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Abstract

This paper describes the development of an optimal sigmoidal rate-level function that is a component of many models of the periph-
eral auditory system. The optimization makes use of a set of criteria defined exclusively on the basis of physical attributes of the input
sound that are inspired by physiological evidence. The criteria developed attempt to discriminate between a degraded speech signal and
noise to preserve the maximum amount of information in the linear region of the sigmoidal curve, and to minimize the effects of distor-
tion in the saturating regions. The performance of the proposed optimal sigmoidal function is validated by text-independent speaker-
verification experiments with signals corrupted by additive noise at different SNRs. The experimental results suggest that the approach
presented in combination with cepstral variance normalization can lead to relative reductions in equal error rate as great as 40% when
compared with the use of baseline MFCC coefficients for some SNRs.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Speech sounds are pressure waves that vary as a func-
tion of time. These sounds are passed through the periph-
eral auditory system before being converted into electrical
neural activity in the auditory nerve (Pickles, 2008). A spec-
tral decomposition is performed in the cochlea that sepa-
rates the incoming speech sounds into their constituent
frequency components, and information is passed on
through the auditory nerve, the brainstem, ultimately to
the auditory cortex through channels that remain fre-
quency dependent. In a natural environment the target
speech sounds and background noise enter the peripheral
auditory system together. Nevertheless, one of the most
compelling characteristics of the auditory system is its abil-
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ity to respond to and distinguish speech sounds from back-
ground noise (Darwin, 2008). In this paper we introduce a
new way to improve accuracy in speaker verification tasks
by incorporating a particular type of adaptation in a repre-
sentation used for feature extraction that is based on pro-
cessing in the auditory periphery.
1.1. Neural processing of speech signals

Neural processing of speech is represented by the tempo-
ral patterns of neural impulses (or “spikes”) transmitted
along the auditory-nerve fibers, which vary in time in
response to the incoming sound. The dependence of the
average number of spikes per second on incoming signal
intensity in a particular frequency region is summarized
by curves called rate-versus-level functions (e.g. Moore,
2003; Pickles, 2008). Rate-level functions display a variety
of forms, although they are usually sigmoidal (e.g. Sachs
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and Abbas, 1974; Yates et al., 1990). Under these circum-
stances, rate-level functions can be characterized by four
attributes: (1) discharge threshold; (2) maximum discharge
rate; (3) spontaneous discharge rate; and (4) dynamic range
(Nizami, 2005). As described by Young (2008), dynamic
range in this context refers to “the range of sound levels
over which the fiber changes its rate when the input
changes in level.”

Most of the auditory-nerve fibers exhibit a dynamic
range of less than 35 dB when stimulated with tones at their
characteristic frequency (May and Sachs, 1992). In con-
trast, the dynamic range of loudness perception for humans
is as great as 100 dB of sound pressure level (Winslow and
Sachs, 1987). Through the years there have been a number
of hypotheses concerning how humans can perceive loud-
ness changes over such a wide dynamic range while the
intrinsic dynamic range of auditory-nerve fibers is limited
to 20–35 dB. These speculations have included consider-
ation of the distributions of the thresholds of individual
auditory-nerve fibers, the spread of excitation of the fibers
over frequency, and possible loudness coding based on syn-
chronous response, at least at low frequencies (<3–4 kHz)
(Shamma, 1985).

In recent years, attention has also focused on the poten-
tial ability of the response at the auditory nerve to develop
rate-level functions that vary according to the distribution
of stimulus levels (Barbour, 2011; Dean et al., 2005, 2008).
For example, experiments with cats have shown that the
dynamic range in their auditory neurons is adapted for
tone and noise stimuli to the distribution of sound levels.
This adaptation is characterized by shifting towards the
most frequently occurring level (Wen et al., 2009, 2012).
Rate-level functions in the guinea pig also exhibit a
restricted and mutable dynamic range. In these animals,
neural responses are rapidly adjusted and tend to improve
coding of the sound levels (Dean et al., 2005). Auditory-
nerve fibers in the mouse also display similar behavior,
although with differences in frequency ranges (Taberner
and Liberman, 2005). We elaborate on these results and
some of their potential consequences in Section 2.

For many years the properties of the auditory system
have attracted the interest of researchers in speech process-
ing, including the use of models of the auditory system as
part of the feature extraction process for automatic speech
recognition, speaker verification, etc. Some of this work
has been reviewed in Stern and Morgan (2012a,b), and
the earliest computational models of the peripheral audi-
tory system that have been developed include the work of
Allen (1985), Ghitza (1986, 1994), Seneff (1988), Lyon
(1982), Shamma (1988), and Cohen (1989). Most of these
models begin with a bank of filters tuned to different center
frequencies to model the spectral decomposition of incom-
ing sounds into the cochlea, followed by a model of trans-
duction that includes the sigmoidal nonlinearity of the
auditory transduction process that transforms the mechan-
ical motion in the cochlea to the production of auditory-
nerve spikes. As an example of the latter mechanism, the
Seneff model includes a representation of the inner hair
cells that consists of four stages: (1) a rate-level nonlinear-
ity that limits the responses to signal components of a par-
ticular frequency with very small and very large
amplitudes, (2) short-term adaptation that models the
release of neurotransmitters during the synapse stage, (3)
a low-pass filter that models the loss of synchrony in
response to signal components of high frequency, and (4)
an automatic gain control that maintains a presence of
high-intensity sounds when the auditory nerve is saturated.
Seneff (1988) proposed two parallel paths to analyze the
outputs of this representation. One path measures the
instantaneous overall short-time energy appearing each
channel output, and in the other develops a spectral repre-
sentation based on the extent to which the output signal is
synchronized to best frequency of response of the fiber.
Over time numerous groups have used auditory models
such as the ones listed above to develop features for use
in speech recognition and speaker identification, among
other technologies (e.g. Kim et al., 2006; Kim and Stern,
2012).

1.2. Feature extraction for speaker verification

In speaker verification the aim has been to determine
whether a given speech signal belongs to a claimed person
or not based only on a voice sample (Reynolds, 1995). Usu-
ally, a speaker verification system comprises three sections:
feature extraction, speaker modeling (performed from the
extracted features), and decision making (Kinnunen and
Li, 2010). The feature extraction section is designed to pro-
vide enough discriminative information from the speech
signal to enable the speaker to be verified (Li and Huang,
2011). The development of relevant features is clearly
important to discriminate one speaker from another in a
fashion that preserves verification accuracy in environ-
ments that are different from the original training environ-
ment (Kinnunen et al., 2012; Li and Huang, 2011; Shao
and Wang, 2008). Differences in the environment may arise
from various sources, including additive interfering noise
(Ming et al., 2007) and variations in the transmission chan-
nel conditions over which the speech is being recorded (Wu
et al., 2007). Resolving mismatches between training and
testing environments remains one of the most challenging
problems to be solved for successful speaker verification
in real applications (Hasan and Hansen, 2013; Saeidi
et al., 2010).

The most commonly used features for speaker verifica-
tion have been short-time cepstral coefficients such as
Mel-frequency cepstral coefficients (MFCC) (Ajmera
et al., 2011; Hanilc�i et al., 2012; Wang et al., 2011). The
standard MFCC method performs reasonably well when
training and testing environments are matched but verifica-
tion accuracy degrades seriously under noisy environments,
especially when training and testing conditions are mis-
matched (Kinnunen et al., 2012; Li and Huang, 2011).
The greatest degradation in verification performance is
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observed when the speech signal is degraded by additive
noise at a low SNR, especially when the system is trained
on clean speech (Hanilc�i et al., 2012; Kinnunen et al.,
2012).

Feature extraction inspired by the physiology of the
human peripheral auditory system has also been proposed
to improve speaker verification performance under mis-
matched conditions (e.g. Li and Huang, 2010, 2011; Shao
and Wang, 2008; Shao et al., 2007). For instance, Shao
and Wang (2008), proposed auditory-based features known
as Gammatone frequency cepstral coefficients (GFCC),
which effectively replace the triangular frequency weighting
used in the MFCC method by the use of Gammatone filters
(Shao and Wang, 2008) to achieve frequency selectivity.
Gammatone filters are widely used in models of the audi-
tory system and were developed to mimic cochlear filtering
(Patterson et al., 1992). Shao et al. (2007) have demon-
strated that GFCC features can provide robust speaker rec-
ognition in the presence of additive noise over a wide range
of SNRs, and performance can be further improved by
adding complementary auditory scene analysis (Shao
et al., 2010). Similarly, Li and Huang (2011) proposed
the use of cochlear filter cepstral coefficients (CFCC) for
robust speaker identification in mismatched conditions
(Li and Huang, 2010, 2011). The proposed CFCC features
are based on a time–frequency transform called the Audi-
tory Transform that includes several components that
mimic the processing in the human peripheral auditory sys-
tem (Li and Huang, 2011). CFCC features also improve
speaker identification accuracy compared to conventional
MFCC processing when tested under mismatched condi-
tions (Li and Huang, 2010). Other recent auditory-based
features include the Teager energy cepstrum coefficients
(TECC), developed by Dimitriadis et al. (2011).

1.3. The sigmoidal rate-intensity function

In an earlier study, Chiu and Stern (2008) examined the
contributions of each stage of the classic auditory model by
Seneff (1988) to analyze their impact in improving recogni-
tion accuracy for speech in the presence of noise and found
that the best improvement in speech-recognition accuracy
is provided by the rate-level nonlinearity stage that most
models of the peripheral auditory system include just after
the (typically linear) bandpass filtering that models the
motion of the basilar membrane in the cochlea. This non-
linearity is roughly S-shaped, and has three major regions:
(1) a range of input intensities that are “below threshold”

in which the function output is roughly constant at a low
level, (2) a range of input intensities for which the function
output is roughly linear with respect to the input intensity
in decibels, and (3) a “saturated” region in which the func-
tion output is roughly constant at a higher level.

Results from recent physiological studies describe and
attempt to explain various types of dynamic adaptation
of the rate-level functions with respect to the intensity of
the incoming sound, background noise intensity, and the
contrast between noise and the degraded speech signal
(Dean et al., 2005; Zilany and Carney, 2010). These adap-
tations enable the dynamic range of the rate-level func-
tions, which intrinsically is rather limited, to cover a
much broader range of sound levels. In general, higher
input sound levels tend to move the rate-level curves to
the right and increase their maximum slope (Bureš et al.,
2010; Gao et al., 2009). For example, in cats the back-
ground noise causes in the rate-level functions a shift of
the dynamic range to higher intensities. It has also been
noted that the noise level where this shift begins can be fre-
quency dependent (Costalupes et al., 1984), and that the
slope of the rate-level functions can increase in the presence
of noise (May and Sachs, 1992) in addition to increased
input levels.

Similar research in ferrets has characterized enhance-
ment of spectro-temporal contrast in the acoustic environ-
ment as another important consequence of the adaptation
of the sigmoidal nonlinearity (Rabinowitz et al., 2011;
Wang and Shamma, 1994). This is similar to the enhance-
ment in spatio-temporal contrast that is developed in the
vertebrate retina (Ohzawa et al., 1985; Werblin et al.,
1996). As an example, Rabinowitz et al. (2011), describe
auditory processing that enhances local fluctuations in
the envelope of response to desired signals in the presence
of noise. This cannot be accomplished by a simple gain
control which simultaneously amplifies both the degraded
speech and the noise components, but rather a form of
adjustable nonlinear gain control corresponds that
increases the dynamic range of the degraded speech while
suppressing the fluctuations produced by the noise (Schnei-
der et al., 2011).

A steepening of rate-level functions of auditory neurons
has also been observed in response to increment in sound
level (Kang et al., 2010; Middlebrooks, 2004; Pfingst
et al., 2011) and in response to noise (Bureš et al., 2010;
Gao et al., 2009). According to Garcia-Lazaro et al.
(2007) who investigated rat auditory neurons, the observed
rate-level curves were more or less sigmoidal in shape, with
a change in the steepness of the rate-level function inter-
preted to be a change in the “neural response gain”.
Reports on auditory neurons of marmoset monkeys have
shown that the slope in the rate-level function is a measure
of the sound level discriminability. A steeper slope would
allow greater discrimination of sound level (Watkins and
Barbour, 2011). Other studies on auditory neurons in
response to continuous, dynamic sound stimuli have shown
a horizontal displacement of the rate-level function relocat-
ing the dynamic region of the function toward the mean
sound level, resulting in higher coding precision of the lev-
els (Dean et al., 2005; Wen et al., 2009), (Miller et al., 2011;
Schneider et al., 2011). By expanding or compressing the
auditory response to incoming sound in varying degrees,
contrast gain control in human audition can serve two
functions: (1) to protect sensory systems from overload
and (2) to enhance discriminability among selected stimuli
(Schneider et al., 2011). Ideally, the rate-level function
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would increase its slope to correspondingly enhance con-
trast in its response to small amplitude of the degraded
speech signal above the noise (low contrast between
degraded speech and noise signals). These goals, in combi-
nation with reducing the nonlinear distortion of the
degraded speech and reducing the differences between the
original clean speech and the degraded speech described
in Chiu et al. (2012), lead to the definition of the four opti-
mization criteria described in Section 2.2.

With these physiological examples in mind, Chiu et al.
(2012) postulated that dynamic adaptation of the rate-level
nonlinearity could also improve speech recognition accu-
racy for speech in the presence of noise. In particular, they
modeled the rate-level nonlinearity by a set of frequency-
dependent logistic functions, and developed a procedure
that optimized the parameters that specified the form of
the sigmoidal nonlinearity for a particular additive-noise
environment using an objective function based on maxi-
mizing phonemic discriminability. These authors demon-
strated that the use of an adapted nonlinear rate-level
function reduces differences between the shapes of spectral
distributions of clean speech versus speech in noise, and
they showed that the adaptation of the nonlinearity
improves speech recognition accuracy in the presence of
noise.

In this paper, we describe a new approach for optimiz-
ing the sigmoidal rate-level function that is based on phys-
ical attributes of the acoustical signal, rather than the
phoneme discrimination that was the basis for the
approach of Chiu et al. (2012). The method attempts to dis-
criminate between the degraded speech signal and noise,
preserve maximum information in the linear region of the
sigmoidal curve, and minimize the effects of distortions in
the saturation regions. The proposed method is applied
to a text-independent speaker verification task with speech
signals that are corrupted by additive noise at different
SNRs.

The development of adaptation based on signal analysis
(rather than phonetic analysis) is motivated by several con-
siderations. First, and foremost, the discriminative training
used by Chiu et al. (2012) is based on speech recognition at
the phoneme level in order to develop the ground-truth
phoneme representation of the data. We believe that
parameter optimization based on speech recognition may
not be best for speech tasks other than speech recognition,
such as the speaker verification considered in the present
paper. We also had described above the existence of adap-
tation of sigmoidal nonlinearities in several nonhuman spe-
cies and in other sensory modalities that is similar to those
modeled in the present paper. This suggests that we should
search for a viable approach to adaptation of the nonlin-
earity that is based on something other than human pho-
netic discrimination.

From the computational standpoint, the discriminative
training described in Chiu et al. (2012) requires a substantial
amount of a priori information, and increases the
computation needed substantially compared to the
signal-processing-based approach described in this paper.
Similarly, the signal-processing-based approach is much
more amenable to an online or adaptive implementation
than the approach of Chiu et al., in which the discriminative
training must be performed offline based on training data.

An unrelated reason for revisiting the issue of adapting
the sigmoidal nonlinearity is that Chiu et al. perform their
computations for all the channels of frequency analysis
using the same parameters. We examine in this paper the
extent to which performance would be further improved
by adaptation that is allowed to vary on a channel-by-
channel basis, which seems reasonable as the effective
SNR varies from channel to channel.

We reiterate that in principle the approach proposed in
this paper is applicable to any speech processing task
because all analysis takes place at the level of the acoustic
signal. Also, the sigmoidal functions are estimated sepa-
rated for each channel.

In Section 2 we describe our optimization approach and
specifically the development of four criteria that optimize
the sigmoidal rate-level function based on acoustic attri-
butes of the incoming signals. In Section 3 we discuss the
actual implementation of the sigmoidal rate-level nonlin-
earity, and in Section 4 we describe the experimental results
that validate the utility of the approach.

2. Development of the optimization criteria for the sigmoidal

function

In this section we describe the development of the opti-
mization criteria for the sigmoidal rate-level function. We
begin with a mathematical specification of the sigmoidal
nonlinearity, and subsequently we provide a mathematical
description of the four components of the objective func-
tion used to optimize the rate-level nonlinearity. We
remind the reader that the goal of the adaptation is to mod-
ify the location and the slope of the sigmoidal nonlinearity
so that it is best able to capture the intensity fluctuations of
the speech components of the signal in each channel, and to
enhance the contrast when the input speech incurs a high
level of degradation from additive noise.

2.1. Mathematical specification of the sigmoidal function

Let us represent the rate-level nonlinearity in auditory
transduction by the sigmoidal function gðlÞ given by:

gðlÞ ¼ 1

1þ exðl�lÞ ð1Þ

where l and x correspond to the offset and the slope of
gðlÞ, respectively. This function allows modeling the non-
linear response. The offset parameter l corresponds to
the location along the horizontal axis at which the sigmoi-
dal curve gðlÞ equals 1/2. The slope of gðlÞ equals �x=4
when l ¼ l. Consequently, the position l and the slope x
of the sigmoidal function are the parameters to be
estimated.



V. Poblete et al. / Speech Communication 56 (2014) 19–34 23
Let us now consider the output of a particular channel
of the initial bandpass filter bank that is the first stage of
every model. We represent the degraded input speech signal
xj;k at the output of filter j at the discrete-time index k by:

xj;k ¼ sj;k þ nj;k ð2Þ

where sj;k and nj;k denote the clean speech and noise signals,
respectively. If the entire signal xj;k is divided into Nf

frames of W samples per frame with 50% overlap, the
log-energy at frame i at filter j, Ej;i, can be written as:

Ej;i ¼ 10 � log
X

k2 frame i

w2
i�kx2

j;k

 !
ð3Þ

where wk represents the response of the finite-duration win-
dow function. Histograms of the log-energies Ej;i at filter j
and at frame i are generated in order to discriminate be-
tween noise and degraded speech frames by using the voice
activity detector (VAD) proposed by Shin et al. (2008), as
discussed in Section 3. Hence the frames are divided into
two subsets, one believed to contain degraded speech and
the second subset representing frames that are assumed
to contain only noise.We use the symbols N sn

f and Nn
f ,

where N f ¼ N sn
f þ Nn

f , to indicate the number of frames

that are assumed to contain speech degraded by noise
and the number of frames that are assumed to contain
noise alone, respectively. Finally, we use the symbols Ex

j;i

ð1 6 i 6 Nf Þ, Esn
j;m 1 6 m 6 N sn

f

� �
and En

j;r 1 6 r 6 Nn
f

� �
to represent the energies at filter j and at frames i, m and
r for frames that are considered to belong to the original
input, the subset of frames that contain degraded speech
and the subset of input frames that contain noise alone,
respectively. (Recall that each frame of the input is classi-
fied as containing either degraded speech or pure noise.)
In addition, the mean and variance of the energy in the de-
graded-speech frames are defined to be lj;sn and r2

j;sn,

respectively, while the corresponding mean and variances
of the energy in the frames that are assumed to contain
only noise energy frames are lj;n and r2

j;n, respectively.

2.2. Specification of the objective function used to optimize

the sigmoidal nonlinearity

Based on the discussion above, we choose an objective
function for the sigmoidal nonlinearity that (1) minimizes
nonlinear distortion in the linear region, (2) minimizes
noise power, (3) maximizes the similarity between energy
in the frames that are believed to represent degraded speech
and the energy of the speech alone in those frames, and (4)
maximizes the energy in the output signal which is pre-
sumed to be dominated by speech.

2.2.1. Criterion 1: Nonlinear distortion in the linear region

The slope x and the position l of the sigmoidal function
should be chosen in such a way that the degraded speech
lies in the linear part of the sigmoidal curve. Therefore,
once the sigmoidal function is applied, the nonlinear distor-
tion in the degraded speech would be minimized. This non-
linear distortion, Dnon�linear

j ðxj; ljÞ, is defined as:

Dnon�linear
j ðxj; ljÞ ¼

E AjEsn
j;m þ Bj � g Esn

j;m

� �h i2
� �

E Esn
j;m

� �2
� � ð4Þ

where (as before) Esn
j;m refers to the energy of frames of de-

graded speech at frame index m for filter index j, gð�Þ rep-
resents the sigmoidal function and E½�� is the expectation
operator. The parameters Aj and Bj correspond to a linear
transformation that allows the comparison of Esn

j;m and

g Esn
j;m

� �
(as developed in the Appendix). By approximating

the expected value by the sample mean, Dnon�linear
j ðxj; ljÞ

can be rewritten as:

Dnon�linear
j ðxj; ljÞ ¼

1
Nsn

f

PNsn
f

m¼1 AjEsn
j;m þ Bj � g Esn

j;m

� �h i2

1
Nsn

f

PNsn
f

m¼1 Esn
j;m

� �2
ð5Þ

where N sn
f is the total number of frames containing de-

graded speech.

2.2.2. Criterion 2: Noise power
The sigmoidal function can be employed to attenuate

the noise in the speech signal due to the fact that low-
energy frames can be associated with noise. The power of
the noise, after it is passed through the sigmoidal function,
P noise

j ðxj; ljÞ, is given by:

P noise
j ðxj; ljÞ ¼ E g2 En

j;r

� �h i
ð6Þ

where En
j;r corresponds to energy of noise frames at frame r

for filter j, gð�Þ represents the sigmoidal function, and E½�� is
the expectation operator. The sigmoidal function should
minimize P noise

j ðxj; ljÞ in order to reduce the effect of noise
energy. By estimating the expected value as the sample
mean, P noise

j ðxj; ljÞ can be rewritten as:

P noise
j ðxj; ljÞ ¼

1

N n
f

XNn
f

r¼1

g2 En
j;r

� �
ð7Þ

where N n
f is the number frames that are assumed to contain

noise only.

2.2.3. Criterion 3: Similarity between clean speech and the

degraded speech input

According to Chiu et al. (2012), the use of a nonlin-
ear rate-level function should reduce the differences
between the average frequency response of clean speech
and the average frequency response of the degraded
input signal, both assessed after the sigmoidal nonlinear-
ity. Consequently, the difference between the energy of
the clean speech and the degraded speech input is repre-
sented by:
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Dclean�noise
j ðxj; ljÞ ¼

XNf

i¼1

g Es
j;i

� �
� g Ex

j;i

� �h i2

ð8Þ

where Es
j;i and Ex

j;i correspond to the energy of clean speech
and the energy of the degraded input speech, respectively,
at frame i for filter j, and gð�Þ is the sigmoidal function.

2.2.4. Criterion 4: Signal variance of speech degraded by

noise after processing by sigmoidal function

To avoid extreme compression or saturation, the vari-
ance of the resulting degraded speech after the sigmoidal
function should be maximized. This variance of the
degraded speech, V jðxj; ljÞ, is expressed as:

V jðxj; ljÞ ¼ r2 g Esn
j;m

� �h i
ð9Þ

where Esn
j;m is energy of the frames of degraded speech at

frame m at filter j and gð�Þ is the sigmoidal function. By
expanding the expression of the variance, V jðxj; ljÞ can
be rewritten as:

V jðxj; ljÞ ¼
1

Nsn
f

XNsn
f

m¼1

g2 Esn
j;m

� �
� 1

Nsn
f

XN sn
f

m¼1

g Esn
j;m

� �2
4

3
5

2

ð10Þ

where Nsn
f is the number of frames containing degraded

speech frames.

2.2.5. Specification of the complete objective function

Based on the four criteria described above, we adopt for
this study the objective function Jðxj; ljÞ that is defined as:

Jðxj; ljÞ ¼ Dnon�linear
j ðxj; ljÞ þ P noise

j ðxj; ljÞ
þ Dclean�noise

j ðxj; ljÞ � V jðxj; ljÞ ð11Þ

Consequently, the optimal slope, x̂j, of the sigmoidal
function is estimated as:

x̂j ¼ arg min
xj

fJðxj; ljÞg ð12Þ

In (12), the position ljof the sigmoidal function is set to

lj ¼ E Esn
j;m

� �h i
(i.e. centered on the mean of the energy

of the degraded speech frames Esn
j;m).

Finally, the optimal position, l̂j, of the sigmoidal func-
tion is estimated according to:
Input
signal

Seneff       
filter bank

log 

log 

log 

D

Sigmoidal 
functions

Fig. 1. Block diagram of the propo
l̂j ¼ arg min
lj

fJðxj; ljÞg ð13Þ

In (13), xj corresponds to the optimal sigmoidal slope x̂j.
While we recognize that the definition of the objective

function Jðxj; ljÞ as the simple sum of the four criteria
above is a special case of the more general linear
combination

Jðxj; ljÞ ¼ a � Dnon�linear
j ðxj; ljÞ þ b � P noise

j ðxj; ljÞ þ c

� Dclean�noise
j ðxj; ljÞ � d � V jðxj; ljÞ

we adopted the function of (11) for simplicity in the ab-
sence of compelling evidence that other combinations of
the four criteria would provide better performance.

3. Implementation of the sigmoidal rate-level function

In this section we describe the adaptive procedure based
on signal analysis that is used to optimize the sigmoidal
rate-level function. We refer the reader to Fig. 1 for a
depiction of the complete feature extraction scheme, and
Fig. 2 for a depiction of the procedure for obtaining the
optimal parameters x̂j and l̂j. The specific values of the
sigmoidal parameters x̂j and l̂j, as defined in Eqs. (12)
and (13), respectively, were determined using a develop-
ment database of speech corrupted by babble noise at an
SNR equal to 10 dB, as discussed in Section 4.

The optimal values of the parameters x̂j and l̂j used in
our work vary from channel to channel, in contrast to the
approach of Chiu et al. (2012), in which the parameters of
the nonlinearity are the same for all the filters. This is help-
ful because the SNR varies from one filter to the other. As
mentioned above, we used the voice activity detector
(VAD) proposed by Shin et al. (2008) to discriminate
between degraded speech and noise. Two subsets of frames
are defined based on the VAD results, representing frames
that contain degraded speech, and the representing frames
that are assumed to contain only noise, respectively.

Fig. 3 describes the dependence of the shape of the
objective function on the parameters xj and lj, which
describe the slope and position, respectively, for each the
35 analysis bands j. Fig. 4 depicts a representative example
of an optimal sigmoidal function (solid line) and a corre-
sponding linear mapping (dotted line) with a slope equal
to the sigmoid at its center point. The sigmoidal curve
CT
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Fig. 2. Block diagram for obtaining optimal parameters x̂j and l̂j of the sigmoidal function.

Fig. 3. The objective function Jðxj; ljÞ plotted as a function of the sigmoidal function parameters: (a) sigmoidal slope xj and (b) sigmoidal position lj.
The optimal values of x̂j and l̂j are indicated by the open circles for each of the 35 channels of the filter bank.
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was obtained with the optimal slope x̂j and position l̂j of
the sigmoidal function for the filter j = 8. Fig. 4 also depicts
the histograms extracted from a testing utterance for filter
j = 8 with babble noise at SNR equal to 10 dB. By compar-
ing the solid and dotted lines in Fig. 4 it can be seen that
the sigmoidal function compresses the noise in the nonlin-
earity region, while most of the frames containing degraded
speech lie within the linear part of the sigmoidal function.

Fig. 5 shows four sigmoidal functions trained with bab-
ble noise at SNRs equal to 20 dB, 15 dB, 10 dB and 5 dB,
along with a fifth sigmoidal function that was trained with
clean speech. As shown in Fig. 5, both optimal slope x̂j

and position l̂j of the sigmoidal function depend on the
SNR at which the sigmoidal function was trained: as
SNR is increased, the curves in Fig. 5 shift to the right
and become steeper. Consequently, the optimization of sig-
moidal slope x̂j and the sigmoidal position l̂j provides an
adaptation in the sigmoidal function that compensates for
variations in SNR.

Fig. 6 is a composite of all of the sigmoidal rate-level
functions, plotted as a function of SNR with optimal
parameters for all 35 channels, trained on speech degraded
with babble noise. We observe that the sigmoidal functions
adapt slightly for each channel at each SNR. Specifically,
as the SNR decreases, the curves are displaced toward
the right, and their slopes become steeper at the midpoints.
Collectively these phenomena modify the nonlinearities to
ensure that most of the speech energy falls on the relatively



Fig. 4. Example of optimal sigmoidal function (solid line) and the corresponding linear mapping (dotted line). The training conditions for the sigmoid
were babble noise at SNR = 10 dB. Results for filter j ¼ 8 are plotted with optimal parameters: x̂8 = �0.071 and l̂8 ¼ �14. In addition, histograms of
power are depicted for frames containing degraded speech (filled bars) and frames assumed to contain noise only (open bars).

Fig. 5. Sigmoidal functions plotted as a function of SNR. Training
conditions: clean speech and speech degraded by babble noise at SNRs
equal to 20 dB, 15 dB, 10 dB and 5 dB. Results for filter j ¼ 17 are plotted
with optimal parameters.
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linear part of the curve, which renders the features more
robust against changes in SNR when training and testing
conditions are mismatched.
Fig. 6. Three-dimensional graphs of the sigmoidal rate-level functions trained w
plot is rotated to show the difference in slope and horizontal displacement be
Fig. 7 compares an ensemble of sigmoidal rate-level
functions that were trained with different types of noise
(restaurant and car noise) but at the same SNR. Results
are similar to the curves of Fig. 6 in that the curves shift
to the right and their slopes increase as SNR decreases,
with variations in the individual responses observed from
filter to filter. The interlaced patterns generated by the sig-
moidal functions trained on the two types of noise indicate
that the shape of the optimal non-linearity depends on the
spectral distribution of the masking noise.

This dependence of the location and steepness of the sig-
moidal curves in Fig. 5, Fig. 6 and Fig. 7, is consistent with
the experimental results in the physiological literature
described above. As noted, the steepening of rate-level
functions of auditory neurons is consistent with the results
of numerous physiological studies describing nonlinearity
in sensory transduction (e.g. Bureš et al., 2010; Gao
et al., 2009; Garcia-Lazaro et al., 2007; Kang et al., 2010;
Middlebrooks, 2004; Pfingst et al., 2011; Watkins and
Barbour, 2011).
ith speech degraded by babble noise at SNR equal to 20 dB and 5 dB. The
tween both set of functions.



Fig. 7. Comparison of optimal sigmoidal rate-level functions trained with restaurant and car noise at SNR equal to 20 dB (right) and 5 dB (left).
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We note that in this paper we describe separately a stage
of logarithmic compression followed by the sigmoidal non-
linearity. We consider the logarithmic compression to be an
approximation of the compressive gain of the basilar mem-
brane (Robles and Ruggero, 2011). The subsequent sigmoi-
dal rate-level function is intended to represent an
approximation to both the existence of spontaneous AN
activity at low input sound levels and the saturation of
AN fibers at high sound levels, presumably because of a
mixture of suppression (such as two-tone suppression
(Rhode and Cooper, 1993), and a presumed limit on the
discharge rate with which a fiber is capable of coding
intensity.

4. Experimental results

The utility of the optimal sigmoidal nonlinearity was
evaluated using a text-independent speaker verification
task, with equal error rate (EER) employed as the major
figure of merit. The results presented here were obtained
using the YOHO database (Campbell and Higgins, 1994),
which supports the development, training, and testing of
speaker verification systems. The vocabulary is composed
of two-digit numbers spoken continuously in sets of three
(e.g., “62-31-53” is pronounced as “sixty-two thirty-one
fifty-three”). The database is divided into “enrollment”
and “verification” segments. Each segment contains data
from 138 speakers. In this paper a subset of 70 speakers
(43 males and 27 females) was employed. These speakers
were divided as follows: 40 background impostor speakers
(28 males and 12 females) to train the background models;
and 30 testing speakers (15 males and 15 females) were
used in verification attempts. For each speaker, one 96-
utterance enrollment session was considered. False rejec-
tion curves were estimated with 30 speakers � 40 verifica-
tion signals per client = 1200 utterances. False acceptance
curves were obtained with 30 speakers � 29 impostors � 12
verification signals/per impostor = 10,440 experiments. In
addition, a subset composed of 50 speakers and one
utterance per speaker (development database) extracted
from YOHO was employed to train the optimal parameters
x̂j and l̂j of the sigmoidal functions. The utterances used
to train the sigmoidal function were not included in the
testing data for the main speaker verification experiment.
Three types of noise (babble, car, and restaurant) were
selected from the AURORA database (Hirsch and Pearce,
2000). These noises were artificially added to the YOHO
corpus to generate noisy versions of the utterances at var-
ious SNRs: 20 dB, 15 dB, 10 dB, 5 dB and 0 dB. For all the
speaker verification experiments, the system was trained
with clean speech.

In this paper, the auditory filter bank (Stage I in the
Seneff auditory model (Seneff, 1988) was obtained directly
from Malcolm Slaney’s widely-used Auditory Toolbox
(Slaney, 1998), which implements 35 filters with center fre-
quencies spaced according to the Bark scale from 200 to
3300 Hz. Each filter was redesigned by reducing the sam-
pling frequency to 8 kHz. Finally, the input signal was nor-
malized by dividing the samples by the maximum absolute
amplitude. After filtering, the signals were divided into 25-
ms frames with 12.5-ms overlap between frames using
Hamming windows. The log energy was computed at the
output of each filter. Then, in each frame, a channel-spe-
cific optimal sigmoidal function, estimated using the devel-
opment data set and the procedure explained in Section 2,
was applied to the log-energy of the output of each filter,
both in the training and testing data sets. Finally, the
log-energy plus ten static cepstral coefficients, and their
first and second cepstral time derivatives were estimated
in a fashion that is similar to MFCC processing (see
Fig. 1). Four configurations were considered: (1) a baseline
system, which corresponds to the log-energies of the Seneff
filter bank output; (2) the baseline system with cepstral var-
iance normalization (CVN); (3) the baseline system with
cepstral mean and variance normalization (CMVN), and
(4) the method proposed in this paper using the optimal
sigmoidal function, combined with CVN. If the entire sig-
nal were mapped into the linear region of the sigmoidal
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function, the proposed scheme could be considered equiv-
alent to the CVN algorithm. Therefore, the impact of the
nonlinearity provided by the sigmoidal function may be
inferred by comparing results obtained with the configura-
tions (2) and (4) as described above.

In the verification procedure, the normalized log likeli-
hood is estimated. Given a verification attempt in which
the identity of Speaker s is claimed, O denotes the observa-
tion sequence corresponding to the claimant’s utterance.
The output score of the system is a cohort-normalized
log likelihood, log L(O):

logLðOÞ ¼ logLðO=ksÞ � logLðOk�sÞ ð14Þ

where log L(O/ks) is the log likelihood of the client hypoth-
esis and ks is the speaker s model, and logLðO=k�sÞ is the
averaged log likelihood of the cohort of impostor models.
A universal background model (UBM) is trained by using
the background impostor speakers. A speaker-dependent
Gaussian mixture model GMM is generated for each
speaker by employing MAP adaptation (Reynolds et al.,
2000). By doing so, the correspondence of the Gaussians
within each speaker-dependent GMM with those in the
background GMM is preserved (Reynolds et al., 2000).

4.1. General dependence on SNR and the presence of the

sigmoidal nonlinearity

Fig. 8 describes results provided using the optimal sig-
moidal functions for the speaker verification task in the
presence of three types of background noise: speech bab-
ble, car noise, and restaurant noise, all as a joint function
of the SNR at which the sigmoidal functions were trained
and the SNR of the incoming speech. The optimal sigmoi-
dal functions were trained with babble noise and SNRs
Fig. 8. EER for speaker verification as a function of the SNR of the testing da
The data obtained from each SNR used for testing are described in a single g
functions were trained with babble noise and SNRs equal to 20 dB, 15 dB, 10
equal to 20 dB, 15 dB, 10 dB, 5 dB and 0 dB. As can be
seen in Fig. 8, the lowest EERs are achieved when the sig-
moidal function is trained with 10 dB for all testing con-
ditions. We note that these results are consistent with
similar findings observed by Chiu et al. (2012) where the
optimal sigmoidal function was trained at an SNR of
10 dB by using a criterion based on phoneme discrimina-
tion. In contrast, the objective function Jðxj; ljÞ is based
entirely on the physical characteristics (and especially the
power distribution) of the incoming speech, and does not
take phonetic content into account at all. Consequently,
the fact that the best speaker verification results are
achieved with the sigmoidal function trained with signals
at SNR 10 dB means only that for these SNRs the bene-
fits provided by noise suppression are more significant
than the distortion introduced by saturation at higher lev-
els. Most of the results we described below are carried out
using sigmoidal functions trained at an SNR equal to
10 dB.

We also note that the sigmoidal function trained at 0-dB
SNR provides poor performance in speaker verification of
speech at all testing SNRs. This is most likely a conse-
quence of the fact that at 0-dB SNR the speech and noise
distributions are nominally overlapping. Hence, the
speech-plus-noise and noise-alone distributions are not sep-
arable by SNR, and any nonlinear compression applied to
the noise will be applied to the speech as well. The estima-
tion of the optimal parameters x̂j and l̂j for the sigmoidal
distribution is less reliable as well.

Fig. 9 describes EER results obtained as a function of
SNR for speech in the presence of three types of back-
ground interference: speech babble, car noise, and restau-
rant noise. Results are compared for the baseline system,
the baseline system combined with CVN, the baseline
ta and the SNR used to develop the parameters for the sigmoidal function.
raphic, with the testing SNR indicated at the top. The optimal sigmoidal
dB, 5 dB and 0 dB, as indicated by the scale at the bottom of each panel.



Fig. 9. Comparison of EER as a function of SNR for speech in babble,
car and restaurant noise, respectively. Depicted separately are results for
the baseline system, the baseline system with CMVN, the baseline system
with CVN; and the system using the optimal sigmoidal function combined
with CVN. The optimal sigmoidal functions were trained and tested in
matched noisy condition at an SNR of 10 dB.

Fig. 10. Comparison of EER as a function of SNR for speech in babble
noise using the sigmoidal function combined with CVN. In one curve the
sigmoid trained with SNR equal to 10 dB was applied to both training and
testing utterances. In the second curve, training and testing utterances
were processed with the sigmoid trained at the same SNR used in the
utterance.

Fig. 11. Comparison of EER (%) obtained using the method with
parameters of the nonlinearity given by Chiu et al. (2012), combined with
CVN, and the proposed method in this paper combined with CVN, for
speech in car, babble and restaurant noise, respectively.
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system with cepstral mean and variance normalization
(CMVN) and the proposed method combining the pro-
posed optimal sigmoidal nonlinearity and CVN, as
described above. The use of the optimal sigmoidal function
in combination with CVN improves the effective SNR of
the system in all three types of noise, typically on the order
of 1–2 dB. Maximum relative percentage improvements in
SNR compared to baseline at selected SNRs are approxi-
mately 31.7%, 40.6%, and 28.4% for the three types of
background noise. Best performance is always obtained
using the proposed optimal sigmoidal nonlinearity, but at
least for car noise, the performance of a system with
CVN only comes close.

4.2. Comparison of training the nonlinearity parameters at

fixed versus matched SNRs

As noted above, the results depicted in Fig. 9 were
obtained by estimating the parameters characterizing the
sigmoidal functions using speech in the presence of speech
babble at an SNR of +10 dB, which appears to the best
single training SNR according to the results depicted in
Fig. 8. Nevertheless, we would always expect better per-
formance to be obtained when the parameters characteriz-
ing the sigmoidal functions are estimated in
environmental conditions that match the testing environ-
ment. In an effort to quantify the magnitude of the
improvement to be expected, we repeated some of the
conditions with the SNRs for parameter estimation
matched to the SNRs used in the speaker verification
experiment itself. Fig. 10 compares EERs for speaker
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verification when the sigmoids are trained at the testing
SNR with the corresponding EERs obtained when the
parameters are always estimated from signals at 10-dB
SNR. As can be seen from the figure, very little difference
in results is observed, except for the lowest SNR, 0 dB,
which actually provides very poor performance when
the parameters are estimated at a matched SNR (presum-
ably because the data are too noisy to provide reliable
parameter estimation). For this reason we continue to
use sigmoids trained at an SNR of 10 dB for all utter-
ances, because they provide similar performance to sigm-
oids trained to match the testing data at most SNRs, and
substantially better performance at 0-dB SNR.
Fig. 13. Comparison of EER (%) obtained using the proposed method
with parameters of the nonlinearity trained (at SNR equal to 10 dB) and
tested with the same type of noise, and the proposed optimization method
with the parameters of the sigmoidal function trained with pink noise (at
4.3. Comparison to the results of Chiu et al.

As noted above, Chiu et al. (2012) described a method of
adapting the sigmoidal rate-level function using a criterion
based on discrimination analysis at phonetic level. Fig. 11
compares results obtained using the method described in
this paper with results obtained using the method described
by Chiu et al., with CVN included in obtaining both sets of
results. The parameters obtained for the sigmoidal func-
tions of Chiu et al. (2012) were a = 0.05; x0 = 0.613; and
x1 = 0.521. Results are presented for three types of noise:
Fig. 12. Comparison of EER (%) obtained using the proposed method in
this paper combined with CVN, using different sigmoidal functions per
channel and the same mean value for all channels, for speech in car,
babble and restaurant noise, respectively.

SNR equal to 10 dB). In both cases the speech was degraded with car,
babble and restaurant noise, and the sigmoidal function was combined
with CVN.
babble, car, and restaurant at SNRs equal to 20 dB,
15 dB, 10 dB, 5 dB and 0 dB, respectively. The experimen-
tal results shown in Fig. 11 indicate that both the method
proposed in this paper and the method proposed by Chiu
et al. are effective in maintaining good performance at most
SNRs, but the method proposed in the present paper per-
forms somewhat better for all three noise types at the lower
SNRs.

4.4. Impact of channel-specific estimation of sigmoidal

nonlinearities

Fig. 12 compares results obtained using the sigmoidal
nonlinearities estimated on a channel-specific basis as
described in this paper with results obtained using a single
nonlinearity for all 35 frequency channels. It can be seen
that the allowing the sigmoidal nonlinearities to vary from
channel to channel is advantageous at SNRs of 0 and
+5 dB, most likely because the local SNRs exhibit greater
variation from channel to channel at the lower SNRs.
Thus, at lower SNRs, the performance of the optimization
improves speaker verification accuracy, due to the fact that
the adaptation enables to increase the dynamic range of the
degraded speech above the noise and minimizes nonlinear
distortions in the linear region while suppressing fluctua-
tions produced by noise.
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4.5. Comparisons to optimal sigmoidal functions trained and

tested with different type of noise

Fig. 13 compares results obtained by using the sigmoidal
nonlinearities estimated with pink noise at SNR equal to
10 dB with results shown in Fig. 9 where the same kind
of noise was employed in training and testing. When com-
pared to baseline processing, the sigmoidal functions
trained with pink noise in combination with CVN leads
to average relative reductions in EER equal to 23.5% and
13% at SNR equal to 5 dB and 0 dB, respectively, with
car, babble and restaurant noise. This result strongly vali-
dates the proposed optimization method. However, the
highest reductions in EER are obtained when the sigmoidal
nonlinearities are trained and tested with the same noise,
except with restaurant noise at SNR equal to 0 dB where
both sigmoidal functions provide almost the same result.

4.6. General comments

The improvements provided by the use of the sigmoidal
function are consistent with results from other studies in
Fig. 14. Comparison of the average power spectrum for 50 utterances of
clean speech with the power spectra of noise. The mean-squared errors
(MSE) between the speech and restaurant, babble and car noise spectra
are 58.7, 70.1, and 95.4, respectively.
speech recognition based on auditory processing. Audi-
tory-based approaches typically provide significant
improvements at lower SNRs, but at higher SNRs they
may achieve performance that is no better than (or worse
than) the performance that is observed using conventional
signal processing based on MFCC or PLP features (e.g.
(Ghitza, 1986), (Chiu and Stern, 2008; Chiu et al., 2012),
(Jankowski and Lippmann, 1992; Kim et al., 1999). We
reiterate that the results presented here are consistent with
those described in Chiu et al. (2012) where the sigmoidally-
shaped rate-intensity function has been identified as an
important component of auditory-based feature extraction
systems for speech recognition.

Nevertheless, the use of the sigmoidal nonlinearity
trained at 0-dB SNR failed to provide a significant
improvement. As we have noted above, at 0-dB SNR
the distributions of power of the frames containing
degraded speech overlap with the power distributions of
the noise-only frames. In addition, it appears that the
power spectra of the speech signals and background noise
are more similar in the case of restaurant noise than in
the cases of the other two noise types considered. This
is illustrated in Fig. 14, which shows the average power
spectrum of 50 utterances extracted from clean speech
and the power spectrum of restaurant, babble and car
noises in each of the three panels. Spectra were estimated
by using a FFT with 215 points. An averaging filter was
applied to smooth the speech and noise spectra. Finally,
for comparison purposes, each spectrum was normalized
according to its energy. We observed differences in
mean-squared error (MSE) between the speech and noise
spectra equal to 58.7, 70.1 and 95.4 for restaurant, babble
and car noises, respectively. The corresponding differences
between EERs obtained using the sigmoid nonlinearity
combined with CVN compared with the use of CVN
alone are 0.57%, 2.1%, and 4.9%, respectively, at SNR
equal to 0 dB. Hence, we believe that the sigmoidal non-
linearity fails to improve EER for the speaker-verification
task in restaurant noise at 0-dB SNR because the spectra
of speech and noise are very similar, causing the power
curves for degraded speech and noise to overlap at all
frequencies.

5. Conclusions

This paper describes a method that can be used to
develop an optimal sigmoidal nonlinear rectifier function
for auditory modeling that is based solely on the distribu-
tion of power in the degraded speech frames and the power
in the frames containing noise only. The objective function
that is described attempts to simultaneously minimize noise
power, minimize nonlinear distortion, maximize the simi-
larity between clean speech and the degraded speech input,
and maximize the signal variance of the speech degraded by
noise after processing by sigmoidal function. The optimal
sigmoidal functions obtained are frequency dependent
because the output SNR from the channels of the initial
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bandpass filter bank varies from one channel to the other.
Finally, we note the proposed approach differs from ceps-
tral mean and variance normalization (CMVN), which in
effect produces a linear function that relates input and out-
put, similar to the linear approximations of Fig. 4. The
observed improvements in speaker identification accuracy
obtained using the optimal sigmoidal nonlinearity (com-
pared to results obtain with CMVN) demonstrate the
potential of the nonlinearities that are part of human audi-
tory processing.

The resulting sigmoidal nonlinearities are demonstrated
to exhibit a location and slope that change as a function
of SNR in a fashion that is consistent with the corre-
sponding dependencies that are described in the physio-
logical literature. The utility of the optimal sigmoidal
nonlinearities derived in this fashion is considered in a
series of experiments measuring speaker verification accu-
racy using the YOHO database. Our results indicate that
the use of a sigmoidal nonlinearity defined strictly from
the physical characteristics of the input (as apposed to
phoneme discrimination) can lead to average relative
reductions in EER compared to baseline processing as
great as 12%, 33.6% and 16.6% at SNR equal to 10 dB,
5 dB and 0 dB, respectively, with speech degraded by bab-
ble, car and restaurant noise. The sigmoidal nonlinearity
provides smaller benefit at higher SNRs, consistent with
previous experiments with auditory models in speech rec-
ognition. The consistency of results between the two opti-
mization schemes (using discrimination based on
phoneme classes and discrimination based on waveform
characteristics), reinforces the notion that optimal sigmoi-
dal functions can reduce the mismatch between the train-
ing conditions and testing. In principle, our results
obtained appear to be generic suggesting that this optimi-
zation approach could be applicable to any image or
sound recognition system in which the feature extraction
employs a nonlinear function based on rate-level
responses.
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Appendix A

In this Appendix we develop the parameters Aj and Bj of
the nonlinear distortion factor Dnon�linear

j ðxj; ljÞ, which are
defined in Section 2.3.

The parameters Aj and Bj are estimated according to:

ðAj;BjÞ ¼ arg min
Aj;Bj

Dnon�linear
j ðxj; ljÞ

n o
ðA1Þ

First, the partial derivative of Dnon�linear
j ðxj; ljÞ with respect

to Aj is estimated:
@Dnon�linear
j

@Aj
¼ 1

Nsn
f

XNsn
f

m¼1

2 � AjEsn
j;m þ Bj � g Esn

j;m

� �h i
� Esn

j;m ðA2Þ

Then, the result obtained in (A2) is set to zero:
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Similarly, by estimating the derivative of

Dnon�linear
j ðxj; ljÞ with respect to Bj and setting the result

to zero, the following equation is obtained:

Aj � E Esn
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� �2
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ðA4Þ

By combining (A3) and (A4) and making use of the expres-

sions lj ¼ E Esn
j;m

h i
and r2

j ¼ E Esn
j;m

� �2
� �

� E Esn
j;m

h in o2

, the

parameters Aj and Bj are found to be equal to:
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