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Abstract. The aim of this paper is to study radial symmetry properties for
ground state solutions of elliptic equations involving a regional fractional Lapla-

cian, namely

(−∆)αρ u+ u = f(u) in Rn, for α ∈ (0, 1). (1)

In [9], the authors proved that problem (1) has a ground state solution. In this

work we prove that the ground state level is achieved by a radially symmetry
solution. The proof is carried out by using variational methods jointly with

rearrangement arguments.

1. Introduction. In this paper we study symmetry properties of ground states of
the nonlinear Schrödinger equation with a non-local regional diffusion

(−∆)αρu+ u = f(u) in Rn, (2)

u ∈ Hα(Rn),

where 0 < α < 1, n ≥ 2 and f : R→ R is super-linear and has sub-critical growth.
The operator (−∆)αρ is a non-local regional Laplacian, which is implicitly defined
as ∫

Rn
(−∆)αρu(x)v(x)dx =

∫
Rn

∫
B(0,ρ(x))

[u(x+ z)− u(x)][v(x+ z)− v(x)]

|z|n+2α
dzdx,

for all u, v ∈ Hα(Rn), where the range of scope of the operator is determined by the
function ρ ∈ C(Rn,R+). There have been another definition of non-local regional
Laplacian in the work by Bogdan, Burdzy and Chen [5] and Guan [10], where the
operator there is non-variational and its range of scope is independent of x . Our
version is a variational adaptation of the operator defined by Ishii and Nakamura
in [11], where an x-dependent range of scope is considered.

In a recent paper [8], the study of positive solutions of the nonlinear fractional
Schrödinger equation

(−∆)αu+ u = f(x, u) in Rn, (3)
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was considered, where the fractional Laplacian is defined as

(−∆)αu(x) =
1

2

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|N−2α
dy, x ∈ Rn.

The authors obtained existence of ground state solutions using the mountain pass
theorem and a comparison argument devised by Rabinowitz in [19], for α = 1. They
also analyzed regularity, decay and symmetry properties of these solutions. Cheng
in [6], considered the problem with a potential V and with pure power nonlinearity
f(t) = |t|p−1t. Ground states are found by imposing a coercivity assumption on V

lim
|x|→∞

V (x) = +∞.

In [20], Secchi provides a generalization of the main result of [6] to an equation of
the form

(−∆)αu+ V (x)u = f(x, u), x ∈ Rn, (4)

for a more general non-linearity. He obtained the existence of a ground state by the
method used in [8].

Motivated by these previous works, the authors considered in [9] the nonlinear
Schrödinger equation with nonlocal regional diffusion

(−∆)αρu+ u = f(u) in Rn. (5)

Following some ideas in [8], they obtained the existence of a ground state by the
mountain pass theorem and a comparison argument. Moreover they also analyzed
the concentration phenomena occurring when the diffusion parameter approaches
zero and they analyze the role of the scope function ρ in the concentration.

Dipierro, Palatucci and Valdinoci [7], consider the existence of radially symmetric
solutions of (4) when V and f do not depend explicitly on the space variable x. For
the first time, using rearrangement tools and following the ideas of Berestycki and
Lions [3], the authors prove existence of a nontrivial, radially symmetric, solution
to

(−∆)αu+ u = |u|p−1u in Rn, (6)

u ∈ Hα(Rn),

when α ∈ (0, 1) and p is subcritical.
Solutions of (6) can be obtained by finding critical points of the Euler-Lagrange

functional I defined in the fractional Sobolev spaces Hα(Rn) by

I(u) =
1

2

∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
dzdx+

∫
Rn

(
1

2
|u(x)|2 − 1

p+ 1
|u(x)|p+1

)
dx.

They used a basic rearrangement inequality to conclude that

I(u∗) ≤ I(u), (7)

where u∗ is the symmetric rearrangement of u. Therefore, if there is a minimizer
of I then there is also a radially symmetric minimizer. Their proof is based on a
minimization method, working with an appropriate constraint. This constraint is
useful in this case because of the autonomous and homogeneous character of (6). In
[8], symmetry properties of positive solutions of the nonlinear fractional Schrödinger
equation

(−∆)αu+ u = f(u) in Rn,
where studied, using the integral form of the moving planes method. They assumed
that the function f has a super-linear and sub-critical growth and
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(F) f ∈ C1(R), increasing and there exists τ > 0 such that

lim
v→0

f ′(v)

vτ
= 0.

Taking advantage of the representation formula for u given by

u(x) = (K ∗ f(u))(x), x ∈ Rn, (8)

where K is the kernel associated to the linear part of the equation, they apply the
moving planes argument.

In view of the previous works we just described, it is natural to ask for radial
symmetry of ground states for the equation (2). Next we present in detail the
hypotheses required for our results to be proved. Let us assume that ρ satisfies the
following conditions:

(ρ1) ρ ∈ C(Rn,R+), there are numbers 0 < ρ0 < ρ∞ ≤ ∞ such that

ρ(x) ≥ ρ0 ∀x ∈ Rn and lim
|x|→∞

ρ(x) = ρ∞.

(ρ2) When ρ∞ =∞, we further assume that

lim
|x|→∞

ρ(x)

|x|
≤ 1

2
.

(ρ3) ρ is radially symmetric.

Regarding f we asume:

(f1) f(t) ≥ 0 if t ≥ 0 and f(t) = 0 if t ≤ 0.

(f2) The function t→ f(t)
t is increasing for t > 0 and limt→0

f(t)
t = 0.

(f3) ∃θ > 2 such that ∀t > 0

0 < θF (t) ≤ tf(t), where F (t) =

∫ t

0

f(s)ds.

(f4) ∃C > 0 such that

|f(t)| ≤ C(1 + |t|p), 1 < p <
n+ 2α

n− 2α
.

Under the hypotheses given above, the solutions of (2) are the critical points of
the functional functional Iρ defined on Hα(Rn) by

Iρ(u) =
1

2

∫
Rn

∫
B(0,ρ(x))

|u(x)− u(z)|2

|x− z|n+2α
dzdx+

∫
Rn

(
1

2
|u(x)|2 − F (u(x))

)
dx.

Now we state the main theorem in our paper.

Theorem 1.1. Suppose that (ρ1) − (ρ3) and (f1)− (f4) hold. Then the mountain
pass value of Iρ is achieved by a radially symmetric solution of (2).

To prove this theorem we proceed by using rearrangements and variational meth-
ods. The idea is to replace the path γ in the mountain pass setting, by its sym-
metrization γ∗ and then the critical point would be near of the set γ∗([0, 1]). This
idea works since rearrangements are continuous in Hα(Rn), see [1], however it can-
not be used directly when α = 1 and n > 1 since rearrangements are not continuous
in H1(Rn). See more details in the work by Van Schaftingen [23].

We observe that the approach used in [8] is not possible to be used here, since a
representation formula like (8) is not available in general for (−∆)αρ . On the other
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hand we cannot use the approach in [7] since our problem is x-dependent and so
rescaling is not available.

Rearrangements have long been a basic tool in the calculus of variations and in
the theory of partial differential equations arising as Euler-Lagrange equations of
variational problems. The basic Polya-Szegö inequality claims that the symmetric
decreasing rearrangement diminishes the L2-norm of the gradient of a function u:∫

Rn
|∇u∗(x)|2dx ≤

∫
Rn
|∇u(x)|2dx (9)

where u∗ represent the symmetric decreasing rearrangement of u, see [13].
The inequality (9), together with its several variants [13], is a powerful key to a

number of variational problems of geometric and functional nature, concerning ex-
tremal properties of domains and functions. Besides optimal Sobolev embeddings,
classical isoperimetric inequalities in mathematical physics and sharp eigenvalue
inequalities fall within these results; a priori estimates for solutions to elliptic prob-
lems in sharp form are also a closely related topic [14].

The fractional version of (9), namely∫
Rn
|(−∆)α/2u∗(x)|2dx ≤

∫
Rn
|(−∆)α/2u(x)|2dx, (10)

was proved by Almgren and Lieb [1] using a rearrangement inequality for convex
integrands. Recently Park [18] proved this inequality using Fourier analysis, based
on arguments by Beckner [2] and Almgren and Lieb [1].

We notice that inequality (10) is a principal key to get a radially symmetric
minimizer. So, an interesting problem is to prove the following inequality∫

Rn

∫
B(0,ρ(|x|))

|u∗(x+ z)− u∗(x)|2

|z|n+2α
dzdx ≤

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|2

|z|n+2α
dzdx,

(11)
This is a second main goal in this paper. We want to get a regional version of
Riesz and Polya-Szegö inequality with a radial symmetric positive scope function
ρ ∈ C(Rn,R+). In section §3, following the ideas of Almgren and Lieb [1] we
prove the following preliminary inequality: let u, v, w be nonnegative measurable
functions on Rn vanishing at infinity, then∫

Rn

∫
B(0,ρ(|x|))

u(x)v(x− z)w(z)dydx ≤
∫
Rn

∫
B(0,ρ(|x|))

u∗(x)v∗(x− z)w∗(z)dzdx,

(12)
and (11).

This paper is organized as follows. In section §2 we recall some fact of fractional
Sobolev spaces and in section §3 we recall the main inequalities from rearrangement
theory and we prove inequalities (11) and (12). In section §4 we prove our main
symmetry result, Theorem 1.1.

2. Preliminaries. Let 0 < α < 1 and n ≥ 1. The fractional Sobolev space of
order α on Rn is defined by

Hα(Rn) =

{
u ∈ L2(Rn)/

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dydx <∞

}
,

endowed with the norm

‖u‖2Hα =

∫
Rn
|u(x)|2dx+

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dydx.
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For the reader’s convenience, we review the main embedding result for fractional
Sobolev spaces.

Theorem 2.1 ([17]). Let α ∈ (0, 1), then there exists a positive constant C =
C(n, α) such that

‖u‖2
L2∗α (Rn)

≤ C
∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dydx (13)

and then we have that Hα(Rn) ↪→ Lq(Rn) is continuous for all q ∈ [2, 2∗α].
Moreover, Hα(Rn) ↪→ Lq(Ω) is compact for any bounded set Ω ⊂ Rn and for all

q ∈ [2, 2∗α), where 2∗α = 2n
n−2α is the critical exponent.

We introduce a new fractional Sobolev Hilbert space

Hα
ρ (Rn) =

{
u ∈ L2(Rn)/

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|
|z|n+2α

dzdx < +∞

}
endowed with the norm

‖u‖2Hαρ =

∫
Rn
|u(x)|2dx+

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|2

|z|n+2α
dzdx,

which is induced by the following inner product

〈u, v〉Hαρ =

∫
Rn
u(x)v(x)dx +

∫
Rn

∫
B(0,ρ(|x|))

[u(x+ z)− u(x)][v(x+ z)− v(x)]
|z|n+2α

dzdx.

The following proposition, which is proved in [9], is crucial in our analysis.

proposition 1. If ρ satisfies (ρ1), then there exists a constant C = C(n, α, ρ) such
that

‖u‖2Hα ≤ C‖u‖2Hαρ .

This proposition implies that Hα
ρ (Rn) and Hα(Rn) have equivalent norms.

3. Symmetry rearrangements. In this section first we recall some facts regard-
ing rearrangement of sets and functions. Then we present a new regional Riesz and
Polya-Szegö inequality when the range of scope determined is a radially symmetric
function.

Let A ⊂ Rn be a Lebesgue measurable set and denote the measure of A by |A|.
Define the symmetrization A∗ of A to be the closed ball centered at the origin such
with the same measure as A. Thus in one dimension

A∗ = [−|A|
2
,
|A|
2

]

and in n dimensions, if we define ω(n) to be the volume of the unit ball in Rn, then
for A ⊂ Rn

A∗ = B(0, (|A|/ω(n))1/n).

Let u : Rn → R be a Borel measurable function, then u is said to vanish at infinity
if

|{x : |u(x)| > t}| <∞ for all t > 0.

The symmetric decreasing rearrangement of a characteristic function χA is defined
as

χ∗A := χA∗ .
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We now recall that any non negative function can be expressed as an integral of the
characteristic functions of the sets {u ≥ t} (which is a standard abbreviation for
{x : u(x) ≥ t}) as follows

u(x) =

∫ u(x)

0

1dt =

∫ ∞
0

χ{u≥t}(x)dt. (14)

Notice that this, along with Fubini’s theorem, implies∫
Rn
u(x)dx =

∫
Rn

∫ ∞
0

χ{u≥t}(x)dtdx =

∫ ∞
0

|{x : u(x) ≥ t}|dt.

Now if u : Rn → R is a Borel measurable function vanishing at infinity we define
the rearrangement of u as

u∗(x) =

∫ ∞
0

χ∗{|u|≥t}(x)dt. (15)

The rearrangement u∗ has a number of properties, see [15]:

(i) u∗ is nonnegative.
(ii) u∗ is radially symmetric and non-increasing, i.e.:

|x| ≤ |y| implies u∗(y) ≤ u∗(x).

(iii) u∗ is a lower semicontinuos function.
(iv) The level sets of u∗ are simply the rearrangement of the level sets of u, i.e.

{x : u∗(x) > t} = {x : |u(x)| > t}∗.
An important consequence of this is the equimeasurability of the function u
and u∗, that is

|{u∗ > t}| = |{|u| > t}|, for all t > 0.

(v) For any positive monotone function φ, we have∫
Rn
φ(|u(x)|)dx =

∫
Rn
φ(u∗(x))dx.

In particular, u∗ ∈ Lp(Rn) if and only if u ∈ Lp(Rn) and

‖u‖Lp = ‖u∗‖Lp .
(vi) Let V (|x|) ≥ 0 be a radially symmetric increasing function on Rn. If u is a

nonnegative function on Rn, vanishing at infinity then∫
Rn
V (|x|)|u∗(x)|2dx ≤

∫
Rn
V (|x|)|u(x)|2dx.

(vii) Riesz’ rearrangement inequality. Let u, v, w be nonnegative measurable
functions on Rn that vanish at infinity. Then∫

Rn

∫
Rn
u(x)v(x− y)w(y)dydx ≤

∫
Rn

∫
Rn
u∗(x)v∗(x− y)w∗(y)dydx.

Now we will present and prove a new type of rearrangements inequalities, follow-
ing the ideas of Almgren and Lieb [1]. First we prove the regional Riesz inequality
and for this we need the following lemma

lemmama 3.1. Let u be nonnegative measurable function on Rn that vanish at
infinity and ρ ∈ C(Rn,R+) be a positive radially symmetric function. Given x ∈ Rn,
we let w(y) = u(y)χB(0,ρ(|x|))(y). Then, for each x ∈ Rn

w∗(y) ≤ u∗(y)χB(0,ρ(|x|))(y). (16)
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Proof. First we notice that for measurable sets A and B we have

(A ∩B)∗ ⊂ A∗ ∩B∗. (17)

In fact, since A ∩ B ⊂ A and A ∩ B ⊂ B, then |A ∩ B| ≤ |A| and |A ∩ B| ≤ |A|.
Therefore

B(0, (|A ∩B|/w(n))1/n) ⊂ B(0, (|A|/w(n))1/n) and

B(0, (|A ∩B|/w(n))1/n) ⊂ B(0, (|B|/w(n))1/n).

This implies

B(0, (|A ∩B|/w(n))1/n) ⊂ B(0, (|A|/w(n))1/n) ∩B(0, (|B|/w(n))1/n),

hence (A ∩B)∗ ⊂ A∗ ∩B∗. Now, we notice that (16) follow from:

{(u(y)χB(0,ρ(|x|))(y))∗ > t} ⊆ {[u∗(y)χB(0,ρ(|x|))(y)] > t} for all t.

In fact, by (iv) and (17) we have

{(uχB(0,ρ(|x|)))
∗ > t} ={uχB(0,ρ(|x|)) > t}∗

= [{u > t} ∩B(0, ρ(|x|))]∗

⊆{u > t}∗ ∩B(0, ρ(|x|))
={u∗ > t} ∩B(0, ρ(|x|))
={u∗χB(0,ρ(|x|)) > t}.

Hence (
uχB(0,ρ(|x|))

)∗
(y) =

∫ ∞
0

χ{(uχB(0,ρ(|x|)))∗>t}(y)dt

≤
∫ ∞

0

χ{u∗χB(0,ρ(|x|))}>t(y)dt

=(u∗χB(0,ρ(|x|)))(y).

This proves our inequality.

With this lemma we are ready to prove our regional Riesz inequality

Theorem 3.2 (Regional Riesz Rearrangement Inequality). Let u, v, w be nonneg-
ative measurable functions on Rn that vanish at infinity and ρ ∈ C(Rn,R+) be a
positive radially symmetric function. Then∫

Rn

∫
B(0,ρ(|x|))

u(x)v(x−y)w(y)dydx ≤
∫
Rn

∫
B(0,ρ(|x|))

u∗(x)v∗(x−y)w∗(y)dydx (18)

Proof. By Riesz rearrangement inequality and Lemma 3.1, we have∫
Rn

∫
B(0,ρ(|x|))

u(x)v(x− y)w(y)dydx

=

∫
Rn

∫
Rn
u(x)v(x− y)w(y)χB(0,ρ(|x|))(y)dydx

≤
∫
Rn

∫
Rn
u∗(x)v∗(x− y)(wχB(0,ρ(|x|)))

∗(y)dydx

≤
∫
Rn

∫
Rn
u∗(x)v∗(x− y)w∗(y)χB(0,ρ(|x|))(y)dydx

=

∫
Rn

∫
B(0,ρ(|x|))

u∗(x)v∗(x− y)w∗(y)dydx. �
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Now we are going to prove the regional version of Polya-Szegö inequality. We
consider the functional Eρ : Hα

ρ (Rn)→ R defined as

Eρ[u] =

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|2

|z|n+2α
dzdx.

We will get a representation of Eρ that will be useful for our purpose. We start
with the representation formula

1

|z|n+2α
=

1

Γ
(
n+2α

2

) ∫ ∞
0

e−t|z|
2

t
n+2α

2 −1dt, (19)

whose proof can be found in [1]. Using (19) and Fubini’s theorem we have

E[u] =

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|2 1

|z|n+2α
dzdx

=

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|2 1

Γ
(
n+2α

2

) ∫ ∞
0

e−t|z|
2

t
n+2α

2 −1dtdzdx

=
1

Γ
(
n+2α

2

) ∫ ∞
0

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|2e−t|z|
2

dzdx t
n+2α

2 −1dt.

From here we define

It[u] =

∫
Rn

∫
B(0,ρ(|x|))

|u(x+ z)− u(x)|2e−t|z|
2

dzdx, t > 0. (20)

Theorem 3.3 (Regional Polya-Szegö inequality). Let 0 < α < 1 and u ∈ Hα
ρ (Rn)

and ρ ∈ C(Rn,R+) be a positive radially symmetric function. Then

Eρ[u
∗] ≤ Eρ(u). (21)

Proof. Without loss of generality we may assume that u is non-negative since |u(x+
z)−u(x)| ≥ ||u(x+z)|−|u(x)||. Furthermore, in view of (20) we only need to prove
that

It[u
∗] ≤ It[u], ∀t > 0. (22)

Let φ(t) = |t|2 and let us write φ = φ+ + φ−, where

φ±(t) =

{
φ(t), if ± t ≥ 0,
0, if ± t ≤ 0.

We decompose It = I+
t + I−t accordingly. Below we prove the assertion of the

theorem with It replaced by I+
t . The assertion for I−t is similar and hence the

result for the original It follows. Since φ+(0) = 0, we have that

φ+(u(x+ z)− u(x)) =

∫ u(x+z)−u(x)

0

φ′+(t)dt

=

∫ u(x+z)

u(x)

φ′+(u(x+ z)− t)dt

=

∫ ∞
0

φ′+(u(x+ z)− t)χ{u≤t}(x)dt.
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Then, by Fubini’s theorem

I+
t [u] =

∫
Rn

∫
B(0,ρ(|x|))

φ′+(u(x+ z)− u(x))e−t|z|
2

dzdx

=

∫ ∞
0

∫
Rn

∫
B(0,ρ(|x|))

φ′+(u(x+ z)− t)e−t|z|
2

χ{u≤t}(x)dzdxdt. (23)

Now ∫
Rn

∫
B(0,ρ(|x|))

φ′+(u(x+ z)− t)e−t|z|
2

χ{u≤t}(x)dzdx

=

∫
Rn

∫
B(0,ρ(|x|))

φ′+(u(x+ z)− t)e−t|z|
2

(1− χ{u>t}(x))dzdx

=

∫
Rn

∫
B(0,ρ(|x|))

φ′+(u(x+ z)− t)e−t|z|
2

dzdx

−
∫
Rn

∫
B(0,ρ(|x|))

φ′+(u(x+ z)− t)e−t|z|
2

χ{u>t}(x)dzdx. (24)

We notice that the function g(s) = φ′+(s− t) is increasing and
(
e−t|z|

2
)∗

= e−t|z|
2

,

for all t > 0, then by property (v) we have(
φ′+(u(x)− t)

)∗
= φ′+(u∗ − t).

From here, (23), (24) and Theorem 3.2 we find that

I+
t [u∗] ≤ I+

t [u], ∀t > 0.

Since we also have I−t [u∗] ≤ I−t [u], we conclude.

Remark 3.1. Theorem 3.3 implies the non-expansivity of symmetric decreasing
rearrangement of the regional fractional Sobolev norm in Hα

ρ (Rn), that is, for u ∈
Hα
ρ (Rn)

‖u∗‖Hαρ ≤ ‖u‖Hαρ . (25)

Finally we recall a result proved by Almgren and Lieb in [1], which is a crucial
ingredient to prove our main theorem in the next section.

Theorem 3.4. For each 0 < α < 1 and each n ≥ 1, the map R : Hα(Rn) →
Hα(Rn), defined as Ru = u∗, is continuous and, as a consequence, R : Hα

ρ (Rn)→
Hα
ρ (Rn) is also continuous.

4. Symmetry results: proof of Theorem 1.1. In this section we provide a
proof of Theorem 1.1 and we also extent the ideas to prove a symmetry result in
the case of the equation

(−∆)αu+ V (|x|)u = f(u) in Rn, (26)

u ∈ Hα(Rn).

In order to prove Theorem 1.1 we consider the functional Iρ : Hα
ρ (Rn)→ R defined

by

Iρ(u) =
1

2
‖u‖αρ −

∫
Rn
F (u(x))dx, (27)

It is a simple exercise to check that Iρ is well-defined and of class C1.
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Proof of Theorem 1.1. Under (f1)-(f4), (ρ1)-(ρ2), in [9] we have proved that Iρ
satisfies the mountain pass geometry condition with mountain pass level

cρ = inf
γ∈Γρ

sup
t∈[0,1]

Iρ(γ(t)),

where Γρ = {γ ∈ C([0, 1], Hα
ρ (Rn))/ γ(0) = 0, Iρ(γ(1)) < 0}. By definition of cρ,

for any n ∈ N, there is γn ∈ Γρ such that

sup
t∈[0,1]

Iρ(γn(t)) ≤ cρ +
1

n2
. (28)

Now, defining γ∗n(t) = [γn(t)]∗, we see that Theorem 3.4 and the fact that Iρ(γ
∗
n(1)) ≤

Iρ(γn(1)) < 0 imply that γ∗n ∈ Γρ. Moreover, by the regional Polya-Zsegö inequality
proved in Theorem 3.3, we have

Iρ(γ
∗
n(t)) ≤ Iρ(γn(t)), ∀t ∈ [0, 1].

So

sup
t∈[0,1]

Iρ(γ
∗
n(t)) ≤ cρ +

1

n2
. (29)

Then by Theorem 4.3 of [16], there is a sequence un ∈ Hα
ρ (Rn) and ξn ∈ [0, 1] such

that

‖un − γ∗n(ξn)‖Hαρ ≤
1

n
, (30)

Iρ(un) ∈ (cρ −
1

n2
, cρ +

1

n2
) and (31)

‖I ′ρ(un)‖(Hαρ )′ ≤
1

n
. (32)

Following the ideas of the proof of Theorem 1.1 of [9] we can show that: un → u
in Hα

ρ (Rn), Iρ(u) = cρ, I
′
ρ(u) = 0 and

lim
n→∞

‖u− γ∗n(ξn)‖Hαρ = 0. (33)

The last equality shows that u = u∗.

We can use the same ideas with equation (26). In [20], Secchi studied (26)
with an x−dependent nonlinearity f(x, t). Using the approach of Rabinowitz in
[19], namely a comparison argument, Secchi proved the existence of a ground state
solution of (26), when f(x, t) is super-linear and has a sub-critical growth. On the
other hand, in [21] Secchi considered the existence of radially symmetric solutions
of (26) under some weaker conditions on f , using the monotonicity trick of Struwe
and Jeanjean [12].

Now, our purpose is to prove the symmetry result for (26) using the approach
discussed above. For that purpose we consider that the nonlinearity f satisfies
(f1)-(f4) and regarding the potential V we assume

(V1) V ∈ C0(Rn) and infRn V (x) = V0 > 0
(V2) lim|x|→∞ V (x) = V∞.
(V3) V is radially symmetric and increasing.

The solutions of (26) are the critical points of the functional

IV (u) =
1

2

∫
Rn

∫
Rn

|u(x+ z)− u(x)|2

|z|n+2α
dzdx+

∫
Rn

1

2
V (x)|u(x)|2 − F (u(x))dx
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defined on the Sobolev space

Hα
V (Rn) =

{
u ∈ Hα(Rn) /

∫
Rn

V (x)|u(x)|2dx <∞
}
,

endowed with the inner product

〈u, v〉HαV =

∫
Rn
V (x)u(x)v(x)dx +

∫
Rn

∫
Rn

[u(x+ z)− u(x)][v(x+ z)− v(x)]

|z|n+2α
dzdx.

Now we state our result.

Theorem 4.1. Suppose that (f1)− (f4) and (V1)− (V3) hold. Then the mountain
pass value of IV is achieved by a radially symmetric solution of (26).

Proof. Under (f1)-(f4), (V1)-(V2) we find that IV satisfies the mountain pass ge-
ometry conditions, using the proof of Secchi in [20] with minor modifications. The
mountain pass level for IV is given by

cV = inf
γ∈ΓV

sup
t∈[0,1]

IV (γ(t)),

where ΓV is defined as usual. By definition of cV , for any n ∈ N, there is γn ∈ ΓV
such that

sup
t∈[0,1]

IV (γn(t)) ≤ cV +
1

n2
. (34)

Now, let γ∗n(t) = [γn(t)]∗. By the continuity of rearrangements in Hα
V (Rn) we have

that γ∗n ∈ ΓV . Moreover, by the fractional Polya-Szegö inequality and taking into
account that V satisfies (V3), we have

IV (γ∗n(t)) ≤ IV (γn(t)), ∀t ∈ [0, 1].

So

sup
t∈[0,1]

IV (γ∗n(t)) ≤ cV +
1

n2
. (35)

By Theorem 4.3 in [16], there is a sequence un ∈ Hα
ρ (Rn) and ξn ∈ [0, 1] such that

‖un − γ∗n(ξn)‖HαV ≤
1

n
, (36)

IV (un) ∈ (cV −
1

n2
, cV +

1

n2
), (37)

‖I ′V (un)‖(HαV )′ ≤
1

n
. (38)

Following the ideas of the proof of Theorem 5.2 of [20], we can show that un → u,
IV (u) = cV , I ′V (u)u = 0 and finally that

lim
n→∞

‖u− γ∗n(ξn)‖HαV = 0, (39)

concluding the proof.



2406 PATRICIO FELMER AND CÉSAR TORRES
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