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1. Introduction

We study the following model biharmonic superlinear elliptic equation

Δ2u = |u|p−1u in Ω, (1.1)

where Ω ⊂ R
n is a smoothly bounded domain or the entire space and p > 1 is a real

number. Inspired by the tangent cone analysis in minimal surface theory, more precisely
Fleming’s key observation that the existence of an entire nonplanar minimal graph im-
plies that of a singular area-minimizing cone (see his work on the Bernstein theorem [11]),
we derive a monotonicity formula for solutions of (1.1) to reduce the non-existence of
nontrivial entire solutions for the problem (1.1), to that of nontrivial homogeneous so-
lutions. Through this approach we give a complete classification of stable solutions and
those of finite Morse index, whether positive or sign changing, when Ω = R

n is the
whole Euclidean space. This in turn enables us to obtain partial regularity as well as
an estimate of the Hausdorff dimension of the singular set of the extremal solutions in
bounded domains.

Let us first describe the monotonicity formula. Eq. (1.1) has two important features.
It is variational, with energy functional given by∫ 1

2(Δu)2 − 1
p + 1 |u|

p+1

and it is invariant under the scaling transformation

uλ(x) = λ
4

p−1u(λx).

This suggests that the variations of the rescaled energy

r4 p+1
p−1−n

∫
Br(x)

[
1
2(Δu)2 − 1

p + 1 |u|
p+1

]

with respect to the scaling parameter r are meaningful. Augmented by the appropriate
boundary terms, the above quantity is in fact nonincreasing. More precisely, take u ∈
W 4,2

loc (Ω) ∩ Lp+1
loc (Ω), fix x ∈ Ω, let 0 < r < R be such that Br(x) ⊂ BR(x) ⊂ Ω, and

define

E(r;x, u) := r4 p+1
p−1−n

∫
Br(x)

[
1
2(Δu)2 − 1

p + 1 |u|
p+1

]

+ 2
p− 1

(
n− 2 − 4

p− 1

)
r

8
p−1+1−n

∫
u2
∂Br(x)
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+ 2
p− 1

(
n− 2 − 4

p− 1

)
d

dr

(
r

8
p−1+2−n

∫
∂Br(x)

u2
)

+ r3

2
d

dr

[
r

8
p−1+1−n

∫
∂Br(x)

(
4

p− 1r
−1u + ∂u

∂r

)2]

+ 1
2
d

dr

[
r

8
p−1+4−n

∫
∂Br(x)

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2)]

+ 1
2r

8
p−1+3−n

∫
∂Br(x)

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2),

where derivatives are taken in the sense of distributions. Then, we have the following
monotonicity formula.

Theorem 1.1. Assume that

n � 5, p >
n + 4
n− 4 . (1.2)

Let u ∈ W 4,2
loc (Ω)∩Lp+1

loc (Ω) be a weak solution of (1.1). Then, E(r;x, u) is non-decreasing
in r ∈ (0, R). Furthermore there is a constant c(n, p) > 0 such that

d

dr
E(r; 0, u) � c(n, p)r−n+2+ 8

p−1

∫
∂Br

(
4

p− 1r
−1u + ∂u

∂r

)2

. (1.3)

Remark 1.2. Monotonicity formulae have a long history that we will not describe here.
Let us simply mention two earlier results that seem closest to our findings: the formula
of Pacard [20] for the classical Lane–Emden equation and the one of Chang, Wang and
Yang [2] for biharmonic maps.

Consider again Eq. (1.1) in the case where Ω = R
n, i.e.,

Δ2u = |u|p−1u in R
n. (1.4)

Let

pS(n) =
{

+∞ if n � 4,
n+4
n−4 if n � 5,

denote the Sobolev exponent. When 1 < p � pS(n), all positive solutions to (1.4) are
classified: if p < pS(n), then u ≡ 0; if p = pS(n), then all solutions can be written in the
form u = cn( λ

2 2 )n−4
2 for some cn > 0, λ > 0, x0 ∈ R

n, see the work of Xu and one
λ +|x−x0|
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of the authors [31]. However, there can be many sign-changing solutions to the equation
(see the work by Guo, Li and one of the authors [15] for the critical case p = pS(n)).

Here, we allow u to be sign-changing and p to be supercritical. Instead, we restrict
the analysis to stable and finite Morse index solutions. A solution u to (1.4) is said to
be stable if ∫

Rn

|Δφ|2 dx � p

∫
Rn

|u|p−1φ2 dx, for all φ ∈ H2(
R

n
)
.

More generally, the Morse index of a solution is defined as the maximal dimension of all
subspaces E of H2(Rn) such that

∫
Rn

|Δφ|2 dx < p

∫
Rn

|u|p−1φ2 dx,

for any φ ∈ E \ {0}. No assumption on the growth of u is needed in these definitions.
Clearly, a solution is stable if and only if its Morse index is equal to zero. It is also
standard knowledge that if a solution to (1.4) has finite Morse index, then there is a
compact set K ⊂ R

n such that

∫
Rn

|Δφ|2 dx � p

∫
Rn

|u|p−1φ2 dx, ∀φ ∈ H2(
R

n\K
)
.

Recall that if

γ = 4
p− 1 , K0 = γ(γ + 2)(γ − n + 4)(γ − n + 2), (1.5)

then

us(r) = K
1/(p−1)
0 r−4/(p−1) (1.6)

is a singular solution to (1.4) in R
n \ {0}. By the Hardy–Rellich inequality with best

constant [25]

∫
Rn

|Δφ|2 dx � n2(n− 4)2

16

∫
Rn

φ2

|x|4 dx, ∀φ ∈ H2(
R

n
)
,

the singular solution us is stable if and only if

pK0 � n2(n− 4)2
. (1.7)
16
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Solving the corresponding quartic equation, (1.7) holds if and only if p � pc(n) where
pc(n) > pS(n) is the fourth-order Joseph–Lundgren exponent computed by Gazzola and
Grunau [12]:

pc(n) =
{+∞ if n � 12,

n+2−
√

n2+4−n
√
n2−8n+32

n−6−
√

n2+4−n
√
n2−8n+32

if n � 13.

Equivalently, for fixed p > pS(n), define np to be the smallest dimension such that (1.7)
holds. Then,

(1.7) ⇔ p � pc(n) ⇔ n � np.

The existence, uniqueness and stability of regular radial positive solutions to (1.4)
is by now well understood (see the works of Gazzola–Grunau, of Guo and one of the
authors, and of Karageorgis [12,16,18]): for each a > 0 there exists a unique entire radial
positive solution ua(|x|) to (1.4) with ua(0) = a. This radial positive solution is stable if
and only if (1.7) holds.

In our second result, which is a Liouville-type theorem, we give a complete charac-
terization of all finite Morse index solutions (whether radial or not, whether positive or
not).

Theorem 1.3. Let u be a smooth solution of (1.4) with finite Morse index.

• If p ∈ (1, pc(n)), p 
= pS(n), then u ≡ 0;
• If p = pS(n), then u has finite energy i.e.∫

Rn

(Δu)2 =
∫
Rn

|u|p+1 < +∞.

If in addition u is stable, then in fact u ≡ 0.

Remark 1.4. According to the preceding discussions, Theorem 1.3 is sharp: on the one
hand, in the critical case p = pS(n), Guo, Li and one of the authors [15] have constructed
a large class of solutions to (1.1) with finite energy. Since in this case (p−1)n

4 = p+ 1, by
a result of Rozenblum [26], such solutions have finite Morse index. On the other hand,
for p � pc(n), all radial solutions are stable (see [16,18]).

Remark 1.5. The above theorem generalizes a similar result of Farina [10] for the classical
Lane–Emden equation.

Now consider (1.1) when Ω is a smoothly bounded domain of Rn and supplement it
with Navier boundary conditions:
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{
Δ2u = λ(u + 1)p in Ω,

u = Δu = 0 on ∂Ω,
(1.8)

where λ > 0 is a parameter. It is well known that there exists a critical value λ∗ > 0
depending on p and Ω such that

• If λ ∈ (0, λ∗), (1.8) has a minimal and classical solution uλ, which is positive and
stable;

• If λ = λ∗, a unique weak solution, called the extremal solution uλ∗ exists for (Pλ∗).
It is given as the pointwise limit uλ∗ = limλ↑ uλ;

• No weak solution of (1.8) exists whenever λ > λ∗.

An outstanding remaining problem is the regularity of the extremal solution uλ∗ . An
application of Theorem 1.3 and standard blow-up analysis give

Theorem 1.6. If n < np (equivalently p < pc(n)), the extremal solution uλ∗ is smooth.

More generally,

Theorem 1.7. Assume p 
= n+4
n−4 and n < np (equivalently p < pc(n)).

• Let Ω be a smoothly bounded domain and u be a smooth solution (1.8) of finite Morse
index k ∈ N. Then there exists a constant C > 0 depending only on k,N,Ω, p such
that

‖u‖L∞(Ω) � C.

• Let Ω be any open set and u be a smooth solution of (1.1). Then, there exists a
constant C > 0 depending only on k,N,Ω, p such that for every i � 3,

∣∣∇iu
∣∣ � C dist(x, ∂Ω)−

4
p−1−i a.e. in Ω.

In Theorem 1.7 one has the same results for p = n+4
n−4 if u is a stable solution.

Next, we are interested in partial regularity for the extremal solution u∗
λ.

Definition 1.8. A point x belongs to the regular set of a function u ∈ L1
loc(Ω) if there

exists a neighborhood B of x such that u ∈ L∞(B). Otherwise, x belongs to S, the
singular set of u.

By definition, the regular set is an open set. By elliptic estimates applied to (1.1), u is
smooth in its regular set. Now, we state the interior partial regularity for uλ∗ .
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Theorem 1.9. Let n � np and let uλ∗ be the extremal solution to (1.8). Then the Hausdorff
dimension of its singular set S is no more than n− np. Moreover, when n = np, S is a
discrete set.

We now list some known results. We start with the analogous second order equation

Δu + |u|p−1u = 0, in R
n. (1.9)

As mentioned earlier, Farina completely classified finite Morse index solutions (positive
or sign-changing) in his seminal paper [10]. His proof makes a delicate use of the classical
Moser iteration method. More precisely, if one multiplies Eq. (1.9) by a power of u, say uq,
q > 1, Moser’s iteration works because of the following simple identity∫

Rn

uq(−Δu) = 4q
(q + 1)2

∫
Rn

∣∣∇u
q+1
2
∣∣2, ∀u ∈ C2

0
(
R

n
)
.

There have been many attempts to generalize Moser’s iteration technique (or Farina’s
approach) to fourth order problems like (1.1). Unfortunately, this runs into problems:
the corresponding identity reads∫

Rn

uq
(
Δ2u

)
= 4q

(q + 1)2

∫
Rn

∣∣Δu
q+1
2
∣∣2 − q(q − 1)2

4

∫
Rn

uq−3|∇u|4, ∀u ∈ C4
0
(
R

n
)
,

and the additional term
∫
Rn uq−3|∇u|4 makes the Moser iteration argument difficult to

use.
Another strategy is to use the test function v = −Δu. This allows to treat exponents

less than n
n−8 + εn for some εn > 0, see the works of Cowan–Esposito–Ghoussoub [3]

and Ye and one of the authors [32]. Another approach, obtained by Cowan and Ghous-
soub1 [4], and further exploited by Hajlaoui, Harrabi and Ye [17], is to derive the following
interesting interpolated version of the inequality: for stable solutions to (1.1), there holds

√
p

∫
Rn

|u| p−1
2 φ2 �

∫
Rn

|∇φ|2, ∀φ ∈ C1
0
(
R

n
)
.

This approach improves the first upper bound n
n−8 + εn, but it again fails to catch the

optimal exponent pc(n) (when n � 13). It should be remarked that by combining these
two approaches one can show that stable positive solutions to (1.1) do not exist when
n � 12 and p > n+4

n−4 , see [17].
In the above references, only positive solutions to (1.1) are considered. One reason is

their use of the following inequality, due to Souplet [29]

1 A similar method was first announced in [7], and later published in the work by Farina, Sirakov and one
of the authors [8].
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Δu +
(

2
p + 1

)1/2

u
p+1
2 � 0 in R

n. (1.10)

As observed in [9] for a similar equation, the use of the above inequality can be completely
avoided.

In this paper we take a completely new approach, which also avoids the use of (1.10)
and requires minimal integrability. One of our motivations is Fleming’s proof of the
Bernstein theorem for minimal surfaces in dimension 3. Fleming used a monotonicity
formula for minimal surfaces together with a compactness result to blow down the min-
imal surface. It turns out that the blow-down limit is a minimal cone. This is because
the monotonic quantity is constant only for minimizing cones. Then, he proved that
minimizing cones are flat, which implies in turn the flatness of the original minimal
surface.

At last, let us sketch the proof of Theorem 1.3: we first derive a monotonicity for-
mula for our equation (1.1). Then, we classify stable solutions: this is Theorem 4.1
in Section 4. To do this, we estimate solutions in the Lp+1 norm, utilizing the afore-
mentioned methods available in the literature, and then show that the blow-down limit
u∞(x) = limλ→∞ λ

4
p−1u(λx) satisfies E(r) ≡ const. Then, Theorem 1.1 implies that u∞

is a homogeneous stable solution, and we show in Theorem 3.1 that such solutions are
trivial if p < pc(n). Then similar to Fleming’s proof, the triviality of the blow-down limit
implies that the original entire solution is also trivial. In Section 5, we extend our result
to solutions of finite Morse index. Finally, in Section 6 we prove an ε-regularity result
and use the Federer’s dimension reduction principle to obtain the partial regularity of
extremal solutions. This approach was used in [30] for (1.9), see also [6].

2. Proof of the monotonicity formula

In this section we derive a monotonicity formula for functions u ∈ W 4,2(BR(0)) ∩
Lp+1(BR(0)) solving (1.1) in BR(0) ⊂ Ω. We assume that p > n+4

n−4 .

Proof of Theorem 1.1. Since the boundary integrals in E(r;x, u) only involve second
order derivatives of u, the boundary integrals in dE

dr (r;x, u) only involve third order
derivatives of u. By our assumption u ∈ W 4,2(BR(0)) ∩ Lp+1(BR(0)), for each Br(x) ⊂
BR(0), u ∈ W 3,2(∂Br(x)). Thus, the following calculations can be rigorously verified.
Assume that x = 0 and that the balls Bλ are all centered at 0. Take

Ẽ(λ) := λ4 p+1
p−1−n

∫
Bλ

1
2(Δu)2 − 1

p + 1 |u|
p+1.

Define

v := Δu
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and

uλ(x) := λ
4

p−1u(λx), vλ(x) := λ
4

p−1+2v(λx).

We still have vλ = Δuλ, Δvλ = |uλ|p−1uλ, and by differentiating in λ,

Δduλ

dλ
= dvλ

dλ
.

Note that differentiation in λ commutes with differentiation and integration in x.
A rescaling shows

Ẽ(λ) =
∫
B1

1
2
(
vλ
)2 − 1

p + 1
∣∣uλ

∣∣p+1
.

Hence

d

dλ
Ẽ(λ) =

∫
B1

vλ
dvλ

dλ
−
∣∣uλ

∣∣p−1
uλ duλ

dλ

=
∫
B1

vλΔ duλ

dλ
− Δvλ

duλ

dλ

=
∫

∂B1

vλ
∂

∂r

duλ

dλ
− ∂vλ

∂r

duλ

dλ
. (2.1)

In what follows, we express all derivatives of uλ in the r = |x| variable in terms of
derivatives in the λ variable. In the definition of uλ and vλ, directly differentiating in λ

gives

duλ

dλ
(x) = 1

λ

(
4

p− 1u
λ(x) + r

∂uλ

∂r
(x)

)
, (2.2)

dvλ

dλ
(x) = 1

λ

(
2(p + 1)
p− 1 vλ(x) + r

∂vλ

∂r
(x)

)
. (2.3)

In (2.2), taking derivatives in λ once again, we get

λ
d2uλ

dλ2 (x) + duλ

dλ
(x) = 4

p− 1
duλ

dλ
(x) + r

∂

∂r

duλ

dλ
(x). (2.4)

Substituting (2.3) and (2.4) into (2.1) we obtain

dẼ

dλ
=

∫
vλ
(
λ
d2uλ

dλ2 + p− 5
p− 1

duλ

dλ

)
− duλ

dλ

(
λ
dvλ

dλ
− 2(p + 1)

p− 1 vλ
)

∂B1
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=
∫

∂B1

λvλ
d2uλ

dλ2 + 3vλ duλ

dλ
− λ

duλ

dλ

dvλ

dλ
. (2.5)

Observe that vλ is expressed as a combination of x derivatives of uλ. So we also transform
vλ into λ derivatives of uλ. By taking derivatives in r in (2.2) and noting (2.4), we get
on ∂B1,

∂2uλ

∂r2 = λ
∂

∂r

duλ

dλ
− p + 3

p− 1
∂uλ

∂r

= λ2 d
2uλ

dλ2 + p− 5
p− 1λ

duλ

dλ
− p + 3

p− 1

(
λ
duλ

dλ
− 4

p− 1u
λ

)
= λ2 d

2uλ

dλ2 − 8
p− 1λ

duλ

dλ
+ 4(p + 3)

(p− 1)2 u
λ.

Then on ∂B1,

vλ = ∂2uλ

∂r2 + n− 1
r

∂uλ

∂r
+ 1

r2 Δθu
λ

= λ2 d
2uλ

dλ2 − 8
p− 1λ

duλ

dλ
+ 4(p + 3)

(p− 1)2 u
λ + (n− 1)

(
λ
duλ

dλ
− 4

p− 1u
λ

)
+ Δθu

λ

= λ2 d
2uλ

dλ2 +
(
n− 1 − 8

p− 1

)
λ
duλ

dλ
+ 4

p− 1

(
4

p− 1 − n + 2
)
uλ + Δθu

λ.

Here Δθ is the Beltrami–Laplace operator on ∂B1 and below ∇θ represents the tangential
derivative on ∂B1. For notational convenience, we also define the constants

α = n− 1 − 8
p− 1 , β = 4

p− 1

(
4

p− 1 − n + 2
)
.

Now (2.5) reads

d

dλ
Ẽ(λ) =

∫
∂B1

λ

(
λ2 d2uλ

dλ2 + αλ
duλ

dλ
+ βuλ

)
d2uλ

dλ2

+ 3
(
λ2 d2uλ

dλ2 + αλ
duλ

dλ
+ βuλ

)
duλ

dλ

− λ
duλ

dλ

d

dλ

(
λ2 d2uλ

dλ2 + αλ
duλ

dλ
+ βuλ

)
+

∫
∂B1

λΔθu
λ d2uλ

dλ2 + 3Δθu
λ duλ

dλ
− λ

duλ

dλ
Δθ

duλ

dλ

= R1 + R2.
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Integrating by parts on ∂B1, we get

R2 =
∫

∂B1

−λ∇θu
λ∇θ

d2uλ

dλ2 − 3∇θu
λ∇θ

duλ

dλ
+ λ

∣∣∣∣∇θ
duλ

dλ

∣∣∣∣2

= −λ

2
d2

dλ2

( ∫
∂B1

∣∣∇θu
λ
∣∣2)− 3

2
d

dλ

( ∫
∂B1

∣∣∇θu
λ
∣∣2)+ 2λ

∫
∂B1

∣∣∣∣∇θ
duλ

dλ

∣∣∣∣2

= −1
2

d2

dλ2

(
λ

∫
∂B1

∣∣∇θu
λ
∣∣2)− 1

2
d

dλ

( ∫
∂B1

∣∣∇θu
λ
∣∣2)+ 2λ

∫
∂B1

∣∣∣∣∇θ
duλ

dλ

∣∣∣∣2

� −1
2

d2

dλ2

(
λ

∫
∂B1

∣∣∇θu
λ
∣∣2)− 1

2
d

dλ

( ∫
∂B1

∣∣∇θu
λ
∣∣2).

For R1, after some simplifications we obtain

R1 =
∫

∂B1

λ

(
λ2 d2uλ

dλ2 + αλ
duλ

dλ
+ βuλ

)
d2uλ

dλ2

+ 3
(
λ2 d2uλ

dλ2 + αλ
duλ

dλ
+ βuλ

)
duλ

dλ

− λ
duλ

dλ

(
λ2 d3uλ

dλ3 + (2 + α)λ d2uλ

dλ2 + (α + β) du
λ

dλ

)

=
∫

∂B1

λ3
(
d2uλ

dλ2

)2

+ λ2 d2uλ

dλ2
duλ

dλ
+ βλuλ d2uλ

dλ2 + 3βuλ duλ

dλ

+ (2α− β)λ
(
duλ

dλ

)2

− λ3 duλ

dλ

d3uλ

dλ3

=
∫

∂B1

2λ3
(
d2uλ

dλ2

)2

+ 4λ2 d2uλ

dλ2
duλ

dλ
+ (2α− 2β)λ

(
duλ

dλ

)2

+ β

2
d2

dλ2

[
λ
(
uλ
)2]− 1

2
d

dλ

[
λ3 d

dλ

(
duλ

dλ

)2]
+ β

2
d

dλ

(
uλ
)2
.

Here we have used the relations (writing f ′ = d
dλf etc.)

λff ′′ =
(
λ

2 f
2
)′′

− 2ff ′ − λ
(
f ′)2,

and

−λ3f ′f ′′′ = −
[
λ3 ((

f ′)2)′]′ + 3λ2f ′f ′′ + λ3(f ′′)2.
2
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Since p > n+4
n−4 , direct calculations show that

α− β =
(
n− 1 − 8

p− 1

)
− 4

p− 1

(
4

p− 1 − n + 2
)

> 1. (2.6)

Thus,

2λ3
(
d2uλ

dλ2

)2

+ 4λ2 d2uλ

dλ2
duλ

dλ
+ (2α− 2β)λ

(
duλ

dλ

)2

= 2λ
(
λ
d2uλ

dλ2 + duλ

dλ

)2

+ (2α− 2β − 2)λ
(
duλ

dλ

)2

� 0. (2.7)

Then,

R1 �
∫

∂B1

β

2
d2

dλ2

[
λ
(
uλ
)2]− 1

2
d

dλ

[
λ3 d

dλ

(
duλ

dλ

)2]
+ β

2
d

dλ

(
uλ
)2
.

Now, rescaling back, we can write those λ derivatives in R1 and R2 as follows.∫
∂B1

d

dλ

(
uλ
)2 = d

dλ

(
λ

8
p−1+1−n

∫
∂Bλ

u2
)
,

∫
∂B1

d2

dλ2

[
λ
(
uλ
)2] = d2

dλ2

(
λ

8
p−1+2−n

∫
∂Bλ

u2
)
,

∫
∂B1

d

dλ

[
λ3 d

dλ

(
duλ

dλ

)2]
= d

dλ

[
λ3 d

dλ

(
λ

8
p−1+1−n

∫
∂Bλ

(
4

p− 1λ
−1u + ∂u

∂r

)2)]
,

d2

dλ2

(
λ

∫
∂B1

∣∣∇θu
λ
∣∣2) = d2

dλ2

[
λ1+ 8

p−1+2+1−n

∫
∂Bλ

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2)],

d

dλ

( ∫
∂B1

∣∣∇θu
λ
∣∣2) = d

dλ

[
λ

8
p−1+2+1−n

∫
∂Bλ

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2)].

Substituting these into d
dλE(λ; 0, u) we finish the proof. �

Denote c(n, p) = 2α− 2β − 2 > 0. By (2.7), we have

Corollary 2.1.

d

dr
E(r; 0, u) � c(n, p)r−n+2+ 8

p−1

∫ (
4

p− 1r
−1u + ∂u

∂r

)2

.

∂Br
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In particular, if E(λ; 0, u) ≡ const. for all λ ∈ (r,R), u is homogeneous in BR \Br:

u(x) = |x|− 4
p−1u

(
x

|x|

)
.

We end this section with the following observation: in the above computations we
just need the inequality (2.6) to hold. In particular the formula can be easily extended
to biharmonic equations with negative exponents. We state the following monotonicity
formula for solutions of

Δ2u = − 1
up

, u > 0 in Ω ⊂ R
n. (2.8)

Lemma 2.2. Assume that p satisfies

n− 2 + 8
p + 1 >

4
p + 1

(
4

p + 1 + n− 2
)
. (2.9)

Let u be a classical solution to (2.8) in Br(x) ⊂ BR(x) ⊂ Ω. Then the following quantity

Ẽ(r;x, u) := r4 p−1
p+1−n

∫
Br(x)

1
2(Δu)2 − 1

p− 1u
1−p

− 2
p + 1

(
n− 2 + 4

p + 1

)
r−

8
p+1+1−n

∫
∂Br(x)

u2

− 2
p + 1

(
n− 2 + 4

p + 1

)
d

dr

(
r−

8
p+1+2−n

∫
∂Br(x)

u2
)

+ r3

2
d

dr

[
r−

8
p+1+1−n

∫
∂Br(x)

(
− 4
p + 1r

−1u + ∂u

∂r

)2]

+ 1
2

d

dr

[
r−

8
p+1+4−n

∫
∂Br(x)

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2)]

+ 1
2r

− 8
p+1+3−n

∫
∂Br(x)

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2)

is increasing in r. Furthermore there exists c0 > 0 such that

d

dr
E(r; 0, u) � c0r

−n+2− 8
p+1

∫
∂Br

(
− 4
p + 1r

−1u + ∂u

∂r

)2

. (2.10)

In the rest of the paper, sometimes we use E(r;x) or E(r) if no confusion occurs.
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3. Homogeneous solutions

For the applications below, we give a non-existence result for homogeneous stable
solution of (1.1). (This corresponds to the tangent cone analysis of Fleming.) By the
Hardy–Rellich inequality, this result is sharp.

Theorem 3.1. Let u ∈ W 2,2
loc (Rn \ {0}) be a homogeneous, stable solution of (1.1) in

R
n \ {0}, for p ∈ (n+4

n−4 , pc(n)). Assume that |u|p+1 ∈ L1
loc(Rn \ {0}). Then u ≡ 0.

Proof. There exists a w ∈ W 2,2(Sn−1) such that in polar coordinates

u(r, θ) = r−
4

p−1w(θ).

Since u ∈ W 2,2(B2 \B1) ∩ Lp+1(B2 \B1), w ∈ W 2,2(Sn−1) ∩ Lp+1(Sn−1).
Direct calculations show that w satisfies (in W 2,2(Sn−1) sense)

Δ2
θw − J1Δθw + J2w = wp, (3.1)

where

J1 =
(

4
p− 1 + 2

)(
n− 4 − 4

p− 1

)
+ 4

p− 1

(
n− 2 − 4

p− 1

)
,

J2 = 4
p− 1

(
4

p− 1 + 2
)(

n− 4 − 4
p− 1

)(
n− 2 − 4

p− 1

)
.

Because w ∈ W 2,2(Sn−1), we can test (3.1) with w, and we get∫
Sn−1

|Δθw|2 + J1|∇θw|2 + J2w
2 =

∫
Sn−1

|w|p+1. (3.2)

For any ε > 0, choose an ηε ∈ C∞
0 (( ε2 ,

2
ε )), such that ηε ≡ 1 in (ε, 1

ε ), and

r
∣∣η′ε(r)∣∣+ r2∣∣η′′ε (r)

∣∣ � 64 for all r > 0.

Because w ∈ W 2,2(Sn−1) ∩ Lp+1(Sn−1), r−
n−4

2 w(θ)ηε(r) can be approximated by
C∞

0 (B4/ε \Bε/4) functions in W 2,2(B2/ε \Bε/2)∩Lp+1(B2/ε \Bε/2). Hence in the stabil-
ity condition for u we are allowed to choose a test function of the form r−

n−4
2 w(θ)ηε(r).

Note that

Δ
(
r−

n−4
2 w(θ)ηε(r)

)
= −n(n− 4)

4 r−
n
2 ηε(r)w(θ) + r−

n
2 ηε(r)Δθw(θ)

+ 3r−n
2 +1η′ε(r)w(θ) + r−

n
2 +2η′′ε (r)w(θ).

Substituting this into the stability condition for u, we get
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p

( ∫
Sn−1

|w|p+1 dθ

)( +∞∫
0

r−1ηε(r)2 dr
)

�
( ∫

Sn−1

(
|Δθw|2 + n(n− 4)

2 |∇θw|2 + n2(n− 4)2

16 w2
)
dθ

)( +∞∫
0

r−1ηε(r)2 dr
)

+ O

[( +∞∫
0

rη′ε(r)2 + r3η′′ε (r)2 +
∣∣η′ε(r)∣∣ηε(r) + rηε(r)

∣∣η′′ε (r)
∣∣ dr)

×
( ∫

Sn−1

w(θ)2 +
∣∣∇θw(θ)

∣∣2 dθ)].
Note that

+∞∫
0

r−1ηε(r)2 dr � |log ε|,

+∞∫
0

rη′ε(r)2 + r3η′′ε (r)2 +
∣∣η′ε(r)∣∣ηε(r) + rηε(r)

∣∣η′′ε (r)
∣∣ dr � C,

for some constant C independent of ε. By letting ε → 0, we obtain

p

∫
Sn−1

|w|p+1 dθ �
∫

Sn−1

|Δθw|2 + n(n− 4)
2 |∇θw|2 + n2(n− 4)2

16 w2.

Substituting (3.2) into this we get∫
Sn−1

(p− 1)|Δθw|2 +
(
pJ1 −

n(n− 4)
2

)
|∇θw|2 +

(
pJ2 −

n2(n− 4)2

16

)
w2 � 0.

If n+4
n−4 < p < pc(n), then p − 1 > 0, pJ1 − n(n−4)

2 > 0 and pJ2 − n2(n−4)2
16 > 0 (cf. [13,

p. 338]), so w ≡ 0 and then u ≡ 0. �
For applications in Section 6, we record the form of E(R; 0, u) for a homogeneous

solution u.

Remark 3.2. Suppose u(r, θ) = r−
4

p−1w(θ) is a homogeneous solution, where p > n+4
n−4

and w ∈ W 2,2(Sn−1) ∩ Lp+1(Sn−1). In this case, for any r > 0,∫
B \B

|Δu|2 + |u|p+1 � crn−4 p+1
p−1 .
r r/2
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Because n− 4 p+1
p−1 > 0, by choosing r = 2−iR and summing in i from 0 to +∞, we see

∫
BR

|Δu|2 + |u|p+1 � cRn−4 p+1
p−1 ,

which converges to 0 as R → 0. Hence for any R > 0, E(R; 0, u) is well-defined and by
the homogeneity, it equals E(1; 0, u). By definition

E(1; 0, u) =
∫
B1

1
2(Δu)2 − 1

p + 1 |u|
p+1

+ 4
p− 1

(
n− 2 − 4

p− 1

) ∫
∂B1

u2 +
∫

∂B1

|∇θu|2

=
(

1
2 − 1

p + 1

)∫
B1

|u|p+1 + 1
2

∫
∂B1

(
∂u

∂r
Δu− u

∂Δu

∂r

)

+ 4
p− 1

(
n− 2 − 4

p− 1

) ∫
∂B1

u2 +
∫

∂B1

|∇θu|2.

By noting that

∂u

∂r
= − 4

p− 1r
−1u,

∂2u

∂r2 = 4
p− 1

(
4

p− 1 + 1
)
r−2u,

∂Δu

∂r
= −

(
2 + 4

p− 1

)
r−1Δu, Δu = 4

p− 1

(
4

p− 1 + 2 − n

)
r−2u + r−2Δθu,

we get

E(1; 0, u) =
(

1
2 − 1

p + 1

)∫
B1

|u|p+1 = 1
n− 4 p+1

p−1

(
1
2 − 1

p + 1

) ∫
∂B1

|w|p+1.

Replacing |u|p+1 by (Δu)2, we also have

E(1; 0, u) =
(

1
2 − 1

p + 1

)∫
B1

(Δu)2 + p− 1
p + 1

∫
∂B1

|∇θu|2

+ 4
p + 1

(
n− 2 − 4

p− 1

) ∫
∂B1

u2.
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4. The blow down analysis

In this section we use the blow-down analysis to prove the Liouville theorem for stable
solutions. Throughout this section u always denotes a smooth stable solution of (1.1)
in R

n.

Theorem 4.1. Let u be a smooth stable solution of (1.1) on R
n. If 1 < p < pc(n), then

u ≡ 0.

The following lemma appears in [32] for positive solution. It remains valid for sign-
changing solutions, see also [17].

Lemma 4.2. Let u be a smooth stable solution of (1.1) and let v = Δu. Then for some C

we have ∫
Rn

(
v2 + |u|p+1)η2 � C

∫
Rn

u2(∣∣∇(Δη) · ∇η
∣∣+ (Δη)2 +

∣∣Δ(
|∇η|2

)∣∣) dx
+ C

∫
Rn

|uv||∇η|2 dx (4.1)

for all η ∈ C∞
0 (Rn).

Proof. For completeness we give the proof. We have the identity∫
Rn

(
Δ2ξ

)
ξη2 dx =

∫
Rn

(
Δ(ξη)

)2 +
∫
Rn

(
−4(∇ξ · ∇η)2 + 2ξΔξ|∇η|2

)
dx

+
∫
Rn

ξ2(2∇(Δη) · ∇η + (Δη)2
)
dx,

for ξ ∈ C4(Rn) and η ∈ C∞
0 (Rn), see for example [32, Lemma 2.3].

Taking ξ = u yields∫
Rn

|u|p+1η2 dx =
∫
Rn

(
Δ(uη)

)2 +
∫
Rn

(
−4(∇u · ∇η)2 + 2uv|∇η|2

)
dx

+
∫
Rn

u2(2∇(Δη) · ∇η + (Δη)2
)
dx.

Using the stability inequality with uη yields

p

∫
|u|p+1η2 dx �

∫ (
Δ(uη)

)2
.

Rn Rn
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Therefore∫
Rn

(
|u|p+1η2 +

(
Δ(uη)

)2)
dx � C

∫
Rn

(
|∇u|2|∇η|2 + |uv||∇η|2

)
dx

+ C

∫
Rn

u2(∣∣∇(Δη) · ∇η
∣∣+ (Δη)2

)
dx.

Using Δ(ηu) = vη + 2∇η · ∇u + uΔη we obtain∫
Rn

(
|u|p+1 + v2)η2 dx � C

∫
Rn

(
|∇u|2|∇η|2 + |uv||∇η|2

)
dx

+ C

∫
Rn

u2(∣∣∇(Δη) · ∇η
∣∣+ (Δη)2

)
dx.

But

2
∫
Rn

|∇u|2|∇η|2 dx =
∫
Rn

Δ
(
u2)|∇η|2 dx− 2

∫
Rn

uv|∇η|2 dx

=
∫
Rn

u2Δ
(
|∇η|2

)
dx− 2

∫
Rn

uv|∇η|2 dx,

and hence∫
Rn

(
|u|p+1 + v2)η2 dx � C

∫
Rn

u2(∣∣∇(Δη) · ∇η
∣∣+ (Δη)2 +

∣∣Δ(
|∇η|2

)∣∣) dx
+ C

∫
Rn

|uv||∇η|2 dx.

This proves (4.1) �
Corollary 4.3. There exists a constant C such that∫

BR(x)

v2 + |u|p+1 � CR−4
∫

B2R(x)\BR(x)

u2 + CR−2
∫

B2R(x)\BR(x)

|uv|, (4.2)

and ∫
BR(x)

v2 + |u|p+1 � CRn−4 p+1
p−1 , (4.3)

for all BR(x).



258 J. Dávila et al. / Advances in Mathematics 258 (2014) 240–285
Proof. The first inequality is a direct consequence of (4.1), by choosing a cut-off function
η ∈ C∞

0 (B2R(x)), such that η ≡ 1 in BR(x), and for k � 3, |∇kη| � 1000
Rk .

Exactly the same argument as in [32] or [17] provides the second estimate. For com-
pleteness, we record the proof here. Replace η in (4.1) by ηm, where m is a large integer
and η is a cut-off function as before. Then∫

|uv||∇ηm|2 = m2
∫

B2R(x)\BR(x)

|uv|η2m−2|∇η|2

� 1
2C

∫
v2η2m + C

∫
u2η2m−4|∇η|4.

Substituting this into (4.1), we obtain∫ (
v2 + |u|p+1)η2m � CR−4

∫
B2R(x)

u2η2m−4

� CR−4
( ∫
B2R(x)

|u|p+1η(m−2)(p+1)
) 2

p+1

Rn(1− 2
p+1 ).

This gives (4.3). Here we have used the fact η2m � η(m−2)(p+1) because 0 � η � 1, m is
large, and p > 1. �
Proof of Theorem 4.1 for 1 < p ��� n+4

n−4 . For p < n+4
n−4 , we can let R → +∞ in (4.3) to

get u ≡ 0 directly. If p = n+4
n−4 , this gives

∫
Rn

v2 + |u|p+1 < +∞.

So

lim
R→+∞

∫
B2R(x)\BR(x)

v2 + |u|p+1 = 0.

Then by (4.2), and noting that now n = 4 p+1
p−1 ,

∫
BR(x)

v2 + |u|p+1 � CR−4
∫

B2R(x)\BR(x)

u2 + C

∫
B2R(x)\BR(x)

|v|2

� CR−4
( ∫

|u|p+1
) 2

p+1

Rn(1− 2
p+1 ) + C

∫
|v|2
B2R(x)\BR(x) B2R(x)\BR(x)
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� C

( ∫
B2R(x)\BR(x)

|u|p+1
) 2

p+1

+ C

∫
B2R(x)\BR(x)

|v|2.

This goes to 0 as R → +∞, and we still get u ≡ 0. �
Next we concentrate on the case p > n+4

n−4 . We first use (4.3) to show

Lemma 4.4. limr→+∞ E(r; 0, u) < +∞.

Proof. Let us write E(r) = E(r; 0, u). Since E(r) is non-decreasing in r, we have

E(r) � 1
r

2r∫
r

E(t) dt � 1
r2

2r∫
r

t+r∫
t

E(λ) dλ dt.

By (4.3),

1
r2

2r∫
r

t+r∫
t

(
λ4 p+1

p−1−n

∫
Bλ

1
2(Δu)2 − 1

p + 1 |u|
p+1

)
dλ dt � C.

Next

1
r2

2r∫
r

t+r∫
t

(
λ

8
p−1+1−n

∫
∂Bλ

u2
)
dλ dt

= 1
r2

2r∫
r

∫
Bt+r\Bt

|x| 8
p−1+1−nu(x)2 dx dt

� 1
r2

2r∫
r

( ∫
B3r\Br

|x|( 8
p−1+1−n) p+1

p−1

) p−1
p+1

( ∫
B3r

∣∣u(x)
∣∣p+1

) 2
p+1

dt

� C.

The same estimate holds for the term in E(r) containing

∫
∂Bλ

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2).

For this we need to note the following estimate

∫
|∇u|2 � Cr2

∫
(Δu)2 + Cr−2+n p−1

p+1

( ∫
|u|p+1

) 2
p+1

� Crn−
8

p−1−2. (4.4)

Br B2r B2r
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Now consider

1
r2

2r∫
r

t+r∫
t

λ3

2
d

dλ

[
λ

8
p−1+1−n

∫
∂Bλ

(
4

p− 1λ
−1u + ∂u

∂r

)2]
dλ dt

= 1
2r2

2r∫
r

{
(t + r)

8
p−1+4−n

∫
∂Bt+r

(
4

p− 1(t + r)−1u + ∂u

∂r

)2

− t
8

p−1+4−n

∫
∂Bt

(
4

p− 1 t
−1u + ∂u

∂r

)2}
dt

− 3
2r2

2r∫
r

t+r∫
t

λ
8

p−1+3−n

∫
∂Bλ

(
4

p− 1λ
−1u + ∂u

∂r

)2

dλ dt

� C

r2

∫
B3r\Br

|x| 8
p−1+4−n

(
4

p− 1 |x|
−1u + ∂u

∂r

)2

� C.

The remaining terms in E(r) can be treated similarly. �
For any λ > 0, define

uλ(x) := λ
4

p−1u(λx), vλ(x) := λ
4

p−1+2v(λx).

uλ is also a smooth stable solution of (1.1) on R
n.

By rescaling (4.3), for all λ > 0 and balls Br(x) ⊂ R
n,∫

Br(x)

(
vλ
)2 +

∣∣uλ
∣∣p+1 � Crn−4 p+1

p−1 .

In particular, uλ are uniformly bounded in Lp+1
loc (Rn) and vλ = Δuλ are uniformly

bounded in L2
loc(Rn). By elliptic estimates, uλ are also uniformly bounded in W 2,2

loc (Rn).
Hence, up to a subsequence of λ → +∞, we can assume that uλ → u∞ weakly in
W 2,2

loc (Rn) ∩ Lp+1
loc (Rn). By compactness embedding for Sobolev functions, uλ → u∞

strongly in W 1,2
loc (Rn). Then for any ball BR(0), by interpolation between Lq spaces and

noting (4.3), for any q ∈ [1, p + 1), as λ → +∞,

∥∥uλ − u∞∥∥
Lq(BR(0)) �

∥∥uλ − u∞∥∥t
L1(BR(0))

∥∥uλ − u∞∥∥1−t

Lp+1(BR(0)) → 0, (4.5)

where t ∈ (0, 1] satisfies 1 = t+ 1−t . That is, uλ → u∞ in Lq
loc(Rn) for any q ∈ [1, p+1).
q p+1
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For any function ϕ ∈ C∞
0 (Rn),∫

Rn

Δu∞Δϕ−
(
u∞)p

ϕ = lim
λ→+∞

∫
Rn

ΔuλΔϕ−
(
uλ
)p
ϕ = 0,

∫
Rn

(Δϕ)2 − p
(
u∞)p−1

ϕ2 = lim
λ→+∞

∫
Rn

(Δϕ)2 − p
(
uλ
)p−1

ϕ2 � 0.

Thus u∞ ∈ W 2,2
loc (Rn) ∩ Lp+1

loc (Rn) is a stable solution of (1.1) in R
n.

Lemma 4.5. u∞ is homogeneous.

Proof. For any 0 < r < R < +∞, by the monotonicity of E(r; 0, u) and Lemma 4.4,

lim
λ→+∞

E(λR; 0, u) −E(λr; 0, u) = 0.

Therefore, by the scaling invariance of E

lim
λ→+∞

E
(
R; 0, uλ

)
−E

(
r; 0, uλ

)
= 0.

We note that E(r; 0, uλ) is absolutely continuous with respect to r, since we assume uλ

smooth. This still holds if we assume u ∈ W 4,2(BR(0)) ∩ Lp+1(BR(0)), since boundary
integrals only involve second order derivatives of u and so for each Br(0) ⊂ BR(0),
u ∈ W 3,2(∂Br(0)). Then by Corollary 2.1 we see that

0 = lim
λ→+∞

E
(
R; 0, uλ

)
− E

(
r; 0, uλ

)
� c(n, p) lim

λ→+∞

∫
BR\Br

( 4
p−1 |x|−1uλ(x) + ∂uλ

∂r (x))2

|x|n−2− 8
p−1

dx

� c(n, p)
∫

BR\Br

( 4
p−1 |x|−1u∞(x) + ∂u∞

∂r (x))2

|x|n−2− 8
p−1

dx.

Note that in the last inequality we only used the weak convergence of uλ to u∞ in
W 1,2

loc (Rn). Now

4
p− 1r

−1u∞ + ∂u∞

∂r
= 0, a.e. in R

n.

Integrating in r shows that

u∞(x) = |x|− 4
p−1u∞

(
x

|x|

)
.

That is, u∞ is homogeneous. �
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By Theorem 3.1, u∞ ≡ 0. Since this holds for the limit of any sequence λ → +∞,
by (4.5) we get

lim
λ→+∞

uλ = 0 strongly in L2(B4(0)
)
.

Now we show

Lemma 4.6. limr→+∞ E(r; 0, u) = 0.

Proof. For all λ → +∞,

lim
λ→+∞

∫
B4(0)

(
uλ
)2 = 0.

Because vλ are uniformly bounded in L2(B4(0)), by the Cauchy inequality we also have

lim
λ→+∞

∫
B4(0)

∣∣uλvλ
∣∣ � lim

λ→+∞

( ∫
B4(0)

(
uλ
)2) 1

2
( ∫
B4(0)

(
vλ
)2) 1

2

= 0.

By (4.2),

lim
λ→+∞

∫
B3(0)

(
vλ
)2 +

∣∣uλ
∣∣p+1 � C lim

λ→+∞

( ∫
B4(0)

(
uλ
)2 +

∫
B4(0)

∣∣uλvλ
∣∣)

= 0. (4.6)

By the interior L2 estimate, we get

lim
λ→+∞

∫
B2(0)

∑
k�2

∣∣∇kuλ
∣∣2 = 0.

In particular, we can choose a sequence λi → +∞ such that∫
B2(0)

∑
k�2

∣∣∇kuλi
∣∣2 � 2−i.

By this choice we have

2∫
1

+∞∑
i=1

∫
∂Br

∑
k�2

∣∣∇kuλi
∣∣2 dr �

+∞∑
i=1

2∫
1

∫
∂Br

∑
k�2

∣∣∇kuλi
∣∣2 dr � 1.

That is, the function
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f(r) :=
+∞∑
i=1

∫
∂Br

∑
k�2

∣∣∇kuλi
∣∣2 ∈ L1((1, 2)).

There exists an r0 ∈ (1, 2) such that f(r0) < +∞. From this we get

lim
i→+∞

∥∥uλi
∥∥
W 2,2(∂Br0 ) = 0.

Combining this with (4.6) and the scaling invariance of E(r), we get

lim
i→+∞

E(λir0; 0, u) = lim
i→+∞

E
(
r0; 0, uλi

)
= 0.

Since λir0 → +∞ and E(r; 0, u) is non-decreasing in r, we get

lim
r→+∞

E(r; 0, u) = 0. �
By the smoothness of u, limr→0 E(r; 0, u) = 0. Then again by the monotonicity of

E(r; 0, u) and the previous lemma, we obtain

E(r; 0, u) = 0 for all r > 0.

Then again by Corollary 2.1, u is homogeneous, and then u ≡ 0 by Theorem 3.1 (or by
the smoothness of u). This finishes the proof of Theorem 4.1.

5. Finite Morse index solutions

In this section we prove Theorem 1.3 and we always assume that u is a smooth
solution. First, by the doubling lemma [22] and our Liouville theorem for stable solutions,
Theorem 4.1, we have

Lemma 5.1. Let u be a smooth, finite Morse index (positive or sign changing) solution
of (1.1). There exist a constant C and R0 such that for all x ∈ BR0(0)c,

∣∣u(x)
∣∣ � C|x|− 4

p−1 .

Proof. Assume that u is stable outside BR0 . For x ∈ Bc
R0

, let M(x) = |u(x)| p−1
4 and

d(x) = |x| − R0, the distance to BR0 . Assume that there exists a sequence of xk ∈ Bc
R0

such that

M(xk)d(xk) � 2k. (5.1)

Since u is bounded on any compact set of Rn, d(xk) → +∞.



264 J. Dávila et al. / Advances in Mathematics 258 (2014) 240–285
By the doubling lemma [22], there exists another sequence yk ∈ Bc
R0

, such that

(1) M(yk)d(yk) � 2k;
(2) M(yk) � M(xk);
(3) M(z) � 2M(yk) for any z ∈ Bc

R0
such that |z − yk| � k

M(yk) .

Now define

uk(x) = M(yk)−
4

p−1u
(
yk + M(yk)−1x

)
, for x ∈ Bk(0).

By definition, |uk(0)| = 1. By (3), |uk| � 2
4

p−1 in Bk(0). By (1), Bk/M(yk)(yk)∩BR0 = ∅,
which implies that u is stable in Bk/M(yk)(yk). Hence uk is stable in Bk(0).

By elliptic regularity, uk are uniformly bounded in C5
loc(Bk(0)). Up to a subsequence,

uk converges to u∞ in C4
loc(Rn). By the above conditions on uk, we have

(1) |u∞(0)| = 1;
(2) |u∞| � 2

4
p−1 in R

n;
(3) u∞ is a smooth stable solution of (1.1) in R

n.

By the Liouville theorem for stable solutions, Theorem 4.1, u∞ ≡ 0. This is a contradic-
tion, so (5.1) does not hold. �
Corollary 5.2. There exist a constant C3 and R0 such that for all x ∈ B3R0(0)c,

∑
k�3

|x| 4
p−1+k

∣∣∇ku(x)
∣∣ � C3. (5.2)

Proof. For any x0 with |x0| > 3R0, take λ = |x0|
2 and define

ū(x) = λ
4

p−1u(x0 + λx).

By the previous lemma, |ū| � C1 in B1(0). Standard elliptic estimates give

∑
k�3

∣∣∇kū(0)
∣∣ � C3.

Rescaling back we get (5.2). �
Remark 5.3. By the same proof of Lemma 5.1 and Corollary 5.2, one easily obtains the
second part of Theorem 1.7.
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5.1. The subcritical case 1 < p < n+4
n−4

We use the following Pohozaev identity. For its proof, see [23,24].

Lemma 5.4. ∫
BR

n− 4
2 (Δu)2 − n

p + 1 |u|
p+1

=
∫

∂BR

R

2 (Δu)2 + R

p + 1 |u|
p+1 + R

∂u

∂r

∂Δu

∂r
− Δu

∂(x · ∇u)
∂r

. (5.3)

By taking R → +∞ and using (5.2), and noting that p < n+4
n−4 , we see that∫

∂BR

R

2 (Δu)2 + R

p + 1 |u|
p+1 + R

∂u

∂r

∂Δu

∂r
− Δu

∂(x · ∇u)
∂r

→ 0.

By (5.2), we also have

(Δu)2 + |u|p+1 � C
(
1 + |x|

)−4 p+1
p−1 .

Since p < n+4
n−4 , 4 p+1

p−1 > n. Hence∫
Rn

(Δu)2 + |u|p+1 < +∞.

Taking limit in (5.3), we get∫
Rn

n− 4
2 (Δu)2 − n

p + 1 |u|
p+1 = 0. (5.4)

Take an η ∈ C∞
0 (B2), η ≡ 1 in B1 and

∑
k�2 |∇kη| � 1000, and denote ηR(x) = η(x/R).

By testing Eq. (1.1) with u(x)η2
R, we get∫

Rn

(Δu)2η2
R − |u|p+1η2

R = −
∫
Rn

(
2∇u∇η2

R + uΔη2
R

)
Δu. (5.5)

By the same reasoning as above, we get∫
Rn

(Δu)2 − |u|p+1 = 0.

Substituting (5.4) into this, we get
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(
n− 4

2
− n

p + 1

)∫
Rn

|u|p+1 = 0.

Since n−4
2 − n

p+1 < 0, u ≡ 0.

5.2. The critical case

Since u is stable outside BR0 , Lemma 4.2 still holds if the support of η is outside BR0 .
Take ϕ ∈ C∞

0 (B2R \ B2R0), such that ϕ ≡ 1 in BR \ B3R0 and
∑

k�3 |x|k|∇kϕ| � 100.
Then by choosing η = ϕm, where m is large, in (4.1), and by the same reasoning to
derive (4.3), we get ∫

BR\B3R0

(Δu)2 + |u|p+1 � C.

Letting R → +∞, we get ∫
Rn

(Δu)2 + |u|p+1 < +∞.

Similar to (4.4), we have

R−2
∫

B2R\BR

|∇u|2 � C

∫
B3R\BR/2

(Δu)2 + C

( ∫
B3R\BR/2

|u|p+1
) 2

p+1

.

Then by applying the Hölder inequality to (5.5), we have∣∣∣∣ ∫
Rn

(Δu)2η2
R − |u|p+1η2

R

∣∣∣∣
� C

[
R−1

( ∫
B2R\BR

|∇u|2
) 1

2

+
( ∫
B2R\BR

|u|p+1
) 1

p+1
]( ∫

B2R\BR

(Δu)2
) 1

2

.

After letting R → +∞ we obtain∫
Rn

(Δu)2 − |u|p+1 = 0.

5.3. The supercritical case

Now we consider the case p > n+4
n−4 .

Lemma 5.5. There exists a constant C2, such that for all r > 3R0, E(r; 0, u) � C2.
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Proof. Expanding those boundary integrals in E(r; 0, u) into a full formulation involving
the differentials of u up to second order, and substituting (5.2) into this formulation, we
get

E(r; 0, u) � Cr4 p+1
p−1−n

(∫
Br

(Δu)2 + |u|p+1
)

+ Cr
8

p−1+1−n

∫
∂Br

u2

+ Cr
8

p−1+2−n

∫
∂Br

|u||∇u| + Cr
8

p−1+3−n

∫
∂Br

|∇u|2

+ Cr
8

p−1+3−n

∫
∂Br

|u|
∣∣∇2u

∣∣+ Cr
8

p−1+4−n

∫
∂Br

|∇u|
∣∣∇2u

∣∣
� C.

This constant only depends on the constant in (5.2). �
By Corollary 2.1, we get

Corollary 5.6. ∫
Bc

3R0

( 4
p−1 |x|−1u(x) + ∂u

∂r (x))2

|x|n−2− 8
p−1

dx < +∞.

As in the proof for stable solutions, define the blowing down sequence

uλ(x) = λ
4

p−1u(λx).

By Lemma 5.1, uλ are uniformly bounded in C5(Br(0) \ B1/r(0)) for any fixed r > 1.
uλ is stable outside BR0/λ(0). There exists a function u∞ ∈ C4(Rn \ {0}), such that
up to a subsequence of λ → +∞, uλ converges to u∞ in C4

loc(Rn \ {0}). u∞ is a stable
solution of (1.1) in R

n \ {0}.
For any r > 1, by Corollary 5.6,∫

Br\B1/r

( 4
p−1 |x|−1u∞(x) + ∂u∞

∂r (x))2

|x|n−2− 8
p−1

dx

= lim
λ→+∞

∫
Br\B1/r

( 4
p−1 |x|−1uλ(x) + ∂uλ

∂r (x))2

|x|n−2− 8
p−1

dx

= lim
λ→+∞

∫
Bλr\Bλ/r

( 4
p−1 |x|−1u(x) + ∂u

∂r (x))2

|x|n−2− 8
p−1

dx

= 0.
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Hence u∞ is homogeneous, and by Theorem 3.1, u∞ ≡ 0 if p < pc(n). This holds for
every limit of uλ as λ → +∞, thus we have

lim
x→∞

|x| 4
p−1

∣∣u(x)
∣∣ = 0.

Then as in the proof of Corollary 5.2, we get

lim
x→∞

∑
k�4

|x| 4
p−1+k

∣∣∇ku(x)
∣∣ = 0.

For any ε > 0, take an R such that for |x| > R,∑
k�4

|x| 4
p−1+k

∣∣∇ku(x)
∣∣ � ε.

Then for r � R,

E(r; 0, u) � Cr4 p+1
p−1−n

∫
BR(0)

[
(Δu)2 + |u|p+1]+ Cεr4 p+1

p−1−n

∫
Br(0)\BR(0)

|x|−4 p+1
p−1

+ Cεr4 p+1
p−1+1−n

∫
∂Br(0)

|x|−4 p+1
p−1

� C(R)
(
r4 p+1

p−1−n + ε
)
.

Since 4 p+1
p−1 − n < 0 and ε can be arbitrarily small, we get limr→+∞ E(r; 0, u) = 0.

Because limr→0 E(r; 0, u) = 0 (by the smoothness of u), the same argument for stable
solutions implies that u ≡ 0.

Remark 5.7. The monotonicity formula approach here is in some sense equivalent to the
Pohozaev identity method (see for example [32]). The convergence of uλ can also be seen
by writing the equation in exponential polar coordinates.

6. Partial regularity in high dimensions

Here we study the partial regularity for the extremal solution to the problem (1.8),
and prove Theorems 1.6 and 1.9. Recall that we defined np to be the smallest dimension
such that Theorem 3.1 does not hold. This is also the smallest dimension such that
the Liouville theorem for stable solutions, Theorem 4.1, and the classification result for
stable homogeneous solutions, Theorem 3.1, do not hold.

6.1. Regularity when n < np

In this subsection we prove the full regularity when n < np.
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Proof of Theorem 1.6. For 0 < λ < λ∗ let uλ > 0 be the minimal solution of (1.8). We
claim that

sup
λ∈(0,λ∗)

‖uλ‖L∞(Ω) < +∞. (6.1)

Then by elliptic estimates, as λ → λ∗, uλ are uniformly bounded in C5(Ω). Because
uλ converges to uλ∗ pointwisely in Ω, uλ∗ ∈ C4(Ω), and then we get uλ∗ ∈ C∞(Ω) by
bootstrapping elliptic estimates.

To prove (6.1), we use the classical blow up method of Gidas and Spruck. Let xλ

attain maxΩ uλ, and assume that

Lλ = uλ(xλ) + 1 → +∞.

By the maximum principle, xλ ∈ Ω is an interior point and

−Δuλ > 0 in Ω. (6.2)

Define

ūλ = λ
1

p−1L−1
λ

(
uλ

(
xλ + L

− p−1
4

λ x
)

+ 1
)

in Ωλ,

where Ωλ = L
− p−1

4
λ (Ω − xλ). ūλ is a smooth stable solution of (1.1) in Ωλ, satisfying

ūλ(0) = max
Ωλ

ūλ = 1, (6.3)

and the boundary condition

ūλ = λ
1

p−1L−1
λ , Δūλ = 0 on ∂Ωλ.

From this, with the help of standard elliptic estimates, we see for any R > 0, ūλ are
uniformly bounded in C5(Ωλ ∩BR(0)). By rescaling (6.2),

−Δūλ > 0 in Ωλ. (6.4)

Since Ω is a smooth domain, as λ → λ∗, Ωλ either converges to R
n or to a half space H.

In the former case, ūλ converges (up to a subsequence) to a limit ū in C4
loc(Rn). Here ū

is a positive, stable, C4 solution of (1.1) in R
n. Then by Theorem 4.1, ū ≡ 0. However,

by passing to the limit in (6.3), we obtain

ū(0) = 1.

This is a contradiction.
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If Ωλ converges to a half space H = {x1 > −h} for some h > 0, ūλ converges (up to
a subsequence) to a limit ū in C4

loc(H). Here ū is a positive, stable, C4 solution of (1.1)
in H, with the boundary conditions

ū = Δū = 0 on ∂H.

By taking limits in (6.3) and (6.4), we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δū = v̄ > 0, in H,

−Δv̄ = ūp > 0, in H,

ū = v̄ = 0, on ∂H,

ū(0) = max
H

ū = 1.

By elliptic estimates, the last condition implies that v̄ is bounded in H. Then by
[Theorem 2, [5]] or [Theorem 10, [28]], ∂ū

∂x1
> 0, ∂v̄

∂x1
> 0. Then the function w(y) =

limx1→+∞ ū(x1, y) exists for all y ∈ R
n−1 and satisfies Δ2w = wp in R

n−1. By the ar-
guments in [32, Section 3] this function w must be stable in R

n−1 and nontrivial. By
Theorem 1.3, p � pc(n− 1) � pc(n). This is impossible.

We conclude that ū ≡ 0, which is a contradiction. This finishes the proof of (6.1). �
6.2. An ε-regularity lemma

The remaining part is devoted to the proof of Theorem 1.9. In this subsection we
prove an ε-regularity result, by establishing an improvement of decay estimate. First we
need the following lemma.

Lemma 6.1. There exists a constant C, such that, for any ball B2r(x) ⊂ Ω,

r
8p

p−1−n

∫
Br(x)

(uλ∗ + 1)2p � Cr4 p+1
p−1−n

∫
B2r(x)

(Δuλ∗)2. (6.5)

Proof. Denote wλ = uλ + 1. By the maximum principle and Lemma 3.2 in [3], for any
λ ∈ (0, λ∗),

Δwλ � −
√

2λ
p + 1w

p+1
2

λ < 0 in Ω.

Since wλ is smooth in Ω, we can follow the proof in [32] to get Eq. (2.15) in [32]. That
is, for any η ∈ C∞

0 (Ω),∫
w2p

λ η2 � C

∫
−Δwλw

p
λ

(
|∇η|2 +

∣∣Δη2∣∣)

Ω Ω



J. Dávila et al. / Advances in Mathematics 258 (2014) 240–285 271
+ C

∫
Ω

(Δwλ)2
[
|∇Δη∇η| +

∣∣Δ|∇η|2
∣∣+ |Δη|2

]
. (6.6)

Take ϕ ∈ C∞
0 (B2r(x)) such that 0 � ϕ � 1, ϕ ≡ 1 in Br(x) and∑

k�4

rk
∣∣∇kϕ

∣∣ � 1000.

Substituting η = ϕm into (6.6) with m large, and then using Hölder’s inequality (exactly
as in the derivation of Eq. (2.16) of [32]), we get (6.5) for uλ.

This implies that uλ are uniformly bounded in L2p
loc(Ω). By the interior L2 estimate,

uλ are also uniformly bounded in W 4,2
loc (Ω). By the same proof of (4.5), as λ → λ∗,

uλ → uλ∗ in W 3,2
loc (Ω) ∩ Lp+1

loc (Ω). Then

r
8p

p−1−n

∫
Br(x)

(uλ∗ + 1)2p � lim
λ→λ∗

r
8p

p−1−n

∫
Br(x)

(uλ + 1)2p

� C lim
λ→λ∗

r4 p+1
p−1−n

∫
B2r(x)

(Δuλ)2

� Cr4 p+1
p−1−n

∫
B2r(x)

(Δuλ∗)2.

Here we have used Fatou’s lemma to deduce the first inequality. �
Below we denote u = uλ∗ + 1. Inequality (6.5) implies that∫

Br(x)

u2p � Crn−
8p

p−1 , (6.7)

for any ball Br(x) ⊂ Ω, with the constant C depending only on p and Ω. See for example
the derivation of Eq. (2.16) in [32]. Similarly, u also satisfies (4.3) for any ball BR(x) ⊂ Ω.
Estimate (6.5) will play a crucial role in our proof of the ε-regularity lemma. Note that
both (6.5) and (6.7) are invariant under the scaling for (1.1). These two are also preserved
under various limits (the precise notion of limit will be given below).

To prove the partial regularity of u, first we need the following improvement of decay
estimate.

Lemma 6.2. There exist two universal constants ε0 > 0 and θ ∈ (0, 1), such that if u is
a positive stable solution of (1.1) satisfying the estimate (6.5), and

(2R)4
p+1
p−1−n

∫ [
up+1 + (Δu)2

]
= ε � ε0,
B2R
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then

(θR)4
p+1
p−1−n

∫
BθR

[
up+1 + (Δu)2

]
� ε

2 .

Proof. By rescaling, we can assume R = 1. By (6.5), we have∫
B3/2

u2p � C

∫
B2

[
up+1 + (Δu)2

]
� Cε. (6.8)

By L2 estimates applied to u,

‖u‖W 4,2(B4/3) � C
(∥∥up

∥∥
L2(B3/2)

+ ‖u‖L2(B3/2)
)

� Cε
1

p+1 .

We can choose an r0 ∈ (1, 4/3) so that

‖u‖W 2,2(∂Br0 ) � Cε
1

p+1 . (6.9)

Now take the decomposition u = u1 + u2, where{
Δ2u1 = up, in Br0 ,

u1 = Δu1 = 0, on ∂Br0(0),

and {
Δ2u2 = 0, in Br0 ,

u2 = u, Δu2 = Δu, on ∂Br0(0).

By the maximum principle, Δu1 < 0 and u1 > 0 in Br0(0).
By this decomposition, ∫

Br0

Δu1Δu2 = 0.

Hence ∫
Br0

(Δu)2 =
∫

Br0

(Δu1)2 +
∫

Br0

(Δu2)2.

In particular, ∫
(Δu2)2 � Cε. (6.10)
Br0
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By elliptic estimates for biharmonic functions and (6.9), we have

sup
B1/2

|u2| � C

( ∫
∂Br0

u2 + (Δu)2
)1/2

� Cε
1

p+1 .

Since Δu2 is harmonic, (Δu2)2 is subharmonic in Br0 . By the mean value inequality for
subharmonic functions and (6.10), for any r ∈ (0, r0),

r4 p+1
p−1−n

∫
Br

(Δu2)2 � r4 p+1
p−1 r−n

0

∫
Br0

(Δu2)2 � Cr4 p+1
p−1 ε.

For u1, first by the Green function representation (cf. [13, Section 4.2]), we have

‖u1‖L1(Br0 ) � C
∥∥up

∥∥
L1(Br0 ) � C

(∫
B2

up+1
) p

p+1

� Cε
p

p+1 . (6.11)

Then by L2 estimates using (6.7), we have

‖u1‖W 4,2(Br0 ) � C
(∥∥up

∥∥
L2(Br0 ) + ‖u1‖L1(Br0 )

)
� Cε

1
2 .

By the Sobolev embedding theorem, we have

‖u1‖
L

2n
n−8 (Br0 )

� Cε
1
2 .

Then an interpolation between L1 and L
2n

n−8 gives

‖u1‖L2(Br0 ) � Cε
1
2+2δ,

where δ > 0 is a constant depending only on the dimension n.
Next, by interpolation between Sobolev spaces, we get

‖Δu1‖L2(Br0 ) � ε−δ‖u1‖L2(Br0 ) + Cεδ
∥∥Δ2u1

∥∥
L2(Br0 ) � Cε

1
2+δ.

Multiplying the equation of u1 by u1 and integrating by parts, we get∫
Br0

upu1 =
∫

Br0

(Δu1)2 � Cε1+2δ.

By convexity, there exists a constant depending only on p such that

up+1 � C
(
up+1

1 + |u2|p+1).
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For r ∈ (0, 1/2), which will be determined below,

r4 p+1
p−1−n

∫
Br

up+1 � Cr4 p+1
p−1−n

∫
Br

up+1
1 + Cr4 p+1

p−1−n

∫
Br

|u2|p+1

� Cr4 p+1
p−1−n

∫
Br

(
u + |u2|

)p
u1 + Cr4 p+1

p−1 sup
Br

|u2|p+1

� Cr4 p+1
p−1−n

∫
Br

upu1 + Cr4 p+1
p−1−n

∫
Br

ε
p

p+1u1 + Cr4 p+1
p−1 ε

� Cr4 p+1
p−1−n

∫
Br0

upu1 + Cr4 p+1
p−1−n

∫
Br0

ε
p

p+1u1 + Cr4 p+1
p−1 ε

� Cr4 p+1
p−1−nε1+2δ + Cr4 p+1

p−1−nε
2p

p+1 + Cr4 p+1
p−1 ε.

For (Δu)2, we have

r4 p+1
p−1−n

∫
Br

(Δu)2 � Cr4 p+1
p−1−n

∫
Br

(Δu1)2 + Cr4 p+1
p−1−n

∫
Br

(Δu2)2

� Cr4 p+1
p−1−n

∫
Br0

(Δu1)2 + Cr4 p+1
p−1 r−n

0

∫
Br0

(Δu2)2

� Cr4 p+1
p−1−nε1+2δ + Cr4 p+1

p−1 ε.

Putting these two together, we get

r4 p+1
p−1−n

∫
Br

(Δu)2 + up+1 � Cr4 p+1
p−1−nε1+2δ + Cr4 p+1

p−1−nε
2p

p+1 + Cr4 p+1
p−1 ε.

We first choose r = θ ∈ (0, 1/2) so that

Cθ4 p+1
p−1 � 1

4 .

Then choose an ε0 so that for every ε ∈ (0, ε0),

Cθ4 p+1
p−1−nε1+2δ + Cθ4 p+1

p−1−nε
2p

p+1 � 1
4ε.

By this choice we finish the proof. �
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Remark 6.3. Lemma 6.2 also holds for a sign-changing solution u of (1.1) if it satisfies

r
8p

p−1−n

∫
Br(x)

|u|2p � Cr4 p+1
p−1−n

∫
B2r(x)

[
|u|p+1 + (Δu)2

]
, (6.12)

for any ball B2r(x) ⊂ Ω. For the proof, we need to introduce a new function ū1, which
satisfies {

Δ2ū1 = |u|p, in Br0 ,

ū1 = Δū1 = 0, on ∂Br0(0),

By the maximum principle, ū1 � |u1| � 0. By the same method for u1, we have∫
Br0

|u|pū1 � Cε1+2δ.

We can use this to control |u|p|u1|.

Lemma 6.4. There exist a universal constant ε∗ > 0 and θ ∈ (0, 1), such that if u is a
stable solution of (1.1) satisfying (6.12), and

(2R)4
p+1
p−1−n

∫
B2R(x0)

[
(Δu)2 + |u|p+1] = ε � ε∗,

then u is smooth in BR, and there exists a universal constant C(ε∗) such that

sup
BR(x0)

|u| � C
(
ε∗
)
R− 4

p−1 .

Proof. By choosing a small ε∗ > 0, we can apply Lemma 6.2 to any ball Br(x) with
x ∈ BR(x0) and r � R/4, which says

(θr)4
p+1
p−1−n

∫
Bθr(x)

(Δu)2 + |u|p+1 � 1
2r

4 p+1
p−1−n

∫
Br(x)

[
(Δu)2 + |u|p+1].

Iterating the above implies∫
Br(x)

(Δu)2 + |u|p+1 � Crn−4 p+1
p−1+δ

for any x ∈ B1 and r � 1/8. Here δ > 0 is a constant depending only on ε0
and θ in Lemma 6.2. In other words, u belongs to the homogeneous Morrey space
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Lp+1,n−4 p+1
p−1+δ(B1). Then the Morrey space estimate for biharmonic operator gives the

claim, since Lp+1,n−4 p+1
p−1+δ(B1) ⊂ Lp,n− 4p

p−1+ δp
p+1 (B1), see Appendix A. �

This lemma implies the singular set of u,

S ⊂
{
x: lim inf

r→0
r4 p+1

p−1−n

∫
Br(x)

[
(Δu)2 + |u|p+1] � ε∗

}
.

By a covering argument, this gives a bound on the Hausdorff dimension of the singular
set of u (= uλ∗ + 1)

dimS � n− 4p + 1
p− 1 .

In particular, u is smooth on an open dense set.

6.3. The Federer dimension reduction

In this section we use Federer’s dimension reduction principle (see for example [27])
to prove the sharp dimension estimate on S.

For any x0 ∈ Ω and λ ∈ (0, 1), define the blowing up sequence

uλ(x) = λ
4

p−1u(x0 + λx), λ → 0,

which is also a stable solution of (1.1) in the ball B1/λ(0).
By rescaling (6.7), for all λ ∈ (0, 1) and balls Br(x) ⊂ B1/λ,∫

Br(x)

(
uλ
)2p � Crn−

8p
p−1 .

By elliptic estimates, uλ is uniformly bounded in W 4,2
loc (Rn). Hence, up to a subsequence

of λ → 0, we can assume that uλ → u0 in W 3,2
loc (Rn) and Lp+1

loc (Rn) (by the same proof
of (4.5)). By testing the equation for uλ (or the stability condition for uλ) with smooth
functions having compact support, and then taking the limit λ → 0, we see that u0 is a
stable solution of (1.1) in R

n.
We have

Lemma 6.5. For any r > 0, E(r; 0, u0) = limr→0 E(r;x0, u). So u0 is homogeneous.

Proof. A direct rescaling shows E(r; 0, uλ) = E(λr;x0, u). By the monotonicity of
E(r;x0, u), we only need to show that, for every r > 0,

E
(
r; 0, u0) = lim E

(
r; 0, uλ

)
.

λ→0
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Because uλ is uniformly bounded in W 4,2(Br) and L2p(Br), by the compactness results
in the Sobolev embedding theorems and trace theorems, and interpolation between Lq

spaces (see (4.5)), we have

lim
λ→+∞

∫
Br

(
Δuλ

)2 =
∫
Br

(
Δu0)2,

lim
λ→+∞

∫
Br

(
uλ
)p+1 =

∫
Br

(
u0)p+1

,

uλ → u0 in W 2,2(∂Br).

The last claim implies that those boundary terms in E(r; 0, uλ) converge to the corre-
sponding ones in E(r; 0, u0). Putting these together we get the convergence of E(r; 0, uλ).

Since for any r > 0, E(r; 0, u0) = const., by Corollary 2.1, u0 is homogeneous. �
Here we note that since u satisfies (4.3) for any ball BR(x) ⊂ Ω, so by the same

argument as in the proof of Lemma 4.4, we can prove that E(r;x, u) is uniformly bounded
for all x and r ∈ (0, 1). Since E(r;x, u) is non-decreasing in r, we can define the density
function

Θ(x, u) := lim
r→0

E(r;x, u).

Lemma 6.6.

(1) Θ(x, u) is upper semi-continuous in x;
(2) for all x, Θ(x, u) � 0;
(3) x is a regular point of u if and only Θ(x, u) = 0;
(4) there exist a universal constant ε0 > 0, x ∈ S(u) if and only if Θ(x, u) � ε0.

Proof. By the W 4,2 regularity of u, for any r > 0 fixed, E(r;x, u) is continuous
in x. Θ(x, u) is the decreasing limit of these continuous functions, thus is upper semi-
continuous in x.

If u is smooth in a neighborhood of x, direct calculation shows Θ(x, u) = 0. Since
regular points form a dense set, the upper semi-continuity of Θ gives Θ � 0.

By Lemma 6.4, if x is a singular point, for any r > 0,

∫
Br(x)

(Δu)2 + up+1 � ε∗rn−4 p+1
p−1 .

In other words, for any λ > 0, for the blowing up sequence uλ at x0,
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∫
B1(0)

(
Δuλ

)2 +
(
uλ
)p+1 � ε∗.

Then because uλ → u0 in W 2,2
loc (Rn) ∩ Lp+1

loc (Rn) (see the proof of Lemma 6.5),∫
B1(0)

(
Δu0)2 +

(
u0)p+1 = lim

λ→0

∫
B1(0)

(
Δuλ

)2 +
(
uλ
)p+1

= lim
λ→0

λ−n+4 p+1
p−1

∫
Bλ(0)

(Δu)2 + (u)p+1 � ε∗. (6.13)

Hence u0 is nontrivial, and by Remark 3.2 and Lemma 6.5,

Θ(x, u) = E
(
1; 0, u0) � c(n, p)ε∗.

Here c(n, p) is a constant depending only on p and n.
On the other hand, if Θ(x, u) < c(n, p)ε∗, then by Remark 3.2, for any blow up limit

u0 at x, ∫
B1(0)

(
Δu0)2 +

(
u0)p+1

< ε∗.

Then by the convergence of uλ in W 2,2
loc (Rn) ∩ Lp+1

loc (Rn), for λ sufficiently small,

λ4 p+1
p−1−n

∫
Bλ(x)

(Δu)2 + up+1 =
∫

B1(0)

(
Δuλ

)2 +
(
uλ
)p+1 � ε0.

By Lemma 6.4, u is smooth in Bλ/2(x). Consequently, Θ(x, u) = 0. These finish the
proof of the last two claims. �
Remark 6.7. If limλ→0 u

λ = u0 in some sense (for example, as in the above blowing up
sequence) so that for any x and r > 0, limλ→0 E(r;x, uλ) = E(r;x, u0), then

lim
λ→0

Θ
(
x, uλ

)
� Θ

(
x;u0).

That is, Θ(x;u) is also upper semi-continuous in u.

Remark 6.8. A direct consequence of this upper semi-continuity is the convergence of
S(uλ) for the blow up sequence uλ. In fact, by combining the upper semi-continuity and
the characterization of singular points using the density function Θ, we can show that
given any δ > 0,
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S
(
uλ
)
∩B1 ⊂ δ − neighborhood of S

(
u0),

for all λ small.

To prove Theorem 1.9, we argue by contradiction. So assume that the Hausdorff
dimension of S(u) is strictly larger than n− np. Then by definition, there exists a δ > 0
such that

Hn−np+δ
(
S(u) ∩B1

)
> 0. (6.14)

For a set A ⊂ R
n, define

Hn−np+δ
∞ (A) := inf

{∑
j

(diamSj)n−np+δ, A ⊂
⋃
j

Sj

}
.

Then by [14, Lemma 11.2 and Proposition 11.3], (6.14) implies the existence of a density
point x0 ∈ S(u) ∩B1, that is,

lim sup
r→0

H
n−np+δ
∞ (S(u) ∩Br(x0))

rn−np+δ
> 0. (6.15)

We can preform the blow up procedure at x0 to obtain a homogeneous solution u∞,0
on R

n. With the help of Remark 6.8, we can prove as in [14, Lemma 11.5] to show

Hn−np+δ
∞

(
S(u∞,0) ∩B1(0)

)
� lim sup

r→0

H
n−np+δ
∞ (S(u) ∩Br(x0))

rn−np+δ
> 0, (6.16)

if we choose a suitable sequence λi → 0 in the definition of u∞,0 to achieve the upper
bound in (6.15).

Since n � np, (6.16) implies that S(u∞,0)∩B1(0) contains a point x1 
= 0, which can
also be chosen to be a density point by [14, Proposition 11.3]. Note that the origin 0
always belongs to S(u∞,0) because u∞,0 is homogeneous. This homogeneity also implies
that the ray {tx1: t � 0} ⊂ S(u∞,0), and

Θ(tx1;u∞,0) ≡ Θ(x1;u∞,0) for t > 0.

The main step in the dimension reduction procedure is to blow up once again at x1.
Assume that one limit function is u∞,1 and we have a sequence λi → 0 so that

ui := λ
4

p−1
i u∞,0(x1 + λix) → u∞,1,

where the convergence is understood as before.
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We want to show that u∞,1 is in fact translation invariant in the direction x1, thus
can be viewed as a function defined on R

n−1. This can be achieved by the following
lemma, together with the fact that, for any t ∈ R,

Θ(tx1;u∞,1) � lim sup
i→+∞

Θ(tx1;ui) = lim sup
i→+∞

Θ
(
(1 + tλi)x1;u∞,0

)
= Θ(x1;u∞,0) = Θ(0;u∞,1),

where we have used Lemma 6.5 and Remark 6.7.

Lemma 6.9. Let u ∈ W 2,2
loc (Rn) ∩ Lp+1

loc (Rn) be a homogeneous stable solution of (1.1)
on R

n, satisfying the monotonicity formula and the integral estimate (6.7). Then for any
x 
= 0, Θ(x, u) � Θ(0, u). Moreover, if Θ(x, u) = Θ(0, u), u is translation invariant in
the direction x, i.e. for all t ∈ R,

u(tx + ·) = u(·) a.e. in R
n.

Proof. With the help of the integral estimate (6.7), similar to Lemma 4.4, for any
x0 ∈ R

n,

lim
r→+∞

E(r;x0, u) � C.

And we can define the blowing down sequence with respect to the base point x0,

uλ(x) = λ
4

p−1u(x0 + λx), λ → +∞.

Since u is homogeneous with respect to 0,

uλ(x) = u
(
λ−1x0 + x

)
,

which converges to u(x) as λ → +∞ in W 2,2
loc (Rn) ∩ Lp+1

loc (Rn). Then Lemma 6.5 can be
applied to deduce that

Θ(0;u) = E(1; 0, u) = lim
λ→+∞

E
(
1; 0, uλ

)
= lim

λ→+∞
E(λ;x0, u)

� Θ(x0;u).

Moreover, if Θ(x0;u) = Θ(0, u), the above inequality becomes an equality:

lim
λ→+∞

E(λ;x0, u) = Θ(x0;u).

This then implies that E(λ;x0, u) ≡ Θ(x0;u) for all λ > 0. By Corollary 2.1, u is
homogeneous with respect to x0. Then for all λ > 0,
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u(x0 + x) = λ
4

p−1u(x0 + λx) = u
(
λ−1x0 + x

)
.

By letting λ → +∞ and noting that u(λ−1x0 + ·) are uniformly bounded in W 2,2
loc (Rn),

we see

u(x0 + ·) = u(·) a.e. on R
n.

Because u is homogeneous with respect to 0, a direct scaling shows that Θ(tx0;u) =
Θ(x0;u) for all t > 0, so the above equality still holds if we replace x0 by tx0 for any
t > 0. A change of variable shows this also holds if t < 0. �

We have shown that u∞,1 can be seen as a function defined on R
n−1. It belongs

to W 2,2
loc (Rn−1) ∩ Lp+1

loc (Rn−1), and it is still a weak solution of (1.1). Moreover, the
estimates (6.7) and (6.12) hold for u∞,1. It can also be directly verified that u∞,1 is
stable (by considering test functions ϕ(x1, . . . , xn−1)η(xn) where ϕ ∈ C∞

0 (Rn−1) and
η ∈ C∞

0 (R)).
Similar to (6.16), when u∞,1 is viewed as a function defined on R

n, we have

Hn−np+δ
∞

(
S(u∞,1) ∩B1(0)

)
> 0,

where S(u∞,1) is a cylindrical set in R
n. Then if we view u1 as a function defined on R

n−1,
and by abusing notations, take S(u∞,1) ⊂ R

n−1 as the base of the above cylindrical set,
this means

Hn−1−np+δ
∞

(
S(u∞,1) ∩B1(0)

)
> 0.

We can repeat this reduction procedure until we get a solution u∞,n−np
on R

np , which
satisfies

Hδ
∞
(
S(u∞,n−np

) ∩B1(0)
)
> 0.

In particular, S(u∞,n−np
) cannot be a singleton because δ > 0. By blowing up u∞,n−np

at a point x ∈ S(u∞,n−np
) with x 
= 0, we would get a homogeneous stable solution of

v ∈ W 2,2
loc (Rnp−1)∩Lp+1

loc (Rnp−1), which is nontrivial by (6.13). However, this contradicts
Theorem 3.1. Thus we disprove our initial assumption (6.14) and get the estimate

dimS(u) � n− np.

Finally, we prove the discreteness of S(u) when n = np.
Assume there exists xi ∈ S(u)∩B1, such that xi → x0 but xi 
= x0. Take ri = |x0−xi|

and define

ui(x) = r
4

p−1
i u(x0 + rix).
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After passing to a subsequence of i, we can assume that ui converges uniformly to a stable
homogeneous solution u∞ in any compact set of Rnp . Since zi = (xi − x0)/ri ∈ S

np−1,
we can also assume that zi → z∞ ∈ S

np−1. By Remark 6.7, z∞ ∈ S(u∞). As above, we
can blow up u∞ at z∞ to get a stable homogeneous solution in R

np−1, which contradicts
Theorem 3.1. Thus S(u) must be a discrete set.
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Appendix A. Proof of estimate in Lemma 6.4

Let us use the notation

‖f‖q,γ,Ω = sup
x,r

(
r−γ

∫
B(x,r)∩Ω

|f |q
)1/q

,

Lq,γ(Ω) =
{
u ∈ Lq(Ω): ‖u‖q,γ,Ω < ∞

}
,

where Ω ⊂ R
n is a bounded domain, 0 < γ � n, 1 � q < ∞.

For completeness we give a proof of the following result, which is an adaptation of
[19,21].

Lemma A.1. Assume u is a weak solution of

Δ2u = |u|p−1u in B1(0)

and u ∈ Lp,n−4 p
p−1+δ(B1(0)) for some δ > 0. Then u is bounded in B1/2(0).

We need some preliminaries. Let

Iα(f)(x) =
∫
Rn

|x− y|−n+αf(y) dy.

Lemma A.2. (See [19, Lemma 1].) If f ∈ L1,γ(Rn), 0 < ε < γ and 1 < p < n−ε
n−ε−α , then

∫
Ω

∣∣Iα(f)
∣∣p(x) dx � C diam(Ω)n−ε−(n−α−ε)p

∫
Ω

|f | dx. (A.1)
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Lemma A.3. (See Campanato [1].) Let 0 < γ < n and c > 0. Assume φ : (0, R] → R is a
nonnegative nondecreasing function such that

φ(ρ) � c

(
ρn

rn
φ(r) + rγ

)
for all 0 < ρ � r � R.

Then there is C depending only on n, γ, c such that

φ(ρ) � Cργ
(
φ(r)
rγ

+ 1
)

for all 0 < ρ � r � R.

Lemma A.4. Let v satisfy Δ2v = 0 in BR(0). Then there is C such that

∣∣v(x)
∣∣ � C

Rn

∫
BR(0)

|v| dy for all |x| � 1
2R. (A.2)

Proof. By scaling we can restrict to R = 1 and v ∈ C4(B1(0)). Let η ∈ C∞(Rn) be a
cut-off function with η(x) = 1 for |x| � 2

3 and η(x) = 0 for |x| � 5
6 . Let Γ (x) = cn|x|4−n

be the fundamental solution of Δ2 in R
n, cn > 0. Then

v(x) =
∫

B1\B2/3

v(y)Δ2(Γ (x− y)η(y)
)
dy for |x| � 1

2

and (A.2) follows. �
Proof of Lemma A.1. Let R1 < 1 (close to 1), |x| < R1 and 0 < r < 1−R1

2 . Let
u1 = Γ ∗ (|u|p−1uχBr(x)) where Γ (x) = cn|x|4−n is the fundamental solution of Δ2

in R
n, cn > 0, and χBr(x) is the indicator function of Br(x). Let u2 = u − u1. Then

Δ2u2 = 0 in Br(x). By (A.2)

∣∣u2(z)
∣∣ � C

rn

∫
Br(x)

|u2| for z ∈ Br/4(x).

Let y ∈ Br/4(x) and 0 < ρ < r
4 . Integrating in Bρ(y) and using Hölder’s inequality

∫
Bρ(y)

|u2|p � C

(
ρ

r

)n ∫
Br(x)

|u2|p.

Therefore ∫
|u|p � C

∫
|u1|p + C

(
ρ

r

)n ∫
|u2|p
Bρ(y) Bρ(y) Br(x)
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� C

(
ρ

r

)n ∫
Br(x)

|u|p + C

∫
Br(x)

|u1|p. (A.3)

Let γ0 = n − 4 p
p−1 + δ. Using (A.1) with α = 4, γ = γ0 and ε a number such that

n− 4 p
p−1 < ε < γ0 we have

∫
Br(x)

|u1|p � Crn−ε−(n−4−ε)p
∫

Br(x)

|u|p.

Then, combining with (A.3) we obtain∫
Bρ(y)

|u|p � C

(
ρ

r

)n ∫
Br(x)

|u|p + Crn−ε−(n−4−ε)p
∫

Br(x)

|u|p

� C

(
ρ

r

)n ∫
Br(x)

|u|p + Crn−ε−(n−4−ε)p+γ0

for any y ∈ Br/4(x), 0 < ρ < r
4 . We have the validity of the inequality for 0 < ρ � r,

possibly increasing C. Using the lemma of Campanato (Lemma A.3),∫
Bρ(y)

|u|p � Cρn−ε−(n−4−ε)p+γ0

for 0 < ρ � r, which shows that u ∈ Lp,γ1(BR1) where R1 < 1 can be chosen arbitrarily
close to 1, and γ1 = n−ε−(n−4−ε)p+γ0 can be chosen arbitrarily close to n− 4p

p−1 +δp.
In particular we can choose γ1 > γ0. Repeating the process, we can find a decreasing
sequence Ri → 4

5 and an increasing sequence γi → n − 4 such that u ∈ Lp,γi(BRi
).

Then by Lemma A.2 u ∈ Lq(B3/4(0)) for all q > 1 and by standard elliptic regularity
u ∈ L∞(B1/2). �
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