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This paper proposes a computer-based classifier to automatically identify four seismic event classes of the Llaima
volcano, one of the most active volcanoes in the Southern Andes, situated in the Araucanía Region of Chile. A
combination of features that provided good recognition performance in our previous papers concerning the
Llaima and Villarica (located 100 km south of Llaima) volcanoes is utilized in order to train the classifiers.
These features are extracted from the amplitude, frequency and phase of the seismic signals. Unlike the previous
workswherefixed lengthwindowswere used to obtain the seismic signals, this paper employs signals of variable
lengths that span the entire seismic event. The classifiers are implemented using support vectormachines. A con-
fidence analysis is also included to improve reliability of the classification. Results indicate that the features used
for recognition of the events of Villarica volcano also provide good recognition results for the Llaima volcano,
yielding classification exactitude of over 80%.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The importance of developing tools for the automatic detection of
volcanic events is due to the increasing need to monitor active
volcanoes in order to understand their internal dynamics, model their
behavior and establish criteria to act efficiently in the case of an eruption
(Cannata et al., 2013).Moreover, themonitoring should be done around
the clock all year long. Volcanic event detection requires specialized
domain knowledge. Since each volcano exhibits a particular behavior,
the analysis should be individualized.

For its geographical location, Chile has a high volcanic activity. There
are about two thousand volcanoes, of which around one hundred have
been considered historically active. The volcanic chain in the Southern
Andes is part of an active tectonic boundary between the Nazca oceanic
plate and the continental plate of South America at latitude 38.4° S is
Llaima, located in the Araucanía Region (38° 41′ S–71° 44′ W), on the
western edge of the Andes, as shown in Fig. 1. It is a complex active
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strato-volcano, with a mainly andesitic–basaltic composition and is
3125 m high, rising some 1200 m above the surrounding summits.
The total height of the volcano is estimated to be 2400 m above its
base with irregular topography. The main building consists of two
peaks, themost prominent being the North one (3125m), which is sep-
arated by 1 km from the South Summit pass or Pichillaima (2920 m).
The tallest summit has an open crater of about 350 m in diameter
with remarkably active fumaroles, which can be spotted from great dis-
tances. One of the latest eruptive cycles in Llaima began in May 2007
with aweak ash emission followed by amoderate Strombolian eruption
and lahar generation in January 2008, which culminated in April 2009
with a vigorous Strombolian eruption.

The Southern Andes Volcano Observatory (OVDAS) is the state
agency responsible for establishing systems to continuously monitor
and record over forty active Chilean volcanoes. The monitoring focuses
mainly on seismic data, but also incorporates other measurements,
including deformation and geochemistry.

Volcanic seismicity has a prominent role in monitoring volcanoes
(Zobin, 2012) because it provides useful information, that propagates
over long distances which allows to process remotely in almost real
time the volcanic activity. Signals are measured by seismic stations lo-
cated at different parts of the volcano's external structure. Today Llaima
is monitored by twelve stations. The seismic events suggest internal
processes occurring inside the volcano's structure. OVDAS uses the
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Fig. 1. Location of Llaima and its stations.
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criteria defined in Lahr et al. (1994) to identify the three volcanic events
considered in this work. One of the major seismic events is the tremor
(TR), the genesis of which is associated with degassing, fluctuations in
gaseous phases, and resonance processes in the internal conduits
(McNutt, 1992; Julian, 1994). Another important event class is the
long-period (LP) event, which is related to the pressure of gas and
other fluids in the conduit, but which happens at discrete periods
(Chouet, 1992). The volcano-tectonic (VT) event is associated to the
fracture of solid parts of the volcano or the conduits. The automatic
detection of these events requires sophisticated pattern recognition
schemes because their characteristics are highly dynamic and may
lead to disagreement between experienced analysts. This problem has
not yet been resolved and is the driving force behind a lot of research
in this area.

The challenge ofmonitoring volcanoes includes the need to incorpo-
rate tools that automate the identification of volcanic activity. To do this,
tools from the area of signal processing and pattern recognition are
utilized. Within signal processing, the problem is generally tackled in
two stages: feature extraction and classification. The feature extraction
stage defines what information (i.e. features) is extracted from the
signal to facilitate discrimination between different types of events. In
the classification stage the design and implementation of the classifiers
are performed.

In Scarpetta et al. (2005), a linear predictive coding technique was
proposed to extract spectral features, and parameterization of the signal
to extract information about the waveform. In Langer et al. (2006), au-
tocorrelation functions, obtained by fast Fourier transform (FFT), were
used to represent the spectral content. An amplitude ratio was applied
to distinguish between signal peaks and long duration with similar fre-
quency content. Other widely used methods are the wavelet transform
(Dowla, 1995; Gendron and Nandram, 2001; Erlebacher and Yuen,
2004), and cross-correlation methods (Lesage et al., 2002). In Ibáñez
et al. (2009) the authors worked with signals from the Stromboli and
Etna volcanoes in Italy. Hidden Markov models (HMMs) were used to
model and identify different online patterns using spectrum features,
as in Beyreuther et al. (2008) where a system based on HMMs was
employed to detect and classify volcanic seismicity and/or tectonic
earthquakes from noise, in continuous seismic data, recorded on the
volcanic island of Tenerife. A similar approach has been used in a
simpler form as discrete HMM (Ohrnberger, 2001). Other techniques
for pre-processing of these signals consider methods of independent
component analysis and information theory, as presented in Amari
and Cichocki (1998). In Messina and Langer (2011), short-time Fourier
transform (STFT) was applied to identify changes in the activity of Etna
tremor. The researchers used an unsupervised classification method for
the early and reliable identification of changes in the tremor.

Themachine learning approaches, like neural networks and support
vectormachines, have the advantage of allowing automatic pattern rec-
ognition independent of phenomenological knowledge of the volcanic
processes. This is why these techniques are widely used in the analysis
and classification of volcanic seismic data. Themost common procedure
for an identification system is based on supervised classification. As in
Falsaperla et al. (1996) that describe a system with a multilayer
perceptron for the classification of ‘explosion quakes’ at the Stromboli
volcano to identify four different classes of shocks. The proposed
scheme correctly classified 89% of the events, demonstrating that the
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automatic technique is reliable, encouraging further applications in the
field of volcanic seismology. In Joevivek et al. (2010), the authors used
amplitude statistics (mean, standard deviation, skewness and kurtosis),
and incorporated a statistical wavelet decomposition phase and power
to detect seismic events in southern India. They proposed a system to
detect small earthquakes, distinguishing between seismic and non-
seismic sources. They compared various types of classifiers and reported
that a support vector machine (SVM) provided the best performance
with an accuracy of 94%. This conclusion supported the results of
Giacco et al. (2009) and Langer et al. (2009), who also achieved the
best results with a SVM classifier.

Several authors use unsupervised methods, like self-organizing
maps (SOMs), to cluster volcanic events with similar behavior. Carniel
et al. (2013a) propose a technique to improve data analysis and high-
light possible dynamics or precursory regimes by employing SOMs.
The authors demonstrated a practical application on the data recorded
in Raoul Island around the March 2006 phreatic eruption, which
revealed both a diurnal anthropogenic signal and post-eruption system
excitation. A similar approach was proposed in Carniel et al. (2013b)
where the authors applied SOM to assess the low-level seismic activity
prior to small-scale phreatic events in the Ruapehu volcano in New
Zealand. In Esposito et al. (2008) a method based on an unsupervised
neural network was presented to cluster the waveforms of very-long-
period (VLP) events associated with explosive activity at the Stromboli
volcano. They applied this method to investigate the relationship
between each event and its associated VLP explosive waveform. In
Cannata et al. (2011) features that characterize the infrasound events
were extracted to define three clusters. Volcanic information
concerning the intensity of the explosive activity was associated with
each cluster, and with a particular source of event and/or a kind of vol-
canic activity. A SVM classifier was employed to maximize the margins
of separation among the clusters. Using only a single station this scheme
provided a 95% accuracy. In Langer et al. (2009) a comparative study
was presented to compare two supervised methods, SVM and a
multilayer perceptron neural network (MLP), and two unsupervised
techniques, cluster analysis and self-organizing maps. The authors
dealt with tremor signals from Etna, defining four classes: pre-
eruptive, eruptive, post-eruptive events and lava fountains. The SVM
classifier gave superior results (N90%) compared to MLP (N80%). The
clustering methods enabled the observation that the characteristics of
the tremor changed over time.

Volcanoes of the Araucanía Region of Chile have also been studied, in
particular the Villarrica and Llaima volcanoes (Vila et al., 2006;
Mora-Stock et al., 2012). Their structure, composition and volcanic
building are similar. Seismic activity of Villarrica volcano is character-
ized by an active lava lake in the summit crater, with mild Strombolian
style eruptions of basaltic–andesitic products (Richardson and Waite,
2013). Three types of seismic events are present: LP, TR and VT. LP
events are very shallow signals with no clear S phase. They are signals
with low frequencies in a range of 1 to 5 Hz. Harmonic tremor corre-
sponds to a continuous stream of vibrations on the seismic record,
also characterized by frequencies in the 1 to 5 Hz range. The VT earth-
quakes have depths ranging from 1 to 20 km. Their P and S phases are
well-defined and they have a wide range of similar tectonic earthquake
frequencies. Seismic activity of Llaima volcano is characterized in this
work by a post-eruptive stage, related to an open conduit volcanic
phase. The seismic signals were related with fluid movement inside
the volcanic conduits, sometimes correlated with surface changes of
the ash and gas plumes. The volcano-related seismic activity was
characterized by LP events, with frequencies in the range of 1.0–1.5 Hz
and VT earthquakes with magnitudes generally less than or equal to
3.0 ML (local magnitude). Tremor episodes were also recorded ranging
from 1.0 Hz to 1.3 Hz. In both volcanoes tremors could be formed by a
coalescing sequence of transients mainly due to degassing through the
ducts; agreeing with the description suggested by Chouet (1992) and
Julian (1994). While in the Llaima volcano this is not a permanent
signal, in the Villarrica tremor is always present, since the ducts are
open.

In Curilem et al. (2009), 1033 signals of Villarrica were considered,
including events of types LP, TR and tremor energy (TE). The TE event
is a specific type of tremor that represents the increase of amplitude
due to the obstruction of conduits. A set of other events (OT) was also
considered, composed of background noise, tectonic earthquakes and
all other signals which do not belong to the LP, TR and TE groups. The
authors segmented the signal into 30-second frames, and implemented
an artificial neural network to classify the patterns. The feature selection
process showed that themean,median,maximumamplitude, energy in
the frequency band of 1.56–3.12 Hz and peak frequency were good sig-
nal descriptors. The classifier achieved a Kappa coefficient of κ=0.89±
0.04 for the classification of the four events (i.e. four classes). The Kappa
coefficient is a measure of agreement between results of the numerical
classifier and the classification by an expert.

In San-Martin et al. (2010), 893 signals were used to classify differ-
ent events of Llaima. The events considered were LP, OT and VT, and
were determined by experts on segmented windows of 1 min each.
This work applied circular statistics, which is a measure that provides
insight into the behavior of the phase of signal typically obtained
using a Hilbert transform. The instantaneous phase of the signal was
considered a circular random variable in the range of [0, 2π). More
specifically, the first circular moment was used together with the
wavelet energy in the same sub-band than the work presented in
Curilem et al. (2009). A linear discriminator allowed a 92.54% correct
classification rate of the three classes.

It can be observed from the above bibliographical review that a
fundamental issue of pattern recognition is feature extraction (Álvarez
et al., 2012). Feature extraction defines what information can be
extracted from the signals for discrimination. It is one of the most
important problems to be addressed in the context of volcano event
classification.

The contribution of this paper is as follows. Since Villarrica and
Llaima volcanoes have similar structure and composition, in the current
paper the five features proposed in Curilem et al. (2009), to classify
events from Villarrica, are also considered to classify the Llaima events.
A sixth feature proposed in San-Martin et al. (2010), i.e. the circular
statistics of the phase, is also included. All the features from Curilem
et al. (2009) considered here were chosen because they led to a high
classification accuracy. All the combinations of the six features are
evaluated to automatically classify the LP, VT, TR and OT events. More-
over, in contrast to Curilem et al. (2009) and San-Martin et al. (2010),
the events are segmented in variable lengthwindows to cover the entire
event. Multiclass SVM classifiers are implemented by using one classifi-
er for each class. Finally, a confidence step is proposed as an additional
information to aid the classification process when the events are not
well discriminated.

2. Materials and methods

The method adopted in this research can be divided into two main
stages, preprocessing and classification, as shown in Fig. 2. This section
describes each of the blocks within the classification system. The
algorithm was developed in the Matlab environment, including signal
handling, filtering, feature extraction, and pattern recognition. Further-
more, the built-in Matlab SVM functions were utilized to design the
classifiers.

2.1. Signals database

OVDAS analysts chose the following three stations to provide the
seismic signals for the paper: LAVE (−38.700988°; −71.651116°);
LLAI (−38.784240°, −71.695261°); and PAILE (−38.873854°;
−71.642720°). The different distances of the stations from the crater,
as shown in Fig. 1, ensured adequate variability of the records. The



Fig. 2. General structure of the proposed pattern recognition system.
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stations are broadband, Guralp 6TD of 30 s period. The signals were
treated independently from their station. Moreover, only the Z compo-
nent was considered because it provides a better signal/noise ratio in
most of the events.

The events considered were LP, TR and VT and were recorded be-
tween 2009 and 2011. A fourth group, denoted as OT (other type),
was defined to cluster all the signals that did not correspond to any of
the first three events. OT includes background noise, tectonic events,
rock falls, glacier defrost, and other events not related to internal volca-
nic processes. The purpose of creating the OT class was to increase the
discrimination performance of the classifiers. This set is very important
to discriminate signals thatwere not originated from inside the volcano.

The class and duration of each event were determined by an OVDAS
expert. The database was generated by supervised selection of the
events from the recorded data. Then, the selected signals were exported
to the Matlab environment. A volcano seismologist also analyzed the
data to confirm that the events were classified correctly, that is, data
meet the classification criteria used by OVDAS to discriminate events
from background. It is important to highlight that the length of the
events stored in the database varies, as defined by the experts. Altogeth-
er, 1622 events of the four classes were stored in the database. The
mean and standard deviation of the event durations, in seconds,
are: LP, 55.2 ± 38.5; VT, 20.3 ± 9.3; TR, 147.5 ± 71.1; and OT, 93.4 ±
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Fig. 3. Time and spectral representations of the signals belonging to the fou
69.0. TR corresponds to longer events, thus themean duration is higher.
Duration of the OT events was less than 5 min with a relatively high
standard deviation. An example for each group is presented in Fig. 3.

Time-frequency plots (spectrograms) of the considered four events
of Llaima are illustrated in Fig. 4. Each spectrogram is obtained by nor-
malizing the event with the maximum amplitude of its signal, and
then divided into segments, each one being 10% of total length of the
signal with 50% overlap. Eachwindow is then transformed to frequency
domain using the FFT function in Matlab to represent a slice in the
spectrogram that covers the entire duration of a window. More details
about the FFT can be found, for instance, in Oppenheim et al. (1999). It
can be observed that all the events are of a different duration and
spectral content.

The whole database was divided into three sets, i.e. training,
validation and test. The training set contains the data used to adjust
the parameters of the classifiers; the validation set is used to decide
when to stop training, and the test set is used to determine the classifi-
cation performance. Table 1 shows the structure of the sets.

2.2. Signal processing

Signals prior to 2011were sampled at 50 Hz and after that at 100 Hz.
Since the most relevant information for the volcano event classification
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is below25Hz, signals sampled at 100Hzwere down-sampled to 50Hz.
All the signals were then filtered with an 8th order Butterworth band-
pass filter between 0.5 Hz and 15 Hz.

Table 2 describes the features employed here: three of the consid-
ered features were extracted from the time domain representation of
the signals; two parameters were obtained from the power spectrum;
and, one feature was computed from the phase spectrum. The parame-
ters were determined from variable length windows that covered the
complete duration of events. All the extracted features were linearly
normalized between −1 and 1.

The trigonometric first-order measure reflects the behavior of the
phase part of the volcanic signal. The phase was obtained using the
Hilbert transform in the range of [0 2π). Afterwards, the circular
statistics was applied to obtain the statistical properties of this phase.
As in the case of statistical linear dispersion measurements, sharpness
symmetry underlying probability distribution can be defined from
trigonometric moments. Several statistics were analyzed (i.e. mean,
variance, skewness and kurtosis) but the moment of first order, given
in Eq. (1), provided the best results:

μ1 ¼ 1
K

XK
k¼1

exp jθkð Þ ð1Þ

where K = 1,…, N is the number of samples and θ = {θk} is the set of
values in the circular range [0 2π) of the instantaneous phase of a
random variable.

This complex number can be interpreted as the vector resulting from
the sumofK unit vectorswith angles given by θ. The resulting vector has
magnitude ||μ1|| = 1 and angle μ1, called the θ direction, in the complex
plane.
Table 1
Data distrubution.

Class Training set Validation set Test set Complete Data set

TR 176 163 161 500
VT 57 42 49 148
LP 156 182 161 499
OT 156 158 161 475
TOTAL 545 545 532 1622
Meanwhile, to obtain the relative energy per band the signal is
decomposed by a wavelet transform. A Daubechies wavelet mother
with a decomposition level equal to five was used. The percentage of
energy was calculated using the following formula:

Energy ¼ 100� Ew
ETotal

ð1Þ

where Ew is the sumof the components of thewavelet band, and Etotal is
the sum of all wavelet components (all the bands). The relative energy
of all bands was tested, but the one calculated over the 4th band
[1.56–3.125]Hz yielded the best results.

2.3. Classifier design

SVM is a classification approach which creates and defines the
maximal margin hyperplane to separate two classes (Vapnik, 1995). An
SVMalgorithmendeavors to build a decisionmodel and predictswhether
a new point falls into one class or the other, as given by Eq. (3).

F xð Þ ¼
XN
i¼1

wi: xþ b ¼
XN
i¼1

αi yi xi:xð Þ þ b ð3Þ

where b is the distance between the separating hyperplane and the origin
in the perpendicular direction, N is the number of support vectors, α is
the non-negative Lagrange multiplier, y is the decision value ∈ {−1, 1}
and F is the decision function, which allocates a test sample to one class
if its sign is positive, and to the other cloud if its sign is negative.

If the two classes are clearly separated, as shown in Fig. 5(a), the
SVMmodel is designed as a linear division hyperplanewith the greatest
distance to the nearest points (i.e. support vectors) of each class
(Burges, 1998; Hamel, 2009).

Since the events do not have in general linearly separable features,
the linear hyperplane cannot be designed. The separation can be sought
in an appropriately chosen kernel-induced feature space, as schemati-
cally shown in Fig. 5(b). The formula in Eq. (3) is modified as given in
Eq. (4). Thus, the solution to the problem lies in finding the values of
b, and α's.



Table 2
Overview of the extracted features used to define and classify each volcano's event.

Domain Feature Description

Frequency E4 Percentage of energy in the 4th band [1.56–3.13] Hz, obtained from the wavelet transform of each event.
Time Ax Maximum value of amplitude obtained from the time records of each event.
Time An Average value of amplitude obtained from the time records of each event.
Time Ad Median value of amplitude obtained from the time records of each event.
Frequency Fn Average of the five highest frequency peaks obtained from the Fourier transform.
Frequency Mc Trigonometric first-order moment of circular statistics obtained from the instantaneous phase of each event.
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F xð Þ ¼
XN
i¼1

αiyi ∅ xið Þ:∅ xð Þð Þ þ b ¼
XN
i¼1

αiyiK xi; xð Þ þ b ð4Þ

where ∅(x) is the transform of sample x from non-linearly separable
input space to a linearly separable feature space, and K is the applied
kernel to represent this feature space.

Several kernel functions were investigated in constructing the
required separating hyperplane between the two classes. The widely
used kernel functions are the homogeneous polynomial of 1st, 2nd,
3rd, and 4th orders, and the Gaussian radial basis function (RBF) as
given below. The RBF kernel function is presented in Eq. (5).

K xi; xð Þ ¼ e
1
σ xi ;xk k2

;N0 ð5Þ

where σ is the Gaussian standard deviation.
An optimization process is used tofind the values of (αi, b) of Eq. (4),

which correctly classifies samples with their associated class, maximiz-
ing the separating margin. The optimization process searches the
solution given the parameter σ, which is the kernel parameter and c, a
parameter that controls the trade-off between the complexity of the
model and the accepted margin of error. The SVM functions of the
Fig. 5. (a): A classification problem of two classes (class 1, class 2), modeled by a linear
SVMwith three support vectors (x1, x2, and x3) of threeweights (w1, w2, and w3), respec-
tively. (b): A schematic display of how non-linearly separable samples are transformed
from input space to feature space at which a linearly separating hyperplane can be
designed.
bioinformatics toolbox of Matlab were used to solve the optimization
problem. The RBF kernel was used as it presents many advantages
compared to other common kernels, as exposed by Hsu et al. (2003).

Since SVMs are binary classifiers, they have to be combined to han-
dle multiclass problems (Burges, 1998). A “one versus all” (also called
“one versus rest”) configuration is a simple combination in which
each classifier discriminates between a positive class (e.g. LP), coded
as 1, and all the other classes (e.g. VT, TR and OT together) are consid-
ered negative and coded as 0. The 0 is interpreted as the event not
belonging to the actual class. So if N is the number of classes, N-1 is
theminimumnumber of classifiers required to discriminate all the clas-
ses. However, in this work we propose a classifying structure formed by
N=4 classifiers, one for each class. Fig. 6 shows the resulting classifying
structure.

In the “one versus all” structure the classifiers work independently,
thus it may occur that many outputs are activated at the same time or
none of them is activated. This occurs when more than one classifier
considers the event as positive or when all the classifiers consider the
event as negative (all the outputs are zero). These classification
mistakes occur because all the classifiers are trained separately, thus
when combined, the errors of each classifier contribute to the global
structure error. Section 2.6 presents the method used in this paper to
address this issue.

The output of thewhole classification systemwas coded as shown in
Table 3.

2.4. Performance indices for the classifying structure

The Kappa coefficient is an index that measures the agreement of
interobserver classification in multiclass problems (Landis and Koch,
1977), that is, when two or more independent observers are classifying
the same things. The degree of agreement can bemeasured based on the
number of classifications that was the same for all the observers. How-
ever, if they randomly assigned their ratings, sometimes agreement
could just be due to chance. Kappa gives a numerical rating of the degree
to which this occurs. The calculation is based on the difference between
how much agreement is actually present (Po, observed agreement)
compared to how much agreement would be expected to be present
by chance alone (Pe, expected agreement) (Viera and Garrett, 2005).
Fig. 6. Classifying structure: “one versus all” structure of the classifiers.
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Table 3
Codification of the outputs.

Class Classifier

1 2 3 4

TR 1 0 0 0
VT 0 1 0 0
LP 0 0 1 0
OT 0 0 0 1

Fig. 7. Confidence measure scheme for the structure of classifiers. A correction of the
outputs is performed according to the reliability of each classifier.
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In this work, as one judge is the expert and the other is the classify-
ing structure shown in Fig. 6, the Kappa coefficient (K) evaluates the
overall performance of the classifying structure. A value of K = 1
indicates complete agreement, which means that all the events were
classified the same as by the expert. A value of K = 0 indicates no
agreement, and negative values indicate that the coincidences are due
to chance.

For C classes, the Kappa coefficient is computed by Eq. (6).

K ¼ Po−Pe

1−Pe
ð6Þ

where Po is the observed agreement between the classifier and the
expert, given in Eq. (7),and Pe is the probability that the agreement is
due to chance and is given in Eq. (8). Further details can be found in
Appendix A.

Po ¼
XC
i¼1

pii ð7Þ

Pe ¼
Xc
i¼1

pi:p:i ð8Þ

where pii is the joint proportion of the agreement and p.iis the sumof the
joint proportions of the classifier (rows) and the expert (columns);
respectively, for each class. Between K = 0.41 and K = 0.6, there is a
moderate agreement. BetweenK=0.61 andK=0.8 there is substantial
agreement and from K = 0.81 to 1 the agreement is the highest (Viera
and Garrett, 2005).

2.5. Individual classifier performance indices

To evaluate the performance of each classifier in the classifying
structure, the contingency table was built for considering the “one
versus all” structure, which considers the events of one class as
positive and all the others as negative. Four statistical indices
measure the performance of the individual classifiers: sensitivity
(Se), specificity (Sp), exactitude (Ex) and error (Er), computed using
Eqs. (9) to (12).

Se ¼
TP

TPþ FN
ð9Þ

Sp ¼ TN
TNþ FP

ð10Þ

Ex ¼ TPþ TN
n

ð11Þ

Er ¼
FPþ FN

n
ð12Þ
where TP (true positives) is the number of events correctly classified
belonging to a specific class; TN (true negatives) is the number of events
correctly classified as not belonging to a specific class; FP (false
positives) and FN (false negatives) are the number of events classified
erroneously. TP, TN, FP and FN were calculated from the contingency
table. The statistical indices are determined for each model in all
simulations.

2.6. Confidence measure

According to the scheme presented in Fig. 6, the final decision corre-
sponds to the positive output of any of the classifiers. However, in the
proposed system, the decision of each classifier is independent, and
there are situations where the outputs of multiple classifiers are equal
to 1, or all the classifiers generate zero. To tackle these scenarios, a
confidencemeasure is estimated at the output of each classifier, as sche-
matically described in Fig. 7. For each classifier output a reliability is
assigned to assist in choosing the most reliable decision when there
are more than one positive outputs or if all the classifiers output a zero.

As a confidence measure, the Bayes-based confidence measure
(BBCM) is used (Yoma et al., 2005; Huenupan et al., 2008). This corre-
sponds to the ordinary Bayes fusion weighted by the reliability of each
individual classifier and provides a formal model for the reliability in a
classification task.

The SVM classifier is a two-class classifier constructed with a sum of
a kernel function, and the score is the distance between the sample and
the hyperplane. If the sample is closer to the hyperplane, thus the
decision of the classifier is less reliable. If SCL j

Xð Þ is the score of classifier
CLj for an input feature X, with J the number of classifiers, in this case J is
equal to four. The BBCM associatedwith classifier CLj given a feature X is
given by Eq. (13):

BBCM SCL j
Xð Þ

� �
¼ Pr dCL j

is okjSCL j
Xð Þ

� �
ð13Þ

where “dCL j is ok” denotes that the local decision of classifier j is correct.
From Eq. (13) the probability of the classifier decision is correct (target
or non-target) given the score SCL j

Xð Þ. By applying the Bayes theorem,
Eq. (13) can be written as:

BBCM SCL j
Xð Þ

� �
¼

Pr SCL j
Xð ÞjdCL j

is ok
� �

� Pr dCL j
is ok

� �
Pr SCL j

Xð Þ
� � ð14Þ
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Fig. 8. Confidence measure curve with the best feature for each SVM classifier.
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The BBCM SCL j
Xð Þ

� �
is a probability itself. Moreover, the distribution

Pr SCL j
Xð ÞjdCL j

is ok
� �

and the probability Pr dCL j
is ok

� �
provide

information about the recognition engine's performance.
Fig. 8 shows the BBCM curves, as defined in Eq. (14), obtained for

each classifier. A lower value of BBCM occurs when the classification
score is close to the decision threshold.

3. Simulations and results

3.1. Features combination

A representation of the six features considered is provided in Fig. 9,
where the values of each feature of the test set are plotted. On the hor-
izontal axis the events are ordered by type and the vertical axis shows
the amplitude of the normalized features.

Different combinations of these features define the input of the
classifiers. The features were combined to evaluate which combination
supplies the better classification performance. Fig. 10 illustrates the 63
possible combinations starting from individual features (combinations
1 to 6) to the last one that has all the features together (combination
63). It is important to highlight that each combination is used to train
a classifying structure, where the four classifiers receive the same
combination at their input.

3.2. Classifiers design

One classifying structure was trained for each of the 63 combinations
of features, giving 63 classifying structures to evaluate and compare. This
required the training of 4 × 63 = 252 classifiers. To implement each
classifier, the design process of the SVM requires the tuning of the c
and σ hyperparameters. The training set was used to adjust the
hyperparameters of each SVM classifier. A grid search of 16 × 16 values
was performed: the c and σ parameters were increased by powers of
two: 2x with x ∈ [−5,10] and 2y with y ∈ [−7,8] respectively, with a
step = 1 in both cases. Thus 4 × 16 × 16 = 1024 SVMs were trained
for the tuning process of each of the 63 classifying structures.

The validation set was used to compare the performances and to
select the best c andσ combination. Here twomain criteriawere consid-
ered to select the classifier with the best performance: minimizing the
validation error (criterion 1) and maximizing a fitness function given
by the mean between sensitivity and specificity (criterion 2). Both
results were analyzed. After the tuning processes, the ability of the
best classifier to recognize new patterns was measured by evaluating
the generalization performance with the test set.

The performance indices were obtained from the test set evaluation.
We proposed to separately evaluate the performance of the whole clas-
sifying structure (joint evaluation) and the performance of each classifi-
er (individual evaluation). The joint evaluationmeasures the agreement
between the classifying structure and the expert. This evaluation uses
the Kappa coefficient. In the latter each classifier was evaluated inde-
pendently, according to its ability to identify the events of its positive
class (sensitivity) and its ability to identify the events of its negative
class (specificity). Thus the statistical indices were used in this case.
The results are shown in the next two sections.When the best classifiers
are selected for each event, the BBCM curves were estimated according
to Eq. (14)with the same training data used to estimate the parameters
for each expert.
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Fig. 10. The 63 combinations of the six features considered for classification. (1) indicates thenumber of features present in the combination,whereas (2) is thenumber of the combination.
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3.3. Joint evaluation of the classifying structure

In this section the entire classifying structure is evaluated. Thus,
the evaluation is performed comparing the joint agreement of the 63
classifying structures with the expert, calculating the Kappa coefficient
for each structure. As explained in Section 2.3, a conflict occurs
when more than one output is activated or when all the outputs are
deactivated (0).

Three values of the Kappa coefficient were then considered to eval-
uate these situations:

1. Kappa min: is the worst value of agreement, because if there is no
activation or if there are more than one activated outputs, the
whole output is considered wrong in the contingency table.

2. Kappa max: is the best value of agreement because if one of the
activated outputs is the right one, even if the other outputs are
wrong, the output is considered right.

3. KappaC: is the value of agreementwhen the outputs are corrected by
the confidence block shown in Fig. 7. When there is no agreement,
the confidence block activates the more reliable classification,
correcting the output so only one classifier is activated.

Fig. 11 presents theKappamin, Kappamax andKappa C values of the
different combinations, using different criteria to select the best classifi-
cation. As shown in Fig. 11(a), combination 46 has the best Kappa value
C= 0.66± 0.05 (α= 0.05) that means that Kappa∈ [0.61 0.71], while
in Fig. 11(b), combination 46 is also the best combination with a Kappa
C= 0.65 ± 0.05, both considered good (Altman, 1991). The contingen-
cy table for this combination is presented in Table 4.

An analysis was made of the relationship between the number of
features and the agreement. Table 5 and Fig. 12 show theKappa C values
according to the number of features used by the classifying structure. It
is important to recall that in this analysis, the four classifiers of each
Fig. 11. Kappa values for the classifying structure of each combination. The classifiers were ch
specificity (criterion 2). The best combination (46) is highlighted in both figures.
classifying structure received the same combinations as input.
Fig. 11(a) shows no significant increase of the agreement for more
than two features (combination 9: Ad and Fn have a 0.659 ± 0.05
Kappa C, which is not significantly lower than the 0.662 ± 0.05 Kappa
C value of combination 46). This is why one of the main results here is
the importance of some features that reach high agreements alone,
like Fn combined with another one like Ad or An. This implies that the
frequency peaks and the amplitude median or mean are descriptive
enough to reach a good agreement between the classifying structure
and the expert. However, from the classification problem point of
view, small but significant differences in classification agreement are
valuable. The results show that only two features can be employed
with a small degradation of classification accuracy. However, it
is worth emphasizing that the increase in computational complexity
required by adding new features is negligible, thus combination 46
remains the best combination.

Fig. 13 depicts the combinations that had the best Kappa C values
(higher than 0.6). A detailed analysis of the combinations that yielded
the best agreements shows again that the amplitude and the frequency
peaks are the most relevant features. It can also be observed that some
combinations of features decrease the agreement, like Fn and E4, both
extracted from frequency. This combination reached 0.603, lower than
the 0.618 reached by the Fn feature alone (combinations 2 and 18).
This is also true when they are combined with other features like in
combinations 46 and 62.

As can be seen in Fig. 13, the features considered by the classifiers
with the best performance are mostly from amplitude (Ax, An and
Ad) but the information of these features is redundant, as their
combination gives no significant increase of the agreement. The first
order trigonometric moment (Mc) is almost entirely absent in the best
combinations. In addition to its poor agreement performance (0.1),
combined with other features it mostly decreases the agreement, as
osen using: (a) the validation error criteria (criterion 1), (b) the mean of sensitivity and
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Table 4
Contingency table of the classifying structure implemented with combination 46.

Classifying Structure

OT LP VT TR Total

Expert OT 111 17 3 30 161
LP 16 139 2 4 161
VT 5 0 42 2 49
TR 26 21 3 111 161
Total 158 177 50 147 532
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shownwhen comparing the Kappa C values of columns 62 and 63 or 50
and 58 in Fig. 13.

3.4. Individual evaluation of each classifier

In this section the analysis is performed from the point of viewof the
class performance; thus, classifiers are analyzed individually. To identify
the features that gave the best classifiers per class, the statistical indices
were calculated, considering in each case the “one versus all” structure.
So the contingency table is built considering all the events of a class as
the true positives and all the events of the other classes as the true
negatives. The statistical indices of the best classifiers and their input
feature combinations are presented in Table 6.

TR events are identified using amplitude and frequency peak
features. Their sensitivity is lower than the other classes, and the
analysis of the contingency tables shows that the classifier tended to
confuse TR with LP and mostly with OT. The energy of the4th band
(1.56–3.13 Hz) is an important feature to discriminate VT from the
other events. VT and OT have wide spectra, but different energy in the
4th band as noise has lower frequency components. The 4th band
gathers the TR and LP events, and separates them from VT. Amplitude,
as expected when analyzing Fig. 9, is also an important feature for
discriminating VT. This class had the best performance with 98% of ex-
actitude. LP had a good exactitude, 88% using only one feature
extracted from the frequency peaks. OT events had a low exactitude
and the analysis of the contingency tables shows that the classifying
structure confused OT with LP and mostly with TR. The OT class is the
only one that included the phase information as discriminator. OT is a
very heterogeneous group of signals, thus it is expected that their
discrimination will be more difficult, requiring features of a different
nature such as the phase.

The best classifiers per class were chosen to implement a new
classifying structure. In this structure, the classifiers received the
different inputs shown in Table 6. Table 7 shows the new Kappa values
for this eclectic classifying structure. It can be observed that it reached
better Kappa C values, increasing the best level of agreement from
0.66 to 0.75.

4. Discussion and conclusions

The classic pattern recognition process supplies a clear sequence
of steps to identify some events present in the seismic signals of a
Table 5
Kappa C values for different numbers of features (rows) for the classifying structure of criterio

1 0.10 0.62 0.53
2 0.51 0.51 0.66 0.52 0.66 0.58 0.54
3 0.57 0.57 0.52 0.65 0.56 0.53 0.65 0.54 0.65 0.58
4 0.57 0.58 0.59 0.56 0.66 0.63 0.62
5 0.57 0.62 0.63
6 0.63
volcano. The main steps are preprocessing, which supplies the fea-
tures extracted from the signals, and classification, which retrieves
the class. The events are classified according to the information
stored in their features, which is why features play a fundamental
role in the whole process.

In this paper we presented a pattern recognition process to identify
three important events of the Llaima volcano: the LP, VT and tremor,
and to discriminate them from other events or noise present in the
seismic records (OT). One focus of this study was to evaluate how the
features that performedwell in identifying events of theVillarrica volca-
no (Curilem et al., 2009) performed when applied to Llaima. Another
focus of the studywas to evaluate a circular statistics parameter extract-
ed from the phase of the signals. This feature gave good results in a
preliminary study (San-Martin et al., 2010) applied to Llaima. Thus,
the present study analyzed six features extracted from the time
amplitude of the signals, the frequency, and the phase.

It is important to underscore some differences between this work
and previous ones. First, the classifiers were implemented using the
SVM technique because the literature shows their good performance
in seismic signal classification. Second, the events were cut in variable
length windows. The experts at OVDAS indicated the beginning and
the end of each event, and the whole window was considered for
feature extraction. This is a fundamental difference because in the pre-
vious works fixed-sized sliding windows of 30 s (Curilem et al., 2009)
or 60s (San-Martin et al., 2010) were considered to perform the feature
extraction and then the classification. A variable size of the windows
was considered because it is a more realistic situation for the automatic
detection in the on-line application. Therefore, the classifying structure
should receive the features extracted from the whole event. Finally, a
confidence step was included in the general structure to solve classify-
ing conflicts.

The classifier design considered two optimization criteria. This was
done because the “one versus all” structure unbalances the classes:
the positive class is almost one third of the negative three classes. This
is critical when the positive class was the VT, because the number of
positive events was 49 versus 483 negative events. These unbalanced
sets affect the error measures; even when all the VT events were
misclassified the error stayed very low. This is why themean of sensibil-
ity and specificity was considered as a selection criterion for the classi-
fier performance during the tuning process. The resulting classifiers
were very different from the ones selected using the error criterion, as
shown in Fig. 11. However, ultimately the best classifiers from both
criteria had no significant performance differences (Kappa C value
0.75 versus 0.74).

An important outcome of this study is the effect of the confidence
step at the output of the classifying structure. This step improves the
performance of the classification as it defines the most reliable decision
when the classifier structure is in conflict (more than one class or no
class).

Analyzing the results, evaluations show good agreement between
the classifying structures and the expert. The individual classifiers had
more than 70% sensitivity and specificity, which is considered promis-
ing. The VT discrimination was the best, reaching 98% exactitude using
the amplitude and the energy in the 4th band as discriminators. The
LP discrimination was also interesting as it reached 88% exactitude
n 1.

0.55 0.59 0.47
0.65 0.56 0.56 0.48 0.60 0.63 0.61 0.62
0.56 0.59 0.62 0.59 0.64 0.65 0.59 0.60 0.65 0.65
0.57 0.63 0.62 0.55 0.63 0.55 0.63 0.65
0.63 0.56 0.64



Fig. 12. Graphical representation of the Kappa C values for all the feature combinations.
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with only one feature, extracted from the frequency peaks. The features
considered in this work yielded very good results for these events.
However, the most important discrimination problem remains the
discrimination between TR–OT and TR–LP, because the classifying
structure confused these three classes, mostly TR and OT. Llaima has
been considered compositionally as a basic to intermediate volcano,
with a reasonable prevalence of signals related to the fluid dynamic
(mainly TR and LP events). This may explain the difficulty in separating
LP and TR, due mainly to the similarity of their dominant frequencies.
The difficulty indiscriminating OT is due to the kind of signals that
comprise this heterogeneous group, composed mostly of noise that
may have time amplitude and spectral energy similarities. For these
signals we consider it necessary to continue the research looking for
better discriminant features.

The circular statistics of the signal provided the poorest discrimina-
tion. It is important to note that the signals were filtered by a
Butterworth filter which affects the phase within the bandpass. Howev-
er the phase variation is linearwith respect to the frequency, thus affect-
ing all the signals in the same way: the phase patterns used in circular
statistics are affected by the same amount, there by having no impact
on the discrimination problem. San-Martin et al.(2010) found good re-
sults based on the phase information. However, in these works phase
was extracted using a small number of samples, and perfectly aligned
segments to compute the circular statistics. In this article,we considered
a more realistic scenario, where segmentation and temporal analysis
windows did not consider ideal segmentation conditions for the feature
extraction. The results show that this has a strong impact on the phase
characteristic, leading to a decreased performance by this feature. Fur-
thermore, compared to the previous works, here an additional class
Fig. 13. Combination of features that retri
was incorporated with a resulting further decrease in the effectiveness
of the phase feature.

Analyzing misclassification of the whole system, we observe three
issues that may explain it: first signals used to design and test the struc-
tures had noise as no signal/noise analysis was performed for creating
the database. Second, the duration and the temporal behavior of the
events were not considered. These features are important to discrimi-
nate TR and OT, the more misclassified classes. Third, the segmentation
of the signals has to be improved as this work considered variable
length segments, starting before and after the events, but without a
common criterion to define its beginning and its end. All these issues
will be tackled in future works. Treatment of noise may improve dis-
crimination as classifiers will be trained with more accurate signals. A
study on how different signal/noise ratios affect discrimination levels
has to be performed. The duration and other temporal features of
the events have to be studied as new features. For the on-line applica-
tion of the system an automatic events' detection step has to be imple-
mented to separate the events from the background signals, before the
classification step. Then a uniform segmentation criterion has to be
established. Finally, future works have to evaluate the information re-
trieved by different stations and other components of the signals and
evaluate their impact in the performance of the classifiers.

An important advantage of the present work is that the identifica-
tion system is performed with simple to compute features, which
proved to be able to discriminate three important classes of volcanic
events. This makes our paper propose a different approach compared
to previous works. Amplitude, frequency and phase are features
intrinsically involved in volcanic event analysis and their application
to the classification of Villarrica and Llaima signals reached good
eved the best Kappa C values (N0.6).
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Table 6
Statistical indices and input features of the best individual classifiers of each class
according to both classifier optimizations criteria. X means that the corresponding feature
participates in the classification.

Optimization criteria Generalization error Mean of sensibility and
specificity

Class TR VT LP OT TR VT LP OT

Sensitivity 0.72 0.90 0.84 0.75 0.78 0.90 0.84 0.88
Specificity 0.89 0.99 0.90 0.84 0.79 0.99 0.90 0.71
Exactitude 0.84 0.98 0.88 0.81 0.79 0.98 0.88 0.76
Error 0.16 0.02 0.12 0.19 0.21 0.02 0.12 0.24
Combination 46 19 2 28 14 56 2 24
E4 X X
Ax X X X X
An X X X
Ad X X X X X
Fn X X X X X
Mc X

Table A.1
The contingency table for C classes and two observers.

Judge 1

Class 1 Class 2 Class C

Judge 2 Class 1 p11 p12 p1c ∑p1.

Class 2 p21 p22 p2c ∑p2.

Class C pc1 pc2 pcc ∑pc.

∑p.1 ∑p.2 ∑p.c N

Table A.2
Contingency table of combination 46.

Classifying structure

OT LP VT TR Total

Expert OT 111 17 3 30 161
LP 16 139 2 4 161
VT 5 0 42 2 49
TR 26 21 3 111 161
Total 158 177 50 147 532
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performances. Frequency is related to the location and shape of the seis-
mic sources, which are different from one volcano to another. Although
both volcanoes have similar structures and composition, the results are
interesting because relevant frequency bands were the same, what was
not expected a priori. Another advantage of the proposedmethod is that
it does notmodel the signals as a function of the inner volcano structure.
Consequently, one of the hypotheses assumed is to consider a volcano
as a time invariant system. Signals used to train the classifiers have to
reflect accurately the variability of seismic sources, the field of propaga-
tion and the characteristics of the recording stations, in one static con-
text. The classifiers “learn” this variability and are able to generalize it
to new signals, within the given context. However, seismic sources of
each volcano are likely different and change according to its activity. If
the inner volcano structure ismodified (e.g. by an eruption), the pattern
recognition models need to be re-trained, which in turn can be easily
done. These advantages canmake it possible to apply themethod to dy-
namic volcanic situations and to other volcanoes.

The highest agreement reached was 0.75, which is a reasonable
accuracy taking into consideration that the system had to discriminate
between four classes, the features analyzed were very simple to com-
pute and all the information of the windowed signal was processed
without a detailed segmentation (realistic scenario). In conclusion, the
paper shows that although further analysis is required to improve
the results, as literature shows better performances, the simplicity of
the proposed method and the future research lines defined by this
work encourage us to improve this system. This is an interesting
challenge for OVDAS since using signal processing in the detection of a
volcano's eventsmay provide a simple and cheap automatic recognition
tool.
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Table 7
Kappa C values for the classifying structure implementedwith the best classifiers per class.

Optimization criteria Generalization error Mean of sensibility and specificity

Kappa min 0.71 0.58
Kappa max 0.78 0.84
Kappa C 0.75 0.74
Appendix A. Kappa coefficient

Inter-observer classification can be measured in any situation in
which two or more independent observers are classifying the same
things. The degree of agreement can be measured based on the number
of classifications thatwere the same for all the observers. However if the
observers randomly assigned their ratings, sometimes agreement
should be just due to chance. Kappa gives a numerical rating of the
degree to which this occurs (Viera and Garrett, 2005). The calculation
is based on the difference between how much agreement is actually
present (“observed” agreement, Po) compared to howmuch agreement
would be expected to be present by chance alone (“expected” agree-
ment, Pe). This may be described in a contingency table, suchlike the
one given in Table A.1 for C classes and two observers.

For C classes, the Kappa coefficient (K) is computed by Eq. (A.1),
where Po is given in Eq. (A.2), and Pe is given in Eq. (A.3).

K ¼ Po−Pe

1−Pe
ðA:1Þ

Po ¼
XC
i¼1

pii ðA:2Þ

Pe ¼
Xc
i¼1

pi:p:i ðA:3Þ
Where pii is the joint proportion of the agreement and p.i is the sum
of the joint proportions of the classifier (rows) and the expert (column),
respectively, for each class. Example of calculation of the Kappa value is
shown in Table A.2.

Observed agreement: Po ¼ 111þ139þ42þ111
532 ¼ 0:758

Expected agreement: Pe ¼ 158�161þ177�161þ50�49þ147�1611
5322

¼ 0:283

Measure of the agreement: K ¼ 0:758−0:283
1−0:283 = 0.662

Looking for this value in the qualitative evaluation table, i.e. Table A.3,
it can be observed that this is a substantial agreement.
Table A.3
Qualitative evaluation table.

Kappa agreement Evaluation

b0 Less than chance agreement
0.01–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Almost perfect agreement
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Appendix B. Confidence intervals calculation

The standard error of Kappa coefficient is given by:

SE Kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Po 1−Poð Þ
N 1−Peð Þ2

s
ðA:4Þ

For α= 0.05, the 1− α=0.95 confidence interval for K is given by:

I ¼ 1:96 � SE kð Þ ðA:5Þ

which means that K is defined in the interval [K − I K + I] as it is
considered normally distributed.

For the previous example SE(K) = 0.026. Thus the interval is I =
1.96 ∗ 0.026 = 0.005. The value of Kappa is then expressed as K =
0.662 ± 0.005. The confidence interval indicates that the population
will have a K value inside the interval with a probability of 0.95 (α =
0.05).
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