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Recently, a very general and novel class of implicit bodies has been developed to describe the elastic
response of solids. It contains as a special subclass the classical Cauchy and Green elastic bodies. Within
the class of such bodies, one can obtain through a rigorous approximation, constitutive relations for the
linearized strain as a nonlinear function of the stress. Such an approximation is not possible within clas-
sical theories of Cauchy and Green elasticity, where the process of linearization will only lead to the clas-
sical linearized elastic body.

In this paper, we study numerically the states of stress and strain in a finite rectangular plate with an
elliptic hole and a stepped flat tension bar with shoulder fillets, within the context of the new class of
models for elastic bodies that guarantees that the linearized strain would stay bounded and limited
below a value that can be fixed a priori, thereby guaranteeing the validity of the use of the model. This
is in contrast to the classical linearized elastic model, wherein the strains can become large enough in
the body leading to an obvious inconsistency.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, a new class of implicit constitutive relations was
introduced to describe the response of elastic bodies (see Rajag-
opal, 2003, 2007, 2011b, Rajagopal and Srinivasa, 2007, 2009 and
Bustamante, 2009). This new class includes the explicit theories
of Cauchy elasticity and Green elasticity as special subclasses.
The advantages that such models provide over the classical models
are detailed in several papers (Rajagopal, 2011b,a; Bustamante and
Rajagopal, 2010) and hence we shall not repeat them here. Suffice
it is to say that very important problems such as the problem of
fracture, which has defied a proper consistent explanation without
resorting to ad hoc procedures (see Rajagopal and Walton, 2011,
Kulvait et al., 2013, Ortiz et al., 2012, and Bulíc̆ek et al., 2013 with
regard to how the problem is dealt within the context of the new
class of models) and the modeling of certain phenomena exhibited
by soft material that has hitherto defied explanation within the
context of classical models (see the discussion in Freed and
Einstein (2013a,b); Freed et al., 2013) are some examples of the
potential of the new class of implicit constitutive relations. The
class of implicit models has also been extended to develop models
to describe the electroelastic response of bodies and it has been
able to describe phenomena that have thus far been impossible
to explain within the context of classical electroelastic theories
(see Bustamante and Rajagopal, 2013b,a).

Another special subclass of the implicit models for elasticity
introduced by Rajagopal (2003) is explicit models for the stretch
in terms of the stress (see Rajagopal, 2007, 2011b) and its lineari-
zation that leads to an explicit nonlinear expression for the linear-
ized strain in terms of the stress. The latter class of models is
impossible within the context of classical theories of elasticity
and this paper is concerned with a study of such models (see the
model defined through (15)). When one is concerned with consti-
tutive relations for the Cauchy–Green stretch or the linearized
strain in terms of the stress, one does not have the luxury of substi-
tuting the expression for the stress in terms of the displacement
gradient into the balance of linear momentum and obtaining a
partial differential equation for the displacement field. Instead,
the constitutive relation, the balance of linear momentum, and
whatever other balance laws are relevant, need to be solved simul-
taneously; hence the stress and displacement fields are both un-
knowns that need to be solved for. This system of coupled
nonlinear partial differential equations is far more daunting than
the much simplified system that is obtained when an explicit
expression for the stress in terms of the displacement gradient
can be substituted into the balance of linear momentum. In this
study, we are concerned with an explicit expression for the linear-
ized strain in terms of the stress and hence concerned with the
more complex system of coupled partial differential equations.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.11.014&domain=pdf
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mailto:aortizb@ing.uchile.cl
http://dx.doi.org/10.1016/j.ijsolstr.2013.11.014
http://www.sciencedirect.com/science/journal/00207683
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Though the system is complicated in that the number of equations
to be solved is larger, the order of the equations within the purview
of the new framework is a system of lower order equations and
thus from the point of view of numerical analysis provides some
advantages.

Most of the studies until recently have been concerned with
special boundary value problems, in infinite domains, wherein
semi-inverse assumptions are made to reduce the problem to the
study of much simplified governing equations, which in most in-
stances is a system of ordinary differential equations. In this paper,
we shall study problems in finite domains and as it is unlikely that
we can simplify the problem to obtain simpler ordinary differential
equations, we shall have to study the problem numerically. We
will study two problems, that of the stress concentration due to
the presence of an elliptic hole and that of the stress concentration
in a stepped flat tension bar with shoulder fillets, within the con-
text of the new class of models. The first of the two problems
has relevance to the problem of stress concentration due to a crack
as such a situation can be achieved by taking the limit of the ratio
of the minor axis to the major axis of the elliptic hole to tend to
zero.

The organization of the paper is as follows. In Section 2, we
introduce the basic kinematics, document the general implicit con-
stitutive relation between the stress and the stretch for isotropic
bodies, and derive a special constitutive relation for the linearized
strain in terms of the stress under the assumption that the dis-
placement gradient is small. We then record some special constitu-
tive expressions for the linearized strain in terms of the stress and
develop the system of governing equations that need to be solved.
In Section 3, the necessary weak and linearized weak forms are
presented and the linearized weak form is discretized using the fi-
nite element method. The computational method and algorithms
are discussed in Section 4. Finally, Section 5 is devoted to a discus-
sion of the numerical results. In the case of the problem of a plate
with an elliptic hole subjected to tension with the applied tension
being perpendicular to the major axis, we find (as is to be ex-
pected) that the strains are maximum at the vertices along the ma-
jor axis; however they remain bounded below the value for which
the linearization is valid even as the stress increases. In the case of
the stepped flat tension bar with shoulder fillets, the strain is max-
imum at the shoulder but once again remains below the value that
guarantees the validity of the linearization.

Unlike the classical linearized model which leads to ever
increasing strains that make the model that is being used invalid,
the current study is a consistent approach that guarantees that
the model that is being used is applicable throughout the domain
of application of the model. This fact cannot be overemphasized.

2. Basic equations

2.1. Kinematics

Let X 2 B denote a point in an abstract body B and X ¼ jðXÞ the
position of X in the reference configuration jrðBÞ; we assume there
exists a one-to-one function v referred to as the motion of the body
such that x ¼ vðX; tÞ, where x is the position of X in the current
configuration jtðBÞ at time t.

The deformation gradient F and the right and the left Cauchy–
Green strain tensors, C and B, are defined as

F ¼ @x
@X

; C ¼ FTF; B ¼ FFT; ð1Þ

respectively. The displacement field u is defined through

u ¼ x� X: ð2Þ
Finally, the Green–St. Venant strain (E) and the linearized strain (e)
are defined through

E ¼ 1
2
ðFTF� IÞ; e ¼ 1

2
½ruþ ðruÞT�: ð3Þ

In this work, we consider the case kruk � OðdÞ with d� 1 and
thus the relevant strain measure is the linearized strain. Hence, the
current and the reference configuration are coincident.

2.2. Equilibrium equation and constitutive relations

In this paper, we study quasi-static problems in the absence of
body forces. The equilibrium equation in terms of the Cauchy
stress tensor r is

divr ¼ 0: ð4Þ

For elastic bodies, Rajagopal (2003, 2007) proposed an implicit con-
stitutive relation of the form

f ðB;r;qÞ ¼ 0; ð5Þ

where q is the density of the body. For isotropic bodies, (5) becomes

a0Iþ a1Bþ a2B2 þ a3rþ a4r
2 þ a5ðBrþ rBÞ þ a6ðBr2 þ r2BÞ

þ a7ðB2rþ rB2Þ þ a8ðB2r2 þ r2B2Þ ¼ 0; ð6Þ

where ai (i ¼ 0;1;2; . . . ;8) are scalar functions that depend on the
invariants

trB; trB2; trB3; trr; trr2; trr3; trðBrÞ; trðB2rÞ; trðr2BÞ; trðB2r2Þ;

and the density q. For kruk � OðdÞ with d� 1,

B � Iþ 2e: ð7Þ

On the other hand, using a Taylor expansion in Cartesian coordi-
nates around e ¼ 0 and assuming that ai (i ¼ 0;1;2; . . . ;8) does
not depend explicitly on q, the following approximation holds:

aiðr;BÞ � aiðr; Iþ 2eÞ � aiðrÞ þ
@ai

@ekl

����
ðr;e¼0Þ

e ði ¼ 0;1; . . . ;8Þ: ð8Þ

On substituting (7) and (8) into (6), the following implicit relation is
obtained for terms up to order d:

@0Iþ @1eþ @2rþ @3r
2 þ @4erþ @5reþ @6er2 þ @7r

2e

þ ði0kl
eklÞIþ ði1kl

eklÞrþ ði2kl
eklÞr2 ¼ 0; ð9Þ

where @m ¼ @mðrÞ (m ¼ 0;1; . . . ;7) and inkl
¼ inkl

ðrÞ (n ¼ 0;1;2)
are (in general) nonlinear scalar and tensor functions of the Cauchy
stress tensor r. Under certain conditions, (9) can be solved for e. A
simple method to find such conditions is the following. On defining
the vector � ¼ e11; e22; e33;2e12;2e13;2e23ð ÞT, (9) can be written as the
vector equation

M� ¼ d; ð10Þ

where the matrix M ¼ M6�6 and the vector d ¼ d6�1 depend (in gen-
eral nonlinearly) on r. For brevity, the explicit form of M is not
shown here. If det M – 0, then � ¼ M�1d can be computed. For
isotropic bodies, (5) can be used to obtain the nonlinear relation
(Bustamante and Rajagopal, 2010; Bustamante, 2009)

e ¼ gðrÞ: ð11Þ

For an isotropic body that is described by the classical linearized
constitutive relation, the function gðrÞ is

gðrÞ ¼ 1
E
r� m

E
ðtrrÞI; ð12Þ
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where E and m are the Young modulus and the Poisson ratio,
respectively.

In bodies defined by implicit constitutive relations, the Helm-
holtz potential can depend on both the stress and the strain (see
Rajagopal, 2003, Freed and Einstein, 2013a). When the explicit
relation for the stretch B in terms of the stress is considered, a po-
tential akin to the complementary potential in classical linearized
elasticity theory is obtained. In this work, we consider such a scalar
function (Bustamante, 2009) W ¼WðrÞ such that gðrÞ ¼ @W=@r.
For isotropic bodies, W is a function of the invariants

I1 ¼ trr; I2 ¼
1
2

trðr2Þ; I3 ¼
1
3

trðr3Þ: ð13Þ

In Bustamante and Rajagopal (2011) and Ortiz et al. (2012), the fol-
lowing choice was made for the stored energy:

WðI1; I2Þ ¼ �a I1 �
1
b

lnð1þ bI1Þ
� �

þ ac
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2iI2

p
; ð14Þ

where a; b; c and i are material constant parameters. On substitut-
ing (14) into (11) leads to

e ¼ �a 1� 1
ð1þ bI1Þ

� �
Iþ acffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2iI2
p r: ð15Þ

The main feature of W in (14) is that a strain limiting behavior is
exhibited for appropriate values of the material constant parame-
ters a; b; c and i. As pointed out by Ortiz et al. (2012), these param-
eters should be obtained from experimental data for materials that
exhibit strain limiting behavior and the data corroborated against
experiments. In our current work, the material parameters are se-
lected arbitrarily with a view towards determining the versatility
or usefulness of these new constitutive relations for elastic bodies.
2.3. Uniaxial tension

Results for a uniaxial tension of a bar are provided to demon-
strate the response of an elastic body that is described by the con-
stitutive relation (15). For uniform tension r applied to the bar, the
longitudinal strain is e ¼ a½�1þ 1=ð1þ brÞ þ cr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ir2
p

�. The
following material parameters are chosen:

a ¼ 10�9; b ¼ 10�3 1
Pa
; c ¼ 10

1
Pa
; i ¼ 10�11 1

Pa2 :

The elastic response of the bar is depicted in Fig. 1.
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Fig. 1. Elastic response of a bar under uniaxial tension. The stresses are in Pa.
In the uniaxial tension problem, the parameter i was observed
to have the most significant influence with regard to the response
of the elastic body.
2.4. Boundary value problem

Consider an elastic body B defined by an open bounded
domain jtðBÞ � R3 with boundary @jtðBÞ such that
@jtðBuÞ [ @jtðBtÞ ¼ @jtðBÞ and @jtðBuÞ \ @jtðBtÞ ¼ ;. The position
of a point x 2 B is x 2 jtðBÞ. A displacement field u is sought such
that

divr ¼ 0; ð16aÞ

where r has to be found from

e ¼ @W
@r

; where e ¼ 1
2
ruþ ðruÞT
h i

: ð16bÞ

In (16b), @W=@r is in general a nonlinear function of r. The bound-
ary conditions are

u ¼ û on @jtðBuÞ; rn ¼ t̂ on @jtðBtÞ; ð16cÞ

where û is an imposed displacement field and t̂ is a prescribed
traction.

The foregoing boundary value problem possess exact solutions
only for some simple cases (e.g., Bustamante and Rajagopal,
2011, 2012; Rajagopal, 2011b; Rajagopal and Walton, 2011), and
presents challenges for the numerical analyst not only because
(11) is in general a nonlinear function, but also because the stress
r has to be calculated by inversion of (11), if the function is invert-
ible. In general, the study of implicit equations of the form (6) is
much more daunting as the balance of mass and linear momentum
need to be solved simultaneously with the constitutive equation. In
this case, we have to consider as many as ten coupled nonlinear
partial differential equations. An additional issue that needs to be
taken into account is that g (or W) should be such that
kek � OðdÞ; d� 1 (indeed, kruk � OðdÞ; d� 1).
3. Finite element method

The solution of the boundary value problem (16) by the finite
element method requires a weak form. To this end, we use the
principle of virtual work. The following notations are introduced
for readability of the weak form:

jtðBÞ ¼ X; @jtðBÞ ¼ C; @jtðBuÞ ¼ Cu; and @jtðBtÞ ¼ Ct:
3.1. Weak form

Consider trial functions uiðxÞ 2 U � H1ðXÞ and test functions
duiðxÞ 2 V 	 H1

0ðXÞ ði ¼ 1;2;3Þ, where H1ðXÞ is the Sobolev space
of functions with square-integrable first derivatives in X, and
H1

0ðXÞ is the Sobolev space of functions with square-integrable first
derivatives in X and vanishing values on the essential boundary Cu.
The weak form (principle virtual work) associated with (16) reads
(see for instance Zienkiewicz and Taylor, 2000):

Findui 2 Usuch thatZ
X

deijrij dX�
Z

Ct

duit̂i dC ¼ 0 8 dui 2 V; ð17Þ

where rij is obtained by inversion of the nonlinear implicit relation
(11).
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3.2. Linearized weak form

Due to the implicit relationship between the strain and the Cau-
chy stress tensors the weak form becomes nonlinear. The lineariza-
tion of the weak form can be constructed by approximating the
stress field as a two-term Taylor series expansion,
rðkÞ � rðk�1Þ þ @r

@e

��
ðk�1ÞDeðkÞ, which yieldsZ

X
deij

@rij

@ekl

����
ðk�1Þ

DeðkÞkl dX ¼
Z

Ct

duit̂i dC�
Z

X
deijrðk�1Þ

ij dX; ð18Þ

where DeðkÞ is the strain increment associated with an increment in
u, namely Du, from the step k� 1 to the step k. Note that in (18),
@r=@e is the elasticity tensor and is implicitly computed as

Cijkl ¼
@rij

@ekl
where

@r
@e
¼ @g

@r

� ��1

: ð19Þ

The equality in (19) was obtained by deriving e ¼ gðrÞ with respect
to e and assuming invertibility of the fourth order tensor @g=@r. On
using (19) along with (15) leads to the following elasticity tensor:

C�1� 	
ijkl ¼

�ab
ð1þ bI1Þ

dijdkl �
aci

ð1þ 2iI2Þ3=2 rijrkl þ
ac

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2iI2
p

�ðdikdjl þ djkdilÞ: ð20Þ
2L

2L

σ∞

σ∞

2a

2b

x1

x2

Fig. 2. Plate with an elliptic hole under uniaxial tension.
3.3. Discrete linearized weak form

Let the arbitrary test (duðeÞh ) element function and the trial
(DuðeÞh ) element function be

duðeÞh ðxÞ ¼
Xn

I¼1

NIðxÞduðeÞI ; ð21aÞ

DuðeÞh ðxÞ ¼
Xn

I¼1

NIðxÞDuðeÞI ; ð21bÞ

where NI ’s are the finite element shape functions and n is the num-
ber of nodes per elements. On using (21), the virtual strains become

de ¼ 1
2

Xn

I¼1

duðeÞI 
rNI þrNI 
 duðeÞI

h i
; ð22Þ

whereas the strain increment

De ¼ 1
2

Xn

I¼1

DuðeÞI 
rNI þrNI 
 DuðeÞI

h i
: ð23Þ

After appealing to the arbitrariness of nodal test functions, assem-
bling the element contributions into the global system, and apply-
ing boundary conditions (tractions and displacements) in
increments Dt, the following Newton–Raphson scheme is obtained:

tþDtKðn�1ÞDuðnÞ ¼ tþDtF� tþDtTðn�1Þ; ð24Þ

where K is the global tangent stiffness matrix, F and T are the exter-
nal and internal global nodal force vectors, respectively, and Du is
the column vector that contains all the displacement degrees of
freedom of the finite element mesh. On the other hand, t þ Dt de-
notes the incremental approach where a solution is known at dis-
crete time t and the solution at discrete time t þ Dt is sought.
Finally, n stands for the equilibrium iterations within an increment.
The element contributions are provided in Section 4.

4. Computational implementation

The numerical implementation of the nonlinear theory of
implicit elasticity introduces subtle changes into a standard finite
element code. The problem at hand is tackled through a
Newton–Raphson scheme. The Newton–Raphson algorithm is
given in Box 3.1, where maxit stands for the maximum iterations
permitted, tol� 1 is a preset Newton’s tolerance, nsteps are the
number of load steps, rðeÞ is the stress in the element in vector
Voigt notation, and �ðeÞ the strain in the element in vector Voigt
notation. To perform the assembly of the element contributions
into the global discrete system, the element tangent stiffness
matrix and the external and internal element nodal force vectors
need to be established. The development of the same is presented
in the following subsections, where the plane stress case is consid-
ered and 4-node quadrilateral elements are used.
Box 3.1: Newton–Rahpson Solution algorithm.

� INPUT geometry, material parameters: a; b; c; i, and solu-

tion parameters: maxit, tol, nsteps

� INITIALIZE u ¼ 0;Du ¼ 0;rðeÞ ¼ �ðeÞ ¼ 0 for all elements

� LOOP over load steps: step = 1 to nsteps
� INITIALIZEerror ¼ 1:0; nit ¼ 0; factor ¼ step=nsteps

� WHILE (error > tol) and (nit < maxit)


 nit ¼ nitþ 1

 FIND K by assembly of the element matrix KðeÞ rðeÞ

� 	

 FIND F by assembly of the element vector FðeÞ


 FIND T by assembly of the element vector TðeÞ rðeÞ
� 	


 FIND R ¼ factor� F� T


 APPLY essential boundary conditions


 SOLVE Du ¼ K�1R


 UPDATE u ¼ uþ Du


 UPDATE error ¼
ffiffiffiffiffiffiffiffiffi
Du
Du

u
u

q
� END WHILE

� END LOOP
4.1. Stress and strain in the element

For plane stress, the stress and strain in the element in vector
Voigt notation are

�ðeÞ ¼ eðeÞ11 eðeÞ22 2eðeÞ12


 �T
ð25Þ

and

rðeÞ ¼ rðeÞ11 rðeÞ22 rðeÞ12


 �T
; ð26Þ

and they are computed incrementally at a given Gauss point at the
Cartesian coordinate xr as follows:

�ðeÞp ðxrÞ ¼ �ðeÞp�1ðxrÞ þ D�ðeÞp ðxrÞ ð27Þ



Table 1
Ratio a=b for the plate with an elliptic hole.

a=b 1 1=2 1=10 1=20
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for the strain in the element, and

rðeÞp ðxrÞ ¼ rðeÞp�1ðxrÞ þ DrðeÞp ðxrÞ ð28Þ

for the stress in the element. In (27) and (28), p starts from 1 before
the Newton–Rahpson loops initiate. When p ¼ 1 it means that the
element at the given Gauss point is free of stress and strain, which
is part of the second instruction in the algorithm given in Box 3.1.
The increments that are involved in the foregoing equalities can
be expressed as

D�ðeÞp ðxrÞ ¼
X4

I¼1

B
ðeÞ
I ðxrÞDu

ðeÞ
I ð29Þ

and

DrðeÞp ðxrÞ ¼ CðxrÞD�ðeÞp ðxrÞ; ð30Þ

where

B
ðeÞ
I ðxrÞ ¼

NI;1ðxrÞ 0

0 NI;2ðxrÞ

NI;2ðxrÞ NI;1ðxrÞ

0
BB@

1
CCA ð31Þ

is the element nodal strain matrix, and

Du
ðeÞ
I ¼

DuðeÞI1

DuðeÞI2

 !
ð32Þ

is the element nodal displacement increment. Finally, C is the elas-
ticity tensor in Voigt notation, which for plane stress is obtained
from (20) as

C ¼

C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

0
BB@

1
CCA: ð33Þ
Fig. 3. Mesh for a quarter of the plate with an elliptic hole with a=b ¼ 1=2.
4.2. Internal element nodal force vector

The internal element nodal force vector is expressed as

TðeÞ ¼
Z

XðeÞ
B
ðeÞ
1 B

ðeÞ
2 B

ðeÞ
3 B

ðeÞ
4


 �T
rðeÞ dX; ð34Þ

where rðeÞ is computed as described in Section 4.1 and the integral
is numerically solved using Gauss quadrature. The algorithm to
compute the internal element nodal force vector is presented in
Box 3.2, where store instruction means that the quantities need to
be saved outside the Newton–Raphson loop for future usage.
Box 3.2: Internal element nodal force vector.

� LOOP over element Gauss points
� FIND rðeÞ at the current Gauss point:


 FIND C rðeÞ
� 	


 FIND D�ðeÞ


 FIND DrðeÞ C; D�ðeÞ
� 	


 UPDATE and STORE �ðeÞ ¼ �ðeÞ þ D�ðeÞ


 UPDATE and STORE rðeÞ ¼ rðeÞ þ DrðeÞ
� FIND TðeÞ rðeÞ

� 	
� END LOOP
Fig. 4. Detail of the mesh near the point x1 ¼ b; x2 ¼ 0 of the elliptic hole with
a=b ¼ 1=2.
4.3. External element nodal force vector

The external element nodal force vector is computed to be
FðeÞ ¼
Z

CðeÞt

NðeÞ1 NðeÞ2 NðeÞ3 NðeÞ4


 �T
t̂ðeÞ dC; ð35Þ

where NI (I ¼ 1;2;3;4) is the shape function for a 4-node quadrilat-

eral element, and t̂ðeÞ ¼ ð̂tðeÞ1 t̂ðeÞ2 Þ
T

denotes the traction vector applied
on an element’s edge that is part of the traction boundary. The inte-
gral in (35) is also numerically computed using Gauss quadrature.

4.4. Element tangent stiffness matrix

The element tangent stiffness matrix is calculated to be

KðeÞ ¼
Z

XðeÞ
B
ðeÞ
1 B

ðeÞ
2 B

ðeÞ
3 B

ðeÞ
4


 �T
C B

ðeÞ
1 B

ðeÞ
2 B

ðeÞ
3 B

ðeÞ
4


 �
dX;

ð36Þ

where the integral is numerically evaluated using Gauss quadra-
ture. The algorithm for the element tangent stiffness matrix is pro-
vided in Box 3.3, where store instruction means that the quantities
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need to be saved outside the Newton–Raphson loop for future
usage.
Box 3.3: Element tangent stiffness matrix.

� LOOP over element Gauss points
� FIND rðeÞ at the current Gauss point:


 FIND C rðeÞ
� 	


 FIND D�ðeÞ


 FIND DrðeÞ C; D�ðeÞ
� 	


 UPDATE and STORE �ðeÞ ¼ �ðeÞ þ D�ðeÞ


 UPDATE and STORE rðeÞ ¼ rðeÞ þ DrðeÞ
� FIND CðrðeÞÞ
� FIND KðeÞðCÞ

� END LOOP
5. Numerical examples

In this section, the use of constitutive equations that admit un-
bounded stresses while strains remain small is demonstrated via
Fig. 5. Contour plot of r22 in MPa near th

Fig. 6. Contour plot of e22 near the po
two numerical examples. To this end, the constitutive relation
(15) is adopted.

In all the computations, the following material constants are
used:

a ¼ 10�9; b ¼ 10�3 1
Pa
; c ¼ 10

1
Pa
; i ¼ 10�11 1

Pa2 :

These values differ from those used in Ortiz et al. (2012) (see Eq.
(19) therein). The new values of the parameters were chosen to en-
sure convergence of the Newton–Raphson loops in the examples
considered in the present paper.

5.1. Plate with an elliptic hole subjected to uniaxial tension

In this example, a plate with an elliptic hole that is subjected to
uniaxial tension is studied (see Fig. 2). Due to symmetry, only a
quarter of the plate is considered. The following values for b; L
and r1 are chosen for the computations:

b ¼ 0:1m; L ¼ 1m; r1 ¼ 105 Pa and 104 Pa;

where, for convergence of the Newton–Raphson loop, two different
values for r1 were considered. Table 1 contains the ratio of the
e point x1 ¼ b; x2 ¼ 0 for a=b ¼ 1=2.

int x1 ¼ b; x2 ¼ 0 for a=b ¼ 1=2.
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Fig. 7. Normalized stress and normalized strain as functions of �x1. Stresses and strains are measured on the line x2 ¼ 0; b 6 x1 < L as b x1.
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Fig. 8. Normalized stresses and normalized strains as functions of ðx1 � bÞ=b.
Results for a plate with an elliptic hole using the classical linearized elasticity
theory.

Table 2
Concentration factors for the plate with an elliptic hole under uniaxial tension.

a=b 1 1=2 1=10 1=20

Nonlinear case rg
r1

3.09 6.98 148 356

(from Fig. 7) eg
eg1

2.41 3.33 21.5 35.2

Linear case Eq. (38) 3 5 21 41
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semi-minor axis (denoted by a) to the semi-major axis (denoted by
b) of the elliptic holes that were considered in our analyses.
The purpose of this example is to study the qualitative proper-
ties of e22 and r22 along the line x2 ¼ 0; b 6 x1 < L as b x1.

A mesh of 4-node quadrilaterals is depicted in Fig. 3 for a quar-
ter of the plate with a=b ¼ 1=2. The mesh consists of 835 elements
and 898 nodes. Fig. 4 provides a detailed view of the mesh near the
point x1 ¼ b; x2 ¼ 0 of the elliptic hole.

The numerical results for r22 and e22 are shown in Figs. 5 and 6
for a=b ¼ 1=2 and r1 ¼ 105 Pa. Note that the distributions for r22
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and e22 differ from each other in the sense that the stress
concentrates more around the point x1 ¼ b; x2 ¼ 0 than does the
strain.

To investigate how stresses and strains behave for different
values of the ratio a=b, consider the results presented in Fig. 7,
where the following normalized quantities are plotted:
�x1 ¼
x1 � b

b
; �r22 ¼

r22

r1
; �e22 ¼

e22

e221
: ð37Þ
L1L2

σ∞

2a2b

r

r

(a) (b)

x1

x2

A

Fig. 9. Stepped flat tension bar with shoulder fillets.

Table 3
Values for the radius of the shoulder fillet, in meters.

r 0:04 0:02 0:01 0:004 0:002
It is worth observing that the strain is a non-dimensional quantity.
The normalized strain has been considered to recognize that
the presence of a hole can lead to an increase (concentration) in
the strain field. However, one should bear in mind that although
the normalized strain may increase, the absolute strain yet
remains small, and more importantly, within the values used for
linearizing the strain. In (37), e221 is the component e22 evaluated
where the stress r1 is prescribed. The results shown in Fig. 7
suggest that the rate at which the stress increases toward �x ¼ 0
is larger than the rate at which the strain does. Moreover, the
difference between the rates increases as a=b gets smaller.
Additionally, a stress concentration factor of approximately 350
is observed in Fig. 7(d), whereas for the strain the factor is below
50. This response is expected for an elastic body that is described
by a constitutive relation wherein the strains remain small irre-
spective of the value of the stress.

As a comparison, an exact solution for the plate with an elliptic
hole with L=a!1 and L=b!1 is presented in Fig. 2 in the case of
the classical linearized elastic solid. The solution in terms of the
elliptic coordinates n;g (Timoshenko and Goodier, 1970) is a
lengthy expression that depends on n; g; c; n0 and r1, which for
brevity we do not show here. But we will provide plots for rn

and rg for the line x2 ¼ 0; b 6 x1 < L (i.e., for g ¼ 0) and
a=b ¼ 1=10. In Fig. 8, plots for the normalized stress components
rg=r1 and rn=r1 are depicted. If the exact solution for a linear
elastic isotropic body is replaced in (12), it can be shown that the
behavior of the normalized strains eg=eg1 ; en=en1 matches the
behavior of the normalized stresses as x1 ! b. From p. 193 of
Timoshenko and Goodier (1970), the stress concentration factor
rg=r1 evaluated at x1 ¼ b is
rg

r1
¼ 1þ 2

b
a
; ð38Þ
Fig. 10. Mesh used for the stepped flat tension bar with shoulder fillets of r ¼ 0:02.

Fig. 11. Detail of the mesh at the shoulder fillet of the stepped flat tension bar with
r ¼ 0:02.
which would be the same for eg=eg1 . Now, an approximate model of
a plate with a crack under a traction field that is sufficiently far
away (i.e., a crack under mode I) is obtained for a� b. On using
(38), r22ðx1 ! bÞ=r1 ¼ rg=r1 ! 1 if a=b! 0 . The same behavior
would be observed for e22=e221 , which is physically impossible for
linearized elastic bodies. On the contrary, with the use of constitu-
tive relations of the form given in (11), appropriate expressions of g
can be found such that the stresses are large (possibly unbounded)
while strains remain small as x1 ! b irrespective of the value of the
stress.

Table 2 summarizes the approximate concentration factors that
are inferred from the numerical results of Fig. 7. The reference val-
ues obtained from (38) for the classical theory of elasticity are also
provided for comparison. We once again observe that one should
not conclude erroneously that the strains are becoming large by
simply judging from the values of the normalized strain given for
the nonlinear model in Table 2. This is not the case; the strains re-
main limited within the bounds for which linearization is valid.
The normalized strain essentially is the ratio of two strains, both
of which are sufficiently small, but one much larger than the other.
5.2. Stepped flat tension bar with shoulder fillets

In this example, the elastic response of a stepped flat tension
bar with shoulder fillets (Young and Budynas, 2002; Pilkey,
1997) is studied. This plane stress problem is depicted in
Fig. 9(a), where a uniform tension r1 is applied on the right side
of the plate, while the left edge is fixed in the axial direction. The
radius of the shoulder fillet is denoted by r. For r ¼ 0, unbounded
stresses and strains would be predicted in the shoulder fillet by
the classical linearized theory of elasticity, thereby contradicting
the assumption within which the model is derived. A detailed view
of the shoulder fillet is shown in Fig. 9(b).

The following dimensions are assumed for the stepped flat ten-
sion bar:
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a ¼ 0:5m; b ¼ 1m; L1 ¼ 0:5m; L2 ¼ 0:5m;

r1 ¼ 105 Pa and 5� 104 Pa;

whereas the values for r are presented in Table 3.
Due to symmetry, only a half of the plate is considered.

Figs. 10 and 11 provide details of the mesh used for the plate
with r ¼ 0:02. Contour plots for r11 and e11 are presented in
Figs. 12 and 13 for the plate with r ¼ 0:02. From these figures,
a high stress concentration is observed near the shoulder of
the fillet. The results show that the strain tends to be bounded
as the stress increases. Furthermore, consider the results shown
in Fig. 14, where �e11 and �r11 are plotted as functions of �x1 for an
horizontal line (see Fig. 9(a)) defined by x2 ¼ a; L2 < x1 < L1 þ L2.
The normalized strain (�e11) and the normalized stress (�r11) are
defined as in (37), whereas the normalized distance is
�x1 ¼ ðx1 � L2Þ=r. In Fig. 14, �e11 and �r11 are measured along the
line that defines the shoulder fillet starting at point A (see
Fig. 9(b)), then toward the right. However, only the position x1

along this line is used to compute �x1. Exact solutions for the
stepped flat tension bar with shoulder fillets are not available.
However, approximate expressions for the stress concentration
Fig. 12. Contour plot for r11 MPa

Fig. 13. Contour plot for e11 ne
factor can be found, for instance, in Table 17.1 on p. 784, Sec-
tion 50 of Young and Budynas (2002); Figure 106, chapter 3 of
Timoshenko and Goodier (1970); Chart 3.1 on p. 150 of Pilkey
(1997); and in the original work of Weibel (1934).

In the plots presented in Fig. 14, the concentration of stresses
and strains occurs near the normalized position �x1 ¼ 0:5, which
is the location of a point near the middle of the shoulder fillet.
The same is inferred from the contour plots presented in Figs. 12
and 13.

The results shown in Fig. 14 suggest that the rate at which
the stress increases toward �x1 ¼ 0:5 is larger than the rate at
which the strain does, and the difference between the rates in-
creases as r gets smaller. Furthermore, the concentration factor
for the stress can be quite large, whereas for the strains it re-
mains small. This response is consistent with the kinematics of
small deformations.

Approximate concentration factors that are inferred from our
numerical results of Fig. 14 are compared with approximate values
obtained from the classical theory of linearized elasticity (see
Chart 3.1 on p. 150 of Pilkey, 1997). This comparison is presented
in Table 4.
near the fillet with r ¼ 0:02.

ar the fillet with r ¼ 0:02.



Fig. 14. Stepped flat tension bar with various shoulder fillets. Normalized stress and normalized strain as functions of the normalized distance �x ¼ ðx� L2Þ=r.
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Table 4
Concentration factors for the stepped flat tension bar with shoulder fillets.

r=ð2aÞ 0:04 0:02 0:01 0:004

Nonlinear case r11
r1

3.06 4.88 8.9 20.4

(from Fig. 14) e11
e111

2.27 2.71 3.13 3.67

Linear case 3.2 3.8 4.5 > 5
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