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ABSTRACT. Let 2 C R™ be a bounded smooth open set. We prove that the
singular set of any extremal solution of the system

—Au=pe’, —Av=Xxe" inQ,
with u = v = 0 on 99, u, A > 0, has Hausdorff dimension at most n — 10.

1. Introduction. In this article we consider the issue of partial regularity of ex-
tremal solutions to the Liouville system

—Au = pe’ in Q,
—Av = N in Q, (1)
u=v=0 on 0,

with © a bounded smooth open subset of R”, and A, 4 nonnegative parameters.
This system is a generalization of the equation

—Au = Xe" in Q, )
{ u=0 on df @

where A denotes a positive parameter. It is well known that there is a maximal
parameter A* > 0 for existence of solutions of (2) and for 0 < A < A* there is
a minimal solution wy. As A — A", A < \* the solution u) converges to the so-
called extremal solution, which turns out to be smooth for n <9, see [3, 11]. The
interested reader may find in the book [7] the developments of the theory for the
last six decades, with a particular focus on stable solutions.

Recently it was proved by K. Wang [13] that for n > 10 the extremal solution of
(2) has a singular set of dimension at most n — 10. F. Da Lio [5] obtained partial
regularity for any weak stationary solution in dimension 3 (not necessarily stable).
See related results for the Lane-Emden equation in [14, 6].

Here we generalize the results of [13] to the system (1). For this system, M.
Montenegro [12] proved the existence of a nonempty open set U/ in the quarter plane
A, o > 0 such that for a couple of parameters (u, A) in U there is a smooth minimal
solution (u,v) and no smooth solution exists if the couple is in the complement of
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U. Minimality means u < @ and v < ¥ in  for any other smooth solution (@, ?) for
the same (u, ).

For each slope m > 0, U intersected with the line y = m is a segment {(mA, \) :
A € (0,A*(m))} and at the extremal point (mA*(m), A*(m)) € OU there is a solution,
called the extremal solution. It is defined as the limit as A T A*(m) of the minimal
solution with parameters (mA,\) and it may be singular. In a recent work [8],
L. Dupaigne, A. Farina and B. Sirakov proved that the extremal solutions for the
Liouville system (1) are smooth if n < 9. C. Cowan [1] had obtained the same

8

conclusion under the restrictions 3 < n < 9 and ”T_2 < % < +=5- In higher

dimensions this fails at least in the radial case and for A = p, where (1) reduces to
(2).

Let us recall that en extremal solution (u,v) satisfies (1) in the sense that u,v €
LY(Q), e“dist(-,00), e’ dist(-,0Q) € L*(), and

/Qu(—Acp):/Que”so, /Qv(*A@):/QNf“%

for all ¢ € C?(Q) with ¢ = 0 on 9.

We define the singular set ¥ of an extremal solution (u,v) by x ¢ ¥ if there is a
neighborhood W of x such that u, v are bounded in W. By elliptic regularity, u, v
are then smooth in this neighborhood.

Theorem 1.1. Assumen > 10 and let (u,v) be an extremal solution of the Liouwille
system (1) and X be its singular set. Then the Hausdorff dimension of ¥ is less or
equal than n — 10.

The rest of the article is devoted to the proof of this theorem. We first recall
a useful inequality which is valid for stable solutions of the system, obtained in C.
Cowan, N. Ghoussoub [2] and L. Dupaigne, A. Farina, B. Sirakov [8]. We then state
a comparison result between u and v. Next, we perform a Moser iteration scheme
to control the growth of some integrals of e* and e” on balls. The final step is an
adaptation of an argument of K. Wang [13] using an e-regularity result. The result
in this paper is also closely related to the work of L. Dupaigne, M. Ghergu, O.
Goubet and G. Warnault [9] on stable solutions of A%u = e* in a bounded domain
or entire space.

2. Proof of Theorem 1.1. From [12] we know that for (i, A) € U, the associated
minimal solution (u,v) of (1), which is smooth, is stable in the sense that there
exist @, : Q@ — R, smooth and positive in €2, satisfying
—Ap —pe’p =np inQ,
—AY — Aeto =ny in Q,
=1 =0 on 0L,
for some n > 0. C. Cowan, N. Ghoussoub [2] and independently L. Dupaigne, A.

Farina, B. Sirakov [8] have showed that this stability condition implies the following
estimate.

Lemma 2.1. Let (u,v) be a smooth stable solution of the system (1). For any ¢

in H}(Q)
Vi [ (56 < [ Vel )
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2.1. Comparison. It will be useful later to have the following inequalities between
the components of a solution of (1).

Lemma 2.2. Assume A > u. Then for any smooth solution to the Liouville system
(1) we have:

u<v<u+logA—logpu. (4)

Proof. Introduce w = v — u — log A 4+ log 1. Then w < 0 on 92. We have —Aw =
Ae¥ — pe? = —Xe*(e* — 1), and then

w1

—Aw—|—)\e“(e Jw = 0.

Then due to the maximum principle w < 0 in . For the first inequality in (4)
introduce w = v — u. Then —Aw = Ae" — pe’ > A(e" — e”) = —a(x)w where
a(xz) > 0. Then by the maximum principle @ > 0 in Q.

2.2. Reverse Hoélder inequality. The following estimate is similar to the one
obtained in [8] and [9], see also [4] for the scalar case. We assume that (u,v) is a
smooth stable solution of (1).

Lemma 2.3. For any 0 < a < 4 there exists a constant C = C'(n, a, A, ) such that
for any ¢ € C°(Q) we have

||V(€XP( D) |72 Q)+||V(€XP( 5 ") iz (5)
< C/ “(IVel? + [eApl?) +C/ Y(IVel? + [pAp]?).

Remark 1. Although the constant C' depends on g, A it remains bounded as (u, \)
approaches any extremal couple on JU.

Proof. Multiply —Au = pe’ by e*“©? and integrate by parts to obtain

4 au au
,U/ v+au(p2 _ VUV( au 2) /@ |v 7 /v 7
Q Q @

This reads also

p [ et =2 [ 9ol = 2 [ (el - pap).
Q Q

A similar equality is valid replacing respectively u by v and p by A. Introducing

X = [oIV(EeFp))P, Y = [(IV(eT )P, A= 1 [, (Vo> - pAp), and B =
2 fQ e (|Ve|? — pAp), we then have

4
*X /J/ v—i—()ru()02_|_147

éY A/ u+ow 2
[e%

We combine Hélder’s inequality and the stability estimate (3) to obtain

/.t/ v+o¢us02 M(/ e“;“ eau<p2)1—i(/ e“;'“ eanOQ)i
Q Q Q

IN

(%)éxl—iyi.
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Analogously, we have the same inequality replacing v by v and p by A. Hence we
obtain

4 Pyl 11

X< (52Xl Tmym + 4 6
X< + 4, (6)
4

—Yg@ﬁXiY“i+B. (7)
o J

Multiplying these inequalities leads to

1 A
pngXYgAGﬁXﬁYkﬁ+B¢ﬁXkﬁYi+AB
« W A
Set 6 = (13 — 1). This implies that either
1 1 1 A
(EXHYE < S(14+VIT9), (8)
or
AMigy1t -1 B
(;)QX%Y 2°§§(1+V1+5) (9)

hold. Assuming that (8) is true and combining with (6) we get X < C'A. Using
Young’s inequality in (7) we obtain Y < C(A+ B) so that X +Y < C(A+ B) holds,
which is (5). Assuming the validity of (9) we obtain the same conclusion. O

A consequence of the previous lemma is the following.

Lemma 2.4. Set 2* = 2% For any 0 < o < 8 < 2(2*), if Bo,(x) C Q we have

n—

a/B
<7’_n/ (65u+eﬂv)> Scr—n/ eOU | oY (10)
B, (z) B, (z)

Proof. Follows from repeated applications of Lemma 2.3, using Sobolev’s embedding
and Holder’s inequality. O

Remark 2. Lemmas 2.3 and 2.4 are independent of the boundary conditions of u
and v, and do not use the comparison of u to v of Lemma 2.2.

2.3. Integrability of solutions.

Lemma 2.5. Assume (u,v) is a stable smooth solution of (1) with parameter (u, \)
of the form pu = mA\ for some fited m > 0. For 1 < a <5 there is C independent
of \ such that

/ e+ e < C.
Q

We note that C' in general depends on the slope m. In this lemma we need the
inequalities between u and v of Lemma 2.2. For the proof, we refer to [8] where the
following was proved.

Lemma 2.6. Assume X\ > p. If (u,v) is a stable smooth solution of (1) with
parameter (u, \) of the form u = m\ for some fized m > 0, then for 1 < a <5
there is C' independent of X such that

/eo‘“ < C.
Q

Lemma 2.5 follows from Lemmas 2.6 and 2.2 in the case A > u. By a symmetric
argument we obtain the same conclusion if A < p.
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2.4. e-regularity. A crucial step is the following e-regularity result, whose version
for stable solutions in the scalar case is due to K. Wang [13], see also [9] for a
biharmonic equation with exponential nonlinearity.

Lemma 2.7. Let (u,v) be an extremal solution of (1). Then there is 3 > 0 such
that if for some rog > 0 with By,(z) C Q one has

7’(2)_”/ (e"+e")<eq
By, (z)

then there is a neighborhood of © such that u, v are smooth in this neighborhood.

For the proof we need the following key step, which is adapted from [13] in the
scalar case.

Lemma 2.8. There ezists g > 0 and 0 > 0 depending only on n such that for any
0 < e <eq, if (u,v) is a stable smooth solution of (1), By, (z) C Q and

T(Q)_"/ (e"+e")<e (11)
Bro (z)
then
(9r0)2_”/ (e“ +e") <e. (12)
Borg ()

Proof. Let us assume that x = 0 by shifting coordinates. We rescale the functions
by setting

a(xz) = u(rox) + 2log(rg), o(x) = v(rox) + 2log(ro), (13)
and note that the new functions (where the ™ in the notation will be dropped) satisfy
—Au = pe’, —Av=2Ae", in By(0).

Let us decompose u = u1 + ug, v = v1 + v9 where

Auyp =0 in By/5(0), up =u on dBy,5(0),
—Auy = pe’ in By/(0), uz =0 on 0By 5(0),
Av; =0 in By/»(0), vy =v on dBy/5(0),
—Avy = A" in By 5(0), va =0 on 0B 5(0).
Let v > 0,0 < 0 < 1/4 to be fixed later on and ¢ > 0. Let us estimate
Y Y e T
By (0) By (0)N[uz<e7] Bg(0)N[ugz>e7]

For the first term we proceed by noting that e"* is subharmonic in By /5(0) and

us > 0, so
92771/ eu1+u2 § 027n66'y/ el
By (0)N[uz<e7] By (0)N[uz<e7]
< 9277165"’/ eUt
B (0)

< 062 / el
By /2(0)

< C0%e’ / €' < Ch%e e, (15)
B1,2(0)
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where we have used (11). For the second term in (14) we have

92—71/ el < 62—716—')// ’LL26u
Bg (0)N[uz>e7] Bg(0)Nug>e]

< 02771677/ uge”
B1,2(0)

<027 uall 2y acop 1€ |28y 2 0))-

To estimate [|e*[|12(B, ,(0)) We apply (10) with a =1, 8 =2 to get
e[| 2(5, a0y < Ce™/2.

For ||’U,2||Lz(31/2(0))7 first note that
le”llL2(B, 2 (0)) < Ce'/2.

Hence by L? regularity theory

uzllwz2(B, 50 < Cel/?.

By using the Sobolev embedding W22 C L+ we get

ua  2n < Cel/?,

Ln=4(B1/2(0))
By interpolation

n < ||us || us||F I
Jaleo o < ol opllal 25,

where m = %H € (0,1). But

[uallL1 (B, 2 0)) < CAle® L1 (B, 2000 < C,
s0 (19) combined with (18) and (20) yields

luzllLz(B, 5000 < Ceme(l=m)/2 = 0™ 5™

Therefore, using (16), (17) and (21) we find

927n/ ot S 0027n€1+m/27'y.
By (0)N[uz>e7]

Combining this and (15) we obtain

6> / " < COe e+ COPn T
B (0)

Since m > 0 we may choose 0 < v < m/2. Then fix § > 0 so that Cef? < 1/2 and
then choose g9 > 0 sufficiently small so that C62~"e"/*™7 < 1/2. It follows that

for any 0 < e < ¢g

02*”/ e’ <e.
B (0)

A similar argument yields the corresponding estimate for e¥. Rescaling back we

obtain (12).

Applying the previous lemma we can prove

O
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Lemma 2.9. There exists €1 > 0 and 6 > 0 depending only on n such that for any
0 < e <ey, if (u,v) is a stable smooth solution of (1), By,(z) C Q and

7"87”/ (e"+e")<e
BTO (x)

then

7,2771/ (eu +€U) S 2n72027’n5
B (y)

for any y € B, j2(x) and any 0 <r < ro/2.

Proof. By shifting coordinates we can assume that z = 0 and by the scaling (13)
that 79 = 1. Let gg, 8 be the constants of Lemma 2.8. We choose £ so that
2" 2¢; = ¢y. Then, for any y € B1/2(0) and 0 < ¢ < &1 we have

1
(7)27n/ (eu -|—6U) S 2n72/ (eu +ev) S 2n725 S £0.
2 Bi/>(y) B1(0)
Applying inductively Lemma 2.8, for any integer k£ > 1 we have
(0’“)2’”/ (e* +ev) < 2" 2.
Bk (v)

If 0 < r < 1/2 is arbitrary we select & > 1 an integer such that PFtL < p < @k,
Then

,r2—n/ (eu +e1}> < <9k+1)2—n/ (eu +e?)) < 2n—292—n5.
Br(y) Bk ()

O

Proof of Lemma 2.7. The result of Lemma 2.9 holds also for any extremal solution.
This can be proved by approximating an extremal solution (u,v) of parameters
(mA*(m),\*(m)) € OU by minimal solutions with parameters (mA,\) and A 1
A*(m). In this process, the constants appearing in the estimates remain bounded,
see Remark 1.

Let 1,60 be the constants of Lemma 2.9. We take 0 < g5 < &1 to be fixed later
on. By the change of variables (13) we can assume that © = 0 and ry = 1, so now

the hypothesis is
/ e +e¥ < ey
B1(0)

Then by Lemma 2.9 we have
7,2—n/ (eu +6U) < 271—202—1152
B (y)

for any y € B1/2(0) and any 0 < r < 1/2. This says that e", " are in the Morrey
space M, /2(B1/2(0)) and

le*1ar, 2 + l€”llas, o < 277267 e (22)

Let @, v be the Newtonian potentials of e“xp, ,(0) and e”xp, ,(0) respectively.
Then by [10] Lemma 7.20 we have

/ ePlul 4 APl < o, (23)
B1(0)
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for f < min(—r—, —+—) where ¢1,C2 > 0 depend only on dimension.
lle“llar, 5 levlia, o

By (22), choosing g2 > 0 small, we obtain that (23) holds for some 8 > n/2.
Then e*, e’ € L[’(Bl/4(0)) for some 8 > n/2. By standard LP regularity u,v €
L>(B1/5(0)). Scaling back we have the conclusion. O

2.5. Proof of Theorem 1.1.

Proof. Let 1 < a < 5. We claim that

Y C {a? eN: limsuprza_"/ (e +e*) > 0}.
B, ()N

r—0

Indeed, if z € 2 and

lim r2a—n/ (eau + eav) =0
By (z)NQ

r—0

then by Hoélder’s inequality also

lim 7“2_”/ (e“+e”)=0.
r—0 B, (z)NQ

Therefore for some rg > 0 so that B,,(z) C € we have

7"3*”/ (e“+e") <&y
By ()

where €9 > 0 is the constant from Lemma 2.7. Then by the same lemma u, v are
bounded in a neighborhood of x and hence x ¢ 3.

Since e** + e € L'(Q) by Lemma 2.5, we obtain that H"2%(X) = 0, see e.g.
[7, Theorem 5.3.4]. Letting o T 5 we deduce that the Hausdorff dimension of ¥ is
less or equal than n — 10. O
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