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a b s t r a c t

Lithium-battery energy storage systems (LiBESS) are increasingly being used on electric mobility and
stationary applications. Despite its increasing use and improvements of the technology there are still
challenges associated with cost reduction, increasing lifetime and capacity, and higher safety. A correct
battery thermal management system (BTMS) design is critical to achieve these goals. In this paper, a
general framework for obtaining optimal BTMS designs is proposed. Due to the trade-off between the
BTMS's design goals and the complex modeling of thermal response inside the battery pack, this paper
proposes to solve this problem using a novel Multi-Objective Particle Swarm Optimization (MOPSO)
approach. A theoretical case of a module with 6 cells and a real case of a pack used in a Solar Race Car are
presented. The results show the capabilities of the proposal methodology, in which improved designs for
battery packs are obtained.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Lithium-ion cells have become one of the most used technolo-
gies for energy storage in electric mobility applications, due to its
specific energy, energy density, and specific power [1,2]. They are
also considered an alternative for stationary storage systems in
power systems becoming the key to a high penetration of distrib-
uted renewable energy and second-timescale grid power services
[3].
Engineering, Universidad de
.: þ56 2 2978 4201.
Behnke).
Despite the increasing use of LiBESS, there are still challenges to
overcome in order to achieve a competitive technology that allows
the full development of the aforementioned applications. Among
these challenges are [1]: reducing costs, increasing life and capac-
ity, and improving safety. To achieve these objectives not only
better cells are needed, but also a better integration of them must
be done, where the thermal operation is a critical issue [4,5]. Hence,
a good LiBESS design must consider that each cell of the battery
pack should operate at temperatures between 25 �C and mm, and
the temperature difference between them should be less than 5 �C.
This is in order to achieve a good balance between performance and
lifetime [6]. To prevent a significant capacity fade and thermal
runaway the temperature must be under 60 �C and 80 �C respec-
tively [7]. Additionally, both energy and power of the Li-ion
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batteries are substantially reduced if the temperature falls
below �10 �C [8].

A good design of the battery thermal management system
(BTMS) should take into account these thermal operational con-
straints. The design of the BTMS includes the size of the cooling
system together with the arrangement of the cells in the delimited
space. In general [9], the BTMS should satisfy the following re-
quirements: (i) Optimum operating temperature range for every
cell and battery module, rejecting heat in hot climates/adding heat
in cold climates; (ii) Small temperature variations within a cell and
module; (iii) Small temperature variations among modules; (iv)
Compact and lightweight, easily packaged, reliable, low-cost and
easy for service; (v) Provision for ventilation if the battery gener-
ates potentially hazardous gases. Clearly, some of these goals are
competing and it is difficult to express all of them in a single
mathematical expression. In addition, some goals could become
more relevant depending on the specific application [1] and/or
more difficult to achieve depending on the electrothermal cell
characteristics and the local application environment. Then, a
multi-objective analysis is proposed to solve this design problem.

There have been several studies on the design of the BTMS for
lithium-ion batteries. In literature two basic approaches can be
identified: explicit optimization schemes and simulation based
approaches. On the first approach, in Ref. [10] an optimum cooling
plate for an electric vehicle pack obtained using average tempera-
ture of the cells, temperature uniformity and coolant pressure drop
as objective functions. In Ref. [11], different alternatives for thermal
management of a battery pack are evaluated using six sigma pro-
cess optimization, with maximum temperature, pressure drop and
temperature difference between cells as objectives. In Ref. [12], the
parameters of an air cooling system for a Li-ion battery pack for an
electric vehicle are optimized using a genetic algorithm.

On the second approach, [13] develops a numerical heat gen-
eration simulation model for a battery pack with cylindrical cells in
order to compare the performance between an air and liquid
cooling system, considering the BTMS power consumption as a
critical objective. In Ref. [14], the design of an air cooling battery
system is investigated and modeled, in order to satisfy required
thermal specifications. In Ref. [15] a simulation model is developed
in order to analyze the effect of thermal management and different
ambient conditions on battery life. [16] performs three dimensional
analyses of an air-cooled battery using Computational Fluid Dy-
namics (CFD). With the simulations, the best configurations for the
pack are obtained. It is interesting to note how tailored numerical
simulation models compete with the integration of Computer-
Aided Engineering (CAE) as part of a simulation cycle.

The literature survey shows that despite using an optimization
or a simulation approach, the general problem of designing a BTMS
is necessarily divided into many pieces or sub-problems [17].
Recent efforts in the area of integrated design platforms are re-
ported in Refs. [18,19]. Due to the huge variety of applications and
the increasingly large lithium-ion cells market, the battery pack
developers have focused in giving an ad-hoc solution for a specific
problem [18]. In the process, a significant amount of R&D is pur-
sued in order to achieve good results. However, the solutions are
not very flexible, making it difficult addressing new requirements
for new applications.

Consequently, there is a need for the development of a
computational tool to improve the battery pack design process,
including the designing of thermal management system. The main
objective is to achieve a high degree of automation of the process
and to ensure optimal design solutions. This can result in an
improvement of the design periods, a reduction in the design costs,
and the calculation of new/better design solutions, which are the
main motivation for our research work.
The paper is organized in six sections. Section 2 shows the
general framework where the proposed optimization methodology
is embedded. Section 3 describes in detail the multi-objective
optimization approach using an evolutionary algorithm and a CAE
software as a simulation tool. In Section 4 a theoretical example is
solved in order to illustrate the trade-off between space, temper-
ature, and BTMS power consumption. Section 5 shows a real case of
study with a comprehensive analysis of the results. Finally, Section
6 presents the conclusions and final remarks.

2. Proposed BTMS design framework

Although the scope of this paper is concentrated in the opti-
mization approach for BTMS design, in this section we shortly
describe the general framework under which our study is placed.

The proposed computational framework receives the applica-
tion requirements as inputs: technical constraints, electrical use
patterns, and environmental conditions, as shown in Fig. 1. The
LiBESS design framework is composed of the following four steps:

� The first step consists of selecting the cell from a database and
deciding the number of them to be used in the battery pack.
Here, the goal is to minimize the present value of costs that
depends on the investment cost, the number of times that the
battery pack is replaced and the remaining cost.

� In the second step, both a cooling system type and a cell
arrangement pattern are selected from a library of pre-defined
alternatives. Hence, a multi-objective problem is defined; i.e.,
optimization goals, variables, constraints, and parameters.

� In the third step, the multi-objective problem is solved using
evolutionary algorithms (EAs). The goal is to obtain the Pareto
front of the design variables defined in the previous step. Here,
the application requirements are considered in detail in order to
achieve the design goals of the BTMS.

� Finally, in step four, a long-term evaluation of the battery pack is
done considering results of the previous steps and a more
detailed model of both the State of Charge (SoC) and the State of
Health (SoH).

In this paper, we focus on the third step of the proposed
framework. A multi-objective particle swarm (MOPSO) [20] algo-
rithm is developed in Matlab® and is set in order to solve the
optimal design of the battery thermal management system. COM-
SOL Multiphysics® is a multi-physics simulator used to simulate
and evaluate the thermal response of each cell into the battery
pack. An interface in Matlab is developed to connect the data
generated from the simulation and the optimization modules. The
scope of this study does not include a systematic experimental
evaluation of the simulation software.

3. LiBESS optimization methodology

In light of the evident trade-off between the design goals of
BTMS and the complex modeling of thermal response inside a
battery pack, the optimal design problem is solved using a novel
Multi-Objective Evolutionary Algorithm (MOEA) approach.

A general MO problem is defined as the minimization of the
objective vector F

!ðxÞ ¼ ½f1ðxÞ;…; fkðxÞ�T subject to a n-dimensional
decision variable vector x!¼ ½x1;…; xn�T , that is in the universe U
that contains all possible x! that can be used to satisfy an evaluation
of F

!ðxÞ. In addition there are inequality and equality constraints,
gi(x) � 0, i ¼ {1,…,m}, and hj(x) ¼ 0, j ¼ {1,…,p}, respectively [21].

The use of EAs to solve MO problems has beenmotivated mainly
because of the population-based nature of EAs which allows
obtaining multiple elements of the Pareto optimal set in a single
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Fig. 1. General proposed framework for battery pack design.
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run. Additionally, MOEA works well in complex multi-objective
problems that have large search spaces, uncertainty, noise, and
disjoint Pareto curves [21].

In this approach both the way in which the population evolves
into a new one and a model to evaluate the objective functions are
developed. Evaluation and the evolution steps are described below.

3.1. Battery pack model description

Battery pack modeling consists in defining the rules, border
conditions, constraints of the thermal simulation and the charac-
teristics of cells, and elements that interact with the cells in the
simulation. In this study, cylindrical and pouch cells are used.

Each cell in a simulation is considered as an independent heat
source, in which the value of the generated heat is obtained by the
Joule effect shown in Eq. (1)

_qsource ¼ Rcell$I
2 (1)

where I is a constant discharge current and Rcell is a constant in-
ternal resistance, for every cell.

At the beginning of the simulation, every cell starts at the same
initial temperature T0. The cooling of the cells is done with the flow
of a fluid through the battery pack. The fluid enters from ninlet
sections and exits at noutlet sections. Boundary conditions of pres-
sure or volumetric flow must be imposed in the inlet and outlet
sections to force the flow of cooling fluid. In addition, others
boundary conditions, grouped in q

!
in, must be set in the inlet sec-

tions as temperature, pressure, and density. Thewalls of the battery
pack except for air cooling inlets or outlets are adiabatic frontiers, to
emulate an extreme scenario in which there is not heat transfer
between interior and exterior of the battery pack through walls.
The temperature of the cell is calculated as the average of the
temperature in the entire cell. A minimum separation is set be-
tween walls and cells, to avoid direct contact between them. There
is also aminimumdistance between cells avoiding contact between
them.

Two-dimensional simulations in space are carried out in COM-
SOL Multiphysics to find the steady-state solution. COMSOL is a
widely used multiphysics simulation software, hence, it has been
assumed that the model gives a good approximation of the reality.
A fully validation of the simulation software in the proposed
context is considered for future work.

Two-dimensional simulations allow faster computational eval-
uations with a lot of accuracy because there is symmetry in the z-
axis.The result of the simulation is obtained only when the entire
simulation domain is not time-dependent, this means that the
change of the dependent variables between time iterations is less
than a small value. The governing equations for the heat transfer
processes and fluid dynamics [22] are described in the following
subsections.

3.1.1. Heat transfer model
The heat transfer mechanisms that govern the heating and

cooling processes in a battery pack are conduction in solids and
convection between surfaces and cooling fluids. The governing
equations are:

_qconduction ¼ �kVT ; (2)

_qconvection ¼ hðTs � T∞Þ; (3)

where _q is the heat flux, k is the thermal conductivitymedia, T is the
local temperature, h is the convective coefficient, Ts is the surface
temperature, and T∞ is the temperature of the cooling fluid.

3.1.2. Fluid dynamics model
The cooling fluid interacts with cells and modules. The

NaviereStokes equations are used to represent the behavior of a
Newtonian fluid. In order to solve the system the non-linear dif-
ferential Eq. (4) of continuity, Eq. (5) of momentum, and Eq. (6) of
energy are used, as follows:

v
�
rV
!�
vt

þ V$
�
rV
!� ¼ 0; (4)

v
�
rV
!�
vt

þ V$
�
rV V

!� ¼ �Vpþ V$
�
mVV

!�þ Sm; (5)

vri
vt

þ V$
�
riV
!� ¼ �pV$V

!þ V$ðkVTÞ þ Fþ Si; (6)



Fig. 2. Variables in a particle for a given BTMS design.
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where V
!¼ ubi þ vbj þwbk is the velocity vector, r is the fluid density,

p is the pressure, m is the dynamic viscosity, Sm are the source of
momentum, i is the internal fluid energy, k is the heat conductivity,
T is the temperature, Si is the internal energy source, and F is the
dissipation. Additionally, the following equations for an ideal
compressible gas are used;

p ¼ rRT ; (7)

i ¼ CvT ; (8)

where R is the universal constant of an ideal gas, Cv is the heat
capacity at constant volume.

The NaviereStokes formulation does not describe the turbulent
nature of the fluid, hence it is necessary to include a turbulence
modeling. In this case, COMSOL is set to use the keεmodel [23], due
its simplicity and effectiveness.

Heat transfer processes and fluid flow can be described through
dimensionless relationships of the fluids, like the Reynolds number
(ReL), Prandtl number (Pr), and Nusselt number (NuL), as follows:

ReL ¼
VL
n
; (9)

Pr ¼ Cpm
kf

; (10)

NuL ¼
hL
kf

; (11)

where V is the characteristic velocity of the fluid, L is the charac-
teristic length, n is the kinematic viscosity of the fluid, kf is the
thermal conductivity of the fluid, and Cp is the specific heat
capacity.
Fig. 3. MOPSO algorithm for batte
3.2. Multi-objective algorithm description

An implementation of MOPSO (Multi-Objective Particle Swarm
Optimization) programmed in Matlab was used following the main
structure proposed in Ref. [20]. The implementation of this algo-
rithm incorporates communication with COMSOL, software that is
used to evaluate the objective function through simulation.

In the following description the word “dominated” is used to
name a solution that has at least one worst objective value than
other individual in the population. Therefore, Non-dominated so-
lutions belong to the Pareto front. Additionally, the word “particle”
is used to name the n-dimensional decision variable vector
x!¼ ½x1;…; xn�T , which represents a set of variables that define the
design of a battery pack. An example of a particle is shown in Fig. 2,
where x! is the (x,y) position of each cell in the battery.

Fig. 3 shows the steps of the MOPSO implementation commu-
nicated with COMSOL. These are described below.

Once the type of cell, cooling system, and the number of cells in
the pack are chosen, the optimization of the design can start. First,
the population and the velocity for each particle are initialized. This
means that each particle is set in random positions. The velocity for
each particle variables is set to zero in every direction. Then, the
connection betweenMatlab and COMSOL is made through a server-
slave mechanism; a connection between both softwares is
ry pack design optimization.



Table 1
Specifications of cylindrical lithium-ion cell (IMR-18650E manufactured by
MOLICEL®).

Dimension
Diameter (mm) 18
Height (mm) 65
Thermal properties
Density (kg m�3) 2100
Thermal conductivity (W m�1 K�1) 0.66
Specific heat capacity (J kg�1 K�1) 900
Electronic properties
Nominal voltage (V) 3.2
Nominal capacity @1C at 20 �C (Ah) 1.4
Internal resistance (mU) 32
Maximum continuous current (A) 20

Table 2
Design parameters of a battery module.

General
Battery cell IMR-18650E
Electrical configuration 6s1p
BTMS properties
Inlet volumetric air flow (m3 s�1) 0.1
Inlet air temperature (�C) 25
Packing constraints specifications
Maximum length (mm) 120
Maximum width (mm) 60
Gap between cell to wall (mm) 15
Min. gap between two cells (mm) 0.1
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established. The simulation problem description and the resulting
simulation results are shared through this link. With the connec-
tion established, simulation for each design in the multiphysics
simulator (in this case, COMSOL) can be performed. The simulation
is done to evaluate a design and to obtain the values of the objective
functions. A simulation cycle is done for each particle in the pop-
ulation. Once finished, COMSOL extracts the values of the objective
functions and send them to Matlab. If the maximum number of
generations is reached, the optimization is over and the Pareto front
with optimum designs is obtained.

If the maximum number of generations is not reached, then the
evolution continues. In the evolution, first MOPSO saves the non-
dominated solutions into a repository. MOPSO counts with a
database outside the population, named repository, where the best
solutions found so far are stored. The repository has a maximum
size nrep in order to save computation. The repository works in the
following way. In the first iteration, all the non-dominated solu-
tions are saved in the repository. In the following iterations, the
non-dominated solutions that were found within that iteration are
mixed with the ones that were already in the repository. Then, the
solutions that are dominated by one or more solutions in the re-
pository are eliminated in order to keep a Pareto set inside the
repository. Next, MOPSO builds new hypercubes, which are used to
determine those solutions in the repository that are going to be
considered as leaders to guide the particle to best positions in the
solution space. Each hypercube is generated by dividing the solu-
tion space in equal parts. To find the leaders, the solutions in the
repository are separated into these hypercubes. If a hypercube is
too populated, then their elements will have less probability to be
picked up as leaders in the optimization. With the hypercubes
defined, MOPSO is able to calculate the new velocity for each par-
ticle. The velocity is calculated as:

velitþ1 ¼ g$velit þ a$
�
Mi

t � Pit
�
þ b$

�
Lit � Pit

�
: (12)

The Eq. (12) combines the sum of three terms: the velocity at the
current iteration velit , the difference between the best position ever
from the particle Mi

t and its current position Pit , the difference
Fig. 4. Geometric configuration and parameters of a six cell battery pack module.
between a random leader particle taken from the repository Lit and
the current position of the particle. Each of the last two terms are
multiplied by a and b respectively, which corresponds to random
variables between 0 and 1. While the first term, the old velocity, is
multiplied by the inertia weight g that usually takes a value of 0.4.
Finally, the velocity is added to the current position of the particle,
determining the future value of the position. Then the cycle starts
again. If the new design were unfeasible, for example because the
positions of the cells are overlapped, then it repaired before going
into the multiphysics simulation in COMSOL.

4. Case study 1: random arrangement of six cells

4.1. Problem description

A first theoretical case was developed in order to verify the
optimization methodology and to find the trade-off between the
following BTMS's design goals: maximum cell temperature Tmax,
power cooling thermal system consumption PBTMS, and used area A.
The worst cell to cell difference of temperature DTmax was not
considered because it has a linear relation with Tmax in this setting.
Fig. 5. Conventional designs.



Table 3
Characteristics of 6 conventional designs.

Design #r #c k PBTMS Area Tmax DTmax

1 3 2 0.1 3.68 1.0 70.2 36.8
2 3 2 27 0.87 1.61 30.9 7.1
3 2 3 0.1 3.84 1.0 51.6 20.6
4 2 3 27 1.95 1.61 30.1 6.6
5 1 6 0.1 4.08 1.07 58.3 29.2
6 1 6 27 4.08 1.49 57.9 29.5

Fig. 7. Selected solutions from the Pareto front.
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The example consists of a battery module with six cylindrical
cells located in a confined space. The characteristics of the cells are
shown in Table 1. The pack has a fixed air volumetric flow boundary
condition at the inlet section, fin, and a fixed relative pressure
boundary condition, pout ¼ 0, at the air outlet section as shown in
Fig. 4. The dotted lines in Fig. 4 represent the maximum area
available, the arrows at bottom left corner represent the origin of
the coordinate system, the horizontal arrows represent the air flow
at the inlet (left) and outlet (right), and the circles represent the
cylindrical cells in 2D. The particularity of this case is that the cells
can be located in random positions, allowing finding new
arrangement patterns under defined conditions of cooling and
constrained space. This multi-objective problem is mathematically
formulated as

min�
ri
!¼ðxi;yiÞ

�
2
4 Tmax ¼ maxðTiÞ
PBTMS ¼ Dp$fin

A ¼ L$H

3
5; (13)

where ri
! is the position vector of the center of each cells i¼ {1,…,6}

in a two-dimensional space, Ti is the average temperature of each
cell, and Dp is the pressure drop between the air outlet and inlet.
The area of the battery module in Eq. (13) is calculated by

L ¼ maxðxiÞ �minðxiÞ þ Dþ 2a; (14)

H ¼ maxðyiÞ �minðyiÞ þ Dþ 2a; (15)
Fig. 6. Pareto surface obtained after 100 generations of MOPSO. The color scale denote the m
the reader is referred to the web version of this article.)
where L is the length, H is the width, D is the diameter of the cell,
and a is the gap between the most external cell and the wall.

Each battery module design is defined by a random position of
cells, hence overlapping between them could happen in the
simulation. In order to avoid this the following constraint is
included

��� ri!� rj
!��� � Dþ ε ci; j; isj; (16)

where ε is the minimal permitted gap between two cells. Addi-
tionally, the constraints related to the limited space are included
and calculated as

aþ D
2
� xi � Lmax � a� D

2
ci; (17)

aþ D
2
� yi � Hmax � a� D

2
ci; (18)
aximum temperature. (For interpretation of the references to color in this figure legend,



Table 4
Multi-objective and cell to cell difference temperature evaluation of optimal cell
arrangement designs in the Pareto front.

Solution PBTMS Area Tmax DTmax

1 0.16 4.31 42.5 11.5
2 0.2 2.69 110.8 80.6
3 0.7 1.68 33.3 9.0
4 1.38 1.85 25.6 1.6
5 3.01 1.15 31.9 7.3

Fig. 9. Battery pack of the EOLIAN III solar race car.

B. Severino et al. / Journal of Power Sources 267 (2014) 288e299294
where Lmax and Hmax are the maximum length and width of the
pack, respectively (see Fig. 4).

The design parameters of the battery pack plus the parameters
of the BTMS and the packaging constraints, are summarized in
Table 2. The air volumetric flow was set in order to get a high cell
temperature response, nearby 50 �C, at the minimum area design
which will be described in the next section. The idea is to show the
potential improvements when a multi-objective approach is used
starting from a minimum area design approach. The battery mod-
ule was simulated considering the hardest thermal continuous
operating condition; i.e., at maximum continuous cell current.

4.2. Conventional designs

With the aim of being able to compare the designs obtained by
the optimization methodology, 6 additional designs were devel-
oped using conventional engineering design criteria based on
symmetry and intuitive thermal flux behavior (see Fig. 5). These
designs are intended to be an external reference to our MOPSO
algorithm, and are not used as part of the initial particle population.
Furthermore, these designs are inspired on common design pat-
terns, as putting all cells in rows and columns. A comparison with
the Pareto front obtained by MOPSO can be performed, checking if
the evolutionary results can outperform these common designs.
Consequently, a first assessment about the quality of the LiBESS
design can be obtained. Table 3 shows the characteristics of the six
conventional designs, where #r is the number of rows, #c is the
number of columns, and k is the separation between cells in (mm).

Also, Table 3 shows the value of the objective functions for each
design. Here and from now on, the BTMS power consumption is
shown as a percentage of the maximum power of the battery
Fig. 8. Maximum cell to cell difference temperature obtained for each
module, and the area is shown as an increment of the minimum
physical area (designs 1 and 3). Also the maximum temperature
and the temperature difference between the best and worst cell is
shown.
4.3. Results using MOPSO

The Pareto front was obtained using 100 generations of the
MOPSO algorithm. In each iteration, a population of 200 articles
was evaluated by using COMSOL. The total simulation time was 4
days using a 3.2 GHz Processor with 4 GB of RAM. The average time
spent for each particle simulation was 15 s. The final Pareto front
contained 200 designs reaching the maximum size of the re-
pository nrep.

Fig. 6 shows the Pareto surface with the trade-offs between the
3 objectives: BTMS power consumption (x-axis), area (y-axes), and
maximum temperature (color). It can be seen that at very low BTMS
power consumption the solutions reach high temperatures, over
60 �C. A similar behavior, but at a lower magnitude, occurs at high
BTMS power consumption and small area. Note that an unfeasible
zone exists at a minimum area and BTMS power. This happens
when the cells are very close, the friction increases and conse-
quently the pressure drop also increases. In Fig. 6, the conventional
designs are also shown. Only three conventional solutions are in
individual in the Pareto surface, and the 6 conventional designs.



Table 5
Specifications of pouch Li-ion polymer cell (SPB636395 manufactured by
SAEHAN®).

Dimension
Thickness (mm) 6.3
Width (mm) 63
Height (mm) 95
Thermal properties
Density (kg m�3) 2100
Thermal conductivity (W m�1 K�1) 0.66
Specific heat capacity (J kg�1 K�1) 900
Electronic properties
Nominal voltage (V) 3.7
Nominal capacity @0.2C at 20 �C (Ah) 4.5
Internal resistance (mU) 15
Maximum continuous current (A) 60

Table 6
Variable boundaries.

Variable Lower boundary (mm) Upper boundary (mm)

d1 40 120
d2 1 10
d3 1 160
d4 1 20
d5 1 20

Table 7
Design parameters for the EOLIAN III battery module.

General
Battery cell SPB636395
Electrical configuration 13s9p
BTMS properties
Inlet pressure air flow (pa) 0.003
Inlet air temperature (�C) 25
Outlet pressure air flow (Pa) 0.003

Table 8
Parameter values of the best solution found by
MOPSO for the EOLIAN III battery pack.

Variable Value (mm)

d1 50.3
d2 2.6
d3 47.8
d4 11.06
d5 12
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the final Pareto front (designs 1, 2, and 3). Moreover, two of them
(designs 1 and 3) have the minimum area and would be eventually
found by the MOPSO algorithm if overlapping between cells were
less frequent. The results show that the multi-objective evolu-
tionary approach allows obtaining a deeper understanding of the
problem because more information and solutions are available for a
battery module design.

Fig. 7 shows five selected solutions from the Pareto front and
Table 4 shows the value of the objective functions for each solution.
Each solution was chosen from a different region of the Pareto
surface. Solution 3 has two rows of cells separated by a large gap,
and the horizontal distance between them is short. This configu-
ration allows cells to be well cooled by the air flow that goes
through the channel from left to right while using low BTMS power
consumption. The cells in solution 4 are arranged in diagonal
orientation. In this configuration the air cooling reaches more cell
surface in every cell, improving the heat transfer mechanism be-
tween cells and air. This permits a very low temperature and cell to
cell temperature difference with a small increment of BTMS power
consumption compared with the previous design. Solution 5 shows
the smallest area found by theMOPSO algorithm close to the area of
design 1 in Table 3 that is the minimum area feasible for this
problem. Solutions 1 and 2 show how the algorithm is also able to
explore bigger areas and lower BTMS power consumption.

Fig. 8 shows the maximum cell to cell temperature difference on
each configuration in the Pareto front plus the 6 conventional
Fig. 10. 2D geometric design paramete
designs. As mentioned before, the behavior of this parameter is
very similar to the maximum temperature. This happens, on the
one hand, because a small space and a small number of cells are
used in this problem. Thus, the distance between the inlet and the
first cell to the left is short and therefore, this cell is well cooled. On
the other hand, usually the more obstructed cells on the right side
of the module are the ones that have the higher temperatures, and
then the largest cell to cell difference is between one of these hot
cells and one of the well cooled cells next to the inlet.
rs of the EOLIAN III battery pack.



Fig. 11. Thermal behavior of the best battery pack design for the EOLIAN case, a) surface temperature (�C), and b) surface velocity magnitude (m s�1).
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5. Case study 2: EOLIAN III battery pack design

5.1. Problem description

Using the proposed design applicationmethodology, the battery
pack of the Solar Race Car EOLIAN III1 was designed and built as
shown in Fig. 9. The battery pack consists of 26 modules in series
connected each one having 9 pouch Li-ion polymer cells connected
in parallel. Table 5 shows the main parameters of the cell used. Due
1 http://www.facebook.com/eolian.uchile.5.
to the extreme environment conditions of theDesafío Solar Atacama
20122 race in Chile, the objective of this example is to arrange the
modules into the pack in order to achieve low maximum module
temperature Tmax and low module to module maximum tempera-
ture difference DTmax.

Fig. 10 shows the 2D geometric considerations of the EOLIAN III
battery pack. As can be seen, the modules are located in two arrays
spaced in d3 (mm) where every module has two rows of modules
spaced in d2 (mm). The array #1 has 7 columns all spaced by d5
2 http://www.carrerasolar.com/.

http://www.facebook.com/eolian.uchile.5
http://www.carrerasolar.com/
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(mm). The array #2 has 6 columns spaced by d4 (mm). The space
between the bottom wall and the array #2 is d1 (mm). The pack is
cooled using a passive air system which consists of one air inlet at
constant pressure pinlet located at the bottom and two air outlets at
constant pressure poutlet on each side (upper left and right). The
diameter of the inlet and outlets is 4 (cm). The size of the battery
pack is 61 � 40 (cm). Finally, there is a contactor in the right-down
corner that can not bemoved, adding a forced degree of asymmetry
to the problem.

The multi-objective problem is formulated as:

min
fdkgk¼f1;…;5g

	
Tmax ¼ maxðTiÞ

DTmax ¼ maxðTiÞ �maxðTiÞ


; (19)
Fig. 12. Enhanced battery pack design with additional air inlet position optimiza
where dk is the k-th spacing variable and Ti is the average tem-
perature of the i-th module. Fixed boundaries for each variable are
considered as follows:

dkmax � dk � dkmin ck ¼ f1;…;5g: (20)

Table 6 shows the limits chosen which define the universe U of
feasible solutions.

For the simulation, each module is considered as a unique
body without spacing between cells. At both sides of each
module two acrylic plates are fixed in order to ensure a good
structural resistance. The model developed in COMSOL includes
the material and thermal properties of the acrylic plates. The
electrical operating condition was set at maximum current,
tion, a) surface temperature (�C), and b) surface velocity magnitude (m s�1).
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which corresponds to 6 Watts of heat generation for each
module (Table 7).

5.2. Results

After 50 generations of MOPSO based on 100 particle evalua-
tions per generation, and with a computational effort of 75 h, a
feasible solution set was found. From the analysis of the resulting
Pareto front, a convergency to a best solution shown in Table 8, is
observed.

In this solution the worst cooling module reached 34.3 �C and
the module to module maximum temperature difference was
8.36 �C. Compared with other battery pack solutions the results are
remarkable since the battery uses only a passive air refrigeration
system. Fig. 11 shows the temperature distribution behavior of the
battery pack. Fig. 11(a) shows that the battery modules nearby the
air inlet have the lowest temperature, and the module located in
column 4 and row 1 of the array #1 shows the highest temperature.
This can be explained by the air flow streamlines, which could be
observed in Fig. 11(b). Air flow streamlines depend strongly on the
positions of the modules.

During the Desafío Solar Atacama race the temperature
behavior of the battery pack was observed for several operating
conditions. The temperature fluctuation was within a band of
20 �C and 35 �C and the maximum temperature difference be-
tween modules was 3 �C which is coherent with the simulation
results.

5.3. Enhanced BTMS

From the previous results and considering the asymmetry of the
battery pack as a consequence of the contactor position, a theo-
retical design exercise is proposed in this section. The air inlet
position d6 is added as a new design/optimization variable for
LiBESS (see Fig. 10). The new multi-objective problem only differs
from the previous one by this new variable. The range limits for this
new variable are 1 and 474 (mm).

Adding d6, the MOPSO algorithm was re-run and found a new
Pareto curve after 76 h. However, the solutions are very similar to
each other differing only in few millimeters. The principal differ-
ence between this new design and the previous one is that variable
d1 changes from 50 to 60 (mm) and the air inlet position d6 changes
from 285 to 250 (mm).

This new design achieves a better temperature distribution
than the previous design, as can be seen by comparing Fig. 11(a)
and Fig. 12(a). The maximum module temperature decreases 2 �C
and the maximum temperature difference reaches only 6 �C
instead of 8.36 �C. Fig. 12 shows that the temperature of each
module keeps the same spatial distribution but with lower values.
Specifically, it can be seen that this new design allows decreasing
the temperature of all modules. This is explained by the more
symmetrical location of the air inlet, which allows a more ho-
mogeneous air distribution. In this way, the air can flow at higher
velocities through the channels defined by the module
separations.

6. Conclusion

In this paper, an optimization methodology for optimal battery
pack design is proposed. Due to the complexity of battery pack
modeling and the conflicting BTMS's goals, a Multi-Objective
Evolutionary Algorithm was developed in order to obtain a wider
range of potential solutions (Pareto front). The methodology was
used in two very different problems showing its flexibility and
capability to find an optimal design.
This study shows that by combining computational intelligence
techniques with a multi-physics simulation tool, better solutions
can be achieved for the design problem than the ones obtained
using only a simulation based approach.

In the first case of study, designs were found over a very large
search space in spite of difficulties such as overlapping between
cells. The methodology was able to find 200 designs in the Pareto
front, which are better than conventional designs. Some of these
random generated designs seem to be constructible, and then
useful for battery module design. This case of study also illustrates
the trade-off between conflicting objectives: area, temperature,
and BTMS power consumption.

In the second case of study, a battery pack for a real vehicle
application was designed by using MOPSO. In this case, the opti-
mization was able to obtain an optimal solution given the original
design conditions, and also an enhanced solution by changing the
position of the air inlet.

The results obtained by combining optimization with evolu-
tionary algorithms and multi-physic simulations are promising. In
both studies, significant improvements for the designs were ob-
tained, which shows the capabilities of the methodology for
finding better and constructible solutions for battery design
problems.

The simulations performed in this work were based on the
widely used COMSOL software. Future work will include the
experimental validation of this model in the context of battery
packaging. Also, new models could be developed to improve the
performance of the proposed methodology.
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