
Cast Insertion Strategies for Gradually-Typed Objects ∗

Esteban Allende † Johan Fabry Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile

{eallende,jfabry,etanter}@dcc.uchile.cl

Abstract
Gradual typing enables a smooth and progressive integration of
static and dynamic typing. The semantics of a gradually-typed
program is given by translation to an intermediate language with
casts: runtime type checks that control the boundaries between
statically- and dynamically-typed portions of a program. This paper
studies the performance of different cast insertion strategies in
the context of Gradualtalk, a gradually-typed Smalltalk. We first
implement the strategy specified by Siek and Taha, which inserts
casts at call sites. We then study the dual approach, which consists
in performing casts in callees. Based on the observation that both
strategies perform well in different scenarios, we design a hybrid
strategy that combines the best of each approach. We evaluate
these three strategies using both micro- and macro-benchmarks. We
also discuss the impact of these strategies on memory, modularity,
and inheritance. The hybrid strategy constitutes a promising cast
insertion strategy for adding gradual types to existing dynamically-
typed languages.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages, Performance

Keywords gradual typing, casts, Gradualtalk

1. Introduction
The popularity of dynamic languages and their use in the construc-
tion of large and complex software systems makes the possibility to
fortify grown prototypes or scripts using the guarantees of a static
type system appealing. While research in combining static and dy-
namic typing started more than twenty years ago, recent years have

∗ This work is partially funded by FONDECYT Project 1110051.
† Esteban Allende is funded by a CONICYT-Chile Ph.D. Scholarship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLS ’13, October 28, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2433-5/13/10. . . $15.00.
http://dx.doi.org/10.1145/2508168.2508171

seen a lot of proposals of either static type systems for dynamic
languages, or partial type systems that allow a combination of both
approaches [2–5, 10, 12, 14, 20].

Gradual typing [15, 16] is a partial typing technique proposed
by Siek and Taha that allows developers to define which sections of
code are statically typed and which are dynamically typed, at a very
fine level of granularity, by selectively placing type annotations
where desired. The type system ensures that dynamic code does not
violate the assumptions made in statically-typed code. This makes
it possible to choose between the flexibility provided by a dynamic
type system, and the robustness of a static type system.

The semantics of a gradually-typed language is typically given
by translation to an intermediate language with casts, i.e. runtime
type checks that control the boundaries between typed and untyped
code. A major challenge in the adoption of gradually-typed lan-
guages is the cost of these casts, especially in a higher-order setting.
Theoretical approaches have been developed to tackle the space di-
mension [11, 17], but execution time is also an issue. This has led
certain languages to favor a coarse-grained integration of typed and
untyped code [22] or to consider a weaker form of integration that
avoids costly casts [24]. Other approaches include the work of Ras-
togi et al. [14], using local type inference to significantly reduce the
number of casts that are required.

In developing Gradualtalk1, a gradually-typed Smalltalk, our
first concern was the design of the gradual type system, with its var-
ious features [1]. In the current stage of this work, we are concerned
with the efficiency of casts, especially those related to method in-
vocations. This is because method invocations are naturally very
frequent in object-oriented programs, especially in pure object-
oriented languages like Smalltalk. Casts incur a runtime cost, and
we are interested in their efficiency so as to achieve an acceptable
level of performance without losing the features of gradual typ-
ing. In the foundational paper on gradually-typed objects [16], Siek
and Taha describe the semantics of cast insertion using a caller-side
strategy—which we term the call strategy. Due to implementation
issues (which have since been resolved), our very first implementa-
tion of cast insertion, before implementing the Siek-Taha approach,
was however based on a different approach, which we name the ex-
ecution strategy. Here, casts are inserted on the callee side, at the
beginning of each typed method. Studying the performance of both
approaches revealed that they have complementary strengths, and
that a third approach, which we call the hybrid strategy, could com-
bine the best of both approaches.

This paper reports on the study of these three cast insertion
strategies in Gradualtalk. We present the experimental setting for
microbenchmarks in Section 2. We then describe all three strategies

1 http://www.pleiad.cl/gradualtalk

27



MyCollection � (Self) addElement: (Integer)x
collection addLast: x.

MyCollection � (Integer) at: (Integer)index
↑collection at: index.

MyCollection class � (Self instance) new: (Integer)size
↑super new
collection: (OrderedCollection new: size);
yourself.

Listing 1. MyCollection class.

in turn in Sections 3, 4, and 5. In each of these sections, we infor-
mally describe the approach and report on microbenchmarks. We
then report on macrobenchmarks in Section 6. We discuss mem-
ory consumption and other considerations in Section 7. Section 8
discusses related work and Section 9 concludes.

2. Experimental Setting: Microbenchmarks
In this work, we evaluate cast insertion strategies by implement-
ing them for Gradualtalk [1]. Gradualtalk is a gradually-typed
Smalltalk that features a combination of nominal and structural
types, self types, parametric polymorphism, and union types. In
Gradualtalk code, omitting type annotations is equal to specifying
the unknown type, which we denote Dyn. Gradualtalk is currently
implemented in Pharo Smalltalk version 2.0. Note that Pharo uses
the Cog VM, which features a JIT compiler.

Because there is no standard benchmark suite for Smalltalk,
we designed both micro- and macrobenchmarks. We describe mi-
crobenchmarks in this section; they will be used in the explanation
of the different strategies to give a first assessment of their perfor-
mance. The macrobenchmarks are described in Section 6 to pro-
vide an evaluation of the performance of cast insertion strategies
on larger-scale, real-world scenarios. To favor reproducibility, the
Smalltalk image used to perform all our experiments can be down-
loaded from:
http://pleiad.cl/gradualtalk/strategies

Microbenchmarks
We designed the microbenchmark setting to study the specific cost
of each cast insertion strategy in both their best and worst cases.

To do so, we start with a typed collection, MyCollection, shown
in Listing 1. Note that the addElement: method returns Self, fol-
lowing the convention for side-effecting methods in Smalltalk. The
class method new: has Self instance as the return type, specifying
that it returns an instance of itself.

We then use two versions of a client: untyped and typed, that
repeatedly inserts elements and then looks for them. The code for
both versions is shown in Listing 2 and Listing 3, respectively. The
goal of the microbenchmarks is to measure the cost of each strat-
egy for the calls that perform element insertion (#addElement:)
and the calls that perform lookup of an element (#at:). Beyond
these calls, the code run in each version is the same; in particular,
methods #to:do:, #ifTrue: and #> are primitives, i.e. they are
not subject to cast insertion.

We execute the microbenchmarks for different sizes between
1,000,000 and 10,000,000 elements. For each size, the experiment
is repeated ten times and the average time is calculated. In each
case, the value of stop is half that of size. The benchmarks were
run on a machine with an Intel Core i7 3.20 GHz CPU, 4 GB RAM
and 250 GB SSD disk, running Ubuntu 12.10.

Client � untypedClient: stop withSize: size
|col|
col := MyCollection new: size.

1 to: size do: [:i|
col addElement: i.

].
1 to: size do: [:i|
((col at: i) > stop) ifTrue: [ ↑i ]

].
↑--1

Listing 2. Untyped client.

Client � (Integer) typedClient: (Integer)stop withSize: (Integer)
size

|(MyCollection)col|
col := MyCollection new: size.

1 to: size do: [:(Integer)i|
col addElement: i.

].
1 to: size do: [:(Integer)i|
((col at: i) > stop) ifTrue: [ ↑i ]

].
↑--1

Listing 3. Typed client.

3. Call strategy
The call strategy is the direct implementation of the specification
of Siek and Taha [16].

Before explaining the informal description of the call strategy,
we need to introduce the concept of consistent subtyping. Gradual
typing extends traditional subtyping to consistent subtyping [16].
Consistency, denoted∼, is a relation that accounts for the presence
of Dyn: Dyn is consistent with any other type and any type is
consistent with itself. The consistency relation is not transitive in
order to avoid collapsing the type relation [15]. A type σ is a
consistent subtype of τ , noted σ . τ , iff either σ <: σ′ and σ′ ∼ τ
for some σ′, or σ ∼ σ′′ and σ′′ <: τ for some σ′′.

3.1 Description
Essentially, the call strategy inserts casts at call sites whenever
needed. A typed callee can therefore rely upon the fact that all
callers have been checked previously, and hence assume that its
arguments are of the proper types.

The call strategy has two different scenarios for inserting casts,
depending on whether the receiver type in the call site is known
at compile time. For call sites where the receiver type is known at
compile time (i.e. non-Dyn), the compiler compares the type of the
passed arguments in the invocation with the type of the parameters
in the method declaration. If the argument type is not a subtype of
the parameter type but it is a consistent subtype, then a cast to the
parameter type is inserted.

For call sites where the receiver type is unknown at compile
time (i.e. Dyn), the compiler inserts code that, at runtime, looks
up the method type information and casts each argument to the
expected parameter type. This lookup must take into account that
methods can be overridden, and that the required type information
is obtained from the appropriate overriding method. This lookup
procedure is similar to the lookup used to retrieve a method when
it is invoked. That means that when realizing method lookup, the
runtime could also retrieve the type information of that method
for the usage of the cast strategy. However, this would require to
modify the VM.

28



10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Untyped

Typed

Baseline

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 1. Running times of the call strategy for untyped and typed
code, as well as of baseline Smalltalk.

For example, in the case of typedClient, because col is statically
known to be of type MyCollection and the argument i of type
Integer, there is no cast inserted when adding an element to the
collection:

...
col addElement: i.
...

Similarly, there is no cast needed when accessing the collection
with at:.

In the case of untypedClient, however, there is no static type
information available, therefore the call strategy inserts code that
will, at runtime, retrieve the actual type of the receiver, and as-
suming it is statically typed (as MyCollection is), perform runtime
checks on the arguments to ensure they match.

The code below shows the transformation of the call strategy
in the untypedClient when addElement: is invoked (optimized for
the single parameter case):

...
rcv := col.
typeParam := GTRuntime getTypeParamOf: #addElement:

in: rcv.
rcv addElement: (< typeParam>i).

...

Note that retrieving the method type information dynamically is
costly; our current implementation maintains a cache per class that
associates each selector with its argument types. As a matter of
fact, if gradual typing were integrated at the virtual machine level,
we could extend the existing infrastructure of polymorphic inline
caches to deal with the type information, and hence further reduce
the associated cost.2

3.2 Microbenchmarks
Figure 1 shows the results of the microbenchmark for the call
strategy. Detailed numbers for all microbenchmarks are in Tables 1
and 2. We can observe that with a typed client, the call strategy
exhibits almost identical performance as base Smalltalk, e.g. 0.62
seconds versus 0.63 seconds for 10M elements. With the untyped
code, the call strategy however takes up to 90 times the time of base
Smalltalk: 57.49 seconds versus 0.63 seconds for 10M elements.
This result reflects the fact that with a typed client, the call strategy
does not insert any cast, making the resulting bytecode exactly the

2 For simplicity, in this paper we focus on argument types only; in the three
strategies, casts on return types are performed in the callee, following [16].

same as that of base Smalltalk. Conversely, with an untyped client,
the call strategy inserts costly casts. The results show that even with
the cache, the incurred overhead is substantial.

4. Execution strategy
As we have seen, the call strategy performs very well when a
typed client calls a typed library, but it does not perform well when
the client is untyped and the library is typed. This is unfortunate,
because the scenario of a typed library that is used from untyped
code is a predictably frequent scenario in Gradualtalk. Indeed,
only a handful of libraries have been typed so far [1]. If using a
typed library incurs a high performance overhead, this is likely to
discourage the adoption of static types.

As it turns out, when first implementing Gradualtalk, a lim-
itation of the compiler (which was subsequently resolved) pre-
vented us from adopting the call strategy for cast insertion at first.
To address this, we developed another approach, called the exe-
cution strategy, which turns out to perform well in the case of
dynamically-typed receivers.

4.1 Description
The idea of the execution strategy is to insert casts on arguments of
a statically-typed method directly at the beginning of the method.
The interesting characteristic of this strategy is that, in the case of
a dynamically-typed receiver, there is no need to retrieve its type
information at runtime.

In the execution strategy, the compiler inserts one cast per pa-
rameter at the start of the method. Each cast checks that the type of
the value bound to the parameter corresponds to the declared type
in the method signature.

For example, at the start of the method MyCollection >>
#addElement:, the execution strategy inserts casts to the param-
eters of the method:

MyCollection � addElement: x
(<Integer>) x.
collection addLast: x.

At call sites, regardless of whether the receiver is statically or
dynamically typed, the execution strategy does not perform any
transformation:

...
col addElement: i.
...

Note that this strategy is only meaningful in safe languages like
Smalltalk, in which the runtime type of an object can be retrieved
directly, e.g. through its class pointer. In the core semantics of
gradually-typed objects of Siek and Taha, two-position casts play
the role of tagging values with their type, so that injecting a value
into Dyn does not lose its original type. This being said, all existing
dynamic object-oriented languages that we are aware of are safe,
and therefore the execution strategy is a meaningful option in all
these languages.

Finally, observe that if casts are not implemented as primitives
of the VM, then care must be taken to not create an infinite loop
when the casting method uses methods of the system. This infinite
loop can be produced if the casting procedure calls a method with
at least one argument. In that case, because of how the execution
strategy works, a cast would be done again in that argument when
the method is invoken, creating the infinite loop. To avoid this, we
have chosen to disable casts while a cast method is being executed,
as it is the most straightforward approach.

29



10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Untyped

Typed

Baseline

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 2. Running times of the execution strategy for untyped and
typed code, as well as of baseline Smalltalk.

Base Exec Hybrid
Size Call Exec Hybrid ST vs Call vs Exec

(1M) (sec) (sec) (sec) (sec) (%) (%)
1 1.666 0.671 0.626 0.063 -59.75 -6.71
2 4.256 1.609 1.529 0.127 -62.19 -4.97
3 7.740 2.899 2.785 0.190 -62.55 -3.93
4 12.129 4.504 4.357 0.252 -62.87 -3.26
5 17.425 6.433 6.252 0.315 -63.08 -2.82
6 23.611 8.705 8.473 0.378 -63.13 -2.67
7 30.693 11.158 11.010 0.441 -63.65 -1.32
8 38.656 14.033 13.870 0.504 -63.70 -1.16
9 47.592 17.222 17.054 0.566 -63.81 -0.98

10 57.464 20.748 20.528 0.629 -63.89 -1.06

Table 1. Running times of the untyped client microbenchmark.

4.2 Microbenchmarks
Figure 2 shows the results of the microbenchmark for the execution
strategy. We can observe that the execution strategy is unaffected
if the client is typed or not: for 10M elements, it takes 20.75
seconds with the untyped client, and 20.73 seconds with the typed
client. This is because argument casts are inserted at the start of the
methods of MyCollection, and are therefore always executed.

As a result, the call strategy is much faster than the execution
strategy in the case of the typed client (around 93%). Recall that
with the typed client, the call strategy does not insert any cast at
all. Conversely, the execution strategy is considerably faster than
the call strategy when using an untyped client (around 63%). While
both approaches incur the cost of argument casts, the call strategy is
slower because it first needs to retrieve the method type information
(from the cache) to determine the actual cast to perform. In the
execution strategy, the expected argument type is statically known,
so only the proper cast happens.

5. Hybrid strategy
The comparison of the call and execution strategies shows that
they have complementary benefits. The call strategy performs well
with typed clients, and the execution strategy performs well with
untyped clients. We now present a novel strategy that combines the
best of both strategies.

5.1 Description
The idea of the hybrid strategy is to trade space for speed. This
is done by duplicating each method: one version is the original

Base Call Hybrid
Size Call Exec Hybrid ST vs Exec vs Call

(1M) (sec) (sec) (sec) (sec) (%) (%)
1 0.126 0.663 0.125 0.063 -80.95 -0.79
2 0.180 1.606 0.180 0.127 -88.81 -0.11
3 0.235 2.898 0.234 0.190 -91.89 -0.34
4 0.289 4.500 0.292 0.252 -93.59 1.18
5 0.344 6.430 0.346 0.315 -94.65 0.70
6 0.397 8.667 0.402 0.378 -95.42 1.31
7 0.452 11.146 0.455 0.441 -95.95 0.80
8 0.504 14.018 0.514 0.504 -96.40 1.94
9 0.565 17.212 0.564 0.566 -96.72 -0.11

10 0.620 20.725 0.620 0.629 -97.01 -0.13

Table 2. Running times of the typed client microbenchmark.

method that does not cast its arguments—called the unguarded
method; and the other method starts by casting its arguments, as
in the execution strategy—called the guarded method. Then, as
in the call strategy, it has two different scenarios for inserting
casts, depending on whether the receiver type in the call site is
known at compile time or not. For statically-typed receivers, the
compiler modifies the call site to invoke the unguarded method.
If the argument type is not a subtype of the parameter type of
the method declaration, the compiler inserts casts to the argument
types. For dynamically-typed receivers, the compiler leaves the call
site intact, as it will call the guarded method. If casts are also not
implemented as primitives, then the same precaution with respect
to the infinite loops made in the execution strategy should be taken
in the hybrid strategy.

For instance, the addElement: method of MyCollection is re-
placed with the two methods:

MyCollection � addElement: x ”guarded”
(<Integer>)x.
collection addLast: x.

MyCollection � addElement: x ”unguarded”
collection addLast: x.

When sending a message, if the type of the receiver is known,
the code is modified to invoke directly the unguarded method:

...
col addElement: i.
...

Otherwise, no transformation occurs, and hence the guarded method
is called:

...
col addElement: i.
...

5.2 Microbenchmarks
Figure 3 shows the results of the microbenchmark for the hybrid
strategy. We can observe that the typed client runs faster than
the untyped one: for 10M elements, it takes 20.53 seconds with
the untyped client, and 0.62 seconds with the typed client. The
difference reflects the code of the casts that are done repeatedly
in the case of the untyped client.

We now compare the three strategies first on the untyped client
and then on the typed client. In Figure 4 we show the execution
times of the three cast insertion strategies for the microbenchmark
using the untyped client. The figure shows that for untyped code
the call strategy is by far the slowest strategy, taking 57.46 seconds
for 10M elements. The execution and hybrid strategies have what
amounts to the same level of performance: for 10M elements 20.75

30



10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Untyped

Typed

Baseline

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 3. Running times of the hybrid strategy for untyped and
typed code, as well as of baseline Smalltalk.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Execution

Call

Hybrid

Base ST

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 4. Running times of different cast strategies on the mi-
crobenchmark using the untyped client.

seconds and 20.53 seconds, respectively. These however still take
up to 33 times the time of base Smalltalk, which takes 0.63 sec-
onds for 10M elements. The reason for this slowdown is that each
strategy needs to perform some runtime casts, while the standard
Smalltalk does not.

In Figure 5 we show the execution times of the three cast
insertion strategies for the microbenchmark using the typed client.
As can be expected, the execution strategy is the slowest, taking
20.73 seconds for 10M elements. The call and hybrid strategies
have the same performance, and are nominally as fast as base
Smalltalk (0.63 seconds for base Smalltalk and 0.62 seconds for
both the hybrid and call strategy). This remarkable similarity is
because none of these strategies needs to do any cast. The execution
strategy does perform such casts, which causes it to have a lower
performance.

To conclude, the microbenchmarks confirm that the hybrid strat-
egy performs as good as its best competitor in all cases.

6. Macrobenchmarks
In order to get an indication of whether the microbenchmark results
carry over to larger-scale and real-world scenarios, we designed and
performed some initial macrobenchmarks.

We have seen in the microbenchmarks that the call strategy is
two orders of magnitude slower with untyped code. Considering
that Smalltalk code is mostly untyped, the call strategy will be

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Execution

Call

Hybrid

Base ST

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 5. Running times of different cast strategies on the mi-
crobenchmark using the typed client.

GZip-T SAX-T1 SAX-T2
typed classes 1 2 3
methods 23 62 116

fully typed 2 31 51
untyped 21 29 69
partially typed 0 2 3

Table 3. Characterization of the partially-typed libraries.

clearly outperformed in orders of magnitude by the execution and
hybrid strategies on macrobenchmarks. Therefore, in this section,
we only compare the performance of the execution and hybrid
strategies.

6.1 Experimental Setup
We start with two scenarios that use untyped libraries:

• GZip: Compressing a 32MB XML file (adapted from a game
project) to a gzip file. This is a writing I/O intensive operation.

• SAX: Parsing the same XML file with a SAX parser. This is a
reading I/O intensive operation.

In order to measure how both strategies perform when type an-
notations are added, we developed partially-typed variants of these
libraries. GZip-T adds some annotations to the GZip library. And
for SAX, we developed two partially-typed versions, SAX-T1 with
few type annotations, and SAX-T2 with more annotations. Note
that even though the code in the image has no type annotations,
some types are implicitly deduced: self and literal values.

To characterize the extent to which each library is typed, we
classify methods in three categories: typed methods, partially-typed
methods and untyped methods. A fully-typed method specifies a
static type for its return value and all its arguments. An untyped
method leaves all return and argument types unspecified. A method
that is neither typed nor untyped is classified as partially typed.
Table 3 shows the numbers of elements in each category, for the
different versions of the GZip and SAX libraries.

More precisely, for GZip we profiled the execution of the bench-
mark and typed the two methods whose interaction was causing
most overhead: methods nextPutAll: and next:putAll:startingAt:
of the DeflateStream class. For SAX-T1, we typed the interface
between the driver SAXDriver and the handler SAXHandler. In
SAX-T2, we also typed the interface between the driver and the
tokenizer XMLTokenizer.

Every macrobenchmark is repeated ten times and the average
time is calculated. The benchmarks were run on a machine with an

31



Intel Core i7 3.20 GHz CPU, 4 GB RAM and 250 GB SSD disk,
running Ubuntu 12.10.

Base ST Exec Hybrid Hybrid vs Exec
(sec) (sec) (sec) (%)

GZip 1.774 1.776 1.804 +1.58
GZip-T – 1.804 1.790 -0.80
SAX 7.681 9.003 9.075 +0.80
SAX-T1 – 14.468 13.184 -8.87
SAX-T2 – 35.667 22.528 -36.84

Table 4. Running times of the macrobenchmarks.

6.2 Results
Table 4 shows the results of the macrobenchmarks. For the GZip
benchmark, we see that both strategies perform similarly in all
scenarios. With the untyped library, the hybrid strategy is slightly
slower (2.98%), and it is marginally faster with a version of the
library with a few type annotations (0.80%). These factors are
however negligible, and hence we did not pursue more advanced
typing for this scenario. The reason why GZip is fairly stable
irrespective of typing is that much of the time is spent in I/O and
other primitives, which are out of reach of the type system.

In the case of the untyped SAX benchmark, both approaches
also exhibit the same performance. Interestingly, in this case, as
more type annotations are added to the SAX library, the hybrid
strategy becomes noticeably more competitive: it is nearly 9%
faster with SAX-T1, and almost 37% faster with SAX-T2.

Overall, these results are consistent with the microbenchmarks:
available type information allows the hybrid strategy to use un-
guarded methods, which are faster than the cast-first methods used
by the execution strategy.

Finally, we see that as type annotations are added to a library,
the performance tends to degrade, irrespective of the chosen cast
insertion strategy. While this phenomenon is not perceptible in the
case of GZip, it is substantial for SAX. The reason of the degra-
dation is that, by adding type information, we create boundaries
with dynamically-typed sections of the program. At these bound-
aries, casts have to be inserted to ensure that the static type assump-
tions are not violated when this code is called from the dynamically
typed world. Since casts are performed eagerly, the entailed ver-
ification is costly compared to the default behavior of Smalltalk,
which does no eager verification and only raises an exception when
a method is not found. Reflecting on this result and the results of the
microbenchmarks for the hybrid strategy (discussed in Section 5.2)
suggest that predicting the performance impact of adding static type
information is not trivial. Using only the results of the microbench-
mark, we could assume that typing more code in a language with
a gradual type system would always improve performance. How-
ever, this is generally not so. It remains to be studied whether there
is a tipping point beyond which adding more type annotations en-
ables better absolute performance, or at least does not degrade it.
If we stick to a relative comparison between the execution and hy-
brid strategies, the results confirm that hybrid is progressively more
advantageous as more type annotations are added.

7. Comparing Strategies beyond Performance
Until now we have focused on the performance of cast insertion
strategies. In this section we discuss the impact of these strategies
on memory consumption, modularity, and the interaction with in-
heritance.

Strategy Size (MB) Overhead vs. Base ST
Call 6.08 +56.8%
Execution 4.68 +21.3%
Hybrid 6.81 +75.9%
Hybrid-fwd 5.93 +53.9%
Base ST 3.88

Table 5. Memory footprint of Smalltalk images compiled using
the different strategies.

7.1 Memory
As stated in Section 5.1, the hybrid strategy trades memory for
speed: for each method in the source program, it generates both
an unguarded version of the method—whose body is the same
as the original method—and a guarded version, which addition-
ally performs argument casts. Table 5 shows the memory usage
of the Smalltalk image—which includes 7314 classes and 67066
methods—compiled with all three strategies, compared to the
memory usage of the standard image. Note that we also report on
an alternative implementation of the hybrid strategy (Hybrid-fwd),
discussed below.

The results confirm that the hybrid strategy uses substantially
more memory than the other strategies. This is unsurprising: the
high memory overhead comes from the duplication of all methods.
The overhead of the call strategy, on the other hand, is entirely due
to call site transformations (casting arguments and type information
retrieval at runtime), which turn out to be quite space consuming.

Different implementations of the hybrid strategy are possible,
each with a different tradeoff between performance and memory
consumption. First, instead of duplicating all methods, it is possi-
ble to make each guarded method call the corresponding unguarded
method. This approach, called Hybrid-fwd in Table 5, avoids du-
plicating method bodies and clearly reduces the overhead, down
to +53.9%, which is slightly better than the memory overhead of
the call strategy. The relatively high memory overhead of this par-
ticular implementation of the hybrid strategy compared to the ex-
ecution strategy (around 30% more when compared to the base-
line) can be explained by the fact that many methods are small. For
a small method, introducing an extra forwarder method (which is
also small) is as consuming as duplicating it.

Of course, the Hybrid-fwd approach saves some space at the
expense of an extra method call in each guarded method. Because
Smalltalk does not support statically-bound private methods, the
added calls turn out to have a noticeable overhead on the SAX
macrobenchmarks (Table 6). In any case, the results show that it
is a viable alternative if memory consumption becomes an issue.
We conjecture that this overhead would be negligible in a language
like Java where private method calls can be aggressively optimized.

Hybrid Hybrid-fwd H-fwd vs H
(sec) (sec) (%)

GZip 1.804 1.839 +1.94
GZip-T 1.790 1.824 +1.90
SAX 9.075 10.980 +20.99
SAX-T1 13.184 14.174 +7.51
SAX-T2 22.528 25.423 +12.85

Table 6. Macrobenchmark running times of the duplication-based
vs. forward-based implementations of the hybrid strategy.

Other implementations can also be considered. For example, an
implementation could use only one method and pass an additional
boolean parameter that determines whether casts should be per-
formed or not. This would be fairly efficient space-wise, but comes

32



at the cost of passing an additional argument and adding a branch
in the code. The optimal version would be to allow a single method
to have two entry points: one entry at the start of the method where
the arguments are cast, and another entry just after these casts. The
translation would then insert calls to the second entry point when
casts can be safely skipped. This would however require support at
the level of the virtual machine. We have not fully explored these
different implementations so far.

7.2 Modularity
Suppose that we modify MyCollection (Listing 1) so that the type
of elements stored changes from Integer to Date, however we do
not recompile Client. In the case of the untyped client, all of the
strategies would detect the mismatch and their casts would fail.
However, in the case of the typed client, only the casts in the
execution strategy would fail.

The reason for this is that the call strategy relies on the possi-
bility to analyze all call sites of a given method in order to intro-
duce the casts of arguments, if needed. If Client is not recompiled,
then its implementation still assumes, wrongly, that the argument
to addElement: has to be of type Integer. Conversely, the execu-
tion strategy casts arguments in the callee, and therefore does not
need to re-check callers after such a change. Gradualtalk addresses
the need for analyzing all the callers of a method when using the
call strategy through a dependency tracking mechanism [1]. It trig-
gers recompilation of all call sites of a given method when needed,
causing required casts to be inserted accordingly.

To be able to introduce efficient calls to unguarded methods, the
hybrid strategy also needs to analyze all callers of a given method
and may need to introduce casts in the callers. This being said, if the
choice is to favor modular recompilation instead of performance, it
would be possible to configure the hybrid strategy so that certain
modules are not transformed (and therefore call guarded methods).

Note that the dependency between callers and callees that man-
ifests itself when using typed clients with the call or hybrid strate-
gies is the same as the dependencies between typed components in
any typed language3. Put succinctly: when shared assumptions are
changed, both parties need to be rechecked. In contrast, the execu-
tion strategy is inherently modular (though less performant) in such
scenarios, performing such rechecking dynamically.

7.3 Interaction with inheritance
The calculus of gradually-typed objects of Siek and Taha does not
include any form of inheritance, and therefore issues related to
overriding are not considered. In their work on gradual typing for
first-class classes, Takikawa et al. observe that a standard subtyp-
ing approach “would fail because a subclass may override a method
with a different type” [19]. Consequently, they use use row poly-
morphism instead of standard subtype polymorphism.

More precisely, if overriding a method is valid whenever the
overriding method is a consistent subtype of the overriden method,
the call cast insertion strategy is unsound. Consider the following
example:

A � m: x ”superclass, untyped”

B � m: (Integer) x ”subclass overrides with typed argument”

and the following client:

|(A) a|
a = B new.
a m: ’hi’

3 This is what Gilad Bracha calls the “anti-modularity” of types:
http://gbracha.blogspot.com/2011/06/
types-are-anti-modular.html

The static type of a is A and the signature of m: in A does not
specify any argument type. Therefore the call strategy accepts the
invocation of m: without inserting any cast to Integer. Hence the
use of the call strategy would result in an unsound execution as the
body of B.m executes with an argument of an invalid type.

A possibility to retain soundness is to simply restrict valid
overridings to proper subtyping, and not consistent subtyping.
This however means that typed and untyped hierarchies cannot
be mixed: a typed method can never be overridden by a untyped
method, and vice versa. Remarkably, the execution strategy does
not suffer from this soundness issue at all: because casts are in-
serted in the callees, the first thing B.m does is to cast its argument
to Integer, which fails as expected. Therefore it is possible to de-
fine valid overriding based on consistent subtyping, but at the cost
of sacrificing the efficiency benefits of the call strategy.

Again, the hybrid strategy provides the opportunity to achieve
the best of both worlds: retaining soundness while exploiting op-
portunities for optimizations. To properly deal with the case above,
the hybrid strategy needs to refrain from using the unguarded
method call in case the expected type of an argument is Dyn.
Nonetheless, it may still use the unguarded method when it is safe
to do so. Consider the following client:

|(B) a|
b = B new.
b m: 1

The invocation of m: can be performed efficiently without any
cast, because the static type of b specifies that the argument must
be an Integer, which it is. In order to deal with the dual case of
overriding—i.e. a typed method is overriden by a dynamically-
typed one—the guarded method must perform specific checks to
ensure that the dynamic method is used only in ways that are com-
patible with the subtyping relation. More precisely, the arguments
to the dynamic method should be either supertypes or subtypes of
the declared argument types in the overriden method (supertypes
are valid because of the contravariance in argument types)4. Also,
the value returned by the dynamic method should be a subtype of
the declared return type. Consider the following:

C � m: x ”subclass of B, untyped”

Then the untyped client code:

c = C new.
c m: ’hi’

This invocation raises a cast error at runtime because C.m is used
in a way that is incompatible with any typed overriding of B.m:
subtyping-wise, String is unrelated to Integer. We leave the de-
tailed, formal treatment of this approach to future work.

8. Related work
Gradualtalk follows the line of work on gradual typing developed
by Siek and Taha [15, 16]. A key ingredient of gradual typing is
the consistency relation, which statically allows untyped values to
flow in positions where values of specific types are expected. Casts
are used to dynamically ensure that actual values are compatible
with their expected type. In the original work of Siek and Taha,
the objective is to show how a fully-annotated gradual program
directly corresponds to a statically-typed program. Therefore, the
runtime semantics do not assume that values have built-in runtime
type tags for safety; casts are used to tag values. For instance when
a newly-created string is bound to an untyped variable, it is cast as

4 Interestingly, this corresponds to the valid assignment relationship⇐⇒ in
Dart [7, §15.4].

33



〈Dyn ⇐ String〉. The source type of the cast plays the role of the
runtime type tag; in other words, a casted value is a boxed value. In
Smalltalk, as in most dynamically-typed object-oriented languages,
all values already carry along their runtime type, so this specific use
of cast is not needed. This is why we use single-position casts as in
Featherweight Java.

As a value flows in a program, casts can pile up. Different strate-
gies exist to deal with chains of casts. They can be reduced as ea-
gerly or as lazily as possible, yielding different flexibility/strict-
ness tradeoffs [18]. Even in an eager approach, higher-order casts,
i.e. casts on function types, cannot be fully resolved eagerly and
typically imply wrapping functions in proxies that perform casts
upon entry and exit. As noted by Herman et al., this approach can
result in unbounded growth in the number of proxies, affecting both
space efficiency and tail call optimization [11]. They propose to use
coercions instead of proxies so as to be able to combine adjacent
coercions in order to limit space consumption. Going a step further,
Siek and Wadler develop threesomes as a data structure and algo-
rithm to represent and normalize coercions [17]. A threesome is a
cast with three positions: source, target, and an intermediate lowest
type. Combining a sequence of threesomes is done by taking the
greatest lower bound of the intermediate types. In this work, we
have focused on nominal object casts, which are not higher-order:
they can be resolved immediately. In the future, we are going to in-
vestigate different implementation strategies for supporting struc-
tural object casts and casts on first-class closures.

A transversal issue when dealing with casts is whether or not
blame tracking is done in order to report the guilty party whenever
a cast fails [9, 18, 23]. There are different strategies for blame
assignment, that may lead to blaming different parties for the same
example [18]. Adding blame tracking complicates matters, both
theoretically and practically. For instance, threesomes with blame is
considerably more complex to understand than threesomes without
blame [17]. In this paper, we have chosen to focus on the cast
insertion strategies without blame first. The practical impact of
blame tracking, in terms of both performance and actual help in
debugging programs, is still an open question.

The expected overhead of fine-grained integration between
typed and untyped code that gradual typing supports has led sev-
eral researchers to develop alternative ways to do the integration.
In Typed Racket, the granularity is at the module level: a mod-
ule is either typed or untyped, but it cannot mix both disciplines
internally [20]. This reduces the flexibility of the integration some-
what, but also reduces the cases of interaction, while proposing
a reasonable engineering tradeoff. Interaction between typed and
untyped code in Racket is mediated through contracts [21], with
blame tracking.

Wrigstad et al. propose another approach to alleviate the per-
formance issue of gradual types, integrated in Thorn [2, 24]. In-
stead of relying on the type consistency relation, they introduce
a novel intermediate point between dynamic and static types: like
types. When a method argument is declared to be of a like type, its
uses in the method body are statically checked. But clients of the
method can pass any value, just as if there was no declared static
type. Conformance is checked dynamically. The Thorn compiler is
able to aggressively optimize concrete types, and the authors re-
port speedups of 2 to 4x between an untyped Thorn program and a
fully typed one (with untyped libraries). In our case, in which we
are retrofitting a gradual system on top of an existing dynamic lan-
guage with the aim of being backwards compatible, it seems hard to
obtain such speedups without working at the virtual machine level.

Chang et al. report on JIT-level optimizations based on optional
type information [6]. Their work is in ActionScript, which is not
gradual in the sense of Siek and Taha in that it does not rely on the
consistency relation and does not support higher-order casts.

Also in the context of ActionScript, Rastogi et al. use local type
inference to eliminate occurrences of the dynamic type and there-
fore augment the “static-ness” of programs [14]. They report very
encouraging results: on average, they observe a 1.6x improvement
with inferred types, and up to 5x in certain cases. We expect that
developing a local type inference algorithm for Gradualtalk could
significantly reduce the number of inserted casts.

Finally, Takikawa et al. develop a gradual type system for first-
class classes in Racket [19]. They notice that the calculus of Siek
and Taha does not deal with inheritance, and that a direct adap-
tation would be unsound (as discussed in Section 7.3). Further-
more, the inheritance semantics they support is rich in that it deals
with accidental overridings. In order to address both requirements,
they adopt row polymorphism instead of standard subtype poly-
morphism. To match these static typing features, on the dynamic
checking side they propose opaque and sealed contracts. Conse-
quently, mixins and other higher-order programming patterns with
first-class classes can be checked soundly. A contribution of our
work in this regard is to suggest that gradual typing with consistent
subtyping is not necessarily unsound in presence of overriding: it
depends on the cast insertion strategy. This being said, dealing with
accidental overriding does require types to express missing mem-
bers, a scenario for which row polymorphism seems necessary.

9. Conclusion and Perspectives
This paper studies different cast insertion strategies for a gradually-
typed language with objects. Experiments are carried out in Grad-
ualtalk, a gradually-typed Smalltalk, and focus mainly on perfor-
mance. Starting from the direct implementation of the semantics
specified by Siek and Taha [16], which we term the call strategy,
we present two alternative strategies: one that inserts casts at the
callee side, termed the execution strategy, and a hybrid strategy that
combines ideas of the call and execution strategies. The execution
and hybrid strategies build upon the fact that the language runtime
is already safe, and that therefore we can discharge casts from their
safety-bearing role in [16]. Microbenchmarks exhibit the best and
worst cases of the call and execution strategy, and show that the hy-
brid strategy is effectively a best-of-both-worlds approach, always
exhibiting a performance similar to that of the fastest strategy. A
set of macrobenchmarks help us to further characterize the benefits
of the hybrid strategy, which manifest themselves more clearly as
more type annotations as added. We also compare the three strate-
gies on different accounts than execution time. We report on the
extra memory cost of two different versions of the hybrid strategy,
which we believe are reasonable in view of the associated benefits.
Considering modular compilation, the execution strategy is better,
although the hybrid strategy allows to fine-tune the modularity/ef-
ficiency tradeoff. Finally, we discuss the interaction of these strate-
gies with inheritance: the call strategy is unsound, the execution
strategy is sound but sacrifices performance. We informally de-
scribe a way to adapt the hybrid strategy to retain soundness and
still exploit static type information for optimization. Overall, this
work suggests that the hybrid strategy is a promising approach to
implement gradual typing in an existing dynamic language with a
safe runtime.

There are many venues for future work. First, the hybrid strat-
egy needs to be fully formalized in a context with overriding, in or-
der to prove that it effectively retains soundness. On the implemen-
tation side, we are interested in exploring approaches other than
source-level transformation: exploiting the intermediate represen-
tation of the compiler, or directly modifying the virtual machine.
Language-wise, we need to tackle the case of first-class closures,
and study the impact of adding blame tracking, especially consid-
ering the different semantics that have been proposed [18].

34



References
[1] E. Allende, O. Callaú, J. Fabry, É. Tanter, and M. Denker. Gradual

typing for Smalltalk. Science of Computer Programming, Aug. 2013.
Available online: http://dx.doi.org/10.1016/j.scico.2013.06.006

[2] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strniša,
J. Vitek, and T. Wrigstad. Thorn: robust, concurrent, extensible script-
ing on the JVM. In Proceedings of the 24th ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 2009), pages 117–136, Orlando, Florida, USA,
Oct. 2009. ACM Press.

[3] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival
of Dynamic Languages, pages 1–6, 2004.

[4] G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a
production environment. In Proceedings of the 8th International Con-
ference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 95), pages 215–230, Washington, D.C., USA,
Oct. 1993. ACM Press. ACM SIGPLAN Notices, 28(10).

[5] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI), pages 278–292, Toronto, Ontario,
Canada, 1991.

[6] M. Chang, B. Mathiske, E. Smith, A. Chaudhuri, A. Gal, M. Bebenita,
C. Wimmer, and M. Franz. The impact of optional type information
on JIT compilation of dynamically-typed languages. In Proceedings of
the ACM Dynamic Languages Symposium (DLS 2007), pages 13–24,
Montreal, Canada, Oct. 2007. ACM Press.

[7] Dart Team. Dart programming language specification, May 2013.
Version 0.41.

[8] ESOP 2009. Proceedings of the 18th European Symposium on Pro-
gramming Languages and Systems (ESOP 2009), volume 5502 of Lec-
ture Notes in Computer Science, York, UK, 2009. Springer-Verlag.

[9] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In Proceedings of the 7th ACM SIGPLAN International Conference on
Functional Programming, pages 48–59, Pittsburgh, PA, USA, 2002.
ACM Press.

[10] M. Furr. Combining Static and Dynamic Typing in Ruby. PhD thesis,
University of Maryland, 2009.

[11] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
Higher-Order and Sympolic Computation, 23(2):167–189, June 2010.

[12] K. Knowles and C. Flanagan. Hybrid type checking. ACM Transac-
tions on Programming Languages and Systems, 32(2):Article n.6, Jan.
2010.

[13] POPL 2010. Proceedings of the 37th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL 2010),
Madrid, Spain, Jan. 2010. ACM Press.

[14] A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual
type inference. In Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL
2012), pages 481–494, Philadelphia, USA, Jan. 2012. ACM Press.

[15] J. Siek and W. Taha. Gradual typing for functional languages. In
Proceedings of the Scheme and Functional Programming Workshop,
pages 81–92, Sept. 2006.

[16] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, edi-
tor, Proceedings of the 21st European Conference on Object-oriented
Programming (ECOOP 2007), number 4609 in Lecture Notes in
Computer Science, pages 2–27, Berlin, Germany, july/august 2007.
Springer-Verlag.

[17] J. Siek and P. Wadler. Threesomes, with and without blame. In POPL
2010 [13], pages 365–376.

[18] J. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-
order casts. In ESOP 2009 [8], pages 17–31.

[19] A. Takikawa, T. S. Strickland, C. Dimoulas, S. Tobin-Hochstadt, and
M. Felleisen. Gradual typing for first-class classes. In Proceedings
of the 27th ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA 2012), pages
793–810, Tucson, AZ, USA, Oct. 2012. ACM Press.

[20] S. Tobin-Hochstadt. Typed Scheme: From Scripts to Programs. PhD
thesis, Northeastern University, Jan. 2010.

[21] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: from
scripts to programs. In Proceedings of the ACM Dynamic Languages
Symposium (DLS 2006), pages 964–974, Portland, Oregon, USA, Oct.
2006. ACM Press.

[22] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of Typed Scheme. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2008),
pages 395–406, San Francisco, CA, USA, Jan. 2008. ACM Press.

[23] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
ESOP 2009 [8], pages 1–16.

[24] T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Östlund, and J. Vitek.
Integrating typed and untyped code in a scripting language. In POPL
2010 [13], pages 377–388.

35




