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This study aims at identifying the proper parts of C1 and B2 coking coal seams in the North block of East-Parvadeh
coal deposit (Central Iran) using the concentration–volume (C–V) fractal modeling according to sulfur and ash
values which were calculated by turning bands conditional simulation. The C–V log–log plots were generated
based on results of 100 realizations derived via turning bands simulation which show seven different geochem-
ical populations for both sulfur and ash data in B2 seam which has a relatively good quality for coking coal with
sulfur and ash values lower than 1.548% and 6.39% respectively. Additionally, C–V log–log plots indicate that
there are seven and six for sulfur and ash geochemical populations in C1 seam containing a proper coal quality
with respect to sulfur and ash values less than 1.41% and 6.92% respectively. High quality populations are located
in the northern and western parts of the studied area which correlated with USGS standard. The logratio matrix
was used for the correlation between results obtained by the C–V fractal modeling and geological particulars
consisting of pyritic veins and ash coals. Based on the logratio matrix for sulfur values higher than 3.55% and
3.39% for C1 and B2, respectively, low quality parts of the seams have good correlation with pyritic veins in the
eastern and central parts of the area. Moreover, there are high values of overall accuracy (OA) for correlation
between parts of the seams with high values of ash which are 47.86% and 39.81% for C1 and B2, respectively,
and ash coals obtained by geological data.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recognition of coking coal parts in the bituminous coal seams is
necessary for mine planning and equipment selection used for mining
these seams. Ash and sulfur values are important for determination of
proper coal quality for coke production regarding environmental
control of coal mining (Younger, 2004). Conventional methods for
modeling of various parts of coking coal are based on petrographical,
physical, technological and geochemical studies especially measuring
of sulfur and ash variations in the coal seams considering Russian
standards and USGS system (Ahangaran et al., 2011; Brownfield et al.,
2001; Wood and Kehn, 1976). The classifications based on all physical,
ineering, South Tehran Branch,

.uk (P. Afzal).
mechanical, chemical, and technological characteristics of organic
fraction of coal have been utilized in Iran since 1960s.

Geostatistical simulation has been widely used in geology and min-
ing engineering to assess the uncertainty at un-sampled locations and to
develop model the continuous variables (Emery and Lantuéjoul, 2006).
Conditional simulation is designed initially to overcome the smoothing
effect of kriging estimator especially when mapping sharp or extreme
spatial discontinuities is looked for (Deutsch and Journel, 1998;
Leuangthong et al., 2004; Soltani et al., 2014).

The simulation algorithms take into account both the spatial varia-
tion of actual data at sampled locations and the variation of estimates
at un-sampled locations which means that simulation reproduces the
sample statistics (histogram and semi-variogram model) and honors
sample data at their original locations. Therefore, a simulation map
represents the spatial distribution of the particular more realistic
than a kriged map (Asghari and Madani Esfahani, 2013; Soltani
et al., 2014). The geostatistical simulation is an alternative to the
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conventional approaches of estimation which is independent of
over and under estimation. This benefit is an important issue in
order to apply for the fractal model and could reproduce better
results.
Fault  

Fig 1. Location of Parvadeh deposits and East-Parvadeh blocks
Fractal/multifractal modeling, established by Mandelbrot (1983) has
been widely used in geosciences specifically for interpretation of geo-
chemical data spatial distribution and delineation of mineralized zones
from barren host rocks since 1980s (Afzal et al., 2011, 2013; Agterberg
North Block

South Block

in the Iran and Tabas coalfield (Ahangaran et al., 2011).
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et al., 1993, 1996; Cheng, 2007; Chenget al., 1994; Costa, 1997; Costa and
Dimitrakopoulos, 1998; Daneshvar Saein et al., 2012; Li et al., 2003;
Turcotte, 1997; Yasrebi et al., 2013; Zuo et al., 2009; 2012, 2013).
Fig. 2. Isometric view of drill hole locations (a) and a 3D geological model for
Cheng et al. (1994) and Cheng (1995) proposed concentration–area
(C–A) and concentration–perimeter (C–P) fractal models for separation
of geochemical anomalies from background and calculation of elemental
the East-Parvadeh deposit with a vertical exaggeration equal to 30 (b).
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threshold values for different geochemical data. Moreover, other fractal
models were developed and applied in geochemical exploration such
as number–size (N–S) by Mandelbrot (1983), power spectrum–area
(S–A) by Cheng et al. (1999), concentration–distance (C–D) by Li et al.
(2003), concentration–volume (C–V) by Afzal et al. (2011) and concen-
tration–number (C–N) by Afzal and Hassanpour (2013).

In this paper, the turning bands simulation and C–V fractal model
were applied to outline sulfur and ash populations for separation of
high quality coking coals based on drillcore data from the C1 and B2

seams of the North block of East-Parvadeh coal deposit located in the
Central Iran. Moreover, the results obtained by the fractal modeling
were compared with USGS system (Wood and Kehn, 1976) and geolog-
ical particulars by logratio matrix proposed by Carranza (2011).

2. C–V fractal model

The application of fractal models for analysis of mineralized zones
was based on relationships between ore grades and volumes or
tonnages (Afzal et al., 2013; Agterberg et al., 1993; Sadeghi et al.,
2012; Sim et al., 1999; Yasrebi et al., 2013). Afzal et al. (2011) proposed
the C–V fractalmodel for delineating different porphyry-Cumineralized
zones from barren host rocks. This model is as follows:

V ρ ≤ υð Þ∝ρ−a1
;V ρ ≥ υð Þ∝ρ−a2 ð1Þ

where V(ρ≤ υ) and V(ρ≥ υ) indicate two volumes with concentration
values less than or equal to and greater than or equal to the contour
value ρ; υ ,a1 and a2 represent the threshold value of a zone and fractal
Fig. 3.Reproduced variograms for 100 realizations of: a) ash in B2; b) sulfur in B2; c) ash in C1 an
experimental variogram over 100 realizations; blue line: theoretical variogram of normal score
dimensions respectively. Threshold values in this model represent
boundaries between different mineralized zones and barren host
rocks of different ore deposits. To calculate V(ρ ≤ υ) and V(ρ ≥ υ),
that are the volumes enclosed by a contour level ρ in a 3D model, the
borehole data of ore element concentrations were calculated using
turning bands simulation (Emery and Lantuéjoul, 2006).
3. Turning bands simulation

The most applicable and widespread approximate algorithm is the
sequential Gaussian (Deutsch and Journel, 1992) and continuous spec-
tral methods (Shinozuka and Jan, 1972). These two approaches have
some limitations and drawbacks (Chilès and Delfiner, 2012; Dehdari
andDeutsch, 2012; Emery, 2004; Lantuéjoul, 2002). Another alternative
is the turning bands method, which was first introduced by Chentsov
(1957) in a special case of Brownian random functions but has been
extended to the simulation of stationary and intrinsic random functions
by Matheron (1973). This method aims at simplifying the simulation
problem in multidimensional spaces, using simulations in one dimen-
sion and spreading them to the 2D or 3D space. Thismethod is extreme-
ly fast with parallelizable computations and one can simulate as many
locations as desired. The simulation also exactly reproduces the desired
covariance. Actually, this method can be incorporated in both cases
of stationary and intrinsic random function of order k (Emery
and Lantuéjoul, 2006; Chilès and Delfiner, 2012). The proposed simula-
tion algorithm in this study is based on a former code published
by Lantuéjoul (1994), which has been completed by Emery and
Lantuéjoul (2006) to include the following features:
d d) sulfur in B2 (green line: experimental variogram for each realization; red line:mean of
transformed variables).
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- To handle isotropic covariance models,
- To simulate gridded locations on large domains,
- Accurate reproduction of the desired covariance model (without
approximation),

- Availability of the most commonly used covariance models,
- Conditioning to a set of existing data,
- Definition of either a unique or a moving,
- Neighborhood for conditioning kriging,
- Back-transformation from normal values to original units.
Fig. 4. E-types for a) ash in B2; b) sulfur in B2; c) ash in C1 and d) sulfur in C1; realization # 20 for
B2; j) sulfur in B2; k) ash in C1 and l) sulfur in C1.
4. Geological setting

Iranian coking coal resources and reserves are estimated to be about
7–10 Gt that is mainly located in two major basins in Northern and
Central Iran, namely Alborz and the Central basins respectively
(Solaymani and Taghipour, 2012). The Tabas coalfield provides most
of Iran's coking coal for metallurgical applications, as its reserve is
estimated to be 3–4 Gt (Afzal et al., 2008; Ahangaran et al., 2011;
Moore and Esmaeili, 2012; Yazdi and Esmaeilnia, 2004).
e) ash in B2; f) sulfur in B2; g) ash in C1 and h) sulfur in C1; and realization # 100 for i) ash in
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Table 1
Different geochemical populations for sulfur in C1 seam based on C–V fractal modeling.

Category Very low Low Moderate Relatively High Very high
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The East-Parvadeh coal deposit is located about 80 km south of the
Tabas region, Central Iran (Fig. 1). The Tabas coalfield district is a part
of Central Iran's structural zone that is divided into different
Fig 5. C–V log–log plots of sulfur and ash for C
1
and B

2
seams in the North block of East-

Parvadeh deposit based on realization # 20 (different lines show various geochemical
population).

high

Sulfur b1.41 1.41–2.09 2.09–3.55 3.55–3.89 3.89–5.01 N5.01
sub-zones namely Parvadeh, Nayband and Mazinu. The Parvadeh area
includes six parts divided by major faults and the East-Parvadeh is
depicted in Fig. 1. The East-Parvadeh coal deposit is divided by
Zenoughan fault to the North and South blocks. According to dip,
depth and structural effects, the North block has better quality coal
seams than the South block. The coal bearing strata of the Tabas
coalfield consist mainly of sediments of Upper Triassic, Middle Jurassic
age especially for the Nayband formation and Ghadir member. Their
rock units include siltstone, sandstone, shale, sandy siltstone and small
amounts of limestone and ash coal which is coal with high values of
ash. Coal seams in the Parvadeh region are named A, B, C, D, E and F;
worth noting that B and C coal seams areminable based on their quality
and quantity, specially C1 and B2 seams which have better quality
(Fig. 2).

A geological 3D model of the coal seams was generated by utilizing
RockWorks™ v. 15 software and surface/subsurface data collected
from surface outcrops and drillcores. The data used include collar coor-
dinates of drill holes, azimuth and dip (orientation), stratigraphy and
sulfur and ash values for the coal seam cores. Additionally, other surface
data consist of topographical data, faults, outcrops of coal seams and
other geological features which are relevant to constructing of the 3D
geological model. Coal seams were delineated in all drillcores with re-
spect to geological logging consisting of petrographic andmineralogical
studies. The Triangulation algorithm was used for seam modeling and
after 3D modeling of coal seams showing coal seams are deeper in the
SW part of the area (Fig. 2).

5. Simulation of ash and sulfur values based on turning bands

For this study, 87 and 54 samples were collected from 87 drillcores
from the C1 and B2 coking coal seams respectively and also chemical
analysis for evaluation of sulfur and ash content in these samples was
carried out. The area study comprises 14,500 m, 5500 m and 520 m
along X, Y and Z respectively considering the deposit geometric proper-
ties. Subsequently, block size was determined based on grid drilling di-
mensions of 250 m × 250 m × 0.2 m for X, Y and Z respectively (David,
1970). The 3Dmodels consisting of sulfur and ash distribution in the C1
and B2 seams were created using turning bands conditional simulation.

The ash and sulfur data have been transformed by using a normal
score transformation and the statistics of transformed data check
the correctness of the transformation, and also, the experimental
semi-variogram and a spherical model fitted to the raw and normal
transformed data. Turning bands simulation and visualizations were
carried out with a MATLAB code which proposed by Emery and
Lantuéjoul (2006) and SGeMS software. The histogram and semi-
variogram model reproduced over a number of realizations should be,
on average, equal to the sample statistics (Emery and Gonzalez, 2007)
that reproduced variograms were represented in Fig. 3. Based on the
simulation, 100 realizations of ash and sulfur spatial distributions are
generated in the C1 and B2 seams. Horizontal plan of two randomly se-
lected realizations consisting of realizations of 20 and 100within E-type
(average of all realizations) is displayed in Fig. 4. For the simulation
Table 2
Different geochemical populations for ash in C1 seam based on C–V fractal modeling.

Category Very
low

Low Moderate Relatively
high

High Very
high

Ash b6.92 6.92–10.96 10.96–15.85 15.85–27.54 27.54–47.86 N47.86
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Fig 6. Proper populations for sulfur (b1.41%: a) and ash (b6.92%: b) in C1 seam based on C–V fractal modeling in North block of the East-Parvadeh coal deposit.
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process, in order to fasten the convergence to the multiGaussian distri-
bution, the equi-distributed directions are considered as 1000 bands. As
can be seen from Fig. 3, the experimental variogram of realizations and
its mean could reproduce exactly the theoretical variogram of the
normal score transformed variables. The histograms also reproduced
the experimental histogram of normal score transformed variables,
but they are not presented here to save the spaces. In Fig. 4, some real-
izations of C1 seams are not structured properly because of the theoret-
ical variogram fitted to the experimental variogram of the normal score
transformed variables. This issue can be due to the low number of
samples, not having a good structure for the ash content and sulfur
from the geological standpoint. This ambiguity can be resolved in the
further steps of core drilling and obtaining new representative samples
from the C1 seam.
6. Application of C–V fractal modeling

The C–V log–log plots were built up for sulfur and ash data in the C1
and B2 seams based on realization # 20 because all realizations have a
similar range with an equal amount for maximum and minimum data
and one of them could be used randomly (Fig. 5). Their breakpoints be-
tween straight-line segments in the log–log plots represent threshold
values for separating of various sulfur and ash populations in the both
seams. The straight fitted lines were resulted based on least-square
regression in the log–log plots (Agterberg et al., 1996; Spalla et al.,
2010). Based on the C–V log–log plots for C1 seam, there are seven
and six different geochemical populations for sulfur and ash respective-
ly (Tables 1 and 2). C1 seamwith sulfur values lower than 1.41% can be
categorized as good and relatively good populations for coking coal via
Table 3
Different geochemical populations for sulfur in B2 seam based on C–V fractal modeling.

Category Very low Low Moderate Relatively
high

High Very high

Sulfur b1.55 1.55–2.24 2.24–2.95 2.95–3.38 3.38–3.98 N3.98
USGS system (Wood and Kehn, 1976). These populations are located
in the northern and western parts of the seam (Fig. 6). Populations
with lowest quality for coking coal which have sulfur values higher
than 3.89% were determined as undesirable populations and also sulfur
values higher than 3.89% can showpyritic veins in the coal seam. Proper
populations for ash in the C1 seam have ash value lower than 6.92% that
presents good populations for coking coal due to USGS system. These
populations are located mostly in the western parts of the seam
(Fig. 6). Populations with lowest quality for coking coal have ash values
higher than 15.85% and last populationwith ash higher than 47.86% can
indicate ash coals. Based on the C–V log–log plots for B2 seam, there are
seven different geochemical populations for sulfur and ash data
(Tables 3 and 4). Suitable populations for sulfur in B2 seam have sulfur
values lower than 1.55%which reveal high quality population for coking
coal according to USGS system (Table 5). This population (with sulfur
lower than 1.55%) is situated mostly in the western, central and north-
ern parts of the seam (Fig. 7). Populations with low quality for coking
coal have sulfur values higher than 3.98% which can be correlated
with pyritic veins. Proper populations for ash in B2 seam are less than
6.39% which is in the western, northern and central parts of the seam
(Fig. 7). Populations with low quality for coking coal contain ash higher
than 39.81%.

7. Local uncertainty for results of C–V modeling

It is intuitive that the values of the data close to a locationmodify the
prior probability distribution: the probability to exceed a cut-off is
greater in high-value areas than in low-value areas. However, the un-
certainty associated with the unknown value at that location decreases
Table 4
Different geochemical populations for ash in B2 seam based on C–V fractal modeling.

Category Very
low

Low Moderate Relatively
high

High Very
high

Ash (%) b6.39 6.39–12.58 12.58–18.20 18.20–30.20 30.20–39.81 N39.81
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Table 5
Coking coal categorization based on the USGS system (Wood and Kehn, 1976).

Category Low ash Medium ash High ash

Ash (%) b8% 8%–15% N15%

Category Low sulfur Medium sulfur High sulfur

Sulfur (%) b1.5% 1.5%–3% N3%
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when data exist near that location. To take into account the information
brought by the data, one uses the concept of “conditional” (or “posteri-
or”) cumulative distribution function (ccdf). Now, the probability to
exceed a threshold z depends on that location under consideration
(hence the name of local uncertainty model), through the values of
the data close to this location and the positions of these data.

The local uncertaintymodels allow takingdecision in the presence of
uncertainty and calculating the risks of taking an incorrect decision
(Chilès and Delfiner, 2012). The simulations provide a set of plausible
scenarios and allow assessing the local uncertainty in the spatial
distribution of the continuous variableswithin the deposit. In particular,
one can characterize these domains by mapping their probabilities of
occurrence at each location of the deposit (in practice, their frequencies
of occurrence over the simulations: Emery and Gonzalez, 2007). The
probabilitymapswere obtained to account for the drill hole information
and for the thresholds obtained from the C–V fractal modeling can be
depicted in Fig. 8. As can be seen, these probability maps are quantified
for the limitation less than the first threshold obtained by theC–V fractal
modeling. The calculated values for local uncertainty are lower than
0.34 associated with low values of ash and sulfur in the coal seams, as
depicted in Fig. 8. For example, in the West-North part of the B2 seam
map, the probability of ash content less than 6.92% is high (approxi-
mately between 60% and 100%). Therefore, the productive areas have
been assessed by these local uncertainty maps associated with the
fractal model in the underlying coal seam.
Fig 7. Proper populations for ash (b6.39%: a) and sulfur (b1.55%: b) populations for ash in B2 s
8. Correlation between C–V fractal modeling and
geological particulars

Themultifractal nature of C–V log–log plots can be illustrated in dif-
ferent stages for coalification. First stage could exist in coals with ash
values higher than 47.86% and 39.81% for C1 and B2, respectively. The
stage could be revealed with ash coals and pyritic veins in the area
(Fig. 9). In this stage, values of sulfur are high in the coals which are
higher than 3% based on C–V fractal modeling for both coal seams.
Main stage of coalification based on the C–V modeling for both ash
and sulfur content is lower than 7% and 1.6%.

Carranza (2011) proposed an analysis for calculation of overlaps or
spatial correlations between two binarymodels e.g., geological andmath-
ematical models such as fractal or geostatistical modeling. As a result, a
model with four overlap conditions was achieved to obtain numbers of
voxels (performance of binary geochemical distributionmodeling) corre-
sponding to each of the four classes of overlap zones. Voxels' numbers of
overlap conditions between two binary models are utilized to determine
overall accuracy (OA), and types I & II errors (TEI and TEII). OA, TEI and
TEII relate to the ability of the analysis to mineralized zones (Table 6).

Correlation between the C–V fractal modeling and pyritic veins and
ash coals for the coking coal seams (Fig. 9) was achieved by logratio
matrix. Undesirable populations for sulfur and ash (variables) in the
C1 and B2 seams based on the turning bands simulation and C–V fractal
modeling correlated with pyritic veins and ash coals which derived via
by geologicalmodeling respectively. Four overlap parameters namely A,
B, C and D for two variables in two seams were defined. Finally, the
logratio matrix was generated by placing the four parameters and also
calculation of TEI, TEII and OA was performed (Tables 7–10). Compari-
son between OAs for high values of sulfur in C1 and B2 seams and pyritic
veins shows that there is a good correlation between both of them
which is 0.84 (Tables 7 and 9). Moreover, there are high values of OAs
between ash coals and high ash populations derived via C–V fractal
modeling which illustrate a proper correlation between C–V fractal
and geological modeling. These high ash populations which are
eam based on C–V fractal modeling in the North block of the East-Parvadeh coal deposit.

image of Fig�7


Fig 8. Local uncertainty (probability map) for high quality parts in C1 (ash b 6.39%: a; sulfur b 1.55%: b) and B2 (ash b 6.92%: c; sulfur b 1.41%:d) seam based on C–V fractal modeling in
North block of the East-Parvadeh coal deposit.
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47.86% and 39.81% for C1 and B2, respectively, can be shown in the first
stage of coalification with low quality.

9. Conclusion

In this study, the turning bands simulation and C–V fractal modeling
were utilized to outline different qualities for the C1 and B2 coal seams in
terms of sulfur and ash values in the North block of East-Parvadeh cok-
ing coal deposit, Central Iran. Investigation of the deposit reveals that re-
sults obtained by the geostatistical simulation can be used for the
outlining of high quality coking coal by fractal modeling. The highest
quality for coking coal in C1 seamconsidering the less sulfur and ash cor-
responds to the populations lower than 1.41% and 6.92% respectively.
The desirable populations considering obtained breakpoints based
on C–V log–log plot for B2 seam with proper quality are lower than
1.55% and 6.39% sulfur and ash respectively. Desirable populations
for both seams are located mostly in the central, northern and west-
ern parts of the studied area. The uncertainty maps for the popula-
tions indicate that there are low values of uncertainty that resulted
high quality of coking coals. Furthermore, the obtained results sup-
port the coal categorization by USGS system. Correlation between re-
sults and pyritic veins and ash coals obtained by geological modeling

image of Fig�8


Fig 9. Pyritic veins in C1 (a) and B2 (b) and ash coals in the C1 (c) and B2 (d).

Table 6
Matrix for comparing performance of fractal modeling results with Russian model.

Geological model

Inside zone Outside zone

Fractal model Inside zone True positive (A) False positive (B)
Outside zone False negative (C) True negative (D)

Type I error = C / (A + C) Type II error = B / (B + D)
Overall accuracy = (A + D) / (A + B + C + D)

A, B, C and D represent numbers of voxels in overlaps between classes in the binary model results of fractal and geological models (Carranza, 2011).
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Table 7
Logratio matrix for high value sulfur population and pyritic veins in C1 seam from North
block of East-Parvadeh coal deposit.

Pyritic veins from geological model

Inside pyritic veins Outside pyritic veins

Fractal model Inside zone (S N 3.89%) 71 320
Outside zone (S N 3.89%) 3 1554

TEI error = 0.04 TEII error = 0.36
OA = 0.834

Table 8
Logratio matrix for high value ash population and ash coals in C1 seam from the North
block of East-Parvadeh coal deposit.

Ash coals from geological model

Inside ash coals Outside ash coals

Fractal model Inside zone (ash N 47.86%) 29 2
Outside zone (ash b 47.86%) 3 1914

TEI error = 0.093 TEII error = 0.001
OA = 0.997

Table 9
Logratiomatrix for high sulfur population and pyritic veins in B2 seam fromNorth block of
East-Parvadeh coal deposit.

Pyritic veins in geological model

Inside pyritic veins Outside pyritic veins

Fractal model Inside zone (S N 3.38%) 76 553
Outside zone (S b 3.38%) 9 2907

TEI error = 0.105 TEII error = 0.159
OA = 0.841

Table 10
Logratio matrix for high ash population and ash coal in B2 seam from North block of East-
Parvadeh coal deposit.

Ash coals from geological model

Inside ash coals Outside ash coals

Fractal model Inside zone (ash N 39.81%) 491 52
Outside zone (ash b 39.81%) 6 2944

TEI error = 0.23 TEII error = 0
OA = 0.983
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shows that there are good correlation between low quality coal parts
derived via fractal modeling. Moreover, OAs between fractal and
geological modeling are high values especially for ash coals. As a re-
sult, the combination of fractal model and geostatistical simulation
as an alternative to the conventional method of estimation such as
kriging or Inverse Distance could reproduce more reliable results
and one can have a better interpretation on the productive areas in
coal seams to make a proper decision.
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