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Feature selection and classification of imbalanced data sets are two of the most interesting
machine learning challenges, attracting a growing attention from both, industry and acade-
mia. Feature selection addresses the dimensionality reduction problem by determining a
subset of available features to build a good model for classification or prediction, while
the class-imbalance problem arises when the class distribution is too skewed. Both issues
have been independently studied in the literature, and a plethora of methods to address
high dimensionality as well as class-imbalance has been proposed. The aim of this work
is to simultaneously explore both issues, proposing a family of methods that select those
attributes that are relevant for the identification of the target class in binary classification.
We propose a backward elimination approach based on successive holdout steps, whose
contribution measure is based on a balanced loss function obtained on an independent
subset. Our experiments are based on six highly imbalanced microarray data sets, compar-
ing our methods with well-known feature selection techniques, and obtaining a better
prediction with consistently fewer relevant features.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Feature selection is an important topic in data mining, especially in high-dimensional applications. A low-dimensional
representation of the data reduces the risk of overfitting, which is higher in this kind of data sets [14,20], improving the mod-
el’s generalization ability. Feature selection is a combinatorial problem in the number of original features [14], and finding
the optimal subset of variables is considered NP-hard.1

Feature selection can be very helpful when facing imbalanced data sets [8]. In the context of classification, this problem
occurs when there are many more examples from some classes than from others. In this paper we focus on binary classifi-
cation, and we refer to the class imbalance problem when one of the two classes (the negative class) is significantly larger in
terms of instances than the other, the positive class. Furthermore, we assume that misclassifying an instance from the
positive class (also called target class) is more expensive than misclassifying an instances from the negative class [16]. This
problem is especially challenging when both classes have a high degree of overlap as has been pointed out e.g. by Prati et al.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.07.015&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.07.015
mailto:smaldonado@uandes.cl
mailto:rweber@dii.uchile.cl
mailto:Fazel.Famili@nrc-cnrc.gc.ca
http://dx.doi.org/10.1016/j.ins.2014.07.015
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


S. Maldonado et al. / Information Sciences 286 (2014) 228–246 229
[25] and Qu et al. [26]. It is prevalent in many applications, including fraud/churn detection [19], text categorization [43],
medical diagnosis [35], detection of software defects [24], and many others.

Technically speaking, any data set with an unequal distribution between the two classes, can be considered imbalanced.
However, class ratios of 5:1 (majority class:minority class) or higher have often been considered in experiments as
imbalanced data sets ([16]).

Support Vector Machines (SVMs) [36] are effective classifiers that provide several advantages such as adequate
generalization of new objects and a representation that depends on few parameters. Additionally, it can be shown that
the respective objective function (see Section 3.1) is convex which assures that the method does not get stuck in local
minima of the particular model [36]. However, SVMs do not determine the features’ importance within the respective model
[20]. In the present paper, we introduce a new feature selection approach for binary classification using SVM which is
especially suited for imbalanced data sets.

Section 2 provides an overview on the class-imbalance problem. In Section 3 we briefly introduce SVM for classification as
well as for feature selection lying the basis for the posterior developments. Section 4 introduces the proposed family of
methods for feature selection based on SVM. Experimental results using imbalanced real-world data sets are presented in
Section 5. Section 6 summarizes this paper, provides its main conclusions, and hints at future developments.

2. The class imbalance problem

Several solutions to handle the problem of classifying imbalanced data sets have been proposed. These are mainly in four
directions: resampling, cost-sensitive learning, one class learning, and feature selection. In the following subsections we
briefly describe the first three of these directions. We then refer to the assessment metrics used to evaluate the respective
classifiers. Related work on feature selection to classify imbalanced data sets constitutes the basis for our present work and
will be detailed in Section 3.2.

2.1. Resampling

There are several techniques regarding data resampling, which differ mainly in their nature (random or informed resam-
pling). The two most common data resampling techniques are random oversampling and random undersampling. Random
oversampling duplicates randomly selected examples of the minority class. While this does help to balance the class distri-
bution, no new information is added to the data set thus leading potentially to overfitting [35]. Also, this procedure increases
the size of the training set, causing longer model training times. Random undersampling randomly discards instances from
the majority class, which may lead to an important loss of information [35].

Chawla et al. [9] proposed SMOTE, a ‘‘Synthetic Minority Over-sampling TEchnique’’, which generates new examples for
the minority class. These are created artificially by interpolating the preexisting minority instances, which may help to
improve the classification performance on imbalanced data sets [19].

2.2. Cost-sensitive learning

Cost-sensitive techniques are based on the concept of a cost matrix, which can be considered as a numerical representa-
tion of the penalty when classifying instances to the wrong class. For example, we define C� as the cost of misclassifying a
majority class instance as a minority class instance and let Cþ represent the cost of the contrary case. Typically, there is no
cost associated with correct classification and the cost of misclassification in the target class is higher than the contrary case,
i.e., Cþ > C�. The objective of cost-sensitive learning then is to develop a classifier that minimizes the overall cost on the
training data set.

There are different ways of implementing cost-sensitive learning. A detailed analysis would go beyond the scope of this
paper since we concentrate on a methodological development independent of a particular application where the respective
misclassification costs could be specified. The interested reader is referred to [16,33].

2.3. One-class learning

When negative examples greatly outnumber the positive ones, most classifiers tend to overfit [8]. This is particulary true
when facing high-dimensional data sets [35]. In this case, one-class SVM trained only with the target class may lead to a
better predictive performance [34]. Here, the method attempts to measure the similarity between a query object and the
target class, where classification is accomplished by imposing a threshold on the similarity value [8]. It has been shown
[34] that the one-class approach to classify high-dimensional imbalanced data sets can be an interesting alternative to fea-
ture selection in such situations.

2.4. Assessment metrics for imbalanced classification

Traditionally, the most frequently used metric for binary classification is the accuracy, which is the proportion of true
results to all results. This metric provides a simple way of describing the classification performance in a given data set.
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However, it is not appropriate for classification of imbalanced data sets [16]. For example, if a given data set includes 5% of
target class instances and 95% of majority examples, a naïve approach of classifying every instance to the majority class
would provide an accuracy of 95%, which could be considered very good. This measure, however, fails to reflect the fact that
0% of the target instances are identified, which we assume with higher misclassification cost [16].

Alternatively, several assessment metrics are frequently adopted in the research community for learning problems with
imbalanced data sets. In this work we use the G-mean as the main performance metric. This measure is computed as the
geometric mean of the true positive and true negative rates:
G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
TN þ FP

r
ð1Þ
where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives. Another metric commonly used
to assess classification models is the Area under the curve (AUC), see [30].

3. Related work on classification and feature selection with Support Vector Machines

This section lays the foundation for the posterior developments by first recalling the SVM approach for binary classifica-
tion. The subsequent subsection presents related work for feature selection with SVM.

3.1. Binary classification with Support Vector Machines

Given training vectors xi 2 Rn; i ¼ 1; . . . ;m and a vector of binary class labels y 2 Rm; yi 2 �1;þ1f g; i ¼ 1; . . . ;m, linear SVM
determine the optimal hyperplane f ðxÞ ¼ wT � xþ b that aims to separate the training patterns according to their classes while
achieving best generalization performance for new instances. In order to obtain this optimal hyperplane, SVM maximize its
margin, which is the sum of the distances to the closest positive and negative training patterns, and is equivalent to minimizing
the norm of w [36]. Since a perfect separation of all training patterns is not always possible, a slack variable ni is introduced for
each training vector xi; i ¼ 1; . . . ;m and C is a parameter that penalizes the overall training error [36] as shown in (2).
min
w;b;n

1
2
kwk2 þ C

Xm

i¼1

ni

s:t: yi � ðw> � xi þ bÞP 1� ni; i ¼ 1; . . . ;m; ð2Þ
ni P 0; i ¼ 1; . . . ;m:
In binary classification of imbalanced data sets the case of primary interest is the one where the target (positive) class,
labeled þ1, is much smaller than the background (negative) class, labeled �1.

To achieve a nonlinear classifier based on SVM, the solution will be given by a kernel machine
f ðxÞ ¼ sign
Xm

i¼1

yia�i Kðx;xiÞ þ b�
 !

ð3Þ
where training data are mapped to the higher dimensional space H by the function / : x! /ðxÞ 2H. The mapping can be
represented by a kernel function Kðx; yÞ ¼ /ðxÞ � /ðyÞ which defines an inner product in H and should satisfy Mercer’s con-
dition [36]. The optimal separating hyperplane in H is the hyperplane with maximal distance to the closest image /ðxiÞ from
the respective training pattern. The corresponding dual formulation can be stated as follows:
max
a

Xm

i¼1

ai �
1
2

Xm

i;s¼1

aiasyiysKðxi; xsÞ

s:t:
Xm

i¼1

aiyi ¼ 0; ð4Þ

0 6 ai 6 C; i ¼ 1; . . . ;m:
We base our analysis on the Gaussian kernel, which has led to the best results in many applications and is a common
choice in the literature [20]. It has the following form.
Kðxi;xsÞ ¼ exp � jjxi � xsjj2

2r2

 !
ð5Þ
where r > 0 is the parameter controlling the kernel width.

3.2. Related work on feature selection with SVM

According to [14], three main approaches have been developed for feature selection: filter, wrapper, and embedded
methods. The first approach (filter methods) uses statistical properties of the features in order to filter out poorly informative
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ones, before applying any classification algorithm. Commonly used filter methods are the v2 statistic, which measures the
independence between the distribution of values and classes [35]; the Information Gain, which is a measure of informational
entropy, to the problem of deciding how important a given feature is [35], and the Fisher Criterion Score (F), which computes
each feature’s importance independently of the other features by calculating the difference of that feature’s mean values for
the two classes [14], as shown in (6).
FðjÞ ¼
lþj � l�j

ðrþj Þ
2 þ ðr�j Þ

2

�����
����� ð6Þ
where lþj (l�j ) represent the mean for the j-th feature in the positive (negative) class and rþj (r�j ) is the respective standard
deviation ðj ¼ 1; . . . ;nÞ.

Many successful applications of this measure have been reported in literature; see e.g. [11] where based on the Fisher
score a multi-class SVM has been proposed to classify face images. In [39] this score has been used successfully for text
classification.

Wrapper methods explore the whole set of features to score feature subsets according to their predictive power, which is
computationally demanding, but often provides more accurate results than filter methods. Common wrapper strategies are
Sequential Forward Selection (SFS) and Sequential Backward Elimination (SBE) [14] which evaluate the selected feature sets
based on a particular classification method. In the first case, starting without any variable, the method tries out the variables
one by one and includes in each iteration the most relevant of the remaining ones. On the other hand, SBE starts with all can-
didate features and tests them one by one for statistical significance. In each iteration the least significant feature is eliminated.

The third class of feature selection techniques (embedded methods) determines the respective feature subset during clas-
sifier construction, which can be seen as a search in the combined space of feature subsets and hypotheses. Similar to wrap-
per methods, embedded approaches are specific to a given classification method and therefore have the advantage to include
the interaction with the classifier when modeling feature dependencies. They are, however, computationally less intensive
than wrapper methods [14].

One popular method, which is relevant for the remainder of this paper, is known as Recursive Feature Elimination
(RFE-SVM) [15]. The goal of the linear version of this approach is to find a subset of size r among n variables (r < n), elim-
inating those features whose removal lead to the largest margin of class separation. This can be achieved using backward
elimination, based on the components of the weight vector w.

The linear RFE-SVM approach presented in [15] can be also generalized to the nonlinear case which will be presented next
and is the basis for our subsequent development. Since the margin of the separating hyperplane is inversely proportional to
the Euclidean norm of the weight vector w, this norm can be rewritten in terms of the dual variables of the SVM model:
W2ðaÞ ¼
Xm

i;s¼1

aiasyiysKðxi;xsÞ ð7Þ
The feature to be removed in each iteration is the one whose removal minimizes the variation of W2ðaÞ. The nonlinear
RFE-SVM algorithm follows, where W2

ð�pÞðaÞ represents the training object i with feature p removed.

Algorithm 1. Recursive Feature Elimination SVM - nonlinear case

1. repeat
2. w SVM Training (dual formulation).
3. Eliminate feature p with smallest value of jW2ðaÞ �W2

ð�pÞðaÞj.
4. until r variables remain.

While one could choose a single variable to be removed in each iteration, this would be inefficient in many high-dimen-
sional applications (e.g. classifying microarray data) where data sets are often characterized by thousands of features, and
the authors usually remove half of the variables in each step [15]. Successful applications of RFE-SVM e.g. for analyzing
EEG-signals have been reported in [17] where the authors confirm that this method could provide accurate and useful infor-
mation to aid medical diagnosis.

Embedded feature selection can also be seen as an optimization problem. This is generally done through enforcing feature
selection on the model parameters directly, considering a sparsity term in the objective function. For instance, the Euclidean
norm from the classical SVM (Formulation (2)) can be replaced by the l1 norm XðwÞ ¼

P
ijwij, as presented in the approach l1

Support Vector Machine (l1-SVM) by Bradley and Mangasarian [6]:
min
w;b;n

Xn

j¼1

jwjj þ C
Xm

i¼1

ni

s:t: yi � ðwT � xi þ bÞP 1� ni; i ¼ 1; . . . ;m; ð8Þ
ni P 0; i ¼ 1; . . . ;m:
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An alternative sparsity term is the minimization of the ‘‘zero norm’’: XðwÞ ¼ kwk0 ¼ jfi : wi – 0gj. Note that, unlike the l1

norm, k � k0 is not a norm because the triangle inequality does not hold [6]. Weston [41] proposed an approach for
‘‘zero-norm’’ minimization (l0-SVM) by iteratively scaling the variables, multiplying them by the absolute value of the weight
vector w obtained from the SVM formulation, until convergence. Variables can be ranked by removing those features whose
weights become zero during the iterative algorithm and computing the order of removal. This method considers the follow-
ing approximation of the l0 norm:
XðwÞ ¼
Xn

j¼1

logð�þ jwjjÞ: ð9Þ
where � is a small positive constant.
Filter and resampling methods have been used together with positive results in imbalanced data sets [5,29,35,40,43].

Filter techniques do not require further adaptations when facing imbalanced data sets and are compatible to data resampling
since the process of feature filtering is independent of the learning process. Some specific filter approaches have been
proposed to address the class-imbalance problem directly: FAST [10] performs feature filtering based on the Area under
the curve (AUC), and DBFS [1], which considers Information Gain as an alternative for AUC.

To the best of our knowledge, neither wrapper nor embedded methods have been proposed to treat the class imbalance
problem in high-dimensional applications using Support Vector Machines. Fernandez et al. [13] applied a genetic algorithm
to improve the performance of a fuzzy rule-based classification system for imbalanced data sets, but without selecting
relevant features. Villar et al. [37] also proposed a genetic algorithm that, in their case, simultaneously performs feature
selection and granularity learning for fuzzy rule-based classification systems for imbalanced data sets. This approach
removes irrelevant variables through a backward elimination process using an AUC-based fitness function. This method
achieved good results under imbalanced class conditions, but only for low-dimensional data sets.

4. Proposed feature selection methods for imbalanced data sets

We propose a family of embedded methods for backward feature selection using Support Vector Machines which are
inspired by the backward elimination procedure of SVM-RFE [15], as presented in Section 3.2. The rationale behind our
approach is that we eliminate those features whose removal has less impact on the final solution, considering a class-
imbalanced problem. To perform this, we attempt at recreating the main goal for this task: to achieve the best predictive
performance in an unseen subset, using a cost-sensitive metric.

Section 4.1 presents our base algorithm for backward feature elimination. The holdout scheme proposed in Section 4.2
shows how an advanced split of training sets can improve the respective results derived from the base algorithm. Section 4.3
illustrates how SMOTE can be used within the two previously presented methods in order to treat very highly imbalanced
data sets.

4.1. Base algorithm for backward elimination

In this subsection we introduce our base algorithm and study different variations, for example by using different loss
functions. Following the notation used by Song et al. [31], we denote by S the full set of features. We want to find a subset
K ðK#SÞ of features, such that the performance of the SVM classifier using this subset’s features is maximized, considering a
training set T .

In order to compare the performance of different feature selection strategies, we will generate a vector of features Sy
sorted in increasing degree of relevance. This is achieved by the following iterative algorithm:

Algorithm 2. Backward Algorithm for Feature Elimination (BFE-SVM)

Input: The original set of features S
Output: An ordered vector of features Sy

1. Sy  ;
2. repeat
3. a SVM Training usingT
4. I  argminI

P
j2ILOSSða;S n fjgÞ; I � S

5. S  S n I
6. Sy  ðSy; IÞ
7. until S ¼ ;

In Step 4 the algorithm determines a set I of features to be eliminated. While one could choose a single element of S, this
would be inefficient when there is a large number of irrelevant features. On the other hand, removing too many features at
once increases the risk to loose relevant features [15]. In our experiments, we found a good compromise between speed and
feature quality was to remove 10% of the current features at every iteration.
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Since our proposed embedded approach takes explicitly into account feature performance within a set of remaining
features at any iteration, the problems typically related to model-free feature screening, do not occur. These problems are
(1) any irrelevant feature that is highly correlated with the set of relevant features could be selected and (2) a marginally
uncorrelated feature that is jointly correlated with the response might not be selected; see [2,12] for a more general discus-
sion of feature screening.

Different loss functions can be considered within Algorithm 2. In our experiments we used the following ones:

� Standard 0–1 loss function: This measure is based on the total number of errors in the training set. It assumes equal cost
for both errors and therefore it is not suitable for imbalanced data sets. Using this loss function we want to prove that
feature relevance should be measured considering different costs for different types of errors. Formally, given a solution
ða; bÞ, obtained by applying SVM to a training set T , and a set of available features S, the 0–1 loss for a given feature j 2 S is
defined as:
LOSS0�1ðða; bÞ;S n fjg; T Þ ¼
X
s2T

ys � sgn
X
i2T

aiyiKðx
ð�jÞ
i ; xð�jÞ

s Þ þ b

 !�����
����� ð10Þ
where xð�jÞ
i is the training object i with feature j removed and sgn is the signum function.

� Balanced loss function: In order to make the errors from an imbalanced data set comparable, we use the balanced loss
function, which takes the weighted average of Type I and Type II errors. We split the training set T into T þ and T �,
containing the positive and negative instances, respectively. The balanced loss for a given feature j 2 S, is defined as:
LOSSblðða; bÞ;S n fjg; T Þ ¼
P

s2T � ys � sgn
P

i2T �aiyiKðx
ð�jÞ
i ;xð�jÞ

s Þ þ b
� ���� ���

jT�j

þ
P

s2T þ ys � sgn
P

i2T þaiyiKðx
ð�jÞ
i ;xð�jÞ

s Þ þ b
� ���� ���

jTþj
ð11Þ
where jTþj (jT�j) represents the cardinality of the training set Tþ (T�), i. e. the number of positive (negative) instances.
� Predefined loss function: A predefined loss function can be used if the relation between the costs of Type I and Type II

errors can be estimated for a given application. Since the scope of this work is mainly methodological, we will not con-
sider this measure, but it can be useful in particular applications with imbalanced data sets, such as churn prediction or
credit scoring.

4.2. Holdout strategy for backward feature elimination

We propose an additional modification to the backward elimination process, which is the assessment of each attribute’s
contribution in an ‘‘unseen’’ subset of the training data, instead of training the model and constructing the loss function with
the same data set. To do so, the training data T is further splitted into a subset TRwhere SVM is trained, and a validation set
V used to compute the respective loss function [20]. This is achieved by adding a holdout strategy to Algorithm 2, leading to
the following algorithm.

Algorithm 3. Holdout Algorithm for Backward Feature Elimination (HO-BFE)

Input: The original set of features S
Output: An ordered vector of features Sy

1. Sy  ;
2. repeat
3. ðTR;VÞ  Holdout using T
4. a SVM Training using TR
5. I  argminI

P
j2I LOSS ða;S n fjg; TR;VÞ; I � S

6. S  S n I
7. Sy  ðSy; IÞ
8. until S ¼ ;

We redefine the loss measures used in Algorithm 3:
LOSS0�1ðða; bÞ;S n fjg; TR;VÞ ¼
X
l2V

yv
l � sgn

X
i2TR

aiyiKðx
ð�jÞ
i ; xvð�jÞ

l Þ þ b

 !�����
����� ð12Þ
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LOSSblðða; bÞ;S n fjg; TR;VÞ ¼
P

l2V� yv
l � sgn

P
i2TR�aiyiKðx

ð�jÞ
i ;xvð�jÞ

l Þ þ b
� ���� ���

jT�j

þ
P

l2Vþ yv
l � sgn

P
i2TRþaiyiKðx

ð�jÞ
i ;xvð�jÞ

l Þ þ b
� ���� ���

jTþj
ð13Þ
where V is the Validation subset and xv
l and yv

l are this subset’s objects and labels, respectively. xvð�jÞ
l means validation object

l with feature j removed.
One of the problems when applying this algorithm is that different runs may lead to different results in terms of selected

features, in particular with few training examples and in the presence of imbalanced data sets. A more stable selected feature
subset can be achieved by performing k different holdout splits and averaging the loss functions before eliminating features.
The attributes whose elimination leads to a better predictive performance according to this average will be added to the
ordered list of features Sy in Step 4. In our experiments we use k ¼ 5, and the influence of this parameter is further discussed
in Section 5.3.

4.3. Backward feature elimination with SMOTE

Although the previous algorithms are designed to perform an adequate feature selection under conditions of imbalanced
data sets, backward embedded methods require a base classifier (in this case SVM) that successfully discriminates between
the two classes. In cases of highly imbalanced and overlapping classes, data resampling may be useful to achieve an adequate
classification performance. For the particular case of microarray data, undersampling may not be the right procedure since
only few examples are available. In order to overcome this problem, we may generate artificial target class instances using
the oversampling method SMOTE on the training set. This procedure allows a better split of the training data set and makes
some of the extreme cases of imbalanced data sets tractable. We propose to use SMOTE for the base algorithm Backward
Feature Elimination (Algorithm 2) as well as for the base algorithm with holdout strategy (Algorithm 3), completing our
proposed family of methods for feature selection based on SVM for imbalanced data sets. The respective algorithms, i.e.
Algorithms 4 and 5 follow.

Algorithm 4. Backward Algorithm for Feature Elimination using SMOTE

Input: The original set of features S
Output: An ordered vector of features Sy

1. Sy  ;
2. T 0  SMOTEðT Þ
3. repeat
4. a SVM Training using T 0
5. I  argminI

P
j2I LOSSða;S n fjgÞ; I � S

6. S  S n I
7. Sy  ðSy; IÞ
8. until S ¼ ;
Algorithm 5. Holdout Algorithm for Backward Feature Elimination using SMOTE

Input: The original set of features S
Output: An ordered vector of features Sy

1. Sy  ;
2. T 0  SMOTEðT Þ
3. repeat
4. ðTR;VÞ  Holdout using T 0
5. a SVM Training using TR
6. I  argminI

P
j2I LOSSða;S n fjg; TR;VÞ; I � S

7. S  S n I
8. Sy  ðSy; IÞ
9. until S ¼ ;
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5. Experimental results and discussions

We applied the proposed approaches for feature selection on six DNA microarray data sets which have already been used
for benchmark feature selection algorithms (e.g. [28,42]). We compared our proposals for feature selection with the alterna-
tive methods such as Fisher Score, l1-SVM, l0-SVM, and SVM-RFE (for both, linear as well as nonlinear classifiers).

We first show the data sets in Section 5.1, while Section 5.2 presents a summary of the results obtained for the proposed
approaches, considering linear and Gaussian kernels, as well as SMOTE oversampling. The respective details are provided in
Appendix A. Finally, a sensitivity analysis of the different parameters and a further discussion from the results is presented in
Section 5.3.

5.1. Description of data sets and validation procedure

5.1.1. Lung cancer data set (LUNG)
The lung cancer data set contains the gene expression of 181 samples (31 malignant and 150 normal) described by 12533

features [3]. We compared our results using the following number of features: 20, 50, 100, 250, 1000, 2000, 4000, and 12,533
(i.e. no features removed).

5.1.2. GLIOMA data set
The GLIOMA data set contains 50 instances described by 4433 genes in four classes: cancer glioblastomas, non-cancer glio-

blastomas, cancer oligodendrogliomas, and non-cancer oligodendrogliomas [22,42]. To adapt this data set to binary classification
we studied class cancer oligodendrogliomas (seven instances) versus the rest, using the following number of features: 20, 50,
100, 250, 1000, 2000, 4433 (i.e. no features removed).

5.1.3. SRBCT data set
The SRBCT data set contains 83 samples in four classes: Ewing family of tumors, Burkitt lymphoma, neuroblastoma, and

rhabdomyosarcoma [18,42]. Each sample contains 2308 genes. To adapt this data set to binary classification we studied class
Burkitt lymphoma (eleven instances) versus the rest, using the following number of features: 20, 50, 100, 250, 1000, 2308 (i.e.
no features removed).

5.1.4. LUNG data set (LUNG2)
The LUNG2 data set contains 203 samples described by 3312 genes in five classes: adenocarcinomas, squamous cell lung

carcinomas, pulmonary carcinoids, small-cell lung carcinomas, and normal lung [4,42]. To adapt this data set to binary classi-
fication we studied class small-cell lung carcinomas (20 instances) versus the rest, using the following number of features:
20, 50, 100, 250, 1000, 2000, 3312 (i.e. no features removed).

5.1.5. CAR data set
The CAR data set contains 174 samples described by 9182 genes in eleven classes: prostate, bladder/ureter, breast, colorec-

tal, gastroesophagus, kidney, liver, ovary, pancreas, lung adenocarcinomas and lung squamous cell carcinoma [32,42]. To adapt
this data set to binary classification we studied class kidney (eleven instances) versus the rest, using the following number
of features: 20, 50, 100, 250, 1000, 2000, 4000 and 9182 (i.e. no features removed).

5.1.6. Bullinger data set (BULL)
The Bullinger data set [7] stems from a study for Adult Acute Myeloid Leukemia classification. The preprocessed data con-

tains the gene expression of 94 samples (4 with preceding malignancy and 90 without preceding malignancy) described by
17,404 features. We compared our results using the following number of features: 20, 50, 100, 250, 1000, 2000, 4000, 8000,
and 17,404 (i.e. no variables removed).

Table 1 summarizes the relevant information for each benchmark data set.
For model evaluation we chose leave-one-out (LOO) cross-validation, since all six data sets have relatively few instances,

as is usually the case for microarray data sets [38,42]. In each iteration of the LOO approach, feature selection is performed in
Table 1
Number of features, number of examples, percentage of each class, and Imbalance Ratio (IR) for all six data sets.

Dataset #Features #Examples %Class (min.,maj.) IR

LUNG 12,533 181 (17.1, 82.9) 4.85
GLIOMA 4433 50 (14.0, 86.0) 6.14
SRBCT 2308 83 (13.3, 86.7) 6.55
LUNG2 3312 203 (9.8, 90.2) 9.15
CAR 9182 174 (6.3, 93.7) 14.8
BULL 17404 94 (4.3, 95.7) 22.5
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the training set, ranking the features according to their respective contribution measures. Several SVM classifiers are finally
constructed for an increasing number of ranked features, evaluating their performance with the test data. The classification
performance (accuracy and gmean, see Section 2.4) is finally computed by averaging the test results.

In order to study the classification performance of the proposed linear feature selection approaches we compared the
results for a given number of features with different feature selection algorithms. For linear SVM we used a penalty param-
eter C ¼ 1. For nonlinear SVM classifiers with Gaussian kernel we used C ¼ 1000 and r ¼ 3, as suggested in Rakotomamonjy
[27]. We present the results for the following proposed feature selection models.

� BFE� SVM0�1: BFE-SVM for feature ranking (Algorithm (2)) using linear kernel and 0–1 loss function (10).
� BFE� SVMbl: BFE-SVM for feature ranking (Algorithm (2)) using linear kernel and balanced loss function (11).
� HO� BFE0�1: HO-BFE for feature ranking (Algorithm (3)) using linear kernel and 0–1 loss function (12).
� HO� BFEbl: HO-BFE for feature ranking (Algorithm (3)) using linear kernel and balanced loss function (13).
� BFE� SVM0�1k: BFE-SVM for feature ranking (Algorithm (2)) using Gaussian kernel and 0–1 loss function (10).
� BFE� SVMblk: BFE-SVM for feature ranking (Algorithm (2)) using Gaussian kernel and balanced loss function (11).
� HO� BFE0�1k: HO-BFE for feature ranking (Algorithm (3)) using Gaussian kernel and 0–1 loss function (12).
� HO� BFEblk: HO-BFE for feature ranking (Algorithm (3)) using Gaussian kernel and balanced loss function (13).
� All previous approaches considering SMOTE resampling over the training subset.

Additionally, the following well-known feature selection algorithms are applied for comparison purposes.

� l1-SVMr : l1-SVM for feature ranking (Formulation (8)), using standard SVM as classifier (Formulation (2)).
� SVM� RFEl: SVM-RFE for feature ranking (linear kernel, Algorithm (1)), using standard SVM as classifier (Formulation

(2)).
� l0-SVM: l0-SVM for feature ranking (Formulation (9)), using standard SVM as classifier (Formulation (2)).
� Fisher + SVM: Fisher Score for feature ranking (Formulation (6)), using standard SVM as classifier (Formulation (2)).
� SVM� RFEnl: SVM-RFE for feature ranking (Gaussian kernel, Algorithm (1)), using kernel-based SVM as classifier (Formu-

lation (4)).
� All previous approaches considering SMOTE resampling over the training subset.

5.2. Summary of classification results for imbalanced microarray datasets

In this section, we present a summary of the results obtained from our experiments; the details are provided in Appen-
dix A. In order to assess the best performance and the stability of the respective approaches, we provide the maximum
and average leave-one-out (LOO) gmean values for all predefined subsets of attributes for all six microarray datasets;
see Table 2.

According to the results presented in Table 2, the approaches from our proposed family of methods provide best overall
performance in four out of six data sets, and in the remaining two the performance is similar compared to the best alterna-
tive approaches. Within the proposed strategies, the Holdout approaches tend to perform better than the basic backward
approach that considers only the training samples. The balanced loss function outperforms the standard 0–1 loss function
on imbalanced data sets, with the only exception of the GLIOMA dataset.

Another important result is that in general there is a low influence of data resampling on classification performance. Only
in the BULL data set resampling was relevant, achieving 69.9% gmean with linear HO� BFEbl for a data set that was not pos-
sible to shatter. We conclude that in extremely imbalanced and overlapping data sets, SMOTE can be very useful to improve
the classifier’s performance, but it does not provide a significant improvement otherwise.

Excluding data sets where a classifier using all available features (i.e. no feature selection) obtains already very high clas-
sification performance, an adequate feature selection significatively improves predictive performance.

It may sound counterintuitive that less information is actually better than using all variables. However, several
researchers have already proved the advantages of feature selection to mitigate the curse of dimensionality [15,21,27]. This
is especially true for microarray data sets where the importance of feature selection has been emphasized (see e.g. [31])
since usually only very few observations can be obtained that are typically described by a huge number of genes
(features).

Another important observation is that linear feature selection methods perform consistently better than kernel-based
approaches. We infer that the difficulty of setting the right combination of parameters C and r without using a time consum-
ing crossvalidation strategy (which may also lead to overfitting) explains this loss in performance. For this work, we set a
fixed value of C for linear methods and a fixed tuple ðC;rÞ for kernel-based methods, as has been proposed in the literature
(see, for example, [27]). Empirically, we observe a strong relationship between the number of variables in the solution and
the optimal value for r (an SVM classifier normally requires a larger r when the number of features increases [20,21]), and
therefore a model selection procedure for each number of ranked features is recommended. This topic is further discussed in
the following subsection.



Table 3
G-mean, in percentage. Average and maximum along all ranked features. Sensitivity analysis for parameter C.

BFE� SVM0�1 BFE-SVMbl HO� BFE0�1 HO-BFEbl

Mean Max Mean Max Mean Max Mean Max

2�3 37.1 75.6 37.1 75.6 37.8 90.4 37.6 73.8

2�2 48.7 92.6 48.7 92.6 45.6 82.5 42.3 74.7

2�1 67 92.6 71.7 92.6 51.4 81.5 67.1 75.6

20 77.4 92.6 80.8 92.6 59.1 97.6 70.7 90.4

21 82.2 92.6 82.2 92.6 53.2 95.2 75.8 82.5

22 82.3 92.6 82.1 92.6 58.3 73.8 76.3 83.5

23 82.3 92.6 82.1 92.6 65.1 75.6 81.7 90.4

24 82.2 92.6 82.1 92.6 62 76.2 74.1 81.5

25 82.2 92.6 82.1 92.6 52.4 74.7 77.4 88.2

Table 4
G-mean, in percentage. Average and maximum along all ranked features. Sensitivity analysis for parameter r.

BFE� SVM0�1k BFE� SVMblk HO� BFE0�1k HO� BFEblk

Mean Max Mean Max Mean Max Mean Max

30 29.7 89.3 29.7 89.3 26.4 74.7 26.3 72.9

31 53.9 82.5 72.5 92.6 54.1 82.5 55.9 84.5

32 77.7 92.6 77.7 92.6 73 83.5 68.4 75.6

33 63.6 92.6 63.6 92.6 59 83.5 58 83.5

34 41.9 75.6 41.9 75.6 37 74.7 37.1 75.6

35 15.9 73.8 15.9 73.8 13.9 73.8 14 73.8

Table 2
Maximum and average LOO gmean, in percentage. Average over all ranked features. Comparison among all approaches. Best results for each dataset are
presented in bold.

LUNG GLIOMA SRBCT LUNG2 CAR BULL

max. avg. max. avg. max. avg. max. avg. max. avg. max. avg.

No. resampling l1-SVMr 96.4 96.7 63.6 74.7 99.9 100 100 100 92.6 95 0 0
SVM� RFEl 96.6 96.7 66.5 75.6 99.9 100 100 100 91.6 95.3 0 0
Fisher + SVM 97.8 98.4 66.9 73.8 99.9 100 99.3 100 90.5 90.5 0 0
l0-SVM 96.4 96.7 66.5 75.6 99.9 100 100 100 92.6 95 0 0
SVM� RFEnl 98.0 98.4 59.9 83.5 70.4 100 81.9 100 63.6 90.5 0 0
BFE� SVM0�1 95.8 98.4 83.7 92.9 95.3 100 100 100 90.5 95.3 0 0
BFE-SVMbl 95.8 98.4 80.8 92.6 99.9 100 100 100 92.1 95.3 0 0
HO� BFE0�1 97.5 100 83.0 92.6 95.3 100 100 100 91.0 95.3 0 0
HO-BFEbl 98.1 100 81.7 90.4 96.5 100 100 100 93.1 100 0 0
BFE� SVM0�1k 94.7 96.7 53.9 82.50 0 0 0 0 0 0 0 0
BFE� SVMblk 94.7 96.7 72.5 92.6 58.2 95.3 100 100 0 0 0 0
HO� BFE0�1k 97.6 99.7 54.1 82.5 55.1 89.8 71.6 100 58.7 100 0 0
HO� BFEblk 96.9 98.0 55.9 84.5 58.2 95.3 72 100 55.8 95.3 0 0

SMOTE l1-SVMr 92.1 96.7 58.9 72.9 99.9 100 99.1 100 91.6 95.3 0 0
SVM� RFEl 97.1 98.4 64.5 74.7 100 100 100 100 91.6 95.3 0 0
Fisher + SVM 97.7 98.4 69.7 73.8 99.9 100 99.3 100 90.5 90.5 0 0
l0-SVM 96.6 98.4 65.6 75.6 99.8 100 100 100 92.1 95.3 0 0
SVM� RFEnl 92.8 100 62.0 81.5 81.9 100 85.2 100 82.8 95.3 0 0
BFE� SVM0�1 95.3 99.7 82.7 92.6 96.8 100 100 100 91.5 95.3 25.6 64.1
BFE-SVMbl 92.9 98.4 72.7 78.4 99.2 100 99.2 100 92.6 95.3 14.3 48.6
HO� BFE0�1 93.2 98.4 78.8 92.6 98.7 100 100 100 92.1 95.3 17.8 67.1
HO-BFEbl 97.1 100 74.8 82.5 95.8 100 98.3 100 92.6 95.3 11.9 69.9
BFE� SVM0�1k 82.0 98.4 65.4 83.5 56.1 89.8 71.5 100 63.4 99.7 10.5 57.7
BFE� SVMblk 83.7 98.0 51.8 75.6 69.1 95.3 81.3 100 61.2 94.5 25.3 59.2
HO� BFE0�1k 85.8 98.4 70.8 84.5 53.6 90.5 79.4 100 63.4 99.7 25.7 64.5
HO� BFEblk 81.4 98.4 60.8 91.5 65.2 94.7 78.6 100 89.0 90.5 16.6 68.3
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Table 5
G-mean, in percentage. Average and maximum along all ranked features. Sensitivity analysis for the percentage of variables eliminated at each iteration of the
algorithm.

BFE� SVM0�1 BFE-SVMbl HO� BFE0�1 HO-BFEbl

Mean Max Mean Max Mean Max Mean Max

10% 82.2 92.6 78.8 92.6 64.9 82.5 77.1 83.5
20% 81.2 92.6 81.8 92.6 73.1 82.5 74.1 88.2
30% 80.3 92.6 79.9 92.6 64.9 89.3 75.9 82.5
40% 80.4 91.5 79.9 92.6 53.1 74.7 77.5 92.6
50% 77.7 92.6 79.3 91.5 71.7 82.5 71.4 73.8
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5.3. Sensitivity analysis of the relevant parameters and discussion

In this subsection we study the performance of the proposed methodologies by performing sensitivity analysis of the rel-
evant parameters, characterizing their influence on the final solution. We also discuss issues related to stability, the presence
of redundant variables in the final solution, and computational time.
5.3.1. Sensitivity analysis
To illustrate the influence of the parameters on the classifier, we varied C;r (kernel-based approaches) and the percent-

age of variables removed at every iteration of the algorithm considering the GLIOMA data set. This data set was selected
because it has the highest variance in the results, and therefore it is adequate to illustrate difference between models. Table 3
presents the results of varying C along the values C 2 f2�3;2�2; . . . ;24;25g, for all proposed linear feature selection methods
and eliminating 10% of the attributes at each iteration. Subsequently, Table 4 presents the results of varying r along the val-
ues r 2 f31;32; . . . ;35g, for all proposed nonlinear feature selection methods, for a fixed value of C (C ¼ 1000) and eliminat-
ing 10% of the attributes at every iteration. Finally, Table 5 presents the results of varying the percentage of variables
eliminated at every iteration of the best approach, along 10%, 20%, 30%, 40%, and 50%. In all cases, we present the average
and maximum performance (in terms of gmean) for all subsets of selected features.

From Table 3 we observe that results are very stable along the values above 1. The difference between all values are not
significant according to an ANOVA test (p value 0.848). In contrast, in Table 4 we observe that prediction performance can be
strongly affected by the choice of the kernel, and the range of proper values is very small. Additionally, the choice of the ker-
nel depends on the number of selected attributes: the kernel width should start with high values and decrease together with
the number of selected features. Finally, from Table 5 we observe that predictive performance slightly decreases when more
attributes are removed simultaneously, as the intuition suggests, but these differences are not statistically significant.
5.3.2. Stability
To study the method’s stability regarding the holdout step, different runs of the algorithm were considered for both vari-

ants: one holdout step and five holdout steps. For all runs we consider the same parameters (linear kernel with C ¼ 1 and
10% of feature elimination). Applying an ANOVA test, we detect non-significant differences for all methods (p ¼ 0:588 for
HO� BFE0�1 with one holdout step, p ¼ 0:117 HO� BFEbl with one holdout step, p ¼ 0:959 for HO� BFE0�1 with five holdout
steps, and p ¼ 0:353 for HO� BFEbl with five holdout steps), but the methods based on 5 holdout steps are statistically more
stable than the ones based on one holdout step.

Another possible issue is that the approach is order-dependent in case of similar values of the loss function. The percent-
age of ‘‘ties’’ in the values of the loss function can be computed for all methods to assess the influence of the order in which
the variables are presented. Averaging along all subsets of features, we obtain 90.0% of ‘‘ties’’ for BFE� SVM0�1, 72.7% for
BFE� SVMbl, 73.0% for HO� BFE0�1, and 0% for HO� BFEbl. We conclude that the holdout steps and the use of the balanced
loss function effectively mitigates the risk of eliminating relevant features given by order-dependency.
5.3.3. Redundant variables
Our next experiment explores the appearance of (highly) redundant variables in the solution. Wrapper and embedded

methods take the relationship between variables, and therefore they should be more effective in identifying and eliminating
redundancy. In contrast, if several attributes are simultaneously removed at every iteration, this may result in a higher risk of
removing relevant attributes. For instance, when the weight vector is used to eliminate variables, relevant but redundant
variables may share weight in the hyperplane and be removed together. To reduce this risk, our approach attempts at rec-
reating the main goal for this task: to achieve the best predictive performance in an ‘‘unseen’’ subset, using a cost-sensitive
metric. Empirically, we proved that this strategy correctly identifies those attributes that are relevant to discriminate in a
class-imbalanced problem, given the results presented in previous section. To demonstrate that our approach also correctly
identifies those irrelevant and redundant attributes, we studied the percentage of highly redundant attributes (Pearson’s
q > 0:85) for all methods and for all different subset of selected features. These results are presented in Table 6.



Table 6
Percentage of highly redundant attributes for all methods, and for all different subset of selected features.

Fisher + SVM l0-SVM SVM-RFEl BFE-SVM0�1 BFE-SVMbl HO-BFE0�1 HO-BFEbl

4434 0.12 0.12 0.12 0.12 0.12 0.12 0.12
2000 0.38 0.16 0.14 0.09 0.09 0.08 0.09
1000 0.83 0.24 0.15 0.09 0.09 0.10 0.11

500 1.57 0.28 0.17 0.12 0.12 0.15 0.14
200 2.17 0.47 0.13 0.17 0.17 0.28 0.23
100 3.09 0.22 0.10 0.42 0.34 0.22 0.24

50 3.76 0.24 0.16 0.41 0.65 0.24 0.24
20 4.74 0.53 0.00 0.00 0.53 1.05 0.53
10 4.44 0.00 0.00 0.00 0.00 2.22 2.22

Table 7
Average running times, in seconds, for all methods.

Model Time (s)

Fisher + SVM 1.32
l0-SVM 2.89
SVM-RFEl 4.33
BFE-SVM0�1 6.18
BFE-SVMbl 9.12
HO-BFE0�1 5.78
HO-BFEbl (1 runs) 8.71
HO-BFEbl (5 runs) 38.89
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According to Table 6, Fisher Score has a significantly higher percentage of redundant variables, compared to all other
wrapper and embedded approaches. The difference between these approaches is not significant, although RFE-SVM and
BFE� SVMbl are the best approaches in this context.

5.3.4. Computational time
Table 7 reports the average CPU times of one fold for all algorithms, considering similar parameters (ranking construction

and SVM classification). For these experiments we use an Intel i7-3630QM system with CPU at 2.4 GHz and 16 GB of RAM.
From Table 7 we observe that the running times for all proposed algorithms are relatively similar, with the only exception

of the HO-BFE version, whose running time is about five times higher, as expected, since it performs five repetitions of the
algorithm for stability reasons. Fisher Score is the fastest approach, followed by the l0-SVM. There is no significant difference
between the use of different contribution metrics nor the use of a holdout step versus using the entire training set.

5.3.5. Conclusions from sensitivity analysis
We draw the following conclusions from these experiments:

� Results obtained by varying parameter C are very stable above C ¼ 1, and therefore it can be fixed to a sufficiently large
value during the experimental framework.
� In contrast, kernel-based methods behave very unstable in terms of performance. The main reason for this is the difficulty

in selecting the optimum value for parameter r. The right r value seems to be strongly dependent to the number of
selected features for the classification task. To achieve better performance with kernel methods it would be necessary
to perform a grid search at each step of the backward algorithm, leading to a very time-consuming validation strategy.
� The holdout step provides a framework that adequately emulates the ultimate goal of feature selection, which is selecting

those features that are relevant for predicting new data, resulting in an important gain in terms of performance. This
method, however, requires the average of several holdout steps in order to assure stable results. This fact is particularly
important in microarray applications, where only limited number of training samples are available. Empirical results
demonstrate the effectiveness and stability of this approach, which can be performed in tractable running times.
� The correct identification of redundant attributes is an important topic in high-dimensional applications, such as classi-

fication of microarray data. Backward approaches with batch elimination of attributes have a high risk of eliminating rel-
evant variables at the first iterations, leading to poor predictive results. Furthermore, filter approaches that do not take
into account correlations between attributes may include a high percentage of redundant variables in their final selection.
We empirically assess both approaches, by first varying the percentage of batch elimination in our investigation (Table 5),
and second computing the percentage of highly redundant attributes selected by each method (Table 6). The above-men-
tioned sensitivity analysis confirms the good results obtained in terms of performance by our approach varying the batch
elimination criterion, finding a good trade off between performance and running time around 10–20%. Given these results
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we conclude that the method successfully finds those attributes that are relevant to construct the hyperplane of the
respective classifier. We also confirm that embedded approaches are more effective at eliminating redundancy than filter
methods, according to Table 6.
� Regarding computational complexity of our approaches, the backward elimination process is similar to RFE-SVM, differ-

ing only in the holdout step and the computation of the contribution metrics. Computationally speaking, these two steps
are significantly less expensive than the backward elimination process. The complexity of RFE-SVM is of the order of
maxðn;mÞm2 considering the operations of SVM (computation of the kernel matrix and its inversion) and the successive
iterations with a decreasing number of features (assuming a reduction by a factor of 2 at each iteration) [14].

6. Conclusions and future work

We introduced a family of methods based on a backward elimination approach for feature ranking and embedded clas-
sification using Support Vector Machines, which has been adapted to select those attributes that are relevant to discriminate
between classes under imbalanced data conditions.

Four different strategies were designed to accomplish this objective: We combined two different backward elimination
strategies, one based on training performance (BFE-SVM) and another based on predictive performance via successive hold-
out steps (HO-BFE). We applied two different evaluation measures, a standard 0–1 loss function and the balanced loss func-
tion to explicitly favor those attributes whose elimination leads to less errors in the minority class. Our approaches present
the following advantages, based on a comparison with other feature selection approaches for SVM in high-dimensional
applications with imbalanced datasets (such as microarray datasets).
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Fig. A.1. GMEAN versus the number of ranked variables for different feature selection approaches. LUNG dataset.
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Fig. A.2. GMEAN versus the number of ranked variables for different feature selection approaches. GLIOMA dataset.
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� The proposed approaches outperform other feature ranking techniques in terms of predictive performance for different
SVM-based feature selection techniques, achieving particularly good results on highly imbalanced data sets, based on
their ability to identify irrelevant variables using the classifier and minimizing the number of errors in the minority class,
which is assumed to have a higher cost.
� The proposed methods allow for the explicit incorporation of misclassification costs in the assessment of each attribute’s

contribution, leading to a feature selection process especially designed for a particular application.
� Our strategies are very flexible and allow the use of different kernel functions for nonlinear feature selection and classi-

fication using SVM. Furthermore, they can also be generalized to various classification methods, other than SVM.

In Section 5 we proposed an experimentation setup to avoid an uneven comparison between linear and nonlinear meth-
ods, considering similar efforts in both cases. Although no significant gain was obtained in our experiments by using kernel
methods, the proposed strategies have the potential to achieve better results under a more exhaustive model selection, by
embedding the feature selection process. Given the good results obtained while combining SVM for feature ranking with the
same approach for classification, we suggested performing a grid search for parameters C and r in each iteration of the algo-
rithm. This was through monitoring the performance in order to obtain a final solution along the process, without consid-
ering feature selection and classification as independent problems. According to our results, the success of a nonlinear
backward elimination strategy is strongly dependent on the right definition of the decision boundary, and in particular
on the correct setting of the parameter r for high-dimensional applications.

The experimentation procedure also allows the comparison with feature selection approaches that are not explicitly
adapted to imbalanced data sets. According to our results, the adapted version of HO-BFE using balanced loss leads to
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Fig. A.3. GMEAN versus the number of ranked variables for different feature selection approaches. SRBCT dataset.
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consistently better results in terms of accuracy and gmean compared to alternative feature selection approaches, resulting in
an attractive alternative for high-dimensional problems with imbalanced data sets. The main drawback, however, is the
higher running time of the algorithm when performing different holdout partitions and averaging them, instead of using
only the training sample. However, the predictive performance of this procedure is significantly higher in most cases. Fur-
thermore, the order of the algorithm for BFE-SVM with balanced loss is exactly the same as that of RFE-SVM, and it may lead
to better results by defining an adequate loss function for classification performance with imbalanced data sets.

Another important conclusion was the need for an intelligent oversampling in extreme cases of class imbalance and over-
lap, in which no adequate classifier can be found, since embedded and wrapper feature selection strongly depend on the clas-
sification method. In other cases SMOTE oversampling did not improve the solutions found without data resampling.

There are several opportunities for future work. First, classification of imbalanced data sets can be performed by using
one-class SVM approaches, such as SVDD (Support Vector Data Description [34]). We are currently working on embedded
feature selection strategies for this approach in order to identify those features that are relevant in constructing the data
description. Secondly, the costs of Type I and Type II errors may be different and the balanced loss function could be adapted
to different profit or cost functions in a particular domain. Credit scoring, fraud detection, and churn prediction are some
examples of applications with imbalanced data sets where a profit function can be constructed to evaluate both the perfor-
mance of the classifier and the relevance of its features. In applications where high correlation among sets of features is to be
expected, simultaneous feature grouping and selection as suggested e.g. by [44] could be an interesting approach to improve
problem understanding and classifier performance. Along the same line it would be interesting in a given application to have
a domain expert interpreting the selected features and establishing their relevance in the particular case.
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Fig. A.4. GMEAN versus the number of ranked variables for different feature selection approaches. LUNG2 dataset.
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Appendix A. Detailed feature selection results

The results of the leave-one-out crossvalidation (in terms of g-mean) are shown in Figs. A.1 (LUNG dataset), A.2 (GLIOMA
dataset), A.3 (SRBCT dataset), A.4 (LUNG2 dataset), A.5 (CAR dataset) and A.6 (BULL dataset). The figures present the best
proposed and alternative approaches using linear and Gaussian kernel respectively for an increasing number of selected
features. The upper figure shows the results without resampling, while the lower figure depicts the results obtained using
the same approaches but with SMOTE oversampling.

From Fig. A.1(a) we observe that the proposed approach HO-BFE using balanced loss and linear kernel has the best pre-
dictive performance, achieving perfect classification when using 20, 100, and 250 features, followed by the best proposed
approach using Gaussian kernel (HO-BFE using 0–1 loss). Alternative approaches behave relatively similar in this data set.
The results are relatively similar when using SMOTE (see Fig. A.1(b)), with the exception of the kernel methods, which show
poor performance when using more than 1000 features.

For GLIOMA data set (see Fig. A.2(a)), the proposed approaches BFE-SVM with 0–1 loss using linear and Gaussian kernel
achieved best performance when using 100 variables. The difference is significant compared with alternative approaches,
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Fig. A.5. GMEAN versus the number of ranked variables for different feature selection approaches. CAR dataset.
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where RFE-SVM with Gaussian kernel achieved the best performance. All methods behave similarly when using 500
variables or more. No improvements are obtained when using SMOTE (see Fig. A.2(b)), while some approaches worsen their
performance significantly.

For the SRBCT data set all linear methods achieve very good and stable results, while kernel approaches failed at identi-
fying relevant attributes in some cases; see A.3(a). Best performance is obtained by our approach BFE-SVM with balanced
loss and RFE-SVM with linear kernel. Results are very similar when using SMOTE oversampling; see Fig. A.3(b).

A similar situation can be observed for LUNG2 (Fig. A.4), where perfect results are achieved by the approaches HO-BFE
with balanced loss and RFE-SVM with linear kernel. Kernel approaches fail at correctly identifying relevant features, espe-
cially when using SMOTE oversampling.

Fig. A.5(a) presents the results for the CAR data set without resampling. Here we observe similar performance for all
approaches when using 500 attributes or more, and then our approaches HO-BFE with balanced loss (best proposed linear
method) HO-BFE with 0–1 loss (best kernel-based method) and outperform alternative feature selection strategies, improv-
ing classification performance significantly. Once again, no significant improvement is achieved when using SMOTE resam-
pling, as shown in Fig. A.5(b).

Results for the BULL data set, the one with the highest imbalance ratio, are presented in Fig. A.6. For the case without
resampling, no approach is able to perform feature selection and classification adequately, and the classifiers tend to predict
all instances to the majority class. SMOTE helped to find discriminative classifiers with an adequate balanced classification
performance with fewer features for the proposed approaches only.



No. of Selected Features

LO
O

C
V

 G
M

E
A

N

Fisher + SVM
SVM−RFE_nl
HO−SVM bl
HO−SVM blk  

0
20

40
60

10 20 50 100 250 1000 4000 17404

(a) No resampling

No. of Selected Features

LO
O

C
V

 G
M

E
A

N

Fisher + SVM
SVM−RFE_nl
HO−SVM bl
HO−SVM blk  

0
20

40
60

10 20 50 100 250 1000 4000 17404

(b) SMOTE
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