
Theoretical Computer Science 542 (2014) 83–97
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

New space/time tradeoffs for top-k document retrieval
on sequences ✩

Gonzalo Navarro a,∗, Sharma V. Thankachan b

a Department of Computer Science, University of Chile, Chile
b Department of Computer Science, University of Waterloo, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 November 2013
Received in revised form 21 March 2014
Accepted 10 May 2014
Communicated by R. Giancarlo

Keywords:
Document retrieval
Top-k queries
String databases
Compressed data structures

We address the problem of indexing a collection D = {T1, T2, . . . , T D } of D string
documents of total length n, so that we can efficiently answer top-k queries: retrieve k
documents most relevant to a pattern P of length p given at query time. There exist
linear-space data structures, that is, using O (n) words, that answer such queries in optimal
O (p + k) time for an ample set of notions of relevance. However, using linear space is
not sufficiently good for large text collections. In this paper we explore how far the
space/time tradeoff for this problem can be pushed. We obtain three results: (1) When
relevance is measured as term frequency (number of times P appears in a document Ti),
an index occupying |CSA| + o(n) bits answers the query in time O (tsearch(p) + k lg2 k lgε n),
where CSA is a compressed suffix array indexing D, tsearch(p) is its time to find the suffix
array interval of P , and ε > 0 is any constant. (2) With the same measure of relevance,
an index occupying |CSA| + n lg D + o(n lgσ + n lg D) bits answers the query in time
O (tsearch(p) + k lg∗ k), where lg∗ k is the iterated logarithm of k. (3) When the relevance
depends only on the documents, an index occupying |CSA| + O (n lg lg n) bits answers the
query in O (tsearch(p)+k tSA) time, where tSA is the time the CSA needs to retrieve a suffix
array cell. On our way, we obtain some other results of independent interest.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Top-k document retrieval is the problem of preprocessing a text collection D = {T1, T2, . . . , T D} of D string documents of
total length n so that, given a search pattern P [1..p] and a threshold k, we retrieve the k documents most “relevant” to P ,
for some definition of relevance. This is the basic problem of search engines and forms the core of the Information Retrieval
(IR) field [1]. A widely used notion of relevance is the tf–idf model, which in the case of a single pattern P boils down to
the term frequency measure, that is, the number of times P appears in a document. Another popular scenario is to give each
document a fixed importance independent of P , such as Google’s PageRank.

The inverted index successfully solves top-k queries in various IR scenarios. However, it applies to text collections that
can be segmented into “words”, so that only whole words can be queried. This excludes East Asian languages such as
Chinese and Korean, where automatic segmenting is an open problem, and is troublesome even in languages such as German
and Finnish. A simple solution for those cases is to treat the text as a plain sequence of symbols and look for any substring
in those sequences. This string model is also appealing in applications like bioinformatics, software repositories, multimedia

✩ Early parts of this work appeared in SPIRE 2013 and ISAAC 2013. Work supported by Fondecyt Grant 1-110066, Chile.

* Corresponding author.
E-mail addresses: gnavarro@dcc.uchile.cl (G. Navarro), thanks@uwaterloo.ca (S.V. Thankachan).
http://dx.doi.org/10.1016/j.tcs.2014.05.005
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.05.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gnavarro@dcc.uchile.cl
mailto:thanks@uwaterloo.ca
http://dx.doi.org/10.1016/j.tcs.2014.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.05.005&domain=pdf

84 G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97
Table 1
Most relevant space/time tradeoffs achieved for top-k most frequent document retrieval. Note that D lg(n/D) + O (D) = o(n) if D = o(n). The rows prefixed
with a ‘*’ are those not dominated by others after this work.

Source Time Space

[7] O (p + k lg k) O (n lg n)

* [8] O (p + k) O (n lg D + n lgσ)

[14] O (tsearch(p) + k lg D lg(D/k) lgε n) |CSA| + n lg D + o(n lg D)

[15] O (tsearch(p) + k lg k lg(D/k) lgε n) |CSA| + n lg D + o(n lg D)

From [16] O (tsearch(p) + k lg k lgε n) |CSA| + n lg D + o(n lg D)

[17] O (tsearch(p) + (lg lgn)4 + k lg lgn) |CSA| + 2n lg D + o(n lg D)

[17] O (tsearch(p) + (lg lgn)6 + k(lgσ lg lgn)1+ε) |CSA| + n lg D + o(n lg D)

* This paper O (tsearch(p) + k lg∗ n) |CSA| + n lg D + o(n lg D)

* This paper O (tsearch(p) + k lg∗ k) |CSA| + n lg D + o(n lg D + n lgσ)

[14] O (tsearch(p) + k tSA lg D lg(D/k) lgε n) |CSA| + O (n lg D/ lg lg D)

[15] O (tsearch(p) + k tSA lg k lg(D/k) lgε n) |CSA| + O (n lg D/ lg lg D)

[15] O (tsearch(p) + k tSA lg k lg1+ε n) |CSA| + O (n lg lg lg D)

[7] O (tsearch(p) + k tSA lg3+ε n) 2|CSA| + D lg(n/D) + O (D) + o(n)

[14] O (tsearch(p) + k tSA lg D lg(D/k) lg1+ε n) 2|CSA| + D lg(n/D) + O (D) + o(n)

[15] O (tsearch(p) + k tSA lg k lg(D/k) lgε n) 2|CSA| + D lg(n/D) + O (D) + o(n)

* [16] O (tsearch(p) + k tSA lg k lgε n) 2|CSA| + D lg(n/D) + O (D) + o(n)

[18] O (tsearch(p) + ktSA lg k lg1+ε n) |CSA| + D lg(n/D) + O (D) + o(n)

* This paper O (tsearch(p) + k tSA lg2 k lgε n) |CSA| + D lg(n/D) + O (D) + o(n)

sequences, activity logs, and many others [2]. Supporting document retrieval on those general string collections has proved
much more challenging.

Suffix trees [3] and suffix arrays [4] are useful data structures to search general string collections. These structures solve
the pattern matching problem, that is, count or list all the occ individual occurrences of P in the collection. Suffix trees
can count the number of occurrences of P in optimal time tsearch(p) = O (p), whereas suffix arrays need time tsearch(p) =
O (p lg n), or tsearch(p) = O (p + lg n) with some enhancements. After counting them, the occurrences can be listed in optimal
O (occ) additional time. The k most relevant documents could then be obtained from that set, but this would require time
Ω(occ), which can be much larger than k.

Top-k most frequent document retrieval Only recently [5–9] was this top-k problem solved satisfactorily, finally reaching the
optimal time O (p + k). Those solutions, much like suffix trees and arrays, have the drawback of requiring O (n lg n) bits of
space, whereas the collection itself would require no more than n lgσ bits, where σ is the alphabet size. This renders these
indexes impractical on large text collections.

Compressed Suffix Arrays (CSAs) [10] satisfactorily solve the pattern matching problem within the size of the compressed
text collection, under some entropy model such as the hth order empirical entropy nHh ≤ n lgσ [11]. They can, in addition,
retrieve any substring of any document, and hence they replace the collection with a compressed version that in addition
supports queries. We call their space |CSA|. Some CSAs [12] reach space |CSA| = nHh + o(nHh) + o(n), which under the
hth order entropy model is asymptotically the minimum space in which the text collection itself can be represented, and
reach counting time tsearch(p) = O (p lg lgσ). Their time to retrieve any suffix array position is tSA = O (lg1+ε n) for any
constant ε > 0, so they list the occ occurrences of P in time O (occ tSA). Others [13] achieve the optimal counting time
tsearch(p) = O (p) using slightly more space, |CSA| = nHh + o(nHh) + O (n) bits, and reach tSA = O (lg n) (so listing takes
O (occ lg n) time).

Similar compressed solutions for top-k queries have been sought, but the results have not been so clean. In the discussion
that follows we will assume for simplicity that D = o(n), tsearch(p) = p, and tSA = lg1+ε n; the full results can be seen in
Table 1. In their seminal paper [7], Hon et al. gave the first top-k indexes using compressed space. They used 2|CSA| + o(n)

bits and O (p + k lg4+ε n) time. Gagie et al. [14] and Belazzougui et al. [15] made several technical improvements on top of
the basic idea, pushing the time down to O (p + k lg k lg2+ε n). Finally, Hon et al. [16] reduced the time to the current best
within this space, O (p +k lg k lg1+ε n). This result, however, is not fully satisfactory in terms of space, as it uses 2|CSA| bits,1

that is, about twice the minimum necessary space. Tsur [18] managed to reduce the space to the asymptotically optimal
|CSA| + o(n) bits, and solved top-k queries within time O (p + k lg k lg2+ε n). This is only a lg n factor away from the best
result achieved with 2|CSA| bits [16].

The time in all those solutions involves at least accessing CSA cells to return the results, and thus they have a time
component of the form Ω(k tSA). The optimal-time solution [8] reaches O (p + k) time, but it uses O (n(lg D + lgσ)) bits.
There has been some research about reducing that space while retaining fast query times. The idea is to use a so-called

1 In fact, it is |CSA| bits for a global CSA, plus |CSAd| bits for the local CSA of each document Td , which depending on the CSA used could be more, the
same, or less than 2|CSA|.

G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97 85
Table 2
Most relevant space/time tradeoffs achieved for top-k most important document retrieval. Note that D lg(n/D) + O (D) = o(n) if D = o(n). Our
solutions marked (*) are valid (and relevant) only for D = O (polylog n).

Source Time Space

[26] O (p + k) O (n lgn)

[26] O (tsearch(p) + k) |CSA| + O (n lg D)

[27] O (tsearch(p) + k lg(D/k)) |CSA| + n lg D + o(n lg D)

This paper O (tsearch(p) + k tSA) |CSA| + O (n lg lgn)

This paper(*) O (tsearch(p) + tSA(k + lgn) lg lgn) |CSA| + O (n lg D/ lg lg D + n lg lg lgn)

This paper(*) O (tsearch(p) + tSA(k + lgn)(lg lgn)2) |CSA| + O (n lg lg lgn)

[15] O (tsearch(p) + k tSA lg k lgε n) |CSA| + D lg(n/D) + O (D) + o(n)

document array [19,20], which uses n lg D + o(n lg D) bits on top of the CSA, and circumvents the use of the CSA to access
the k results. These solutions are called compact. For example, using |CSA| + n lg D + o(n lg D) bits instead of 2|CSA|, one
can reduce the time of the fastest solution [16] down to O (p + k lg k lgε n), which already outperforms some previous
solutions of this kind [14,15]. However, the real improvement was obtained by Hon et al. [17], who reduced the time below
any O (k lgε n) for small alphabets or using 2n lg D bits. It was also shown that it was possible to obtain fast results using
n o(lg D) bits, by simulating the document array via the global CSA and some sublinear extra data [14,15].

Konow and Navarro [21] achieved O (p + (lg lg n)2 + k lg lg n) time within |CSA| + (n lg D + 4n lg lg n)(1 + o(1)) bits, but
the result holds only almost surely on typical texts, not in the worst case. Their index, on the other hand, turns out to be
very competitive in practice. There exist several other indexes of practical interest [22,6,23–25].

Top-k most important document retrieval If we assign a fixed importance to each document, independent of the search
pattern, the problem becomes simpler, but still nontrivial. Table 2 lists the space-time tradeoffs achieved.

With a suffix tree, this problem can be reduced to having an array of colors and finding k heaviest colors in a given
array range, considering that a given color may appear repeated several times in the range. In our case, the array is the
document array, documents are colors, and weights are their importance. Karpinski and Nekrich [26] solved the problem in
linear space and optimal time O (k), which with the help of a suffix tree yields an O (p + k) time and linear-space solution
to the top-k most important documents problem. If, instead, we use a CSA, the space becomes |CSA| + O (n lg D) bits and
the time becomes O (tsearch(p) + k). If we assign identifiers to the colors in decreasing weight order, the problem becomes
that of listing the k colors with lowest identifiers in an array range. Gagie et al. [27] showed how to list these using a
particular sequence representation of the document array, thus reducing the space to |CSA| + n lg D + o(n lg D) bits, but
raising the time to O (tsearch(p) + k lg(D/k)). Finally, Belazzougui et al. [15] reduced the space to the asymptotically optimal
|CSA|+ D lg(n/D)+ O (D)+o(n), raising the time to O (tsearch(p)+k tSA lg k lgε n). Their solution is based on a dual sampling
that was later successfully applied by Hon et al. [16] to the more complex case of top-k most frequent documents problem.

Our contributions A relevant question is how far are these results from optimal, more specifically, how much space is
needed to obtain optimal time and how fast can an index be within asymptotically optimal space. In this paper we obtain
new results that push the state of the art much closer to giving a definitive answer to those questions. Our concrete results
are the following.

1. We describe a compressed index for top-k most frequent retrieval using |CSA| + D lg(n/D) + O (D) + o(n) bits, which is
the asymptotically optimal |CSA|+o(n) when D = o(n). The index answers queries in time O (tsearch(p)+k tSA lg2 k lgε n)

(Theorem 1). This time improves upon the best current result on optimal space [18] by a factor of lg n/ lg k, supersedes
all the results using n o(lg D) further bits, and it is only lg k times slower than the best solution that uses about twice
the space [16]. Actually, the complexity becomes very close to the minimum time Ω(tsearch(p) + k tSA) needed to solve
these queries when the accesses to the document identifiers must be done through a CSA. On our way, we introduce a
structure we call the sampled document array, which might be of independent interest.

2. We describe a compact top-k index for top-k most frequent retrieval using |CSA| + n lg D + o(n lg D) bits that answers
queries in time O (tsearch(p) + k lg∗ n), where lg∗ n is the iterated logarithm of n (Theorem 2). Note that, within this
space, we can accomodate CSAs that achieve tsearch(p) = p [13], and therefore the time is O (p + k lg∗ n), outperforming
all previous compact indices and getting very close to the optimal O (p + k). Even closer, we show how to reach time
O (p + k lg∗ k) within |CSA| + n lg D + o(n lg D + n lgσ) bits of space (Theorem 3). The extra space, o(n lgσ), is usually
negligible compared to o(n lg D) and is also included in many CSAs [10], albeit not in the most recent ones [12,13]. We
remark that the top-k results are not returned in sorted order of frequency.

3. We present a new tradeoff for top-k most important retrieval, which is time-optimal in a sense. It uses less space
than what is needed to obtain a document identifier without using the CSA. Within this space, it obtains the optimal
time O (tsearch(p) + k tSA). Its space, |CSA| + O (n lg lg n) bits, on the other hand, is away from optimal, and in particular
uninteresting for small D = O (polylog n). For such D values we obtain other tradeoffs, with slightly higher time and
space as low as |CSA| + O (n lg lg lg n). The only index that reaches optimal space [15] is O (lg k lgε n) times slower. On
our way, we obtain a new result on reporting the heaviest points in a range over polylog-height grids, which might be
of independent interest. We remark that the top-k results are not returned in sorted order of importance.

86 G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97
We start in Section 2 with a review of the basic concepts and previous ideas that are necessary to understand the rest
of the paper. Then Section 3 describes our space-optimal top-k index, culminating in Theorem 1 and its application in
some particular cases. Sections 4 to 5 describe the solution that reaches almost optimal time, finishing with Theorem 2,
and Section 6 improves the time even further (Theorem 3). In Sections 7 and 8 we describe our solutions for top-k most
important retrieval (Theorem 4 and corollaries). Finally, we conclude in Section 9.

2. Basic concepts and related work

We recall the setup of the problem: We can preprocess a collection D = {T1, T2, . . . , T D} of D string documents of total
length n, over an alphabet [1..σ]. At query time, we are given a pattern P [1..p] and retrieve k document identifiers where
P is most relevant. Our notion of relevance will be either the popular term frequency tf(P ,d), that is, the number of times P
occurs in Td , or a fixed importance assigned to each Td independently of P .

For technical convenience we will assume that the last character of each document is $ = 0, a special symbol that is
smaller than all the others in the alphabet.

2.1. Suffix trees and arrays

Let T [1..n] = T1T2T3...T D be the text obtained by concatenating all the documents in D. Each substring T [i..n], with
i ∈ [1..n], is called a suffix of T . The suffix tree [3] for T (or, equivalently, the generalized suffix tree (GST) of D) is a lexi-
cographic arrangement of all these n suffixes in a compact trie structure, where the ith leftmost leaf represents the ith
lexicographically smallest suffix. Each edge in the suffix tree is labeled by a string, and path(v) of a node v is the concate-
nation of edge labels along the path from the root of GST to node v . We identify GST nodes with their preorder ranks,
therefore path(x) also refers to the GST node with preorder rank x. Let �i , for i ∈ [1..n], represent the (preorder rank of) the
ith leftmost leaf in GST. Then path(�i) represents the ith lexicographically smallest suffix of T . A node x is called the locus
of a pattern P if it is the node closest to the root with path(x) prefixed by P . We call L(x) the set of leaves that descend
from node x, and L(x\y) = L(x) \ L(y) for a node y that descends from x.

The suffix array [4] SA[1..n] of T [1..n] is an array where SA[i] is the starting position (in T) of the ith lexicographically
smallest suffix of T . An important property of SA is that the starting positions of all the suffixes with the same prefix are
always stored in a contiguous region of SA. Based on this property, we define the suffix range of P in SA to be the maximal
range [sp..ep] such that for all i ∈ [sp..ep], SA[i] is the starting point of a suffix of T prefixed by P . Which is the same, the
suffix range of P is the set L(x), where x is the locus of P in GST.

A compressed representation of SA is called a Compressed Suffix Array (CSA) [10,12,13]. We call |CSA| its size in bits
(it holds |CSA| ≤ n lgσ + o(n lgσ) for most CSAs, and in most cases they use space close to that of the compressed text T).
We also call tsearch(p) the time the CSA needs to compute the suffix range [sp..ep] of any given pattern P [1..p], and tSA the
time it needs to compute any cell SA[i].

The tree topology of GST can be represented in (at most) 4n + o(n) bits, using representations (e.g., [28]) with constant-
time support of the operations parent(x) (the parent of node x), lca(x, y) (the lowest common ancestor of nodes x and y),
left-leaf (x)/right-leaf (x) (the leftmost/rightmost leaf in the subtree rooted at node x), and leaf (i) (the ith leftmost leaf), and
mapping from nodes to their preorder ranks and back. The total space of a CSA and the GST topology is thus |CSA| + O (n)

bits.
Given a node v ∈ GST, we call tf(v,d) the number of leaves in L(v) associated to document Td . This is the same as

the number of occurrences of path(v) in Td . Then the top-k retrieval problem can be solved by first finding the locus v of
pattern P , and then retrieving the k documents Td with highest tf(v,d) values. Note that the problem could be solved by
attaching the answer to all suffix tree nodes, but the space would be O (kn lgn) bits, and would work only up to a chosen k.

2.2. Rank, select, and document arrays

Given a sequence S[1..n] on an alphabet [1, σ], we will use representations that require n lgσ +o(n lgσ) bits and support
the following operations

• accessS (i) returns S[i];
• rankS (r, i) returns the number of occurrences of r ∈ [1..σ] in S[1..i]; and
• selectS (r, j) returns i where S[i] = r and rankS(r, i) = j, that is, the position of the jth occurrence of r in S .

When |σ | = 2, that is, S is a bitvector, there exist representations using n +o(n) bits and supporting the three operations
in O (1) time [29,30]. There exist also compressed representations: if there are only m 1s in S (similarly 0s), the constant-
time complexities can be maintained while using only m lg n

m + O (m)+o(n) bits of space [31]. If we only perform rankS (r, i)
where S[i] = 1 and selectS (1, i), an “indexed dictionary” [31] achieves constant time using only m lg n

m + O (m+ lg lgn) bits. If
we only need constant-time selectS(1, i) queries, O (m lg n

m) bits are sufficient [32]. By default, on bitvectors we will assume
rankS (i) = rankS (1, i) and selectS (j) = selectS (1, j).

For general sequences, we will use the following result.

G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97 87
Lemma 1. (See [33].) A string S[1..n] over alphabet [1..σ] can be represented in n lgσ + o(n lgσ) bits and support queries accessS ,
rankS and selectS in times O (1), O (lg lg σ

lg lg n) and O (f (n, σ)), respectively, where f (n, σ) = ω(1) is any non-constant function.
Alternatively, the times for accessS and selectS can be exchanged.

The so-called partial rank query, where we ask for the number of occurrences of symbol S[i] up to its position i, can be
supported more efficiently than general rank queries.

Lemma 2. (See [15].) Operation rankS (S[i], i) can be supported in O (1) time by storing O (n lg lgσ) = o(n lgσ) additional bits on top
of S.

Define a bitvector B[1..n], such that B[i] = 1 iff T [i] = $. Then suffix T [i..n] belongs to document Td if d = 1 + rankB(i)
[34]. Note that B has D 1s, thus it can be represented using D lg(n/D) + O (D) + o(n) bits, which is o(n) if D = o(n), and
answer rank queries in constant time [31].

The document array DA[1..n] [19] is defined as DA[j] = d if the suffix SA[j] belongs to document Td . Moreover, we
say that the corresponding leaf node � j is marked with document Td . The idea of representing DA as a sequence over
alphabet [1..D] [20], with support for access, rank, select, and partial rank, will be used in this paper. The space of such a
representation is n lg D + o(n lg D) bits.

2.3. Hon, Shah and Vitter’s compressed top-k index

Hon et al.’s [7] structure is built (in principle) for a fixed k value. We choose a grouping factor g = k lg2+ε n and mark
every gth leaf in GST (we use a slightly simplified description of their method [25]). Then we mark the lowest common
ancestor (LCA) of every consecutive pair of marked leaves. The tree of marked nodes is called τk and has O (n/g) nodes.
For every marked GST node v , we store the k pairs (d, tf(v,d)) with highest tf(v,d). Hon et al. prove that any locus node
v contains one maximal marked node u so that |L(v\u)| < 2g , or if there is no such u it holds |L(v)| < 2g . Therefore
they traverse those (at most) 2g leaves using the CSA, and for each one they (1) compute the corresponding document
Td , (2) compute the frequency tf(v,d), (3) add d to the top-k list (or correct its frequency from tf(u,d) to tf(v,d) if d was
already stored in the precomputed top-k list of u).

Their procedure starts by computing [sp..ep], which is the range covered by the locus node v of P , by looking for P
in CSA in time tsearch(p). The node u ∈ τk is then found using a constant-time LCA on τk for the leftmost and rightmost
marked leaves in [sp..ep] (i.e., the smallest and largest multiple of g in [sp..ep]). They obtain the top-k answers to u, as
well as the leaf range [sp′..ep′] ⊆ [sp..ep] covered by u, and thus traverse [sp..sp′ − 1] and [ep′ + 1..ep] to correct the top-k
list of u (running steps (1)–(3) above on each such leaf). To carry out (1) on the ith GST leaf, they first compute SA[i] in
O (tSA) time, and then convert it into a document identifier d = 1 + rank(B,SA[i]), as explained in Section 2.2. To carry
out (2) they need an additional CSAd per document Td [34], and require time O (tSA lg n). Thus the total query time is
O (tsearch(p) + g tSA lg n) = O (tsearch(p) + k tSA lg3+ε n).

As storing the top-k list needs O (k lg n) bits, the space for τk is O ((n/g)k lg n) = O (n/ lg1+ε n) bits. One τk tree is stored
for each k power of 2, so that at query time we increase k to the next power of 2 and solve the query within the same
time complexity. Summed over all the powers of 2, the space becomes O (n/ lgε n) = o(n) bits. Therefore the total space is
2|CSA| + D lg(n/D) + O (D) + o(n) bits, which is 2|CSA| + o(n) if D = o(n).

Several subsequent improvements [14–16] reduced the time to O (tsearch(p)+ k tSA lg k lgε n), yet still using 2|CSA| + o(n)

bits of space, that is, about twice the space of an optimal representation of the collection. Only recently [18] the space was
reduced to the optimal |CSA| + o(n) bits, yet the time raises to O (tsearch(p) + k tSA lg k lg1+ε n).

2.4. Tsur’s optimal-space index

By enhancing previous developments [15], Tsur [18] managed to reduce the space to |CSA| + D lg(n/D) + O (D) + o(n)

bits, which is the asymptotically optimal |CSA|+o(n) bits if D = o(n). Let u′ ∈ τk be the parent of u in τk , that is, its nearest
marked ancestor in GST. Tsur proved that, from the O (g) leaves of L(u′\u), only O (

√
gk) have a chance to become part of

the top-k list for a locus node v between u′ and u. Thus, they simply store those candidate documents, and their frequency
in L(u), associated to u. When they traverse the O (g) leaves in L(v\u), they (1) compute the document identifier d as
before, (2) if it is not stored as a candidate for u they just ignore it, (3) if it is in the list then they increases its frequency
by 1. At the end, they have enough information to answer the top-k query, without the need of the CSAd structures to
compute frequencies below v .

If g = k�, the number of candidates is t = O (
√

gk) = O (k
√

�). They can be efficiently encoded by storing, for each
candidate d, the position of one leaf corresponding to d in the area of L(u′\u). Those leaf positions are sorted and stored
differentially: Let 0 < p1 < p2 < . . . < pt < 2g be the ordered positions, then one encodes x1, x2, . . . , xt , where xi = pi − pi−1
(p0 = 0) using, say, γ -codes [35], which occupy

∑
2 lg xi = O (t lg(g/t)) = O (k

√
� lg �) bits by the log-sum inequality. The

frequencies are encoded in O (k lg n + k
√

� lg�) bits (the method is not relevant here).
Therefore, the space for top-k answers plus candidates is O (k lg n + k

√
� lg�) bits, and the total space for a fixed k

equals O ((n/g)(k lg n + k
√

� lg �)) = O (n((lg n)/� + (lg �)/
√

�)) bits. By choosing � = lg k lg1+ε n, and since lg k ≤ lg n, this is

88 G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97
O (n/(lg k lgε/2 n)). Added over all the k values that are powers of 2, this is O (n/ lgε/2 n) · ∑lg D
i=1 1/i = O (n lg lg D/ lgε/2 n) =

o(n) bits. Considering the O (lg lg k + lg lg lg n) time they require to handle the search and update of candidates, the query
time is O (tsearch(p) + g(tSA + lg lg k + lg lg lg n)) = O (tsearch(p) + k tSA lg k lg1+ε n), where lgε n absorbs the loglogarithmic
costs. (Tsur shows how to stretch this result a bit more, so that lgε n can be changed for a polynomial in lg lg n, but the
same can be done on the other indexes and the results become more cumbersome.)

2.5. Hon, Shah, Thankachan and Vitter’s faster index

Hon et al. [16] obtained the fastest solution to date using 2|CSA| + D lg(n/D) + O (D) + o(n) bits of space. For this sake
they consider two independent blocking values, c < g . For block value g they build the τk trees as before. For block value
c they build another set of marked trees ρk . These trees are finer-grained than the τk trees. Now, given the locus node v ,
there exists a maximal node w ∈ ρk contained in v , and a maximal node u ∈ τk contained in w . The key idea is to build a
list of top-k to top-2k candidates by joining the precomputed results of w and u, and then correct this result by traversing
O (c) GST leaves.

Since we have a maximal node u ∈ τk contained in any node w ∈ ρk , we can encode the top-k list of w only for the
documents that are not already in the top-k list of u. Note that a document must appear at least once in L(w\u) if it is in
the top-k list of w but not in that of u. Thus the additional top-k candidates of w can be encoded using O (k lg(g/k)) bits,
by storing as before one of their positions in L(w\u), and encoding the sorted positions differentially. The frequencies do
not need to be encoded, since they can be recomputed as for any other candidate.

The space for a τk tree is O ((n/g)k lgn) = O (n/ lg1+ε n) bits using g = k lg2+ε n, which added over all the pow-
ers of 2 for k gives O (n/ lgε n) = o(n) bits, as before. For the ρk trees they require O ((n/c)k lg(g/k)) bits, which using
c = k lg k lgε n gives O (n lg lg n/(lg k lgε n)) bits. Added over the powers of 2 for k this gives O (n lg lg n/ lgε n) · ∑lg D

i=1 1/i =
O (n lg lg n lg lg D/ lgε n) = o(n) bits.

The time is dominated by that of traversing O (c) cells. Using some speedups [15] over the basic technique [7], the time
is O (tSA lg lg n) per cell, for a total of O (tsearch(p) + k tSA lg k lgε n) for any constant ε > 0.

3. A faster space-optimal representation

We build upon the schemes of Tsur [18] (Section 2.4) and Hon et al. [16] (Section 2.5). We will use the dual marking
mechanism of Hon et al., with trees τk and ρk , and make it work without using the individual CSAd structures. Without
these, the index gives us the top-k list of the maximal node w ∈ ρk that is below the locus v , but not their frequencies.
Similarly, when we traverse the O (c) extra cells to correct the top-k list, we have no way to compute the frequency of the
document identifiers d found in L(v\w).

In order to cope with the second problem, we will use the idea of Tsur: there can be only O (
√

ck) candidates that
can make it to the top-k list. If c = k�, this is O (k

√
�). Thus we can record their identities by means of their sorted and

differentially encoded positions along O (c) leaves, in total space O (k
√

� lg c
k
√

�
) = O (k

√
� lg �) = O (k

√
� lg lg n) bits. Now we

need a mechanism to store the frequencies, both of the top-k elements and of the O (k
√

�) candidates. For this sake we
introduce a new data structure, which might have independent interest.

3.1. The sampled document array

The document array DA[1..n] would allow us to compute the desired frequency for any document d, that is, tf(v,d) =
rankDA(d, ep) − rankDA(d, sp − 1). The document array uses too much space, however. We will store just a sampled version
of it.

Definition 1. The sampled document array is an array DA′[1..n′] that stores every sth occurrence of each document identifier
d in DA, for a sampling step s. That is, the cell DA[i] is stored in DA′ iff rankDA(DA[i], i) is a multiple of s. Note that n′ ≤ n/s.

We associate to DA′ a bitvector S[1..n] that marks the positions in DA that are sampled in DA′ . The next lemma follows
easily.

Lemma 3. Let x be the number of occurrences of a document identifier d in DA[sp..ep], and let y be the number of occurrences of d in
DA′[rankS (sp − 1) + 1..rankS(ep)]. Then (y − 1)s < x < (y + 1)s.

Proof. The area DA[sp..ep] includes y sampled occurrences of document d. Each such sampled occurrence is preceded by
s − 1 non-sampled occurrences. For the last y − 1 sampled occurrences, their s − 1 preceding non-sampled occurrences are
also contained in DA[sp..ep]. Instead, the s − 1 non-sampled occurrences preceding the first sampled occurrence could be
before sp, and thus x ≥ y + (y − 1)(s − 1) = (y − 1)s + 1.

As for the upper bound, consider that all the s−1 non-sampled occurrences preceding each of the y sampled occurrences
could lie within the range DA[sp..ep]. Moreover, the range could also include all the s − 1 non-sampled occurrences that
follow the last sampled occurrence, thus x ≤ y + y(s − 1) + (s − 1) = ys + (s − 1). �

G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97 89
To use this lemma we store DA′ using a representation (Lemma 1) that requires n′ lg D + o(n′ lg D) bits and computes
rankDA′ (d, i) in time O (lg lg D). Further, we represent S in compressed form [31] so that it requires n′ lg(n/n′)+ O (n′)+ o(n)

bits and supports rankS (i) in constant time. We use s = lg2 n, thus n′ = O (n/ lg2 n) and the space for both DA′ and S is
o(n). Using this representation, we can compute y in Lemma 3 as rankDA′ (d, rankS(ep)) − rankDA′ (d, rankS(sp − 1)) in time
O (lg lg D). We know that x = ys ± O (lg2 n).

3.2. Completing the index

To retrieve any tf(w,d) for a top-k document in node w ∈ ρk , we use S and DA′ to compute the approximation ys in
time O (lg lg D), and then need to store only O (lg s) = O (lg lg n) bits in w to correct this approximate count. Each node
w ∈ ρk stores (the correction of) the frequency information of both its top-k documents that appear in the top-k list of its
maximal descendant node u ∈ τk , and those that do not (in fact, we do not need frequency information associated to τk
nodes). Similarly, we need to compute tf(w,d) for any of the O (

√
ck) candidates to top-k in w , thus we must also store

(the correction of) those O (
√

ck) frequencies, which dominate the total space of O (k
√

� lg lg n) bits. With this information
we can discard the CSAd structures of Hon et al. [16].

We use � = lg2 k lgε n. The space for one ρk tree is O ((n/c)k
√

� lg lg n) = O (n lg lgn/
√

�) = O (n lg lgn/(lg k lgε/2 n)) bits.
Adding over all the powers of 2 for k yields O (n lg lg n/ lgε/2 n) · ∑lg D

i=1 1/i = O (n lg lg n lg lg D/ lgε/2 n) = o(n) bits. Thus the
total space is |CSA| + o(n) bits.

At query time we store the top-k documents of w (part of which are extracted from the top-k list of u ∈ τk [16]), plus
the O (

√
ck) candidates, together with their frequencies in w , in a dictionary using the document identifiers as keys. Then

we traverse the O (c) cells of L(v\w), accessing the CSA and bitvector B to determine each document identifier d. If d is
not in the dictionary, it can be discarded, otherwise we increment its frequency. At the end, we scan the O (

√
ck) elements

of the dictionary and keep the k largest ones. The cost of this procedure includes O (
√

ck lg lg D) = O (c lg lg D/
√

�) = o(c)
to compute the frequencies of the candidates below w using the frequency correction information and rank queries on
DA′; O (c tSA) to compute the document identifiers of O (c) CSA cells; O (c) time to perform constant-time operations on
the dictionary2; and O (

√
ck) = o(c) time to collect all the candidates from the dictionary, find the kth largest frequency θ

using linear-time selection [36], and then output elements with frequency θ or higher (more precisely, we report the k′ < k
candidates with tf(v,d) < θ in a first pass, and then report the first k − k′ documents we find with tf(v,d) = θ in a second
pass). This adds up to O (k tSA lg2 k lgε n) time, dominated by the time to compute the CSA cells.

Theorem 1. The top-k most frequent documents problem, on a collection of length n, for a pattern of length p, can be solved using
|CSA|+ D lg(n/D)+ O (D)+ o(n) bits and in O (tsearch(p)+k tSA lg2 k lgε n) time, for any constant ε > 0. Here CSA is a compressed
suffix array over the collection, tsearch(p) is the time CSA takes to find the suffix array interval of the pattern, and tSA is the time it
takes to retrieve any suffix array cell.

We also give two simplifications using recent CSAs [12,13] whose size is related to Hh , the per-symbol empirical entropy
of the text collection, for any h ≤ α lgσ n and any constant 0 < α < 1. For the second, since it uses O (n) extra bits, we set a
smaller c = k(lg k lg lgn lg lg D)2.

Corollary 1. The top-k most frequent documents problem, when D = o(n), can be solved using nHh + o(nHh) + o(n) bits and in
O (p lg lgσ + k lg2 k lg1+ε n) time, for any constant ε > 0.

Corollary 2. The top-k most frequent documents problem can be solved using nHh + o(nHh) + O (n) bits and in O (p +
k lg n(lg k lg lg n lg lg D)2) time.

3.3. Construction

The time to build the sampled document array is clearly O (n) plus the time needed to build the data structure of
Lemma 1 on a sequence of length n′ and alphabet size D . This is dominated by the time to build O (n′/D) perfect hash
functions over O (D) elements and a universe of size O (D), which can be done in overall time O (n′ lg lg D) [37]. Since
n′ = O (n/ lg2 n), this extra time is o(n).

The rest of the construction is dominated by the cost to precompute the answers, in particular to find the top-k docu-
ments for each sampled node, plus finding the additional candidates.

2 For example, we can bucket the universe [1..D] in chunks of lg2 D elements, and store a B-tree of arity
√

lg D and height O (1) for the elements falling
in each chunk. The bucket structure adds up to o(D) bits, which can be taken as part of the index. The B-trees are operated in constant time because they
store only O (

√
lg D lg lg D) = o(lg n) bits per internal node. They occupy overall O (

√
ck lgn) = O (k lg k lg1+ε/2 n) bits, which is the space we use to answer

the query. See [2, App. E] for more details.

90 G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97
For the first part, we can use a data structure [21], which is built in O (n lg n) time and answers a top-k query in
O ((k + lg n) lg n) time once the locus of the pattern is given.3 Adding the O (k lg n) times over all the O (n/c) sampled nodes,
for c = k lg2 k lgε n, gives O (n lg1−ε n/ lg2 k), which added over all the powers of 2 for k gives O (n lg1−ε n). Instead, adding
the O (lg2 n) times gives O (n lg2−ε n/(k lg2 k)), which added over all the powers of 2 for k gives O (n lg2−ε n).

Consider now the process of extending the intervals of the sampled nodes to look for further candidates to store. We
first build the complete (not the sampled) document array using Lemma 1, in O (n lg lg D) time [37]. Now, we consider all
the sampled nodes for all the k values that are powers of 2.

For each sampled node v , we put its top-k answers in a min-priority queue Q limited to size k, maintaining also a
balanced binary tree K with the elements present in the queue (K will be used to determine whether a document d is
in Q , and where), and initially empty balanced trees C and E (C will contain the new candidates found in each area, and
E the union of the new candidates). Now we traverse the cells of L(u \ v), where u is the parent of v . For each document
d found in a cell, we compute tf(u,d) in time O (lg lg D) using the document array, and if this is higher than the lowest
term frequency in Q , we insert d in Q , K , and C , displacing the currently lowest value from Q , K and, if present, from C .
(It might also be that d was already in the queue and we just update its frequency from tf(v,d) to tf(u,d) in Q , without
changing K or C , and even that we have found d for the second time and the frequency was already updated to tf(u,d).)
Once we complete the process of L(u \ v), we set v ← u, u ← parent(u), add all the elements of C to E (without duplicates),
make C empty, and leave Q and K as is. Then we restart the process, until reaching the nearest marked ancestor of v . At
this point, we have in E the set of extra candidates that should be stored in v .

The whole process traverses O (c) cells, and costs O (c lg k) to operate Q , K and C , and O (
√

ck lg
√

ck) to operate E .
The encoding of the candidates can be done in O (

√
ck) time. This is carried out over O (n/c) nodes, so the total cost is

O (n(lg k + lg(ck)/
√

�)) = O (n lg k). Adding over all the powers of 2 for k, we obtain O (n lg2 D) time.
The sum of all the pieces of the construction time can thus be upper bounded by O (n lg2 n). The extra time to build the

CSA is O (n) to O (n lgσ) for all known CSAs.

4. An index with near-optimal time

We now describe an index that answers queries in O (tsearch(p)+k lg∗ n) time. Our index will contain a CSA, the topology
of its GST using O (n) bits (recall Section 2.1), and the document array DA represented as in Lemmas 1 and 2, for a total of
|CSA| + n lg D + o(n lg D) bits. In addition we will store some precomputed answer lists.

We use the grouping scheme of Hon et al. [7] (Section 2.3) to define the τk marked trees; however we will use various
grouping factors g for the same k. Therefore, this time we will make emphasis on g rather than on k: we will call τg the
trees obtained with grouping factor g , and the k value (or actually z, its next power of two) will be implicit.

Let F (x,k) represent the list (or set) of top-k documents Td , along with tf(x,d), corresponding to a pattern with locus
node x in GST. Clearly we cannot afford to maintain F (x,k) for all possible xs and ks. Rather, we will maintain the lists
F (x, z) only for marked nodes xs (for various g values) and for zs that are powers of 2. Then F (x,k) for any x and k will be
efficiently computed using that sampled data. We now describe how to store and retrieve the sampled lists. The following
is a key result in our scheme, and the rest of the section is devoted to prove it.

Lemma 4. Let gh = z(lg(h) n)2 for any 1 ≤ h < lg∗ n, where lg(1) n = lg n, lg(h) n = lg(lg(h−1) n), and lg(lg∗ n) n ≤ 1. Then F (x, z) for all

x ∈ τgh can be encoded in sh = sh−1 + O (n/ lg(h) n) bits, and F (x, z) for any given x ∈ τgh can be decoded in time th = th−1 + O (z),
where s1 = O (n/ lg n) and t1 = O (z).

To prove the lemma, we use induction. Consider the base case h = 1. For every x ∈ τg1 , we maintain the list F (x, z)
explicitly (using O (lg n) bits per element), along with a pointer to the location where it is stored, in s1 = O (|τg1 |z lg n) =
O (n/ lg n) bits. Thus the list F (x, z), for any x ∈ τg1 , can be decoded in time t1 = O (z).

Now consider that the grouping factor is gh for h ≥ 2. As we cannot afford to use Θ(lg n) bits per element, we introduce
encoding schemes that reduce it to O (lg(h) n) bits. Thus the overall space for maintaining F (x, z) (in encoded form) for all

x ∈ τgh can be bounded by O (|τgh |z lg(h) n) = O (n/ lg(h) n) bits. Instead of using pointers as in the base case, we mark in
a bitvector Bh[1..2n] the node preorders of GST that belong to τgh . Therefore the list F (x, z) of a node x ∈ τgh is stored
in an array at offset rankBh (x). Since we will only compute rank on positions x where Bh[x] = 1, an indexed dictionary
(Section 2.2) suffices, requiring O ((n/gh) lg gh + lg lg n) = o(n/ lg(h) n) bits and computes rank in time O (1). We now show
how to encode the list F (x, z), for x ∈ τgh , in O (lg(h) n) bits per element, and how to decode it in th−1 + O (z) time.

We maintain a structure STRh , using sh bits, for each grouping factor gh , and decode F (x, z) for x ∈ τgh recursively, using
O (z) time in addition to the time needed to decode F (y, z) for some y ∈ τgh−1 , as suggested in Lemma 4. As we cannot
afford to sort the documents within the targeted query time, it is important to assume a fixed arrangement of documents

3 They claim construction time O (n lgσ +n lg lgn), and query time O ((k + lg lgn) lg lgn), but only on typical texts, where the suffix tree height is O (lgn).
The times we are using here are worst-case. We note there is another structure [9] answering those queries in O (k) time, but its construction time is
unclear.

G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97 91
within any particular decoded list F (· , ·). That is, each time we decode a specific list, the decoding algorithm must return
the elements in the same order.

Let x be a node in τgh and y (if it exists) be its highest descendant node in τgh−1 . We show how to encode and
decode F (x, z). To decode F (x, z), we first decode the list F (y, z) using STRh−1 in time th−1. From now onwards we have
constant-time access to any element the list F (y, z). The list F (x, z) will be partitioned into two disjoint lists:

(i) Dold , the documents that are common to F (x, z) and F (y, z).
(ii) Dnew , the documents that are present in F (x, z), but not in F (y, z).

Encoding and decoding document identifiers in Dold We maintain a bit vector B ′[1..z], where B ′[i] = 1 iff the ith document in
F (y, z) is present in F (x, z). Therefore Dold can be decoded by listing those elements in F (y, z) (in the same order as they
appear) at positions i where B ′[i] = 1. Thus the space for maintaining the encoded information is z bits and the time for
decoding is O (z).

Encoding and decoding document identifiers in Dnew For each document d ∈ Dnew , there exists at least one leaf in L(x\y)

that is marked with Td (otherwise tf(x,d) = tf(y,d) and d could not be in F (x, z) and not in F (y, z)). Therefore, instead
of explicitly storing d, it is sufficient to refer to such a leaf. For this we shall store a bit vector B ′′[1..|L(x\y)|] with all its
bits in 0, except for |Dnew| 1s: for every document d ∈ Dnew , we set one bit, say B ′′[i] = 1, where the ith leaf in L(x\y) is
marked with Td . Since |B ′′| = |L(x\y)| < 2gh−1 and the number of 1s is at most z, B ′′ can be encoded in O (z lg(gh−1/z)) =
O (z lg(h) n) bits with constant time select support (Section 2.2). Now, given B ′′ , the documents in Dnew can be identified in
O (z) time as follows: Find all those (at most z) increasing positions i where B ′′[i] = 1 using select queries. Then, for each
such i, find the ith leaf of L(x\y), �i′ , in constant time using the tree operations.4 Finally, report DA[i′] as a document in
Dnew for each such i′ using a constant-time access operation on the document array.

As mentioned before, it is important for our (recursive) encoding/decoding algorithm to assume a fixed permutation of
elements within any list F (· , ·). We use the convention that, in F (x, z), the documents in Dold come before the documents
in Dnew . Moreover the documents within Dold and Dnew are in the same order as the decoding algorithm identified them.
In conclusion, the list of identifiers of documents in F (x, z) can be encoded in O (z lg(h) n) bits and decoded in O (z) time,
assuming constant-time access to any element in F (y, z). If node y does not exist, we proceed as if F (y, z) = ∅ and F (x, z) =
Dnew . We now consider how to encode the tfs associated with the elements in F (x, z) (i.e., tf(x,d) for all d ∈ F (x, z)).

Encoding and decoding of frequencies Let di , for i ∈ [1..z], be the ith document in F (x, z), and f i = tf(x,di). Then, define
δi = f i − f ′

i ≥ 0, where

f ′
i =

{
tf(y,di) if i ≤ |Dold| (i.e., if di ∈ Dold),

μ = min{tf(y,d),d ∈ F (y, z)} if i > |Dold| (i.e., if di ∈ Dnew).

The following is an important observation: The number of leaves in L(x\y) marked with document Tdi is tf(x,di) − tf(y,di),
which is the same as δi for i ≤ |Dold|. For i > |Dold|, tf(x,di)− tf(y,di) ≥ δi , otherwise tf(y,di) > μ and di would have qualified
as a top-z document in F (y, z) (which is a contradiction as di ∈ Dnew). By combining with the fact that each leaf node is
marked with a unique document, we have the inequality

∑z
i=1 δi ≤ |L(x\y)| < 2gh−1. Therefore, δi for all i ∈ [1..z] can be

encoded using a bit vector B ′′′ = 10δ1 10δ2 10δ3 . . . 10δz of length at most 2gh−1 + z with z 1s, in O (z lg(gh−1/z)) = O (z lg(h) n)

bits with constant-time select support (Section 2.2).
The decoding algorithm is as follows: compute the f ′

i s for i = 1 . . . z in the ascending order of i. For i ≤ |Dold|, f ′
i is

given by the frequency associated with the selectB ′ (i)th document (which is same as Tdi) in F (y, z). This takes only O (z)
time as the number of constant-time select operations is O (z), and we have constant-time access to any element and
frequency in F (y, z). Next, μ = min{tf(y,d),d ∈ F (y, z)} can be obtained by scanning the list F (y, z) once. Thus all the
f ′

i s are computed in O (z) time. Next we decode each δi and add it to f ′
i to obtain f i , for i = 1 . . . z in O (z) time, where

δi = selectB ′′′ (i)− selectB ′′′ (i − 1)− 1 is computed in O (1) time. Thus the space for maintaining the frequencies is O (z lg(h) n)

bits and the time for decoding them is O (z).

Adding over the h levels, the total space is sh = sh−1 + O (n/ lg(h) n) = O (n/ lg(h) n) bits and the total decoding time is
th = th−1 + O (z) = O (zh) (note that s1 = O (n/ lg n) and t1 = O (z)). This completes the proof of Lemma 4. Now we have the
main ingredient to describe the complete solution, in the next section.

5. Completing the picture

Let π ∈ [1.. lg∗ n) be an integer such that lg(π−1) n ≥ √
lg∗ n > lg(π) n, then lg(π) n = ω(1) (note that π = lg∗ n −

lg∗ √
lg∗ n = Θ(lg∗ n)). Then, by choosing gπ as the grouping factor, the space sπ is O (n/ lg(π) n) = o(n) bits. We main-

4 Compute the leftmost leaves �ix and �i y , respectively, of x and y, then �i′ is �ix+i−1 if ix + i − 1 < i y , and � j y+i−(i y−ix) otherwise, where � j y is the
rightmost leaf of y.

92 G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97
tain lg D such structures corresponding to z = 1,2,4,8, . . . ,2�lg D� , in o(n lg D) total bits. By combining the space bounds of
all the components, we obtain the following lemma.

Lemma 5. The total space requirement of our data structure is |CSA| + n lg D + o(n lg D) bits.

The next lemma gives the total time to extract the sampled results and hints how we will use them.

Lemma 6. Given any node v ∈ GST and an integer k, our data structure can report the list F (u,k) in O (k lg∗ n) time, where u is a

node in the subtree of v with |L(v\u)| = O (k
√

lg∗ n).

Proof. As the first step, round k to z = 2lg k� , which is the next power of 2. Then identify the highest node u, in the subtree
of v , that is marked with respect to the grouping factor gπ : Let �i and � j be the leftmost and rightmost leaves of L(v),
then u = lca(�i′ , � j′) where i′ = gπ · i/gπ � and j′ = gπ · � j/gπ � (there is no u if i′ ≥ j′). This takes constant time on our
representation of the GST topology.

Since gπ = z lg(π) n < z
√

lg∗ n, it holds |L(v\u)| = O (gπ) = O (z lg(π) n) = O (k
√

lg∗ n). As u ∈ τgπ , the list F (u, z) can be
decoded in time tπ = O (zπ) = O (k lg∗ n) from the precomputed lists (from Lemma 4). The final F (u,k) can be obtained by
selecting the k highest frequencies in F (u, z), in O (z) = O (k) time just as in Section 3.2. In case u does not exist, we report
F (u,k) = ∅, and even in such a case the inequality |L(v)| < 2gπ is guaranteed. �

The construction is similar to the process described in Section 3.3, except that now, for each z (k) value, we build
O (lg∗ n) structures for different grouping factors. The construction time then grows slightly, to O (n lg2 n lg∗ n).

5.1. Query answering

The query answering algorithm consists of the following steps:

1. Find the locus node v of the input pattern P in GST by first obtaining the suffix range [sp..ep] of P using CSA in
tsearch(p) time, and then computing the lowest common ancestor v of �sp and �ep in O (1) time.

2. Using Lemma 6, find the node u in the subtree of v , where |L(v\u)| = O (k
√

lg∗ n) and retrieve the list F (u,k) in
O (k lg∗ n) time.

3. Every document d in the final output F (v,k) must either belong to F (u,k), or it must be that d = DA[i] for some leaf
�i ∈ L(v\u). Let us call Scand the union of both sets of candidate documents. Then we compute tf(v,d) of each document
d ∈ Scand .

4. Report k documents in Scand with the highest tf(v, r) value in time O (|Scand|) = O (k
√

lg∗ n), just as in Section 3.2.

The overall time for Steps 1, 2, and 4 is O (tsearch(p) + k lg∗ n). In the remaining part of this section we show how
to handle Step 3 efficiently as well, for the documents d = DA[i] we find in L(v\u). Note that tf(v,d) can be computed
as rankDA(d, ep) − rankDA(d, sp − 1) using two rank queries on the document array, but those rank queries are expensive.
Instead, we use a more sophisticated scheme where only the faster select, access, and partial rank queries are used. This is
described next.

5.2. Computing scores online

Firstly, we construct a supporting structure, SUP, in O (k lg∗ n) time and occupying o(n lg D) + O (z lg n) bits, capable of
answering the following query in O (lg lg∗ n) time: for any given d, return tf(u,d) if d ∈ F (u,k), otherwise return −1. Let
Δ = Θ(lg∗ n), then structure SUP is a forest of D/Δ balanced binary search trees T1,T2, . . . ,TD/Δ. Initially each Ti is empty,
hence the initial space is O (lg n) bits per tree (for maintaining a pointer to the location where it is stored), adding up
to O ((D/Δ) lg n) = o(n lg D) bits, which we consider a part of the index. Next we shall insert each document d ∈ F (u,k),
along with its associated frequency, into tree Td/Δ� of SUP. The size of each search tree can grow up to Δ, hence the total
insertion time is O (k lgΔ). These insertions will increase the space of SUP by O (k lg n) bits, which can be justified as it is
the order of the output size. Now we can search for any d in Td/Δ and, if d ∈ F (u,k), we will retrieve tf(u,d) in O (lg Δ)

time. Once we finish Step 3, these binary search trees can be set back to their initial empty state by visiting each document
d ∈ F (u,k) and deleting it from the corresponding tree in total O (k lgΔ) time. This does not impact the total asymptotic
query processing time.

An outline of Step 3 follows: We scan each leaf �i ∈ L(v\u), and compute tf(v,DA[i]). Note that there can be many leaves
in L(v\u) marked with the same document, but we compute tf(v,d) of a document d only once (i.e., when we encounter
it for the first time). After this, we also scan the documents d ∈ F (u,k) and compute tf(v,d) if we have not considered this
document in the previous step. However, the scanning of leaves is performed in a carefully chosen order. Let �sp′ and �ep′
be the leftmost and rightmost leaves in L(u), and B[1..D] be a bit vector initialized to all 0s (its size is D bits and can be
considered a part of the index). A detailed description of Step 3 follows:

G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97 93
3.1 Start scanning the leaves �i for i = sp, sp + 1, . . . , sp′ − 1, in the ascending order of i, then for i = ep, ep − 1, . . . , ep′ + 1,
in the descending order of i, and do the following: if B[DA[i]] = 0, then set it to 1, compute tf(v,DA[i]), and store
the result (DA[i], tf(v,DA[i])) for Step 4. Note that each time we compute tf(v,DA[i]), i is either the first or the last
occurrence of DA[i] in DA[sp..ep]. Assume it is the first (the other case is symmetric). We use a constant-time partial
rank query, x = rankDA(DA[i], i). Then, by performing successive selectDA(DA[i], j) queries for j = x + 1, x + 2, . . . , y,
where selectDA(DA[i], y) > ep ≥ selectDA(DA[i], y − 1), we compute tf(v,DA[i]) = y − x. The number of select queries
required is precisely y − x = tf(v,DA[i]), which can be further reduced as follows:
• If DA[i] ∈ F (u,k), retrieve tf(u,DA[i]) from SUP in time O (lg lg∗ n). As we know that tf(u,DA[i]) ≤ tf(v,DA[i]), we

start select queries from j = x + tf(u,DA[i]), so the number of select queries used to find y is reduced to tf(v,DA[i])−
tf(u,DA[i]) = tf(L(v\u),DA[i]), that is, the number of leaves in L(v\u) marked with TDA[i] (note here we are extending
of the tf notation to leaf sets, with the obvious meaning).

• If DA[i] /∈ F (u,k), compute x′ = selectDA(DA[i], x + μ − 1), where we remind that μ = min{tf(u,d),d ∈ F (u,k)}. If
x′ > ep, we conclude that tf(v,DA[i]) < μ, and hence DA[i] can be discarded from being a candidate for the final
output. On the other hand, if x′ ≤ ep, the select queries can be started from j = x + μ, which reduces the number of
select queries to tf(v,DA[i]) − μ ≤ tf(L(v\u),DA[i]) (since DA[i] /∈ F (u,k), it holds tf(u,DA[i]) ≤ μ).

The query time for executing this step can be analyzed as follows: for each i, we perform a query on SUP. The
computation of tf(v,DA[i]) requires at most tf(L(v\u),DA[i]) select queries. As we do this computation only once
per distinct document, the total number of select queries is at most

∑
r tf(L(v\u), r) = |L(v\u)|. By choosing the cost

f (n, D) = √
lg∗ n for select queries, the total time is O (|L(v\u)| (f (n, D) + lg lg∗ n)) = O (k lg∗ n).

3.2 Now scan the documents d ∈ F (u,k). If B[d] = 0, then there exists no leaf in L(v\u) marked with Td . Thus tf(v,d) =
tf(u,d) and the pair (d, tf(u,d)) is stored for Step 4. If B[d] = 1 then Td has already been dealt with in the previous
pass. The time for accessing tf(u,d) using SUP is O (lg lg∗ n), hence this step takes O (k lg lg∗ n) time.

3.3 Reset B to its initial state (all bits set to 0) for supporting queries in future. By revisiting the leaves in L(v\u) and the
list F (u,k), we can exactly find out those locations in B where the corresponding bit is 1. The time for this step can be
bounded by O (|L(v\u)| + k) = O (k

√
lg∗ n).

Thus the time for Step 3 is O (k lg∗ n), and the result follows.

Theorem 2. The top-k most frequent documents problem, on a collection of length n, for a pattern of length p, can be solved using
|CSA| + n lg D + o(n lg D) bits and in near-optimal O (tsearch(p) + k lg∗ n) time. Here CSA is a compressed suffix array over the
collection and tsearch(p) is the time CSA takes to find the suffix array interval of the pattern. The documents are delivered in arbitrary
order.

By considering a particular CSA [13] we have the following corollary.

Corollary 3. The top-k most frequent documents problem can be solved using nHh +n lg D +o(nHh +n lg D) bits and in O (p +k lg∗ n)

time.

6. Reducing the time to O (p + k lg∗ k)

Note that, when p or k is at least lg lg n, it already holds O (tsearch(p) + k lg∗ n) = O (tsearch(p) + k lg∗ k) for any
tsearch(p) ≥ p. Therefore, we now concentrate on the case when max(p,k) < lg lg n. We use the following result.

Lemma 7. (See [38].) Given a fixed κ , an array A[1..n] of n indices can be indexed in O (n lg2 κ) bits for answering the following query
in O (k) time, without accessing A and for any 1 ≤ k ≤ κ : given i, j, and k, output the positions of the k highest elements in A[i.. j].

Let Sδ be the set of nodes in GST with node depth equal to δ. We start with the description of an O (n lg2 κ)-bit
structure for a fixed κ = lg lg n and a fixed δ < lg lg n, for answering top-k queries for any 1 ≤ k ≤ κ and those patterns
with their locus node belonging to Sδ . First, we construct an array A[1..n] (with all its elements initialized to zero) as
follows: For i = 1 . . .n, if the first occurrence of document DA[i] in DA[a..b] is at position i, where [a..b] is the suffix range
corresponding to a node u ∈ Sδ , then set A[i] = tf(u,DA[i]). We do not store this array explicitly, instead we maintain the
structure of Lemma 7 over it, requiring O (n lg2 κ) bits space. Now the list of documents F (u,k) for any locus node u ∈ Sδ

can be reported in O (k) time as follows: First perform a top-k query on the structure of Lemma 7 with the suffix range
[sp..ep]. The output will be a set of k locations j1, j2, . . . , jk ∈ [sp..ep], and then the identifiers of the top-k documents are
DA[j1],DA[j2], . . . ,DA[jk]. By maintaining similar structures for all the δ ∈ [1.. lg lg n), any such top-k query with p < lg lg n
can be answered in O (tsearch(p) + k) time. The additional space required is o(n(lg lg n)3) bits, which can be bounded by

o(n lgσ) bits if, say, lgσ ≥ √
lg n. Otherwise, we shall explicitly maintain the top-κ documents corresponding to all patterns

of length at most lg lg n, in decreasing frequency order, using a table of O (σ lg lg n lg lg n lg D) = o(n) bits. The query time in
this case is just O (k).

Thus, by combining the cases, we achieve O (tsearch(p) + k lg∗ k) query time.

94 G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97
Theorem 3. The top-k most frequent documents problem, on a collection of length n, for a pattern of length p, can be solved using
|CSA|+n lg D +o(n lgσ +n lg D) bits and in near-optimal O (tsearch(p)+k lg∗ k) time. Here CSA is a compressed suffix array over the
collection and tsearch(p) is the time CSA takes to find the suffix array interval of the pattern. The documents are delivered in arbitrary
order.

Once again, we obtain a result very close to optimal by considering a particular CSA [13].

Corollary 4. The top-k most frequent documents problem can be solved using nHh + n lg D + o(n lgσ + n lg D) bits and in O (p +
k lg∗ k) time.

The construction time of the structure of Lemma 7 is O (n lg2 κ) plus the time to sort the values, which in this case is
O (n) because term frequencies are in [1..n]. We build lg lg n such structures with κ = lg lg n, so the total extra construction
time is o(n(lg lg n)3) time. The structure for the case lgσ <

√
lg n can be built in time O (σ lg lg n lg lg n lg2 n) = o(n), using the

data structure [21] analyzed in Section 3.3. Therefore the construction time O (n lg2 n lg∗ n) of the main structure dominates.

7. An index for top-k most important documents

We now consider the case where each document has a fixed importance value. For simplicity, assume we reassign
document identifiers so that document Td is the dth most important one. Then, after identifying the interval DA[sp..ep] for
a pattern P , the problem is to report the k distinct smallest document identifiers in DA[sp..ep].

A property that simplifies the problem is that it is decomposable: We can partition the query range DA[sp..ep] into two,
DA[sp..mp] and DA[mp + 1..ep], obtain the k smallest identifiers from each half (in arbitrary order), and then merge them
to obtain in O (k) further time the k smallest identifiers in DA[sp..ep]. We first explain how to do this merging and then
our data structure.

Merging two results sets Assume we have two result sets S1 and S2 of size O (k). We maintain a bit vector V [1..D] as a part
of our data structure, with V [d] = 0 for all d. Then we traverse S1 and S2, setting V [d] ← 1 for any d ∈ S1 ∪ S2. Now we
prepare an empty list S , which will contain S1 ∪ S2 without duplicates. We traverse again S1 and S2. For each d ∈ S1 ∪ S2,
if V [d] = 1, we add d to S and set V [d] ← 0, otherwise we do nothing. At the end S is computed and V is restored to all
0s.

Now we run over S the procedure described near the end of Section 3.2, for selecting the kth element in S in O (k) time
and, after knowing the kth smallest identifier θ , collecting all the identifiers smaller than θ from S . The whole process takes
O (k) time.

A blocking scheme We virtually partition DA[1..n] into contiguous blocks of length b, for b = 1,2,4,8, . . . ,2�lg n� . We asso-
ciate each cell DA[i] with two values, Cprev[i] and Cnext[i], both in [1, lg n], so that Cprev[i] (respectively, Cnext[i]) is the size
of the smallest block containing i and the previous (respectively, next) position j such that DA[j] = DA[i].

Now, let 2h be the size of the smallest block containing DA[sp..ep], thus there is an mp such that DA[sp..mp] and
DA[mp + 1..ep] are contained in two consecutive blocks of size 2h−1. By the discussion above, it is sufficient to solve top-k
queries on those two subranges, that is, to consider only suffixes or prefixes of blocks. We will describe the case of suffixes;
prefixes are handled similarly.

Notice that, for any particular document in DA[sp..mp], there will be exactly one occurrence i ∈ [sp..mp] (the rightmost)
with Cnext[i] ≥ h. All the previous ones, sp ≤ j < i, will have their next occurrences within [sp..mp], which is contained in a
block of size 2h−1, and thus Cnext[j] ≤ h − 1.

Therefore, the problem can be rephrased as follows: among all those elements i ∈ [sp..mp] with Cnext[i] ≥ h, report k
with smallest DA[i] values. The condition Cnext[i] ≥ h gets rid of possible duplicates.

A geometric problem Consider n two-dimensional points (xi, yi) on a short grid of n × m, for m = O (polylog n), and point
weights wi ∈ [1..D]. Queries specify a range [x1..x2] × [y1..y2] and an integer k, and the task is to return the k heaviest
points in the range. While this problem has been studied [8,39], we show now a different result that is useful for thin grids,
which might be of independent interest.

Assume the points are sorted by x-coordinate and that there is exactly one column per point in the grid, so that xi = i
(this simplification is standard and other cases are easily mapped to this one within O (n) extra bits and constant time).
Then the grid will be represented via two sequences, Y [1..n] = y1 y2 . . . yn and W [1..n] = w1 w2 . . . wn .

We will represent W in plain form, whereas Y will be represented with the alternative variant of Lemma 1, so that
selectY is supported in constant time. Note that rankY is also supported in constant time because the alphabet size is
σ = m = O (polylog n), thus O (lg lg σ

lg lg n) = O (1). The total space is n lg D + n lgm + o(n lg m) bits.
The representation of Y is used to define virtual sequences W y , for y ∈ [1..m], where W y[i] = W [selectY (y, i)] is the ith

value in W with Y [·] = y. Note that access to any W y is simulated in constant time.

G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97 95
Then our geometric search can be decomposed into y2 − y1 + 1 subproblems on W y[xy
1 ..xy

2], where xy
1 = rankY (y,

x1 − 1) + 1 and xy
2 = rankY (y, x2), for y ∈ [y1..y2]. Consider the (virtual) concatenation A[1..n] = W 1 · W 2 · · · W m , and the

following lemma.

Lemma 8. (See [7].) We can preprocess an array A[1..n] in linear time and associate to it a data structure of 2n + o(n) bits, such that
given a set of z non-overlapping ranges [L1..R1], [L2..R2], . . . , [Lz..Rz], we can find the smallest k numbers in A[L1..R1]∪ A[L2..R2]∪
· · · ∪ A[Lz..Rz] (in unsorted order) by performing O (z + k) operations accessA .

Thus, by defining [L y ..R y] = [xy
1 ..xy

2], we obtain the desired result in O (k + (y2 − y1)) operations accessA , which we
transform in constant time into accesses to W . Therefore we obtain the following result.

Lemma 9. A set of n points on an n × m grid, with weights in [1..D], where m = O (polylog n), can be represented using n lgm(1 +
o(1)) + n lg D bits such that, given a query range [x1..x2] × [y1..y2] and an integer k, the k heaviest points in the range are obtained
in time O (k + (y2 − y1)).

The final solution for large k Let (xi, yi) = (i, Cnext[i]) be points on a grid n × lgn, with weights wi = D + 1 − DA[i] in [1..D];
and the query [sp..mp]×[h.. lgn]. Then we can apply Lemma 9 directly, and obtain the solution to our top-k most important
documents problem. The only difference is that we do not have W stored directly, but must obtain DA[i] via the CSA, in
time tSA . Therefore, the time we obtain is O (tsearch(p) + tSA(k + lg n)), and the space is |CSA| + n lg lg n + o(n lg lg n) bits.
This is already the desired time unless k < lg n; we deal with this case in the sequel.

Structure for k < lg n We define a set of blocks on top of DA[1..n] to provide for this case, extending a solution for range
minimum queries [40] so that we return up to lg n range minima. Choose block size � = lg3 n. For all values i ∈ [1..n/�] and
b ∈ [0.. lg(n/�)], we store in F [i,b] the smallest lg n document identifiers in DA[i · �..(i + 2b) · � − 1], in order. This adds up
to O ((n/�) · lg n · lgn lg D) = O (n) bits.

Given a query range [sp..ep], we first compute the maximal range of �-aligned blocks contained in [sp..ep], sp′ = sp/��
and ep′ = �(ep + 1)/�� − 1. Now we compute the appropriate block length, b = �lg(ep′ − sp′ + 1)�. Then, the area
DA[sp′�..(ep′ +1)�−1] is covered by two (possibly overlapping) areas DA[sp′�..(sp′ +2b)�−1] and DA[(ep′ −2b +1)�..(ep′ +
1)� − 1]. Any top-k value in DA[sp′�..(ep′ + 1)� − 1] must also be top-k in one of those areas (or in both). Thus the set of k
smallest identifiers in DA[sp′�..(ep′ + 1)� − 1] is obtained in O (k) time by merging the first k elements of lists F [sp′,b] and
F [ep′ − 2b + 1] (there may be repeated identifiers among the two lists).

This leaves us with up to two smaller ranges, of sizes less than �, at the extremes of the query range [sp..ep]. Those
are handled by storing, for each block of size �, the optimal-time structure of Karpinski and Nekrich [26]. For this sake, we
remap the weights (i.e., the document identifiers) to the range [1..�] while respecting their relative ordering. We also store
a map from the weight assigned to each document d to a local offset i within the block where d appears, DA[� · r + i] = d.
The mappings add up to O (� lg�) bits. Since the universe of weights within a block is of size �, the main data structure [26]
takes O (� lg �) bits as well. Thus the total space adds up to O (n lg �) = O (n lg lg n) bits.

The O (k) candidates returned by this data structure in O (k) time are then converted into document identifiers: first they
are converted into local offsets i using the local mapping, and then into document identifiers DA[� · r + i] = d in tSA time.
Overall, we obtain top-k values from the tails of the interval [sp..ep] in O (k tSA) time, and finally merge them with those of
the central part of the interval (if it is nonempty) in O (k) further time. We have obtained our final result.

Theorem 4. The top-k most important documents problem, on a collection of length n, for a pattern of length p, can be solved using
|CSA| + O (n lg lg n) bits and in O (tsearch(p) + k tSA) time. Here CSA is a compressed suffix array over the collection, tsearch(p) is the
time CSA takes to find the suffix array interval of the pattern, and tSA is the time it takes to retrieve any suffix array cell. The documents
are delivered in arbitrary order.

The construction of this data structure requires O (n) time to build Cprev and Cnext , then O (n lg lg lgn) time to build the
representation of Y (as it uses Lemma 1, recall Section 3.3), O ((n/�) lg(n/�) lg n) = o(n) to compute table F (as � = lg3 n),
and O ((n/�)� lg �) = O (n lg lg n) to build the structures of Karpinski and Nekrich [26]. Thus the overall time is O (n lg lg n)

plus the time to build the CSA of choice.

8. Reducing space

Compared to the solution of Gagie et al. [27], the space used in Theorem 4 is not satisfactory for small enough lg D =
O (lg lg n). In this section we show how the space can be further reduced, at some expense in time.

While array DA is represented through the CSA, we spend O (n lg lg n) bits in representing Cprev and Cnext . With some
effort, these arrays can also be expressed in terms of DA: Cnext[i] is a function of the first occurrence of DA[i] in DA[i +1..n],
and Cprev of the last occurrence in DA[1..i − 1]. These are easily computed if we have support for rankDA and selectDA; note
however that we do not have DA in explicit form, so we cannot directly use Lemma 1. Instead, we use the following result.

96 G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97
Lemma 10. (See [41].) Let S[1..n] be a string over an alphabet of size σ = O (polylog n). With O (n lg lgσ + (n lgσ)/t) bits on top
of S, for any 1 ≤ t ≤ σ , one can support rankS and selectS in time dominated by O (t) accesses to S.

We apply the lemma to string DA, whose alphabet size is D = O (polylog n) and whose access cost is tSA . For example, if
we choose t = lg lg D , we need O (n lg D/ lg lg D) bits on top of DA and can support rankDA and selectDA in time O (tSA lg lg D).
Therefore, in this time we provide access to Cnext and Cprev without storing them explicitly.

These arrays correspond to array Y in Lemma 9. We need, however, to support rankY and selectY . We can use Lemma 10
once again, this time over Y (whose alphabet size is lg n). By choosing, for example, t = lg lg n/ lg lg D , we have O (n lg lg lg n+
n lg lg D) bits of space and carry out operations rankY and selectY in O (t) accesses to Y , that is, in time O (tSA lg lg D ·
(lg lg n/ lg lg D)) = O (tSA lg lg n). The total space is |CSA| + O (n lg D/ lg lg D + n lg lg lg n) bits.

Now, using Lemma 9 on this representation we obtain time O (tsearch(p) + tSA(k + lg n) lg lg n). This time we cannot use
the special solution for k < lg n, because it needs much space.

Corollary 5. For D = O (polylog n), the top-k most important documents problem can be solved using |CSA| + O (n lg D/ lg lg D +
n lg lg lg n) bits and in O (tsearch(p) + tSA(k + lg n) lg lg n) time.

A result with the minimum space we can obtain is achieved by choosing t = lg D/ lg lg lg n for DA. The space becomes
O (n lg lg lgn), but the time to access Y is O (tSA lg D/ lg lg lg n). Then we can choose t = lg lgn/ lg lg lg n to represent Y ,
reaching O (n lg lg lg n) bits of space and O (tSA lg D lg lgn/(lg lg lg n)2) = O (tSA(lg lg n)2) time.

Corollary 6. For D = O (polylog n), the top-k most important documents problem can be solved using |CSA| + O (n lg lg lg n) bits and
in O (tsearch(p) + tSA(k + lg n)(lg lg n)2) time.

The additional construction time required by Lemma 10 is dominated by the construction of O (n/σ) monotone minimum
perfect hash functions (mmphf) on O (σ) elements over universe [1..σ], as well as other structures that require perfect hash
functions on O (σ / lgσ) elements over universe [1..σ]. The mmphfs are not allowed to use σ lgσ bits, and as a consequence
their construction time dominates. The only deterministic construction time known for this case is O (σ lg5 σ) [42]. This adds
up to O (n lg5 σ) = O (n(lg lg n)5) extra time. This may dominate the construction time of the general structure, but it is still
low, for example it is o(n lg n).

9. Conclusions

We have obtained important results about the relation between time and space for the most popular document retrieval
problems on general string collections. For top-k most frequent document retrieval, which had been solved in O (p + k)

and O (n(lgσ + lg D)) bits (with a large constant) [8], we have shown that it is possible to obtain the almost optimal time
O (p + k lg∗ k) time within n(lgσ + lg D)(1 + o(1)), and even less on compressible text collections. On the other hand, we
have shown that within the asymptotically optimal space of the compressed data plus o(n) bits, it is possible to solve the
problem in time O (p +k lg2 k lg1+ε n). Both results outperform the current state of the art [17,16,18] by a significant margin
(e.g., O (lg n/ lg k) times faster than the previous structure that uses optimal space [18]) and get very close to answering the
question of which are the optimal space/time tradeoffs.

Similarly, for top-k most important document retrieval, we have obtained a data structure with the optimal time
O (tsearch(p) + k tSA) given that the access to the documents must be carried out through a CSA. Its extra space on top
of the CSA is O (n lg lg n) bits, away from the asymptotically optimal o(n). For a polylogarithmic number of documents, we
reduce the extra space up to O (n lg lg lg n) bits, with a moderate increase in time. The only structure reaching optimal space
[15] is slower than ours by an O (lg k lgε n) factor.

Natural questions on the top-k most frequent problem are whether optimal time can be obtained within n(lgσ +
lg D)(1 + o(1)) bits of space, or even less (although the latter seems unlikely), or prove a fundamental limit. Similarly,
it is natural to ask which is the best time that can be obtained within optimal space. We believe it might be possible to
reduce our O (p + k lg2 k lg1+ε n) by a lg k factor, but the other seems to be an unavoidable price to allow for k to be cho-
sen at query time. Once again, it would be interesting to know which is the actual lower bound. Similar questions can be
posed on the top-k most important problem, which has been less studied, and on even more open problems, such as top-k
proximity search (i.e., find the k documents where two occurrences of P appear closest to each other).

Finally, practical developments should follow these theoretical results. As usual, a good deal of algorithm engineering
will probably be needed to obtain competitive practical performance, retaining some aspects of the theoretical ideas and
replacing others.

References

[1] S. Büttcher, C.L.A. Clarke, G. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, MIT Press, 2010.
[2] G. Navarro, Spaces, trees and colors: the algorithmic landscape of document retrieval on sequences, ACM Comput. Surv. 46 (4) (2014), article 52.
[3] P. Weiner, Linear pattern matching algorithm, in: Proc. 14th Annual IEEE Symposium on Switching and Automata Theory, 1973, pp. 1–11.

http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4243433130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4E61763134s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib5765693733s1

G. Navarro, S.V. Thankachan / Theoretical Computer Science 542 (2014) 83–97 97
[4] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM J. Comput. 22 (5) (1993) 935–948.
[5] W.-K. Hon, R. Shah, S.-B. Wu, Efficient index for retrieving top-k most frequent documents, in: Proc. 16th Symposium on String Processing and

Information Retrieval (SPIRE), 2009, pp. 182–193.
[6] W.-K. Hon, M. Patil, R. Shah, S.-B. Wu, Efficient index for retrieving top-k most frequent documents, J. Discrete Algorithms 8 (4) (2010) 402–417.
[7] W.-K. Hon, R. Shah, J.S. Vitter, Space-efficient framework for top-k string retrieval problems, in: Proc. 50th IEEE Annual Symposium on Foundations of

Computer Science (FOCS), 2009, pp. 713–722.
[8] G. Navarro, Y. Nekrich, Top-k document retrieval in optimal time and linear space, in: Proc. 23rd Annual ACM–SIAM Symposium on Discrete Algorithms

(SODA), 2012, pp. 1066–1078.
[9] R. Shah, C. Sheng, S.V. Thankachan, J.S. Vitter, Top-k document retrieval in external memory, in: Proc. 21st Annual European Symposium on Algorithms

(ESA), in: LNCS, vol. 8125, 2013, pp. 803–814.
[10] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Comput. Surv. 39 (1) (2007), article 2.
[11] G. Manzini, An analysis of the Burrows–Wheeler transform, J. ACM 48 (3) (2001) 407–430.
[12] J. Barbay, T. Gagie, G. Navarro, Y. Nekrich, Alphabet partitioning for compressed rank/select and applications, in: Proc. 21st Annual International Sym-

posium on Algorithms and Computation (ISAAC), in: LNCS, vol. 6507, 2010, pp. 315–326 (part II).
[13] D. Belazzougui, G. Navarro, Alphabet-independent compressed text indexing, in: Proc. 19th Annual European Symposium on Algorithms (ESA), 2011,

pp. 748–759.
[14] T. Gagie, J. Kärkkäinen, G. Navarro, S.J. Puglisi, Colored range queries and document retrieval, Theoret. Comput. Sci. 483 (2013) 36–50.
[15] D. Belazzougui, G. Navarro, D. Valenzuela, Improved compressed indexes for full-text document retrieval, J. Discrete Algorithms 18 (2013) 3–13.
[16] W.-K. Hon, R. Shah, S.V. Thankachan, J.S. Vitter, Faster compressed top-k document retrieval, in: Proc. 23rd Data Compression Conference (DCC), 2013,

pp. 341–350.
[17] W.-K. Hon, R. Shah, S.V. Thankachan, Towards an optimal space-and-query-time index for top-k document retrieval, in: Proc. 23rd Annual Symposium

on Combinatorial Pattern Matching (CPM), in: LNCS, vol. 7354, 2012, pp. 173–184.
[18] D. Tsur, Top-k document retrieval in optimal space, Inform. Process. Lett. 113 (12) (2013) 440–443.
[19] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: Proc. 13th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA),

2002, pp. 657–666.
[20] N. Välimäki, V. Mäkinen, Space-efficient algorithms for document retrieval, in: Proc. 18th Annual Symposium on Combinatorial Pattern Matching (CPM),

in: LNCS, vol. 4580, 2007, pp. 205–215.
[21] R. Konow, G. Navarro, Faster compact top-k document retrieval, in: Proc. 23rd Data Compression Conference (DCC), 2013, pp. 351–360.
[22] J.S. Culpepper, G. Navarro, S.J. Puglisi, A. Turpin, Top-k ranked document search in general text databases, in: Proc. 18th Annual European Symposium

on Algorithms (ESA), in: LNCS, vol. 6347, 2010, pp. 194–205 (part II).
[23] M. Patil, S.V. Thankachan, R. Shah, W.-K. Hon, J.S. Vitter, S. Chandrasekaran, Inverted indexes for phrases and strings, in: Proc. 34th International ACM

Conference on Research and Development in Information Retrieval (SIGIR), 2011, pp. 555–564.
[24] J.S. Culpepper, M. Petri, F. Scholer, Efficient in-memory top-k document retrieval, in: Proc. 35th International ACM Conference on Research and Devel-

opment in Information Retrieval (SIGIR), 2012, pp. 225–234.
[25] G. Navarro, D. Valenzuela, Space-efficient top-k document retrieval, in: Proc. 11th International Symposium on Experimental Algorithms (SEA), in:

LNCS, vol. 7276, 2012, pp. 307–319.
[26] M. Karpinski, Y. Nekrich, Top-k color queries for document retrieval, in: Proc. 22nd Annual ACM–SIAM Symposium on Discrete Algorithms (SODA),

2011, pp. 401–411.
[27] T. Gagie, G. Navarro, S.J. Puglisi, New algorithms on wavelet trees and applications to information retrieval, Theoret. Comput. Sci. 426–427 (2012)

25–41.
[28] K. Sadakane, G. Navarro, Fully-functional succinct trees, in: Proc. 21st Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), 2010,

pp. 134–149.
[29] J.I. Munro, Tables, in: Proc. 16th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), in: LNCS, vol. 1180,

1996, pp. 37–42.
[30] D. Clark, Compact PAT trees, Ph.D. Thesis, University of Waterloo, Canada, 1996.
[31] R. Raman, V. Raman, S.S. Rao, Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, ACM Trans. Algo-

rithms 3 (4) (2007), article 43.
[32] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: Proc. 9th Workshop on Algorithm Engineering and Experiments

(ALENEX), 2007, pp. 60–70.
[33] D. Belazzougui, G. Navarro, New lower and upper bounds for representing sequences, in: Proc. 20th Annual European Symposium on Algorithms (ESA),

in: LNCS, vol. 7501, 2012, pp. 181–192.
[34] K. Sadakane, Succinct data structures for flexible text retrieval systems, J. Discrete Algorithms 5 (2007) 12–22.
[35] T.C. Bell, J.G. Cleary, I.H. Witten, Text Compression, Prentice Hall, 1990.
[36] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selection, J. Comput. Syst. Sci. 7 (4) (1973) 448–461.
[37] M. Ružić, Constructing efficient dictionaries in close to sorting time, in: Proc. 35th International Colloquium on Automata, Languages and Programming

(ICALP), in: LNCS, vol. 5125, 2008, pp. 84–95 (part I).
[38] R. Grossi, J. Iacono, G. Navarro, R. Raman, S.S. Rao, Encodings for range selection and top-k queries, in: Proc. 21st Annual European Symposium on

Algorithms (ESA), in: LNCS, vol. 8125, 2013, pp. 553–564.
[39] G. Navarro, Y. Nekrich, L.M.S. Russo, Space-efficient data-analysis queries on grids, Theoret. Comput. Sci. 482 (2013) 60–72.
[40] M. Bender, M. Farach-Colton, The LCA problem revisited, in: Proc. 4th Latin American Theoretical Informatics Symposium (LATIN), in: LNCS, vol. 1776,

2000, pp. 88–94.
[41] R. Grossi, A. Orlandi, R. Raman, Optimal trade-offs for succinct string indexes, in: Proc. 37th International Colloquim on Automata, Languages and

Programming (ICALP), 2010, pp. 678–689.
[42] N. Alon, M. Naor, Derandomization, witnesses for boolean matrix multiplication and construction of perfect hash functions, Algorithmica 16 (4–5)

(1996) 434–449.

http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4D4D3933s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4853573039s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4853573039s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib485053573130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4853563039s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4853563039s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4E4E3132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4E4E3132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib535354563133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib535354563133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4E4D3037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4D616E3031s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib42474E4E3130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib42474E4E3130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib424E3131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib424E3131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib474B4E503133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib424E563133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib485354563133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib485354563133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4853543132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4853543132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib5473753133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4D75743032s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4D75743032s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib564D3037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib564D3037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4B4E3133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib434E50543130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib434E50543130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib5054534856433131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib5054534856433131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4350533132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4350533132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4E563132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4E563132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4B4E3131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4B4E3131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib474E503131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib474E503131s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib534E3130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib534E3130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4D756E3936s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4D756E3936s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib436C613936s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib5252523037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib5252523037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4F533037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4F533037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib424E3132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib424E3132s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib5361643037s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4243573930s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4246502B3733s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib52757A3038s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib52757A3038s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib47494E52523133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib47494E52523133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib4E4E523133s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib42463030s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib42463030s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib474F523130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib474F523130s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib414E3936s1
http://refhub.elsevier.com/S0304-3975(14)00354-5/bib414E3936s1

	New space/time tradeoffs for top-k document retrieval on sequences
	1 Introduction
	2 Basic concepts and related work
	2.1 Sufﬁx trees and arrays
	2.2 Rank, select, and document arrays
	2.3 Hon, Shah and Vitter's compressed top-k index
	2.4 Tsur's optimal-space index
	2.5 Hon, Shah, Thankachan and Vitter's faster index

	3 A faster space-optimal representation
	3.1 The sampled document array
	3.2 Completing the index
	3.3 Construction

	4 An index with near-optimal time
	5 Completing the picture
	5.1 Query answering
	5.2 Computing scores online

	6 Reducing the time to O(p+klg* k)
	7 An index for top-k most important documents
	8 Reducing space
	9 Conclusions
	References

