first step is that in large-
scale CAs, firms may submit hundreds or even thou-
sands of bids. Therefore, the bid vectors 8bf 9f∈F are
high dimensional precluding the use of a nonpara-
metric approach like GPV to estimate the distribu-
tion of competitors’ bids; CP faced a similar challenge
even for a three-unit CA. This section describes a
parametric approach to model the bid distribution
that can be used in CAs that involve geographically
dispersed and heterogeneous units that are subject
to discounts due to scale and density, like in our
application.

It is important to emphasize that the simplifications
in the two steps have different objectives. In the first
step, the objective is to introduce a parametric model
that fits the competitive bidding landscape data well.
In the second step, the objective is to simplify the
bidders’ decision space in the first-order conditions.
We note that the parametric model of the bid data in
the first step will be more flexible than the model for
markups in the second step, because it will allow for
scale and density discounts both of which could be
observed in the data. On the other hand, our extended
size-based markup model explicitly considers strate-
gic discounts associated with scale only. The reason is
that, as mentioned in §3.1, economic theory suggests
that scale (and not density) is likely to be the main
driver of the strategic markup reductions we are try-
ing to identify. In §6.1 we provide some empirical evi-
dence of this claim in the context of our application.

The parametric approach we follow has an impor-
tant difference with CP in that in our estimation
method the identification of the distribution of com-
petitors’ bids is based on variation across package
bids and firms in a single auction, and hence exploits
the large number of package bids, which is a key char-
acteristic of large-scale CAs. In the standard structural
approach to auctions (including CP and GPV), the
estimation of the bid distribution uses variation in a
cross-section of auctions, implicitly assuming that the
same equilibrium is being played across these auc-
tions. Hence, our identification strategy can be more
robust when there is unobserved heterogeneity across
auctions—changes in the auction characteristics and
firm characteristics from auction to auction that are
observed by bidders but unobserved by the econome-
trician (for a more detailed discussion on this issue,
see Krasnokutskaya 2011).

Imposing parametric restrictions to the multivariate
bid distribution needs to balance flexibility with esti-
mation feasibility. There are three key aspects typical
in applications of CAs that are important to account

for: (i) heterogeneity among units; (ii) the correlation
structure among the bids from the same bidder; and
(iii) package discounts. We discuss each of these three
in what follows.

First, in many CAs, the bid prices are heteroge-
neous among units and among firms. In applications
that involve logistics and transportation across dis-
persed geographic units (as the one we study), hetero-
geneity among units arises primarily from the costs
of serving different territories. For example, units
located in isolated rural areas tend to be more expen-
sive than units in urban areas. There is also hetero-
geneity across firms: some firms may have national
presence, are vertically integrated, and may have
well-functioning and efficient supply chains; other
firms may be more rustic local firms.

Second, package bids of the same bidder may be
correlated. In CAs, there are two main factors that
can generate correlation between bids. First, a bid-
der that has a high cost in a given unit is likely to
submit higher prices for all packages containing that
unit. Second, if there are local advantages, a supplier
charging a low price for a unit may also charge lower
prices for nearby units. Hence, the unit composition
of the package bids together with the spatial distribu-
tion of the territorial units provides a natural way to
parameterize the covariance structure among package
bids. As described in §2.2, the correlation structure of
the competitors’ bids has direct implications on the
incentives to engage in strategic markup reductions,
so it is important to allow for a flexible covariance
structure that incorporates these effects.

Third, CAs exhibit package discounts in the bids;
the price per unit may decrease as the size of the
package increases. In applications where economies
of density matter, the geographic location can be
another factor that determines the magnitude of the
discounts; for example, combining two units located
nearby could lead to larger discounts (relative to a
package with two distant units).

Accordingly, we develop the following econometric
model for package bids that captures heterogeneity
among units, correlation, and discounts. In particular,
from the perspective of all other firms, firm f ’s bids
are specified by the following parametric model:12

baf = −gscale4va1�
scale
k4f 5 5−

∑

c∈Cl4a5

gdensity4vc1�
density
k4f 5 5 ·

vc

va

+
∑

i∈a

�̃if

vi

va

+ �̃af 0 (7)

As defined earlier, vi denotes the volume of unit i
and va =

∑

i∈a vi is the total volume of package a.

12 The structure in Equation (7) that separates individual prices with
discounts is motivated by Olivares et al. (2012).
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With some abuse of notation, the dependent vari-
able, baf , denotes the price per unit of volume sub-
mitted by firm f for package a; that is, the actual
bid price divided by the total volume of the pack-
age, va. The four terms in the right-hand side of Equa-
tion (7) capture (i) the effect of discounts due to size or
scale (gscale); (ii) the effect of discounts due to density
(gdensity); (iii) the effect of the specific units contained
in the package (the sum over units i in package a),
where �̃if can be viewed as an average implicit price
that bidder f is charging for unit i among all the
packages submitted, net of any scale and density dis-
counts; and (iv) a Gaussian error term �̃af capturing
other factors affecting the bid price. It is important
to emphasize that the discount functions gscale and
gdensity should not be interpreted directly as cost syn-
ergies because part of the discounts could also arise
from strategic behavior.

This parametric specification also assumes that the
bids across bidders are independent and that the bid
distribution of a bidder depends only on its own char-
acteristics, Hf 4· �Z5=Hf 4· �Zf 5.13 In addition, to avoid
making strong assumptions on how firms choose
which combinations to submit, we use the same pack-
age composition observed in the data. That is, when
generating competitors’ bids, we fix the packages on
which the bids were actually submitted by a particu-
lar bidder and simulate new prices for these packages.

The competitors’ bid distribution captures the rele-
vant uncertainty faced by a bidder because of asym-
metric information in the auction game. Hence, it
is important to distinguish which elements of Equa-
tion (7) are known by all other firms at the time
of bidding and which are private information to
firm f submitting the bid vector. We use tilde (e.g.,
�̃if ) to denote factors that are private information to
firm f and therefore treated as random parameters
from the perspective of all other bidders. As a con-
sequence, the bid distribution Hf 4· � Zf 5 is character-
ized by the deterministic parameters 8�scale

k4f 5 1�
density
k4f 5 9f∈F

(to be defined shortly) and the distribution of the
random parameters 8�̃if 9i∈U1f∈F and 8�̃af 9a∈A1 f∈F . This
distinction between deterministic and random param-
eters in Equation (7) is important for simulating win-
ning probabilities. Next, we provide more details on
how these different components are specified and
estimated.

4.1. Model Specification and Estimation Method
First, consider the terms capturing scale and density
discounts, 4�scale

k4f 5 1�
density
k4f 5 5. The model allows for some

13 Assuming that the bid distribution of a firm depends only on
its own characteristics is not restrictive when the distribution is
estimated separately for each auction, because the characteristics of
the competitors are held fixed within the auction.

observed heterogeneity of these discounts across
firms, with k4f 5 indicating the type of firm f . For
example, firms could be categorized based on their
business size, because larger firms may operate at a
different cost scale and therefore their synergies could
be different. Moreover, larger firms may also be able
to bid on larger packages, so their markup reductions
could also be different. We assume that the hetero-
geneity in the discount curves across firms is consid-
ered common knowledge and that all the uncertainty
associated with the magnitude of the discounts is pro-
vided by the error terms �̃af .14

To measure scale discounts, gscale is specified as a
step function of the package volume va. Because den-
sity discounts depend on the proximity of the units in
the package, gdensity depends on the volume of clusters
of units in a package, where a cluster is a subset of the
units in package a that are located in close proxim-
ity. In Equation (7), Cl4a5 denotes the set of clusters in
the package and c indicates a given cluster in this set,
with volume vc. This approach follows directly from
Olivares et al. (2012), and further details on a specific
way of computing clusters used in our application is
described in the appendix of that paper.

Consider now the term
∑

i∈a4vi/va5�̃if , a weighted
average of firm-unit specific random parameters that
capture the effects of the individual units contained
in package a. The �̃if ’s are average implicit prices that
bidder f charges for each unit among all the pack-
ages submitted, net of any discounts. These implicit
prices capture heterogeneity in the unit characteristics
(e.g., urban versus rural units) and local advantages
of a firm in that unit, among other factors. Part of the
heterogeneity of these implicit prices is considered to
be private information. Accordingly, we let the vec-
tor of average implicit prices �̃f follow a multivariate
normal distribution with mean and covariance matrix
4�1è5. More specifically, let

�̃if = �̄i +�ZZif + �̃r4i51 f + �̃if 1 (8)

so that �i = E4�̃if 5 = �̄i + �ZZif is specified by a
unit fixed effect and the firm characteristics Zif . Firm
characteristics depend on the specific application, but
may include an indicator on whether the firm was
awarded the unit in the previous auction and other
covariates that capture local advantages of the firm.
The error terms 4�̃r4i51 f 1 �̃if 5 impose restrictions on
the covariance matrix è based on the spatial location
of units. Let R be a set of regions that cover all the
units in U and r4i5 denote the region that contains

14 In §2.2, through small experiments we also found that modeling
these discount parameters as random variables does not affect the
cost estimates by much, given the magnitude of discounts observed
in the data in our application.
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unit i; the number of regions, R, is smaller than the
number of units. Each firm is associated with a real-
ization of the random vector �̃f = 4�̃1f 1 0 0 0 1 �̃Rf 5 from
a multivariate normal distribution with zero mean
and covariance matrix ì. The error term �̃if follows
an independent, heteroscedastic, zero-mean normal
distribution with variance �2

i .
Under the specification (8), the covariance structure

of any two average implicit prices �̃if and �̃jf is given
by Cov4�̃if 1 �̃jf 5 = ìr4i51 r4j5 + �i�j16i = j7. Thus, under
this model, two unit prices will be more positively
correlated if the regional effects of the correspond-
ing regions are more positively correlated. Note that
this specification imposes positive correlation among
unit prices in the same region; this restriction can
be validated with data from the specific application.
The model is flexible in allowing positive or neg-
ative correlation among units in different regions.
Because R may be much smaller than the number of
units, this specification provides a substantial dimen-
sionality reduction over the fully flexible covariance
matrix è.

In summary, the competitor’s bid distribution
Hf 4· �Zf 5 is a mixture defined by Equations (7)
and (8), �̃f ∼ MVN401ì5, �̃if ∼ N401�i51 and the error
�̃af , which is assumed to have a zero-mean normal
distribution with variance dependent on the package
size, �2

�1 �a�. We seek to estimate the vector parameters
�scale, �density, �̄ = 4�̄11 0 0 0 1 �̄N 5, �Z, �2 = 4�2

1 1 0 0 0 1�
2
N 5,

the covariance matrix ì1 and 8�2
�1 �a�9 for different

package sizes. The following two-step method is used
to estimate these parameters:

• First step: Estimate (7) via a generalized least
squares (GLS) regression to obtain estimates of �scale,
�density, 8�2

�1 �a�9, and point estimates of the realizations
of the average implicit prices �̃if ’s.

• Second step: Replace the estimated �̃if ’s into
Equation (8) and estimate the parameters characteriz-
ing its multivariate-normal distribution through max-
imum likelihood.

Identification of the parameters is based on varia-
tion across units and firms within a single auction.
More specifically, the estimation of the scale and den-
sity discounts uses variation across different combi-
nations submitted by the same firm over the same
set of units. Given consistent estimates of the real-
ized implicit average unit prices �̃if , the second step
provides consistent estimates of 8�̄i1�i9i∈U , �Z1 and
ì as long as Zif is orthogonal to the error compo-
nents �̃r4i51 f and �̃if . The consistency of our two-step
method is a special case of the two-step M-estimators
described in Wooldridge (2002).

The next section describes an application of the
structural model, and provides further specification
details on how to model the bid distribution and the
estimates obtained.

5. Application: The Chilean Auction
for School Meals

The application we study in this paper is the Chilean
auction for school meals. In this section, we start by
providing a detailed description of the auction and
the data collected. Then, we justify the assumptions of
the structural model in the context of our application,
and we present the empirical results describing the
distribution of competitors’ bids.

Junta Nacional de Auxilio Escolar y Becas (JUNAEB)
is a government agency in Chile that provides break-
fast and lunch for 2.5 million children daily in pri-
mary and secondary public schools during the school
year. This is one of the largest and most impor-
tant social programs run by the Chilean government.
In fact, in a developing country where about 14% of
children under the age of 18 live below the poverty
line, many students depend on these free meals as a
key source of nutrition.

Since 1999, JUNAEB assigns its school meal service
contracts through a single-round, sealed-bid, first-
price CA, that was fully implemented for the first
time that year. The CA has been used every year
since its inception awarding more than US$3 bil-
lion of contracts, being one of the largest state auc-
tions in Chile (in recent years, each auction awards
contracts for about half a billion dollars). The auc-
tion process begins with the registration of poten-
tial suppliers followed by an evaluation conducted
by the agency, which considers managerial, techni-
cal, and financial performance metrics. Some compa-
nies may be excluded from the auction if they do not
pass this evaluation. Meal plans and service quality
are standardized, so that qualified suppliers compete
on price.

For the purpose of the auction, Chile is divided into
approximately 100 school districts or territorial units
(TUs) in 13 geographic regions. Each year, JUNAEB
holds an auction for one-third of the country (around
30–35 TUs), awarding three-year contracts. Typically
about 20 firms participate in each auction and they are
allowed to submit package bids that cover any com-
bination of TUs and specify the prices to serve them.
The maximum number of TUs that a firm is allowed
to include in any given package (ranging from one
to eight TUs) depends on the firm’s financial evalua-
tion. Vendors can submit many bids and each pack-
age bid is either fully accepted or rejected (i.e., the
mechanism does not allocate a fraction of a bid); most
firms submit hundreds or even thousands of bids.
Two potential sources of cost synergies motivate the
use of CAs in this context: (i) economies of scale, gen-
erated by volume discounts in the input purchases;
and (ii) economies of density that arise from common
logistics infrastructure used to supply nearby units.
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Firms submit their package bids in a single-round
sealed-bid format. Contract winners are paid the
amount of their winning bids and are responsible
for managing the entire supply chain associated with
all meal services in the awarded TUs. This includes
from sourcing food inputs, delivering them to the
schools, cooking the meals, and serving them to the
children. The winning allocation is chosen by select-
ing the combination of bids that cover all the TUs
in the auction at a minimum procurement cost for
the government. This winner determination problem
is formulated as an integer program (IP) that incor-
porates other considerations and side constraints (see
the online appendix). These constraints impose (i) that
no firm can be awarded more than 16% of the coun-
try at any point in time (considering all auctions in
the past three years); (ii) that firms cannot win more
than the number of TUs established by their financial
evaluation; (iii) a minimum and maximum number of
firms that can operate in any given geographic region;
(iv) a minimum number of winning firms in every
auction (usually around 10).

Data were collected and processed for all auc-
tions between 2002 and 2005. The data set contains
all bids placed by all firms in each auction, the
identity and characteristics of participating firms in
each auction, and detailed information on the auc-
tion parameters, including all the parameters used to
determine the side constraints of the winner determi-
nation problem. TU data includes its annual demand
(number of meals to be served), referred to as the
volume of the TU, as well as the geographic loca-
tion of its schools. We also know the set of winning
bids in each auction and therefore, at every point
in time, we know the identity of the firms serving
each TU. Additional details of the data can be found
in Olivares et al. (2012).

We apply our method to the large-scale CA of 2003.
In 2002, the auction faced some regularity issues,

Table 1 Summary Statistics for the 2003 Auction

Bidder characteristics

Business size Small (1–2) Medium (3–4) Medium–Large (5–6) Large (7–8) Total

No. of bidders 5 5 2 8 20
Average no. of bids per bidder 308 817 21540 31718 21022

Unit (TU) characteristics

Region 4 5 9 12 13 Total

No. of TUs 5 10 9 1 7 32
Average volume 2.50 (0.62) 2.32 (0.47) 2.62 (0.67) 2.03 (−) 2.78 (0.70) 2.52 (0.60)
No. of bidding firms 17 19 18 14 19 20

Notes. In the top panel, business size is measured by the number of TUs allowed to win, which is specified next to the business size type; e.g., medium firms
are those that can win up to three or four TUs. The bottom panel displays a summary for each of the five geographical regions that were part of the auction.
“No. of TUs” refers to the number of territorial units in each region. The volume of the TUs are shown in million meals per year and standard deviations are
shown in parentheses. “No. of bidding firms” refers to the number of firms that submitted package bids containing at least one unit in the region.

and a second subsequent auction was used to award
the contracts. Hence, we conservatively decided to
exclude this year from our analysis. In 2004, the
government introduced an electronic bidding sys-
tem to the auction process that resulted in a huge
increase in the number of submitted bids. On aver-
age, firms placed four times as many bids as they did
in 2003, imposing an onerous amount of computation
time in the estimation. However, the estimation was
more manageable for the 2005 auction as the number
of units auctioned and the participating firms were
smaller, so we estimated that year to cross-validate
the results. Table 1 provides summary statistics of the
2003 auction.

Additionally, we also collected data from two
exceptionally smaller-scale auctions that were run
between 1999 and 2005. These auctions were used
to replace contracts from a few firms that had
some irregularities. The auctions had eight and six
units, respectively, and about 13 firms participated.
Given their smaller scales, these auctions can be
estimated with the full-dimension model described
in §2. We used them to compare results between the
full-dimension and the extended size-based markup
models, thereby providing validation of the meth-
ods developed in this work. Section 6.1 reports this
comparison.

5.1. Discussion on the Assumptions
of the Structural Model

In this section, we discuss how the assumptions of
the structural model fit into this application. First,
Assumption 1 ensures that the auction allocates at
most one package per firm. Although this restriction
is not explicitly imposed in our empirical application,
firms actually win at most one package in practice.
In fact, among 41 winning firms between 2002 and
2005, only in one occasion (in 2002) a firm won more
than one package (we provide the detailed data in the
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online appendix).15 Hence, imposing this assumption
is reasonable in this setting.

Assumption 2 imposes independent private costs,
which seems adequate in this application. Roughly,
75% of the cost structure of firms is associated with
food inputs and labor. A significant amount of these
costs are common to all firms. However, this common
part is not subject to uncertainty; it is determined by
food prices and wages that are common knowledge to
all parties involved at the time of the auction (wages
of the cooks in this industry are actually regulated
by the government). There could still be some uncer-
tainty about future food prices because of the three
year extension of the contracts. However, if prices
change too much, there are rules in the auction that
allow all firms to adjust their bids accordingly, dra-
matically reducing this risk (these rules are based on
variation of food price indexes). Therefore, we believe
the cost uncertainty is basically driven by firm specific
differences in (1) logistics and management abilities
(constitute the other 25% of the costs); and (2) idiosyn-
cratic cost advantages related to food inputs, such
as better contracting terms with providers. We think
(1) and (2) are well captured by an independent pri-
vate cost model.

Finally, Assumption 4 imposes that firms have
the correct expectations regarding the vector of win-
ning probabilities given their bids and competitors’
strategies. As previously discussed, this is similar to
assuming equilibrium play as is usually done in the
structural estimation literature. Although this may
generally be a strong rationality assumption given
the complexity of the auction, we believe that in our
application it may be less so. First, these auctions are
repeatedly run every year and all past bidding his-
tory is publicly available (including winning and non-
winning bids). In this regard, we exclude auctions
where the units were awarded for the first time (years
1999–2001), because bidders had less experience and
history to rely on, and were less sophisticated, so
that our structural model assumptions may be harder
to justify.16 Also, note that under our characteristic-
based markup model firms do not need to estimate the
winning probabilities of each individual package, but

15 Moreover, the government closely monitors the firms that partici-
pate in the auction and keeps track of strict records regarding firms’
ownerships. Firms that are divided are actually treated as a sin-
gle firm in the entire auction process. Hence, the government can
prohibit firms to win multiple packages through different entities.
16 On a related point, note that we assume firms maximize expected
profits in the current auction without incorporating the impact on
future auctions. This assumption is fairly standard in the literature
on structural estimation of auctions, and we believe it captures the
first-order objective of firms in this market. Moreover, given that
our model is already very complex, adding dynamics would make
it even more challenging.

instead aggregate probabilities over several packages,
which can be more manageable.

Moreover, we know from anecdotal evidence that
firms in our application are quite sophisticated when
bidding. In fact, because stakes are so high, firms
invest important amounts of money in business intel-
ligence. Using the historical information together with
current market intelligence, firms indeed try to esti-
mate the competitive landscape they will face. A per-
sonal interview with a former CEO of one of the
supplying companies (that also consulted for other
firms) provided more details about the bidding pro-
cess. He began by creating a large spreadsheet with
the packages he was interested in and calculated
detailed cost estimates for these. Then, he would
choose a markup for the different packages. Histori-
cal bid prices were used to decide the average mar-
gins to be charged; the margins became smaller over
time as the market became more competitive (e.g.,
when larger catering companies entered the market).
In addition, he would typically adjust the markup
depending on the number of units in the package,
asking for a lower per-meal markup for larger pack-
ages. Finally, based on historical bid data, he would
also adjust markups for a few packages in which he
was “more competitive.”17 This provides further sup-
port for Assumption 4 and is also consistent with the
extended size-based markup model.

5.2. Estimates of the Bid Distribution Parameters
This section describes the estimates of the distribu-
tion of the competitors’ bids, based on the model
presented in §4. We provide the results for the 2003
auction. Results for the 2005 auction have similar pat-
tern and magnitude, and are omitted for brevity.

The school meals auction exhibits significant dif-
ferences in discounts across the largest firms and the
rest, so we categorize the bidders into two types,
k4f 5 ∈ 8L1O9 (for large and other), to estimate dis-
counts.18 On the covariates Zif (see Equation (8)) we
include an indicator on whether the firm won the unit
in the previous auction (other covariates were also
tested but they did not exhibit explanatory power).

Table 2 reports estimates of �scale and �density from
the first-step regression (Equation (7)). The scale and
density per-meal discount curves, gscale4va1�

scale
k4f 5 5 and

gdensity4vc1�
density
k4f 5 5, are specified as step functions with

intervals of three million meals per year in the pack-
age and cluster volumes va and vc, respectively. Each
number indicates the average discount in per-meal
price when units are combined to form a package that

17 The interviewee asked for confidentiality of his identity; we are
grateful to this anonymous contributor for the insights provided.
18 Based on the financial evaluation and business capability, each
firm has a maximum number of TUs that it is allowed to win in a
given auction. We use this to measure the size of a firm.
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Table 2 Results from the First-Step Regression (Equation (7)) for the
2003 Auction

Large firms Other firms

Volume Scale Density Volume Scale Density

63167 8033 (1.30) 6046 (0.51) 63167 8050 (0.62) 1.82 (0.14)
66197 15021 (1.33) 7081 (0.53) 66197 11086 (0.64) 3.31 (0.19)
691127 17082 (1.31) 8010 (0.55) 691127 13050 (0.65) 3.92 (0.24)
6121157 19010 (1.30) 8057 (0.56) 6121157 13044 (0.67) 5.69 (0.28)
6151187 20076 (1.29) 9013 (0.57) 6151187 12042 (0.69) 6.96 (0.36)
6181217 22078 (1.30) 11027 (0.65) 6181217 10090 (0.72)
6211247 24038 (1.30)
6241277 24095 (1.35)

Notes. Robust standard errors are shown in parentheses. Volume is mea-
sured in million meals per year, and discounts in Ch$.

belongs to the corresponding volume level. For exam-
ple, when units are combined into package a with
volume va ∈ 6181217, then on average, a large firm
submits a bid that is Ch$22.78 cheaper per meal than
the weighted average bid price of those individual
units in the package. If all these units are located
nearby and form a cluster, there is an additional dis-
count of Ch$11.27 on average for a large firm. The
results show that large firms were able to provide
higher discounts that can be up to 8.5% of the aver-
age bid price (the average bid price in the 2003 auc-
tion is Ch$423). All the coefficients are estimated with
precision and are different from zero with statistical
significance (0.01% significance level). The R-square
of the regression corresponding to Equation (7) is
0.98 (with �̃if ’s as fixed effects), which provides some
support that the parametric model adopted provides
a reasonable approximation to the bid data generat-
ing process.

The second-step estimation (Equation (8)) provides
estimates for the distribution of the average implicit
prices �̃if ’s, characterized by 8�̄i1�i9i∈U , the covariance
matrix ì and �Z, the coefficients of the firm char-
acteristics. Because of space limitations, we do not
report the estimates of the �̄i parameters, but these
were estimated with precision—on average, the stan-
dard errors are 1.2% of the point estimates. The esti-
mated coefficient for �Z is −50986 with a p-value of
0.012, suggesting that on average a firm that was
awarded a particular unit in the previous auction sub-
mits around 1.5% cheaper bids on packages that con-
tain the unit.

The correlations between the region effects�r4i51 f , cal-
culated based on estimates of the covariance matrix ì,
are provided in the online appendix. These estimates
imply a significant positive correlation among units:
on average, the correlation between the implicit prices
of two units in the same region is 0.68, and 0.45
for units located in different regions. All the stan-
dard errors of the maximum likelihood estimates of
Equation (8) are computed via a parametric bootstrap-
ping procedure.

We also tested some of the parametric assump-
tions in our model. First, our approach assumes that
the implicit prices �if follow a normal distribution.
For all the units, a Shapiro–Wilks test cannot reject
this assumption at 5% significance level (p-values are
in the range of 0.073 to 0.92). To test the restric-
tions on the covariance structure of the implicit prices
8�if 9i∈U imposed by Equation (8), we compared this
model against a more general model where the full
covariance matrix è is unrestricted. A likelihood ratio
test cannot reject that the two models are equiva-
lent (p-value > 006 for both 2003 and 2005 auctions).
These tests confirm that our parametric assumptions
make the estimation tractable, while being reasonably
flexible.

6. Costs, Markups, and
Performance Estimation Results

We estimate markups and costs for the school meals
auction application using the two-step approach
described in §§2 and 3. We use the competitors’ bid
distribution estimated in §5.2 in the first step, and we
apply the heuristic based on the extended size-based
markup model described in §3.2 in the second step.
Before showing those results, to validate our estima-
tion approach, we compare the estimation via the
full-dimension and the extended size-based markup
models using the two small CAs.

6.1. Small Auctions Estimation
In this section, we estimate the markups and costs
with the full-dimension model and the heuristic based
on the extended size-based model in the small-
scale CAs. As in the large-scale case, we follow
the two-step approach described in §2.1; in the first
step, we parametrically estimate the distribution of
competitors’ bids using the model described in §4.
Then, in the second step, we applied the two dif-
ferent markup models in the first-order conditions
and compare the results. For the extended size-
based markup model, bids with a winning probability
above 10−3 were considered high winning probabil-
ity (special) packages and were assigned a separate
markup. On average, the extended size-based model
uses only 35% of the markup variables of the full-
dimension model.19 The online appendix shows a
scatter plot of the estimated per-meal markups from
the two methods. Overall, the markup estimates of

19 Because the relevance of each bid only depends on its winning
probability and not on the markup specification, the set of rele-
vant bids is the same for the two models, and therefore, they are
comparable. Packages with winning probability below 10−4 were
considered irrelevant. For each firm, the aggregate winning prob-
ability over these irrelevant bids is on average less than 1% of the
firm’s total winning probability. Hence, the effect of ignoring these
irrelevant (with positive probability) bids was negligible.
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the extended size-based markup model are similar to
those obtained with the full-dimension model. The
correlation between the markups is 0.982; their ratio is
on average 1.003 with a standard deviation of 0.127.
The estimates for the special packages are even closer
to each other: the ratio is on average 0.998 with a stan-
dard deviation of 0.004 and the correlation is 0.999.
This provides some support for the conjecture that
grouping packages would have a negligible impact
on the markups of the special packages, as discussed
in §3.1.

We also note that this specification of the extended
size-based markup model separates each size-group
further into two subgroups with medium and low
winning probability packages as described in the
heuristic in §3.2. We observed that this additional
refinement to the size-based markup model helped to
improve the markup estimates (i.e., the estimates were
closer to the estimates of the full-dimension model).20

To provide the performance metrics of a CA (win-
ning bidders’ profit margins and efficiency of the allo-
cation), we need to estimate the total supplying costs
of the winning firms in the CA and the efficient allo-
cation. Notably, the estimated total supplying costs
both in the winning CA and efficient allocations are
very close between the two methods (differ by less
than 0.1%).

We also compared the estimates of the full-dimen-
sion model with those of the pure size-based markup
model, which does not isolate the high winning prob-
ability packages.21 In this case, the ratio of the esti-
mated per-meal markups from the two methods (with
the full-dimension markup in the denominator) is
on average 1.138 with standard deviation of 0.365.
As expected, the pure size-based markup model
results in significant bias in the estimated markups rel-
ative to the extended size-based model. In particular,
not separating the high winning probability packages
leads to overestimating the group markups. A par-
tial explanation is that high winning probability pack-
ages tend to have larger estimated markups relative
to the rest of the group.22 Hence, following the discus-
sion around Proposition 2, removing them from the
group reduces the bias associated with grouping in an
important way.

20 We used a winning probability of 6 × 10−4 to divide the groups
into medium and low winning probabilities.
21 Here, the pure size-based markup model also specifies markups
per meal, including the volume of packages in the W matrix as
described in §3.2.
22 Let m̄h

s and m̄r
s be the average estimated per-meal markups of

special packages with high winning probabilities (h) and the rest
of the packages (r), respectively, for a particular firm and package
size s in the full dimension model. Then, the ratio m̄h

s /m̄
r
s is on

average 1.22 with a standard deviation of 0.37.

Finally, we also performed an experiment to exam-
ine the impact of package density on strategic markup
reductions. As discussed in §3.1, economic theory
predicts strategic markup reductions mainly driven
by scale, and we did not incorporate explicitly the
density effects in our extended size-based markup
model (even though the separation of special pack-
ages may correct for it to some extent). To further jus-
tify this, we enriched the extended size-based markup
model with a markup variable associated with a per-
meal density measure of the package. The measure
ranges between 0 and 1 and becomes larger as the
package has more colocated units.23 The estimates
imply small markup reductions associated with den-
sity; they are on average 0.11% of the average bid
price; this is an order of magnitude smaller compared
to the markup reductions associated with the scale
effect. Moreover, the extended size-based model with
and without additional density parameters provide
essentially the same markup estimates. The ratio of
the two markup estimates is on average 0.999 with
standard deviation of 0.063. This provides evidence
that the density markup parameters do not play a sig-
nificant role in the markup estimation.

Overall, this section provides evidence that our
extended size-based model provides accurate approx-
imations to the full-dimension model estimates,
requiring significantly lower computational effort. In
the small-scale CAs, the heuristic is an order of mag-
nitude faster to run than the full-dimension model,
producing similar estimates. In the large-scale CAs,
the full-dimension model is computationally infeasi-
ble; we present the results using the extended size-
based model heuristic in the next section.

6.2. Results for Large-scale CAs
The extended size-based markup model was used to
estimate markups and costs for the package bids in
the 2003 auction (later we report some results for 2005
as well; see also the online appendix).24 In 2003, a total
of 32 TUs in five regions were auctioned and 20 firms
participated placing more than 2,000 bids per bidder
on average.

23 The density measure is motivated by the density discount func-
tion used in §4. In particular, we tested two different density mea-
sures for robustness of the results and they both gave very similar
results. We provide the details of these density measures and the
results in the online appendix.
24 After estimating the markup parameters, we numerically checked
if the estimated markup variables locally optimize the expected
profit. Note that to fully evaluate the local optimality of the
markups, we need to estimate the Hessian matrices of the bid-
ders’ expected profit. However, estimating the Hessian matrices
is computationally very intense, requiring an order of magnitude
more computational time than estimating the markups. Instead, we
checked the second-order derivatives of the bidders’ expected prof-
its with respect to each of the markup variables and they were all
negative, consistent with the local optimality of the estimates.
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Table 3 Results from the Markup Estimation for Representative Firms
of Different Winning Probability Levels for the 2003 Auction

Average markups for each package size
Overall

Firm Prob 1 2 3 4 5 6 average

47 0.9193 22064 15007 12014 7.98 7.54 7.19 9.88
36 0.6642 3000 2039 2021 1.77 1.50 1.41 2.07
19 0.1578 0081 0082 0084 0.79 0.72 0.71 0.79

Notes. “Prob” refers to the probability that the firm wins any package. The
other columns show the average per-meal markups corresponding to each
package size. The markups are shown as a percentage of the average bid
price per meal (US$0.88).

After estimating the markups and costs of these
firms, two groups of firms were identified based
on each firm’s total winning probability, that is, the
firm’s aggregate winning probability over all pack-
ages in the auction. The “competitive” group con-
sists of 10 firms whose total winning probabilities are
higher than 45%. Firms in the other group have very
low winning probabilities (less than 2%) except for
one with 16% of total winning probability.25 In terms
of markups, the competitive firms have markup esti-
mates ranging from 1.2% to 18% of the average bid
price with an average markup of 4.4% of the average
bid price (US$0.88 per meal). The other firms have
lower markups, resulting in an average markup over
all firms of around 2.8% of the average bid price.
Table 3 shows the average per-meal markup esti-
mates for each package size (one through six units)
for representative firms in three different levels of
total winning probabilities. The estimates indicate
that firms reduce their markups as the size of pack-
ages increases, showing that some portion of the dis-
counts in package bids is due to markup reductions.

Firms submit hundreds to thousands of bids, and
about 13% of them are relevant bids.26 For the com-
petitive firm group, the fraction of relevant bids is
higher (22%). With the estimated markup and cost
information of relevant bids, we are able to com-
pute the total cost and markup of the CA allocation.
The total procurement cost for the government was
US$70.5 million per year and the total supplying cost
for firms was US$67.2 million per year. This yields an
average profit margin to winning firms of 4.8%. This
level of profit margins is consistent with the Chilean
government’s estimate for this market. In addition,
the Chilean government has their own estimates for

25 In addition, from the 20 participating firms, there are two extreme
firms with very competitive bids for which the estimated markups
are unreasonably high and lead to negative costs for some pack-
ages. Despite their competitive prices, these firms did not win any
units and were disqualified from the allocation process because of
quality considerations. For these reasons, we omit them from our
analysis hereafter.
26 Packages with winning probabilities below 10−5 were considered
irrelevant.

the average TU costs, and these exhibit similar levels
compared to our estimates. Both facts are reassuring.27

Finally, to compare results, we also performed the
estimation for the 2005 auction, where 16 firms partic-
ipated for 23 units. The results are consistent with the
2003 auction, both in the shape and level of the esti-
mated markups. The total procurement cost amounts
to US$ 53.4 million and the total supplying cost is
US$51.5, which gives 3.5% of average profit margins
to winning firms.

Next, we evaluate the cost synergies—cost savings
from combining units together—implied by the esti-
mates. Recall that our main objective is to determine
what portion of the observed package discounts is
due to cost synergies. Given the markup estimates,
the per-meal cost of each package a submitted by
firm f is given by caf = baf −wa�f /va, where �f is the
markup vector estimated for that firm, baf is the per-
meal bid price placed by firm f for package a, and
wa is the ath row of package-characteristic matrix W
used for bidder f . A direct calculation of the per-meal
cost synergy in this package, denoted by sa, can be
computed from sa =

∑

i∈a4vi/va5ci − ca, where ci is the
point estimate for the cost of unit i. The cost syner-
gies estimated directly from the cost estimates tend to
increase as the size of packages grows. On average,
they range from around 1.3% to 4.5% of the average
bid price as the size of the package increases from two
to eight, with an overall average synergy of 3.1%.

One disadvantage of estimating cost synergies in
this direct way is that the synergies can only be com-
puted for packages containing units whose single-unit
bids are all relevant, which is not a representative
sample of the bid population. To use a larger portion
of the packages to estimate cost synergies, we run a
regression similar to (7) but replacing the dependent
variable baf by caf :

caf =
∑

i∈a

�if
vi

va

− gscale4va1�
scale
k4f 5 5

−
∑

c∈Cl4a5

gdensity4vc1�
density
k4f 5 5 ·

vc

va

+ �af 1 (9)

where again k4f 5 ∈ 8L1O9 indicates one of the two
firm types. This regression projects the estimated costs
on scale and density synergies, and provides esti-
mates of the costs for every unit, �if , including those
for which the single-unit bid was irrelevant. For rele-
vant single-unit bids, �if and cif are quite close: their
correlation is 0.993, the average absolute difference is

27 Note that the government does not have estimates for TU costs
for each firm, nor of the variance of these quantities. Moreover, they
do not have reliable estimates for the level of cost synergies. Hence,
the government’s estimates are of course insufficient to evaluate
the performance of the auction, which is the objective of this work.
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Figure 1 Graph of Bid Discounts and Cost Synergies for the
2003 Auction
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Notes. The dark dashed line shows the bid discounts estimated directly from
the observed bid data using regression Equation (7) (the curve shows the
total discounts, accounting for scale and density). The solid line shows the
estimates of the total cost synergies (combining economies of scale and den-
sity) obtained from the structural estimation and regression Equation (9).
Ninety-five percent confidence intervals are shown in gray dashed lines.

about 1%, and their ratio averages 1.00 with a stan-
dard deviation of 0.011. Hence, Equation (9) seems a
reasonable approach to estimate cost synergies.

Figure 1 plots the total cost synergies and bid dis-
counts as a function of package volume.28 The results
show that although there are some strategic markup
reductions, most bid discounts (at least 75%) are actu-
ally explained by cost synergies. These synergies are
quite significant and can be as large as 4.5% of the bid
price on average.

The previous results suggest that in our application
allowing package bidding may be appropriate: cost
synergies are significant and account for most bid dis-
counts vis-à-vis strategic markup reductions. More-
over, the overall markups that firms gain do not seem
too large, resulting in a reasonable total procurement
cost. Overall, our results suggest that the advantages
of using package bidding (allow bidders to express
cost synergies) may be larger than its disadvantages
(the additional flexibility that firms can use to strate-
gize and game the mechanism). In the remainder of
this section, we use our estimates to provide sharper
results concerning the performance of our CA. In par-
ticular, we study the allocative efficiency and pro-
curement cost of the first-price sealed-bid CA, and
compare it to alternative auction mechanisms.

6.3. Performance of the First-Price CA
In this section, we study the allocative efficiency of
the 2003 CA.29 The winning bidders’ costs under the

28 There are two small firms whose estimated cost synergies are
significantly different from the rest of the firms, and they are not
included in the figure.
29 The results for the 2005 auction are similar and consistent with
those for the 2003 auction. We provide the counterfactual results
for the 2005 auction in the online appendix.

first-price CA allocation can be directly computed
using the cost estimates obtained through the struc-
tural estimation. If we had the cost estimates for all
possible packages, we could also calculate the effi-
cient allocation, that is, the combination of package
bids among all firms that achieve the minimum possi-
ble total cost. Unfortunately, our structural estimation
method only identifies the costs of relevant bids, and
the efficient allocation over this subset of combina-
tions could overestimate the cost of the true efficient
allocation that considers all possible packages.

To address this issue, we propose estimating the cost
of irrelevant bid packages through an out-of-sample
extrapolation based on Equation (9). However, the
total number of feasible packages are in the order of
millions and it is computationally infeasible to extrap-
olate to this entire set of feasible packages. Instead,
we choose the set of packages on which at least one
bidder placed a bid, which is in the order of 30,000
packages. We call this the expanded package set. Then,
for each firm, we extrapolate costs to all packages
in this expanded package set that are also in the set
of feasible allocations. Although this is a small sub-
set of all possible packages, it provides a reasonable
approach to extend the set of bids observed in the data.

This out-of-sample extrapolation approach implic-
itly assumes that the selection of the bids in the
irrelevant bid sample is independent of the costs of
these units. Recall that irrelevant bids include bids
that were not submitted by the bidder. Hence, in our
application, it could be possible that the sample selec-
tion of irrelevant bids is related to costs; for example,
bidders are likely to bid on the subset of combinations
where they are more competitive, so that higher-cost
combinations are not submitted. If this is the case,
then our cost extrapolation procedure could lead to a
cost estimate of the efficient allocation that is lower
than the true one, so that we could overestimate the
true efficiency loss of the first-price CA.

Recall that in 2003, the bidders’ supplying costs
given by the auction allocation were equal to
US$67.2 million per year. The efficient allocation that
minimizes the total supplying cost among the feasi-
ble allocations over the set of relevant bids is equal
to US$66.7 million per year, implying an efficiency
loss of 0.65%. When considering the expanded pack-
age set, the total supplying cost of the efficient allo-
cation goes down to US$66.2 million per year, with
an efficiency loss of the first-price CA of 1.5%.30 The

30 It is worth noting that the first-price CA tends to identify the
most cost-efficient firms in the different geographical regions. More
specifically, there are nine firms in the CA allocation and 10 firms in
the efficient allocation; the majority of them—seven firms—appear
in both allocations. Two firms are allocated the exact same set of
packages in both cases and other firms win packages that con-
tain many overlapping units or units from the same geographical
regions.
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efficiency loss is arguably low. We believe this result
is essentially driven by the high level of competition
in the auction; there is a reasonable number of firms
and most firms compete in all units and submit many
package bids. For this reason, firms do not seem to
have enough market power to significantly harm effi-
ciency by using the flexibility that package bidding
allows with strategic motivations.

Although the efficiency loss is overall evidently
low, a few firms indeed engage in strategic markup
reductions that are consistent with the economic argu-
ments provided in §1. For example, there is one firm
winning eight units in the CA allocation, that essen-
tially leveraged its cost advantage in some units to
win another unit for which it was not the cost-efficient
firm. If this firm was forced to just win its cost-
efficient bundle, the loss of 0.65% over relevant bids is
significantly reduced. In summary, the high efficiency
and relatively small profit margins for firms (around
5% as presented in §6.2) achieved by the school meals
CA suggest that it is a reasonable mechanism for the
procurement of this public service.

6.4. Evaluation of the Vickrey-Clarke-Groves
Mechanism

Although our previous results support that using
the first-price CA in our application seems appro-
priate, it is also useful to compare the performance
with alternative auction mechanisms. In this section,
we perform a counterfactual to compare the perfor-
mance with the Vickrey-Clarke-Groves (VCG) mech-
anism, which generalizes the second-price auction in
CA settings. It is well known that for the VCG mecha-
nism truthful bidding is a dominant strategy (i.e., bid-
ders report their true costs), and hence VCG achieves
the fully efficient allocation.31 For this reason, in a
public procurement setting like our application, VCG
could potentially be an attractive alternative.32 How-
ever, despite these advantages, the VCG mechanism
is rarely applied in practice and has been criticized
for other numerous drawbacks. In particular, Ausubel
and Milgrom (2006) have shown that in the face of
complementarities, the VCG procurement costs can be
prohibitively high. Hence, it is on itself interesting to
see how VCG performs in real-world applications.

In our analysis, we use the same set of extrapo-
lated bids as in §6.3 as the bids (costs) that bidders
would report in the VCG mechanism. We know VCG
achieves the efficient allocation, which was previously

31 In the online appendix, we provide details about VCG and its
payment rule.
32 It could also be useful to compare the performance with other
alternative auction mechanisms (for which bidders are not truth-
ful). However, such counterfactuals are limited as they require com-
puting the bidding strategies played in equilibrium by the bidders.
Unfortunately, equilibrium results for most of the multiunit auction
mechanisms that are used in practice are at best rare.

computed in §6.3. From the bids, we can compute
the individual VCG payments to the winning bidders,
and by summing them, we obtain the VCG procure-
ment cost. As seen in the previous section, the total
annual procurement cost in the 2003 first-price CA is
US$70.5 million. The total annual procurement cost
under the VCG mechanism is US$70.3 million, which
is about 0.32% cheaper than the first-price CA.

The result is at odds with the theoretical litera-
ture mentioned above describing the pitfalls of VCG;
in our application, VCG achieves payments compa-
rable to the first-price CA and induces a reason-
able procurement cost. We believe this result is
driven by the significant amount of competition intro-
duced by the large number of package bids submitted
by firms. In this case, a winning bidder is not that
relevant; if its bids are eliminated, there is another
allocation that achieves costs close to the minimum-
cost allocation, leading to reasonably low VCG pay-
ments.33 In contrast, in the examples provided by
Ausubel and Milgrom (2006), competition is limited,
resulting in high VCG payments. Hence, VCG should
achieve reasonable procurement costs in settings with
a reasonable amount of bidders that are able to submit
many package bids with significant coverage of all
the units in the auction. The latter should be expected
when every unit is attractive to many firms and it is
relatively effortless for a bidder to evaluate its costs
for different packages.

7. Conclusions
In this paper, we develop a structural estimation
approach that allows evaluating the performance of
large-scale first-price CAs. An important method-
ological contribution of our work is to introduce
a restricted markup model in which bidders are
assumed to determine their markups based on a
reduced set of package characteristics. The main
advantage of this approach is that it reduces the com-
putational burden of the structural approach so that
it can be applied to large-scale CAs.

We effectively apply our structural estimation
approach to the large-scale Chilean school meals CA.
We find that cost synergies in this auction are signif-
icant and the current CA mechanism, which allows
firms to express these synergies through package bid-
ding, seems appropriate. In particular, the current CA
achieves high allocative efficiency and a reasonable
procurement cost. We believe this is the first empirical
analysis documenting that a CA performs well in a
real-world application.

33 In the online appendix, we also discuss how this result relates to
the closeness of the VCG payoffs to the core of the transferable utility
cooperative game played among the bidders and the auctioneer.
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More broadly, our results highlight the importance
of the joint consideration of the firms’ operational cost
structure and their strategic behavior for the success-
ful design of a CA. Moreover, despite the practical
use of CAs, its econometric analysis has been limited
because of its complexity. Even though our method
may need modification to accommodate different
pricing and auction rules, we believe it can be a useful
starting point to reduce the complexity of econometric
analysis in other large-scale settings. In this way, we
hope that this research agenda enhances the under-
standing of the performance of CAs and thereby pro-
vides insights to improve their design.
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CORRECTION

In this article, “Measuring the Performance of Large-Scale Combinatorial Auctions: A Structural Estimation
Approach,” by Sang Won Kim, Marcelo Olivares, and Gabriel Y. Weintraub (Management Science, 2014, Vol. 60, No. 5,
pp. 1180–1201), the following sentence, which appears on page 1181, was corrected to read as follows: “If the bidder
wins the package, it will lead to an inefficient allocation in which a unit is not served by the lowest-cost supplier.”
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