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Effect of confinement on the deformation of microfluidic drops
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We study the deformation of drops squeezed between the floor and ceiling of a microchannel and subjected to
a hyperbolic flow. We observe that the maximum deformation of drops depends on both the drop size and the rate
of strain of the external flow and can be described with power laws with exponents 2.59 ± 0.28 and 0.91 ± 0.05,
respectively. We develop a theoretical model to describe the deformation of squeezed drops based on the Darcy
approximation for shallow geometries and the use of complex potentials. The model describes the steady-state
deformation of the drops as a function of a nondimensional parameter Ca δ2, where Ca is the capillary number
(proportional to the strain rate and the drop size) and δ is a confinement parameter equal to the drop size divided
by the channel height. For small deformations, the theoretical model predicts a linear relationship between the
deformation of drops and this parameter, in good agreement with the experimental observations.
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I. INTRODUCTION

Drops are usually confined to flow in shallow geometries
and this is often the case in droplet-based microfluidics
[1,2]. Inside microchannels, drops adopt a diskoidal shape
of characteristic radius Ro and height h, which determines the
degree of confinement through the parameter δ = 2Ro/h > 1.
It is to be expected that confinement plays a key role in the
dynamics of drops. Moreover, this geometrical constraint can
be useful for the theoretical description of microfluidic drops
since the flow of fluid at low Reynolds number in Hele-Shaw
cells can be simplified into a two-dimensional problem [3,4].
However, little is known about the difference that confinement
introduces in the behavior of drops versus the cases without
confinement. For example, it is known that the deformation
of unconfined drops in shear flows can be described in terms
of two nondimensional parameters, the capillary number Ca
and the viscosity ratio λ [5–7]. When the confinement is taken
into account, a model describing the deformation of squeezed
drops should include all three parameters Ca, λ, and δ.

Thus far, the effect of confinement on the deformation
and breakup of drops has been studied in cases with δ < 1
[8–10], in which the presence of nearby walls alters the
deformation of nonsqueezed drops. A few experiments have
been conducted to study the deformation of squeezed drops in
microchannels [11–13]. However, these studies remain very
qualitative and a more quantitative description of the role
of confinement in the deformation of drops is still lacking.
In this article we study the effect of confinement on the
drop deformation in cases with δ > 1. We perform controlled
experiments where drops are subjected to a hyperbolic flow
to measure their deformation under confinement. We propose
a theoretical model based on the Darcy approximation for
shallow geometries [3,4]. Together, these results demonstrate
that the effect of confinement can be quantified in a simple
analytical way through the confinement parameter δ.

The article is organized as follows. In Sec. II we describe the
experimental setup and the experimental results are presented
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in Sec. III. The theoretical model that explains the behavior of
a squeezed drop in a hyperbolic flow in presented in Sec. IV.
Finally, experimental and theoretical results are compared and
discussed in Sec. V.

II. MATERIALS AND METHODS

A. Experimental setup

Experiments are performed inside microchannels fabri-
cated in polydimethylsiloxane (Sylgard 184, Dow Corning)
using standard soft lithography techniques [14]. Microchan-
nels are treated with a siliconizing agent (Sigmacote, Sigma-
Aldrich) prior to their use in order to improve their hydropho-
bicity.

The channel geometry is schematically presented in
Fig. 1(a). It consists of three modules, the first one for drop
formation, the second one for controlling the drop velocity, and
the third one is the test section where drops deform in response
to an extensional flow. The channel geometry is characterized
by its height h and its width at the test section, w. Two channels
are used, channel I with h = 40 μm and w = 300 μm and
channel II with h = 58 μm and w = 400 μm.

In the first module of the channel, a microfluidic flow
focusing [15] produces water drops in a carrier oil stream. The
produced disklike drops are characterized by their undeformed
radius Ro, which is determined by the water and oil flow rates
injected in the flow focusing, Qw and Q(1)

o , respectively. The
drop radii Ro range between 50 μm and 120 μm and therefore
the confinement parameter δ ∈ [1.7,6].

In the second module, two oil streams (flow rates Q(2)
o )

are symmetrically injected downstream of the drop formation
section to adjust the velocity of drops independently of their
size. The total flow rate is defined as Qtot = Qw + 2Q(1)

o +
2Q(2)

o ≈ 2(Q(1)
o + Q(2)

o ) since the water flow rate is much
smaller than the oil flow rates.

In the third module, an extensional oil flow is produced
to induce drop deformation. For that, the same total oil
flow rate Qtot is injected into the channel in the opposite
direction and outlet channels are arranged perpendicularly
to the main channel. The resulting cross-shaped intersection,
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FIG. 1. (Color online) (a) Schematic of the microchannel geom-
etry (not to scale), showing the section for drop formation (1), the
second oil inlet for the control of the flow velocity (2), and the
test section in which drops deform (3). Thick arrows represent
the direction of flow. The width at the test section (w) is indicated
and the height h of the channel is in the direction perpendicular
to the figure. (b) Micrography of the channel, with a drop being
accelerated by the injection of Q(2)

o and another one being deformed
in the test section. The flow in the test section is visualized with
fluorescent beads in the absence of drops and several photographs are
superimposed to represent the oil streamlines.

where a hyperbolic flow is produced, defines the test section
where the deformation of the drops is measured. In the optical
micrography of the channel geometry shown in Fig. 1(b), the
hyperbolic flow produced in the test section in the absence of
drops is evidenced with fluorescent tracers.

Distilled water is used to produce the drops while the oil
phase consists of pure mineral oil (heavy, Sigma-Aldrich) used
as received. The water viscosity is ηi = 1 mPa s. The oil
viscosity is measured with a homemade capillary viscometer
at ηo = 120 mPa s. Thus, the viscosity ratio is λ = ηi/ηo =
0.008. The interfacial tension between water and oil, measured
using the pendant drop technique [16], is γ = 48 mN/m.
Fluids are injected at constant flow rates using syringe pumps
(Legato 180, KdScientific). The microfluidic setup is mounted
in an upright microscope (Eclipse 50i, Nikon) and imaged
with a CCD camera (Marlin F-033B, Allied) at 30 frames per
second. The shape of the drops is determined by image analysis
with custom-made MATLAB software.

B. Two-dimensional hyperbolic flow

The channel geometry is designed to produce a depth-
averaged hyperbolic flow of the form

u = −Gx, v = Gy (1)

in the test section in the absence of drops. In Eq. (1), u and
v are the depth-averaged velocity components in the x and
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FIG. 2. Velocity field (arrows) and strain rate (gray scale) in the
test region. Solid lines are drawn at the positions of the channel walls.

y directions defined in Fig. 1(b). G is the strain rate of the
flow and is constant for given Qtot and channel geometry. In
particular, we expect G to depend linearly on Qtot. For a given
total flow rate Qtot, the mean oil velocity flowing into the
test section from each side can be computed as U = Qtot/hw

and from it a characteristic strain rate can be defined as G =
U/w = Qtot/hw2. However, the presence of the channel walls
alters this flow and Eq. (1) is expected to stand only in a region
near the center of the test section.

To characterize the flow in the test section in the absence
of drops, 1-μm-diameter yellow-green fluorescent beads (Flu-
oSpheres, Invitrogen) suspended in water are injected in the
channel. A typical depth-averaged velocity field in the test
section is measured with particle image velocimetry (PIV) in
channel II and shown by the vector field in Fig. 2. In this
case Qtot = 0.4 μL/min and hence U = 0.29 mm/s and G =
0.7 s−1. The velocity field resembles the flow defined in Eq. (1),
with a stagnation point near the center of the test section.

The strain rate is computed from the PIV measurement
as −1/2(∂u/∂x − ∂v/∂y) and is plotted in gray scale in
Fig. 2. Excluding the four inner corners, the strain rate is
nearly constant everywhere in the test section with a value of
around 1 s−1. This value is consistent with the expected value
G = 0.7 s−1.

The vorticity, computed as (∂u/∂y − ∂v/∂x), remains
negligible within the whole channel except at the four inner
corners of the test section (not shown). All these observations
support the assumption of a hyperbolic flow [Eq. (1)] in
the test section and negligible effects of the walls except at
the inner corners of the test section. Henceforth, for each
experiment the strain rate is computed from the total flow
rate as G = Qtot/hw2.

III. RESULTS

For given flow conditions (i.e., drop size and strain rate)
several drops are imaged as they flow through the microchan-
nel. When drops enter the test section they deform, adopting an
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FIG. 3. (Color online) (a) Images of deformed drops. The white
thick curve shows the digitally obtained contour of the drop. The red
thin dashed curve corresponds to a fitted ellipse. (b) Deformation of
a drop as it travels through the microchannel. D is plotted against
the normalized distance between the drop and the test section centers
when the drop flows into (blue circles) and out of (red crosses) the
test section. This case corresponds to data from channel I, with Ro =
58 μm and G = 9.1 s−1.

elongated shape. No drop breakup was observed in the range of
drop sizes and strain rates used in these experiments. Instead,
drops flow into the test section, decelerate while approaching
the stagnation point, and deform in the extensional flow.
Eventually, drops leave the stagnation point, whether due to
the arrival of the next drop or due to random flow fluctuations,
and leave the channel through one of the exits.

The deformation of the drops is measured as a function of
their distance from the center of the test section r =

√
x2 + y2.

For that, the contour of the drops is digitized and fitted with
ellipses, as shown in Fig. 3(a) for three different cases. It can
be seen that the elliptic shape provides an excellent fit for the
drop contour that only slightly degrades for the most elongated
drops. This is consistent with recent studies of drop shape
relaxation [17]. The deformation of the drops is quantified
from the major and minor axes of the fitted ellipses, a and b,
respectively, as

D = a − b

a + b
. (2)

Figure 3(b) shows a typical evolution curve of D as a function
of 2r/w. Blue circles show the evolution of D as drops flow
into the test section while red crosses are used for drops leaving
it. Drops start to deform when still outside the test section at
2r/w ≈ 1.5. The deformation increases as drops approach the
stagnation point and saturates at a maximum value Dmax. As
drops travel out of the test section, they rapidly relax back into
a circular shape. Note that the curves of deformation when
drops flow into and out of the test section almost coincide but
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FIG. 4. (a) Maximum deformation of drops Dmax as a function of
drop size for constant strain rate G = 12.6 s−1 in channel II. (b) Dmax

as a function of strain rate for fixed drop size Ro = 60 μm in channel
I. In (a) and (b) the symbols correspond to experimental data and the
solid lines correspond to power law fits. Insets: (a) Dependence of
the fit coefficient α on the strain rate G. (b) Dependence of the fit
coefficient β on the drop size Ro. The symbols represent fit data and
the solid line shows the average.

differ slightly near r = 0. This is due to the different effect
of the external flow in drop deformation into and out of the
hyperbolic flow. Drops flowing into the test section experience
a diverging external flow, while drops flowing out of the test
section are subjected to a convergent flow. This exemplifies
the temporal symmetry breaking introduced by the presence of
fluid interfaces: the flow without drops has temporal symmetry
but it is no longer reversible in the presence of drops.

The maximum drop deformation Dmax is measured for
each experimental condition. A typical curve of maximum
deformation Dmax as a function of Ro for fixed G is shown in
Fig. 4(a). Similarly, a typical curve of Dmax as a function of
G for fixed Ro is shown in Fig. 4(b). It is observed that Dmax

increases if either the drop size Ro or the strain rate G increases.
The linear trend on a log-log scale in both cases suggests
that Dmax ∼ Rα

o Gβ . It is important to note that geometrical
constraints prevent us from achieving one full decade in the
range of Ro in Fig. 4(a).

In order to quantify the dependence of Dmax on the drop size
and strain rate, power laws are fitted to the data. For each strain
rate, a curve of the form Dmax = C1R

α
o is adjusted, with C1

and α two fitting coefficients. The coefficients α for different
strain rates G are shown in the inset of Fig. 4(a). It is found
that α has little dispersion around a mean value (± standard
deviation) α = 2.59 ± 0.28.
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FIG. 5. A quasi-two-dimensional drop subjected to a hyperbolic
flow.

Similarly, power law curves of the form Dmax = C2G
β are

fitted for each drop size, with C2 and β as fitting coefficients.
The coefficients β for different drop sizes Ro are shown in the
inset of Fig. 4(b). Again, β remains approximately constant
for the different drop sizes. The average ± standard deviation
is β = 0.91 ± 0.05.

IV. THEORY

The deformation of drops in pure straining flows, simple
shear flows, and flows with varying rates of strain and vorticity
has been much studied since the seminal work of Taylor in
the four-roll mill experiments [5–7]. Most studies, however,
deal with three-dimensional drops in two-dimensional or ax-
isymmetric hyperbolic flows. In 1968, Richardson considered
two-dimensional bubbles [18] and in 1973 Buckmaster and
Flaherty expanded the theory to viscous drops [19]. They take
advantage of the use of analytical functions and conformal
mappings to describe the flow. Here, we employ a similar
approach but with the difference that our drops are not truly
two dimensional but are squeezed in a shallow geometry.

The theoretical model is based on the Darcy approximation
of the Stokes equations for the depth-averaged velocity field
�u = u(x,y)x̂ + v(x,y)ŷ in a shallow geometry of height h [3]:

�u = − h2

12η
�∇p. (3)

For an incompressible flow ( �∇ · �u = 0), these equations
allow convenient solutions in terms of a complex potential
w(z) = φ + iψ , in which z = x + iy is the complex vari-
able that defines the position in the (x,y) plane, φ(x,y) =
−h2/(12η)p(x,y) is the velocity potential, and ψ(x,y) is the
two-dimensional stream function. The fluid velocity is related
to w(z) as w′(z) = u − iv.

Now, consider the situation depicted in Fig. 5. A squeezed
drop of viscosity ηi is centered at the origin x = y = 0
immersed in a carrier fluid of viscosity ηo. The interfacial
tension between the two fluids is γ . A quasi-two-dimensional
hyperbolic flow of constant strain rate G and zero vorticity,
represented by Eq. (1), is imposed on the unbounded outer
fluid. Since the presence of the drop alters the external flow

field, Eq. (1) is valid only far from the drop and therefore

w(z) ∼ −Gz2

2
+ O(z−2) when z → ∞. (4)

Logarithmic terms are omitted because the pressure has to
remain finite and odd powers of z−1 do not appear due to the
symmetry of the problem.

The problem is to find the shape of the drop � and the
complex potentials inside and outside the drop [wi(z) and
wo(z), respectively] that satisfy the continuity of the depth-
averaged velocity field and normal forces in � and Eq. (4) at
infinity. At this point we limit ourselves to the steady-state
solution, in which the stream function is equal to a constant in
�. Since this constant can be absorbed in the imaginary part
of the complex potentials, the steady-state condition is

w(z) = w(z) in �, (5)

where the overbar denotes the complex conjugate. The
continuity of velocity is written as

w′
o(z) = w′

i(z) for z in �, (6)

and the jump in pressure due to the interface curvature is
expressed, with the aid of Eq. (5), as [4,18]

12i

h2
[ηw(z)]oi dz = γ

[
d

(
dz

ds

)
+ 2

h
idz

]
, z in �. (7)

The brackets on the left mean the difference of the expression
outside and inside the drop and the arclength s is defined in
Fig. 5. The two terms in the right-hand side of Eq. (7) account
for the effects of the curvature of the interface, both in the
(x,y) plane and in the perpendicular direction, respectively. In
particular, the curvature in the direction normal to the plane,
which we assume to remain constant and equal to 2/h, gives
rise to a constant overpressure inside the drop that can be
absorbed in the real part of wi . Therefore, in the following, we
will neglect the second term in Eq. (7) and keep in mind that
wi contains only a portion of the pressure inside the drop.

Equation (7) can be integrated by defining ξ ′
i,o(z) = wi,o(z).

The problem is simplified by assuming ηi = ηo = η. With this,
the pressure jump at the drop interface can be written as

12iη

h2
[ξi(z) − ξo(z)] = −γ

dz

ds
, z in �. (8)

Therefore, by the Sokhotski-Plemelj formula, the velocity
potential for any z can be computed as [19]

w(z) = h2γ

24πη

∫
�

dt/ds

(t − z)2
dt − Gz2

2
. (9)

In conclusion, we have the problem of finding the shape of
the drop � such that the complex potential of Eq. (9) has a
continuous derivative [Eq. (6)] and is real [Eq. (5)] in �. The
mathematical difficulty of this problem is high. Instead we
solve the problem in an approximate way. For that, we suppose
that the drop assumes the shape of an ellipse of semiaxes A(1 +
Dt ) and A(1 − Dt ), with 0 < Dt < 1, as shown in Fig. 5.
Note that the elliptic drop shape is introduced by means of
a conformal map and therefore other drop shapes could be
considered by means of appropriately defined maps.
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FIG. 6. (Color online) Solution of Eq. (12). The lower branch
(solid blue line) corresponds to the physical solution, while the upper
branch (dashed red line) is unphysical. The linear relationship Dt = P

is plotted as a black dash-dotted line for comparison. The vertical
black dotted line shows the position of Pcr.

Proceeding as in Ref. [19] we find an integral equation for
Dt :

−1

3πA

∫
�

dt

ds
dt = 4ηGA3

γ h2

(
1 − D2

t

) = 4ηGR3
o

γ h2
√

1 − D2
t

. (10)

In the last expression, the conservation of drop volume was
imposed in the form πR2

o = πA2(1 − D2
t ), where Ro is the

radius of the nondeformed drop. The integral in the left-hand
side of Eq. (10) is proportional to A and therefore this is an
equation for Dt with one nondimensional group:

P = 4ηGR3
o

γ h2
= Ca δ2, (11)

that involves the capillary number Ca = ηGRo/γ and the
confinement parameter δ. Finally, the equation for Dt is found
by expressing the integral of Eq. (10) at the surface of the
ellipse:

1

3π

∫ 2π

0

2Dt + (
1 + D2

t

)
cos(2θ )√

1 + D2
t + 2Dt cos(2θ )

dθ = P√
1 − D2

t

. (12)

Equation (12) is solved numerically for Dt as a function of
P and the result is plotted in Fig. 6. For values of P < Pcr =
0.47 two branch solutions for Dt exist. The lower branch is well
approximated by Dt = P for small Dt . For larger P , it deviates
from the linear trend, first slightly and then more rapidly. In the
second branch, Dt decreases with increasing P from Dt (P =
0) = 1, first slightly and then more rapidly. Since the limit of
zero capillary number, and hence P = 0, corresponds to zero
strain rate, it seems that the physical solution corresponds to
the lower branch.

The two branches meet at Dt (Pcr) = 0.68, beyond which
there is no solution for Dt . Nonexistence of a solution for
the deformation parameter has been related to bursting of the
drops [18,19] and therefore the theoretical model predicts drop
breakup for P > Pcr for a viscosity ratio of unity.

V. DISCUSSION

The model presented above, based on the Darcy approx-
imation for shallow geometries, predicts the deformation of
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FIG. 7. (Color online) Dmax as a function of P = Ca δ2 for
different drop sizes and strain rates from data taken in the two
channels used in the study (see Sec. II A). The symbols correspond
to experimental data, and the black solid line and the red dashed line
correspond to linear fits of the data from channel I (Dmax = 3.9P )
and channel II (Dmax = 5P ), respectively.

squeezed drops in a hyperbolic flow for unit viscosity ratio.
The model states that the steady-state deformation of drops Dt

depends on a nondimensional parameter P given by Eq. (11)
and that for small deformations, Dt = P . In other words, the
model predicts that, for small deformations, Dt ∼ GR3

o . Our
experimental results for the maximum drop deformation, on
the other hand, show that Dmax ∼ R2.59

o G0.91. This experimen-
tal scaling is in good agreement with the theoretical model
in the small-deformation limit. It is important to note that
the model considers the steady shape of the drop, while our
experiments are performed on flowing drops. However, as
shown in Fig. 3, the deformation of drops rapidly saturates
at the maximum value Dmax, which represents, therefore, the
steady-state drop deformation.

The parameter P can be understood by considering the
forces involved in the deformation of drops. In shallow
geometries it is not the viscous stress but the pressure of the
external fluid which has a larger influence on drop deformation.
As evidenced by Eq. (3) the pressure in the outer fluid scales
as ηoG(Ro/h)2 while viscous stresses scale only as ηoG. On
the other hand, the interfacial forces that resist the deformation
are proportional to the curvature of the drop interface and it
has been argued that only the curvature in the plane affects the
dynamics of the drop. Thus, the interfacial forces per unit area
scale as γ /Ro. The competition between these forces yields
the parameter P = Ca δ2.

In order to further test the predictions of the theory with
the experimental data, the measurements of Dmax for different
strain rates and drop sizes are plotted as a function of P in
Fig. 7. The data for each channel collapse in single linear
curves with slightly different slopes, 3.9 for channel I and 5
for channel II. The slopes are larger than the prediction of the
theory, which predicts a slope of unity. One possible reason
for this discrepancy is the different viscosity ratio used in the
experiments, λ = 0.008, meaning that less viscous drops are
more deformable. Indeed, it would be interesting to explore
the effect of viscosity ratio on drop deformation. Another
possible explanation is the influence of three-dimensional
effects due to the finite degree of confinement. The analysis
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of force competition presented above is justified under the
assumption of high confinement δ 
 1, since in that case
the pressure terms are much larger than viscous stresses
and three-dimensional effects are negligible. Therefore, the
difference in the slopes of the linear fits in Fig. 7 could be due
to neglecting small but not insignificant viscous stresses at the
drop interface or due to three-dimensional effects since we do
not work in the limit δ 
 1. The channel depth, however, alters
the slope of the linear relationship between the deformation
and the parameter P but not the scaling Dmax ∝ P in the limit
of small deformations.

Two-dimensional depth-averaged models such as the one
presented here cannot describe the complex three-dimensional

effects that occur at the interface between immiscible fluids
[20,21]. However, as suggested by two-dimensional numerical
simulations [22] and shown by this work, they are able to
describe the flow of biphasic flows with reasonable accuracy
in many situations. We believe that this kind of model can be of
valuable use in the description of droplet microfluidics when
confinement is important.
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