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Abstract

This paper proposes the use of neutral reference models to detect local emotional prominence in the fundamental frequency. A
novel approach based on functional data analysis (FDA) is presented, which aims to capture the intrinsic variability of F0 contours.
The neutral models are represented by a basis of functions and the testing F0 contour is characterized by the projections onto
that basis. For a given F0 contour, we estimate the functional principal component analysis (PCA) projections, which are used as
features for emotion detection. The approach is evaluated with lexicon-dependent (i.e., one functional PCA basis per sentence) and
lexicon-independent (i.e., a single functional PCA basis across sentences) models. The experimental results show that the proposed
system can lead to accuracies as high as 75.8% in binary emotion classification, which is 6.2% higher than the accuracy achieved by
a benchmark system trained with global F0 statistics. The approach can be implemented at sub-sentence level (e.g., 0.5 s segments),
facilitating the detection of localized emotional information conveyed within the sentence. The approach is validated with the
SEMAINE database, which is a spontaneous corpus. The results indicate that the proposed scheme can be effectively employed in
real applications to detect emotional speech.
© 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Emotional understanding is a crucial skill in human communication. It plays an important role not only in inter-
personal interactions, but also in many cognitive activities such as rational decision making, perception and learning
(Picard, 1997). For this reason, modeling and recognizing emotions is essential in the design and implementation of
human-machine interfaces (HMIs) that are more in tune with the user’s needs. Systems that are aware of the user’s
emotional state will facilitate several new scientific avenues that serve as truly innovative advancements in security
and defense (e.g. threat detection), health informatics (e.g., depression, autism), and education (e.g., tutoring system)
(Burleson and Picard, 2004; Langenecker et al., 2005). Given the important role of speech in the expression of emo-

tions, an increasing number of publications have reported progress in automatic emotion recognition and detection
using acoustic features. Complete reviews are given by Cowie et al. (2001), Zeng et al. (2009), Schuller et al. (2011a),
Koolagudi and Rao (2012), El Ayadi et al. (2011).
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The dominant approach in emotion recognition from speech consists in estimating global statistics or functionals at
entence level from low level descriptors such as F0, energy and Mel-frequency cepstral coefficients (MFCCs) (Schuller
t al., 2011a). Among prosodic based features, gross pitch statistics such as mean, maximum, minimum and range are
onsidered as the most emotionally prominent parameters (Busso et al., 2009). One limitation of global statistics is
he assumption that every frame in the sentence is equally important. Studies have shown that emotional information
s not uniformly distributed in time (Lee et al., 2004; Busso and Narayanan, 2007). For example, the intonation in
appy speech tends to increase at the end of the sentence (Wang et al., 2005). Since the statistics are computed at
he global level, it is not possible to identify local salient segments or focal points within the sentence. Furthermore,
eatures describing global statistics do not capture local variations (e.g., in F0 contours), which in turn could provide
seful information for emotion detection. In this context, this paper proposes a novel shape-based approach to detect
motionally salient temporal segments in the speech using functional data analysis (FDA). The detection of localized
motional segments can shift current approaches in affective computing. Instead of recognizing the emotional content
n pre-segmented sentences, the problem can be formulated as a detection paradigm, which is appealing from an
pplication perspective (e.g., continuous assessments of unsegmented recordings). The emotion recognition system
an be more robust by weighting each frame according to their emotional saliency. From a speech production viewpoint,
he approach can shed light into the underlying interplay between lexical and affective human communication across
arious acoustic features (Busso and Narayanan, 2007).

This study focuses on detecting emotionally salient temporal segments on the fundamental frequency. Patterson
nd Ladd (1172) argued that the range (i.e., the difference between the maximum and the minimum of F0 contour in a
entence or utterance) does not give information about the distribution of F0 and hence valuable emotional information
s neglected. Also, according to Lieberman and Michaels (1962) low variations in F0 can be subjectively relevant in
he identification of emotions. In the literature, there are some attempts to model the shape of the F0 contour. Paeschke
nd Sendlmeier (2000) analyzed the rising and falling movements of F0 within accents in affective speech. The study
ncorporated metrics related to accent peaks within a sentence. The authors found that those metrics present statistically
ignificant differences between emotional classes. Also, Paeschke (2004) modeled the global trend of F0 in emotional
peech as the gradient of linear regression. The author concluded that global trend can be useful to describe emotions
uch as boredom and sadness. Rotaru and Litman (2005) employed linear and quadratic regression coefficients and
egression error as features to represent pitch curves. Yang and Campbell (2001) argued that concavity and convexity
f the F0 contour reflect the underlying expressive state. The Tone and Break Indices system (ToBI) is a scheme for
abeling prosody that has been widely used for transcribing intonation (Silverman et al., 1992). Liscombe et al. (2003)
nalyzed affective speech with acoustic features by using ToBI labels to identify the type of nuclear pitch accent, the
ontour type and the phrase boundaries. Despite the fact that ToBI provides an interesting approach to describe F0
ontours, more precise labeling is required to generate prosodic transcripts. Taylor (2000) introduced the Tilt Intonation
odel to represent intonation as a linear sequence of events (e.g. pitch accents or boundaries), which in turn are given

y a set of parameters. However, an automatic event segmentation algorithm is required to employ this scheme and,
ence, it cannot be easily applied to emotion recognition or detection tasks.

Despite current efforts to address the problem of affective speech characterization by means of modeling F0 contour,
his is still an open task. The contributions of the paper concern: (a) a novel framework to detect emotional modulation
ased on reference templates that models F0 contours of neutral speech; (b) an insightful and thorough analysis of
eutral references as a method to detect emotion in speech; (c) the generation of reference F0 contour templates
ith functional data analysis (FDA); and, (d) a study of the shortest segmentation unit that can be used in emotion
etection. Extensive experiments are presented to demonstrate the discriminative power of the FDA based approach to
etect emotional speech. The results on the SEMAINE database reveal that the approach captures localized emotional
nformation conveyed in short speech segments (0.5 s). These properties of the proposed approach are interesting from
he research and application points of view.

. Emotional databases and features
.1. Emotional databases

The analysis and results presented in Sections 3 and 4 require recordings with controlled, lexicon-dependent con-
itions (e.g., recordings of sentences with the same lexical content conveying different emotional states). Therefore,
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Table 1
Databases (N = neutral, A = anger, H = happiness, S = sadness, F = fear, D = disgust, B = boredom, Va = valence, Ac = activation/arousal, Po = power,
Ex = anticipation/expectation, In = intensity). Number of samples per emotion is given in brackets.

Database WSJ1 EMA EMO-DB SEMAINE

Type Neutral Emotional Emotional Emotional
Use of data Reference Train/test Train/test Test
Spontaneous/acted Spon. Acted Acted Spon.
# Speakers 50 3 10 10
# Utterances 8104 680 535 1926

Emotions/attributes N(8104) N(170),A(170) N(79),F(69),D(46),H(71) Va, Ar, Po

H(170),S(170) B(81),S(62),A(127) Ex, In

the study considers, for these sections, two emotional databases recorded from actors (Table 1). Even though acted
emotions differ from real-life emotional manifestation, they provide a good first approximation, especially when con-
trolled conditions are required, as in this study. The first database is the EMA corpus collected at the University of
Southern California (USC) (Lee et al., 2005).1 Three speakers participated in the recordings (two of them with formal
theatrical vocal training). They read ten sentences five times in happy, angry, sad and neutral conditions (one subject
read 4 additional sentences producing 80 extra samples). The subjects were asked to record the sentences in random
order to attenuate or eliminate reproductions with similar intonation. To reduce fatigue, the recording was split into
small sessions separated by breaks. The EMA database was evaluated by four native speakers of American English in
terms of the emotional classes happy, angry, sad, neutral and other. The average human recognition rate was 81.8%
(Grimm et al., 2007). The second corpus is the Berlin Database of Emotional Speech (EMO-DB) (Burkhardt et al.,
2005). This database is composed of ten speaker (five male and five female), who read ten German sentences one time
expressing six different emotions (fear, disgust, happiness, boredom, sadness, anger), in addition to neutral state. This
database is available to the community and has been widely used in related work on emotion recognition. Therefore,
other researchers can easily replicate the results presented here.

After relaxing the controlled lexicon-dependent conditions, the framework is validated using a spontaneous emo-
tional corpus (Section 5). The study considers the SEMAINE database, which includes audiovisual recordings of
natural human computer interactions (McKeown et al., 2010). The emotions are elicited using the Sensitive Artificial
Listener (SAL) approach. We consider sessions recorded from ten subjects. The data contains subjective evaluations
generated by human raters using Feeltrace (Cowie et al., 2000). This is a labeling tool employed to continuously track
the perceived emotional state over time (as oppose to assigning one discrete label per sentence). The raters are asked to
move the cursor as they watch/listen the stimulus using a graphical user interface (GUI). The GUI records the position
of the pointer, which describes the emotional content in term of continuous attributes. Although the corpus has been
annotated with various emotional attributes, we consider only the activation/arousal (calm versus active) and valence
(negative versus positive) dimensions.

2.2. F0 extraction and post-processing

The fundamental frequency is estimated according to the following steps: first, speech signals are divided into
400-sample (25 ms) frames with 50% overlap. The fundamental frequency is estimated by using the autocorrelation
based Praat pitch detector system (Boersma and Weenink, 1996). Then, F0 at each frame is represented in a semitone
scale according to:

F0semitone(t) = 12
log [F0(t)]

log 2
(1)
where F0(t) and F0semitone(t) are the fundamental frequency at frame t in Hertz and semitones, respectively. The
proposed scheme in this paper aims to model the F0 contour to compare neutral and emotional speech. Consequently,
the logarithm attempts to represent differences in F0 according to the human-like perception scale. After estimating

1 The EMA database is available at http://sail.usc.edu/ema web/

http://sail.usc.edu/ema_web/
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0semitone(t), unvoiced segments are interpolated with cubic spline to obtain smooth and continuous F0 contours.
inally, the resulting interpolated F0semitone(t) contour is normalized by subtracting the mean. Henceforth, the term
F0 contour” denotes the F0 curve in the semitone scale after interpolation and mean normalization.

. Proposed method

Building neutral reference models to contrast emotional speech is an appealing method. The scheme significantly
educes the dependency on emotional (acted or spontaneous) speech databases, which in turn are much more difficult
o obtain than ordinary corpora. This section describes the proposed neutral reference models built with FDA.

.1. Motivation

First, we present an experiment showing that a single neutral speech signal can be used as a reference to detect
motional prominence in the fundamental frequency. We compare the F0 contour extracted from an testing signal
either emotional or neutral speech) with the one extracted from a neutral reference sentence conveying the same
exical information. Notice that this case corresponds to the ideal scenario where the testing and reference utterances
onvey the same verbal information. To keep all variables under control except emotional modulation, the analysis
akes place with speaker matching condition and with the same lexical content in both testing and reference utterances.
iven these constrains, this experiment is conducted using only the EMA database (e.g., the subjects produced five

epetitions for each sentence and each emotion).
The reference and testing sentences are compared using a top-down strategy similar to our previous work (Arias

t al., 2010). The F0 extraction and post-processing steps are applied to both utterances. Since the reference and
esting utterances are not temporally aligned, they are aligned according to their MFCCs by using standard dynamic
ime warping (DTW) (Euclidian distance, slope constraint condition P = 0 and the Sakoe–Chiba band as global path
estriction). After aligning the signals, the Pearson’s correlation is employed as a similarity measure to estimate the
ifferences between both F0 patterns. Lower correlation levels will indicate higher differences between neutral and
motional sentences, which in turn can be mainly associated to emotional modulation in the testing utterance. Given
speaker, a neutral sentence is compared with its emotional versions using all possible permutations (i.e., happy,

ngry and sad). Likewise, we compare all possible permutation of neutral-neutral sentences (the reference signal
s always neutral). Fig. 1 presents the distribution of the correlation based similarity measure between testing and
eference utterances for each emotion. According to Fig. 1 the comparison of neutral testing with reference patterns,
hich in turn are neutral by definition, provides the highest correlation based similarities (ρ = 0.84 ± 0.15). This

esult indicates that emotionally neutral utterances with the same lexical content spoken by the same speaker produce
imilar F0 contours. In contrast, the similarity between F0 contours provided by emotional speech and neutral reference
tterances is significantly lower. The results of this experiment suggest that the similarity of F0 contours extracted
rom the testing and reference utterances can be used to detect the emotional state in speaker and lexicon matched
onditions. This paper explores a shape-based approach using FDA to generalize these ideas for unconstrained scenarios
speaker-independent, lexicon-independent approach).

.2. Functional data analysis (FDA)

The idea behind FDA is to represent the structure of signals as functions by using statistical methods (Ramsay and
ilverman, 2005). The time series data is represented by a continuous and smooth function –x(t)– that is generated as
linear combination of basis functions φk such as B-spline or polynomial:

x(t) =
K∑

ckφk(t). (2)

k=1

here K represents the dimension of the expansion and ck corresponds to the projection onto the kth basis function.
oth φk and K are parameters of FDA that should be properly chosen according to the characteristics of the data.
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Fig. 1. Similarity measure distributions for neutral, angry, happy and sad samples (EMA). The figure shows the Pearson’s correlation between
neutral and emotional F0 contours.

Functional data is observed as a discrete sequence (tj, yj), j ∈ {1, . . ., n}, where yj corresponds to the sampled value of
the function x(t) at time tj. This sequence may not be equally-distributed and may be corrupted by noise, εj:

yj = x(tj) + εj. (3)

In FDA, the process of fitting functions to data is known as smoothing. Given discrete observations yj and basis
function {φ1, . . ., φK}, this process attempts to find coefficients ck by minimizing the mean squared error εj. A roughness
penalty term is incorporated in the optimization to ensure a smooth representation. Optimal parameters ĉk are estimated
with Eq. (4), where λ is a smoothing parameter and Dm represents the mth derivative (Ramsay and Silverman, 2005).

ĉk = argmin
ck

n∑
j=1

[yj − x(tj)]2 + λ

∫
[Dmx(s)]2

ds (4)

FDA provides several advantages when compared with classical approaches that represent data as a set of isolated
samples. Descriptive statistics such as mean, covariance and correlation can be applied to functional data. These
properties are useful to model and analyze F0 contours. More interestingly in the context of this paper, powerful tools
for analyzing data such as principal component analysis (PCA) can be employed in the framework of FDA. Conventional
PCA is a method that converts a set of correlated observations into uncorrelated variables, called principal components
(PCs), by using orthogonal transformations. Functional PCA is a technique that extends this framework to the domain
of functions (Ramsay and Silverman, 2005). Given a set of V functions, denoted by xv(t), the principal components
scores, fu,v, are given by

fu,v =
∫

ξu(t)xv(t)dt (5)
where ξu(t) corresponds to an orthonormal basis denoted as principal component functions, that represents the variability
of xv(t). The first PC function ξ1(t) is estimated by maximizing

∑
vf

2
1,v, subject to the constrain

∫
ξ1(t)2dt = 1. Similarly,

the subsequent function vectors ξu(t) are obtained by maximizing
∑

vf
2
u,v subject to the constrain

∫
ξuP(t)2dt = 1 and
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ig. 2. General framework of the proposed approach: (a) neutral model generation by using Functional PCA and (b) projection of a testing utterance
nto the neutral eigenspace.

o the additional m − 1 constrain(s)
∫

ξu(t)ξm(t)dt = 0, ∀m < u. Finally, functions xv(t) can be approximated by using
he first U principal components:

x̂v(t) =
U∑

u=1

fu,vξu(t). (6)

FDA provides an interesting framework to model F0 contours (Gubian et al., 2009; Zellers et al., 2010). In particular,
unctional PCA allows us to statistically represent a family of functions, which can be employed as neutral reference
o contrast emotional speech. It is worth mentioning that FDA has been employed to provide a descriptive analysis
f prosodic features in previous research (Gubian et al., 2009; Zellers et al., 2010). In contrast, this paper proposes to
pply FDA as a tool for generating neutral models and projections to represent F0 contours from a pattern recognition
oint of view.

.3. Functional PCA reference models for F0 contours

Fig. 2(a) shows the general framework to build neutral references with functional PCA. First, a set of neutral
tterances spoken by several speakers are employed as training data. All the utterances are temporally aligned with
tandard DTW. Then, the F0 contour extraction procedure described in Section 2.2 is applied to the signals. The
esulting time-aligned, post-processed F0 contours are smoothed and represented as functional data by employing a
asis of B-spline functions φk(t) according to Eqs. (2) and (4). Finally, functional PCA is applied to generate a new
rthogonal basis of functions ξu(t).

Fig. 2(b) shows the testing stage of the proposed scheme. As a first step, the testing utterance is aligned with the
raining data using DTW. Then, F0 contour is extracted and the projections of the testing F0 contour onto the neutral
eference basis ξ (t) is estimated. As a result, the coefficients f are obtained, which correspond to the parameters
u u

hat describe the shape of the testing F0 contour. Since the profile ξu(t) is generated with non-emotional speech, it
s expected that neutral and emotional testing F0 contours will provide different projections (i.e. {f1 . . . fU}) onto the
unctional PCA basis. Therefore, the set of parameters {f1 . . . fU} could be used to detect emotional speech.
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Fig. 3. Reconstruction of F0 contours with Functional PCA: (a) training data to generate the neutral functional PCA basis; (b) reconstruction of

a neutral testing utterance with the first five principal components; and (c) reconstruction of a happy testing utterance with the first five principal
components. The mean squared error between the original and the reconstructed F0 contours is equal to 0.45 and 0.32 for the neutral and happy
utterances.

As an illustration, we implement the approach with lexicon-dependent models – a FDA reference model for a given
sentence. Fig. 3 presents an example for the sentence “I am talking about the same picture you showed me” extracted
from the EMA database. Fig. 3(a) shows the time-aligned and post-processed F0 curves of ten neutral realizations
uttered by two speakers (five repetitions each one). Although the sentences present variations in their F0 contours,
they clearly have a pattern that our approach aims to capture. This result agrees with previous studies that have shown
that matching the linguistic content of the testing sentence improves the emotion classification accuracy (Vlasenko
et al., 2008). Then, a neutral profile is trained with this data by applying the procedure presented in Fig. 2(a). For this
example, the smoothing basis φk is implemented with a 6th order B-spline function basis with K = 40. Fig. 3(b) and
(c) show the reconstruction of neutral and happy F0 contours, respectively, for the same sentence, uttered by a third
subject whose data was not considered to build the neutral reference. Both F0 curves are reconstructed using the first
five principal components. As can be seen in Fig. 3(b) and (c), the neutral F0 contour is more accurately approximated
with the neutral functional PCA basis than the F0 contour corresponding to happy speech. The reference model fits
better the neutral sentence than the one corresponding to happy speech. Therefore, it is reasonable to conclude that the

projection onto the kth basis function, with 6 ≤ k ≤ 40, converges to zero faster with the neutral utterance than with
the happy sentence. Consequently, this analysis strongly suggests that the projections of F0 contours from emotional
speech are different from those generated from neutral utterances. This result is supported by Fig. 4 that shows the
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ig. 4. Averaged absolute value of the projections associated to each principal component (EMA database). The figure shows that functional PCA
rojections can be used as features.

veraged absolute value of the projections onto the first 20 principal components for neutral and emotional speech. The
rojections are generated by using the leave-one-speaker-out strategy, in which the functional PCA models are trained
ith two speakers and tested with the third one in the EMA corpus. In contrast to emotional speech, Fig. 4 shows that

he mean of the projections of the F0 contours from neutral speech are approximately equal to zero when k ≥ 10. The
veraged absolute value of the projections for happy and angry speech are higher than the neutral ones, even for higher
rder principal components.

. Discriminant analysis

To assess the discriminative power of the functional PCA projections, this section evaluates the approach using
exicon-dependent models (e.g., one functional PCA model for each utterance – Section 4.1), and a lexicon-independent

odel (e.g., a single functional PCA model for all sentences – Section 4.2). It also evaluates the performance of
he approach at sub-sentence level (Section 4.3). The evaluation considers both the EMA and EMO-DB databases,
eparately.

The approach is evaluated for different emotion detection problems, in which we implement binary emotion classi-
cation between neutral and emotional speech. We train a separate binary classifier for neutral speech and each of the
motional categories in the EMA and EMO-DB databases (e.g., neutral-happiness, neutral-anger, and neutral-sadness).
n addition, an extra class, denoted as “emotional”, is generated for each corpus by grouping utterances from all the
motional classes. Given the aggregation of emotional classes, there are more samples in the emotional class. Therefore,
or these neutral-emotional tasks, we randomly choose emotional samples to match the number of neutral samples
chance = 50%). This procedure is repeated 100 times and the performance rates are averaged. This approach is also
mplemented with the EMO-DB corpus, since the emotional classes are unbalanced (see Table 1).

All the binary classification experiments are implemented with a quadratic discriminant classifier (QDC). QDC
stimates the output score by using a quadratic combination of the feature vector: y = xTax + bTx + c, where x and y are
he input vector and the output score, respectively. Notice that our preliminary experiments show that QDC provides
imilar performance than a support vector machine (SVM), which has been widely used in previous emotion recognition
roblems (Schuller et al., 2010). While the performance of a SVM depends on the kernel and the soft margin parameter,
hich have to be estimated over a validation partition, all the parameters of QDC are easily estimated from the training

et. Therefore, QDC is chosen for its simplicity, performance, consistency and generalization.

For comparison purposes, a benchmark system was implemented with QDC using a conventional approach, in

hich the classifiers are trained with statistics derived from the F0 contour (Busso et al., 2009, 2013; Zeng et al., 2009;
owie et al., 2001). First, 80 sentence-level functionals derived from F0 contour were extracted for each utterance by
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Table 2
Benchmark system (EMA and EMO-DB). Features were extracted from F0 contour at sentence level (Acc = accuracy, Pre = precision, Rec = recall,
F = F-score). Chance is the ratio between number of emotional samples and total number of utterances.

Acc Pre Rec F Chance

EMA Neutral-happy 0.843 (0.086) 0.927 0.780 0.819 0.500
Neutral-angry 0.737 (0.120) 0.882 0.627 0.666 0.500
Neutral-sadness 0.653 (0.195) 0.683 0.753 0.687 0.500
Neutral-emotional 0.714 (0.116) 0.723 0.762 0.732 0.500

EMO-DB Neutral-fear 0.642 (0.121) 0.861 0.370 0.469 0.500
Neutral-disgust 0.658 (0.108) 0.726 0.562 0.583 0.500
Neutral-happiness 0.763 (0.094) 0.964 0.552 0.679 0.500
Neutral-boredom 0.513 (0.016) 0.875 0.055 0.102 0.500
Neutral-sadness 0.706 (0.087) 0.644 0.966 0.769 0.500
Neutral-anger 0.825 (0.120) 0.930 0.709 0.774 0.500

Neutral-emotional 0.690 (0.097) 0.889 0.458 0.555 0.500

using the openSMILE audio feature extraction toolkit (Eyben et al., 2009). The set of functionals corresponds to those
employed for the Interspeech 2010 Paralinguistic Challenge (Schuller et al., 2010). Then, forward feature selection
(FFS) was applied to reduce the number of features to 20, matching the number of projections used as features in the
proposed approach. For the EMA database, the classifiers are trained with two speakers and tested with a third one.
Three permutations were implemented by interchanging the role of each speaker between training and testing data
sets. For the EMO-DB database, the corpus was also split in speaker independent partitions, in which all the speech
samples from one subject are included in either training or testing sets. We also use a cross-validation approach and
the average results are reported in Table 2.

4.1. Evaluation with lexicon-dependent functional PCA models

First, we evaluate the proposed approach by building a functional PCA reference model for each sentence in the
corpora. The EMA database was divided in development (to build the functional PCA reference models), training (to
train the classifier) and testing (to estimate the accuracy) sets. Each of these three sets contains speech samples from
only a single speaker. Only neutral data was employed to build the reference models. To maximize the use of the EMA
database, six permutations were implemented by interchanging the role of each speaker among development, training
and testing data sets. This procedure ensures that the results are speaker-independent. The performance rates were

estimated by averaging the results obtained in all six implementations. A similar procedure was implemented for the
EMO-DB database. The sentences were partitioned into development, training and testing subsets.

Table 3
Discriminant analysis with functional PCA projections using lexicon-dependent bases (EMA, EMO-DB) (Acc = accuracy, Pre = precision,
Rec = recall, F = F-score). Chance is the ratio between number of emotional samples and total number of utterances.

Acc Pre Rec F Chance

EMA Neutral-happy 0.913 (0.033) 0.884 0.960 0.918 0.500
Neutral-angry 0.777 (0.071) 0.784 0.780 0.777 0.500
Neutral-sadness 0.633 (0.067) 0.626 0.693 0.654 0.500
Neutral-emotional 0.758 (0.057) 0.785 0.726 0.752 0.500

EMO-DB Neutral-fear 0.709 (0.039) 0.715 0.706 0.707 0.500
Neutral-disgust 0.710 (0.039) 0.715 0.707 0.707 0.500
Neutral-happiness 0.736 (0.025) 0.742 0.725 0.733 0.500
Neutral-boredom 0.639 (0.051) 0.661 0.562 0.604 0.500
Neutral-sadness 0.680 (0.035) 0.718 0.598 0.646 0.500
Neutral-anger 0.738 (0.013) 0.738 0.740 0.738 0.500
Neutral-emotional 0.699 (0.011) 0.715 0.663 0.687 0.500
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Table 4
Proportion hypothesis test to compare classifiers (EMA). Light and dark gray values represent strong (p-value<0.05) and weak (p-value<0.1) statis-
tic significance, respectively (B = benchmark, LD = lexicon-dependent models, LI = lexicon-independent models, TB = time-based segmentation,
Ch = chunk-level segmentation, Wo = word-level segmentation).

Happiness Anger Sadness Emotion

LD - B 0.001 0.092 0.278 0.078
LI - B 0.001 0.088 0.283 0.081
LD - LI 0.121 0.219 0.001 0.266
LI - TB 0.228 0.431 0.425 0.304
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I - Ch 0.041 0.431 0.030 0.001
I - Wo 0.001 0.018 0.015 0.190

Table 3 shows the performance of the proposed system at the sentence-level. For the EMA database, the accuracy for
eutral-happiness task is 91.3%. Also, the accuracies for both neutral-anger and neutral-emotional tasks are higher than
5%. These results strongly validate the proposed scheme. For the EMO-DB database, the accuracies for neutral-happy
nd neutral-anger classification tasks are higher than 73%. As expected, the accuracy for the neutral-sadness task is low
or both databases (EMA 63.3%, EMO-DB 68%). These results are consistent with the analysis presented in Figs. 1
nd 4 that shows that the discrimination between neutral and sad classes is lower than in the neutral-happiness and
eutral-anger cases.

In general, the accuracies achieved with the proposed approach (Table 3) are higher than the ones achieved by the
enchmark classifier (Table 2). In the EMA database, the accuracy of the proposed system in the neutral-happiness task
s 7.0% (absolute) higher than the benchmark system (statistically significant with p-value = 0.001, see Table 4). Also,
he classifiers neutral-anger and neutral-emotional achieves 4.0% and 4.4% (absolute) improvements, respectively,
hen compared with the benchmark classifier (p-value = 0.092 and p-value = 0.078, respectively, see Table 4). In

he EMO-DB database, the proposed method leads to an increase in accuracy for neutral-fear, neutral-disgust and
eutral-boredom tasks equal to 6.8%, 5.2% and 12.6% (absolute), respectively. These results suggest that the proposed
cheme can accurately discriminate between neutral and emotional categories. However, the accuracy achieved by the
unctional PCA based system is lower for the neutral-sadness task for the EMA (2%) and EMO-DB (2.6%) databases.
t is worth highlighting that, when compared with the benchmark method, the improvements in accuracy achieved by
he proposed system in the neutral-emotional, neutral-happiness and neutral-anger classification tasks are much higher
han the accuracy degradation with the neutral-sadness classification. Moreover, the standard deviations of the accuracy
btained by the proposed system (Table 3) are much lower than those with the benchmark method (Table 2). These
esults strongly suggest that the functional PCA based classifier is more reliable and consistent than the benchmark
ethod based on F0 statistics.

.2. Evaluation with lexicon-independent functional PCA models

The results presented in Section 4.1 reveal that the FDA-based approach proposed in this paper can accurately
iscriminate between neutral and emotional speech. However, a lexicon-dependent emotion classifier system loses
pplicability in real applications. This section evaluates the proposed approach with lexicon-independent models.
asically, the idea is to build the functional PCA basis with neutral sentences conveying different lexical information.
he results in Section 3.3 suggested that lexical information affects the F0 contour even for non-tonal languages.
exicon-independent bases will not capture this aspect. However, by relaxing the constraint of using sentences with

he same verbal message, more sentences can be used to build the functional PCA basis. This approach will produce
ore robust reference models that will better capture the F0 variability.
The lexicon-independent F0 contours are extracted and post processed from the neutral sentences according to the

pproach described in Section 2.2. Then, the average duration of the signals is estimated and used to linearly warp their
0 contours. The resulting family of neutral F0 contours are used as input for functional PCA (Fig. 2(a)). In order to

valuate the performance of the lexicon-independent system, the same discriminant analysis described in Section 4.1
as followed. Observe that for those experiments there were 10 speaker-dependent neutral functional PCA models per

orpus (i.e., one per each sentence). In this section, there is only one text-independent functional PCA model trained
ith all the neutral F0 contours.
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Table 5
Discriminant analysis with functional PCA projections using lexicon-independent bases (EMA, EMO-DB) (Acc = accuracy, Pre = precision,
Rec = recall, F = F-score). Chance is the ratio between number of emotional samples and total number of utterances.

Acc Pre Rec F Chance

EMA Neutral-happy 0.893 (0.059) 0.874 0.933 0.899 0.500
Neutral-angry 0.795 (0.059) 0.793 0.827 0.802 0.500
Neutral-sadness 0.547 (0.063) 0.550 0.573 0.553 0.500
Neutral-emotional 0.742 (0.057) 0.784 0.701 0.733 0.500

EMO-DB Neutral-fear 0.709 (0.050) 0.737 0.673 0.685 0.500
Neutral-disgust 0.711 (0.049) 0.738 0.675 0.686 0.500
Neutral-happiness 0.789 (0.032) 0.788 0.806 0.793 0.500
Neutral-boredom 0.706 (0.057) 0.753 0.614 0.674 0.500
Neutral-sadness 0.663 (0.056) 0.807 0.432 0.557 0.500

Neutral-anger 0.777 (0.034) 0.780 0.785 0.779 0.500
Neutral-emotional 0.713 (0.036) 0.756 0.641 0.691 0.500

Table 5 presents the classification results with functional PCA projections by using lexicon-independent models
with both EMA and EMO-DB databases. For the EMA database, the accuracies in lexicon-independent models for
neutral-happiness and neutral-emotional tasks are only 2.0% (absolute) and 1.6% (absolute) lower than the ones
in lexicon-dependent models (see Table 3 and 5). For the EMO-DB database, the accuracy of the neutral-emotional
classification task achieved with lexicon-independent models is 1.5% (absolute) higher than the accuracy achieved with
lexicon-dependent models. According to a proportion hypothesis test, these differences are not statistically significant
(see Table 4). Moreover, when compared with the benchmark system (Table 2), the proposed lexicon-independent
functional PCA based system leads to absolute improvements in accuracy equal to 5.0%, 5.8% and 2.8% for the
neutral-happiness, neutral-anger and neutral-emotional classification tasks, respectively (EMA database). All these
differences are statistically significant (see Table 4). Similarly with the EMO-DB database, when compared with the
benchmark system (Table 2), the proposed lexicon-independent system leads to improvements in accuracy equal to
6.7%, 5.2% and 2.3% for the neutral-fear, neutral-disgust and neutral-emotional tasks.

4.3. Evaluation of emotional prominence at sub-sentence level

This section evaluates the proposed lexicon-independent functional PCA based method implemented at sub-sentence
levels (e.g. chunk, word). Emotional prominence conveyed in the F0 contour is not uniformly distributed in time (Busso
et al., 2009; Busso and Narayanan, 2007; Yildirim et al., 2004). By extending the analysis to sub-sentence units, we aim
to detect these emotionally salient segments. This approach does not require to split a dialog into sentences. Therefore,
it is applicable for real time emotion detection systems.

The functional PCA-based emotion detection system shown in Fig. 2 is applied to three different sub-sentence units:
time-based segment; phrase (or chunk); and, word. Time-based segmentation consists in dividing the speech signal into
one-second windows with 50% of overlap (Jeon et al., 2011). This segmentation does not require to estimate syntactic
boundaries. A phrase or chunk is defined as a group of words that form a constituent working as a syntax single unit,
which in turn is suitable for emotion recognition (Batliner et al., 2010). Recent advances in language processing have
provided automatic tools for phrase segmentation. This paper employs an implementation of the SVM based chunk
identification algorithm proposed by Kudoh and Matsumoto (2000). Word level segmentation is also included in the
analysis, even though its length may not be long enough to capture suprasegmental information. The word segmentation
is obtained with a hidden Markov model (HMM) – based forced-alignment procedure (Lee et al., 2005).

A neutral corpus is used to build the neutral lexicon-independent functional PCA basis at sub-sentence levels (time-
based, chunk or word). This corpus corresponds to the Wall Street Journal-based Continuous Speech Recognition
Corpus Phase II (WSJ1) (Paul and Baker, 1992) (see Table 1). Only the spontaneous recordings corresponding to 8104

utterances pronounced by 50 subjects with varying degrees of experience in dictation were considered. First, the data
is segmented according to each sub-sentence unit. Then, 200 utterances are randomly chosen across the 50 speakers
to extract the corresponding segments (time-based windows, chunks or words). These 200 utterances generate over
1500 neutral segments for each of the segmentation units. The sentences are used to build the functional PCA bases.
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Table 6
Accuracy with different segmentation units with lexicon-independent bases (EMA and EMO-DB). In EMO-DB database, Chunk and Word level
are not provided since the phoneme boundary segmentation of speech is not available. We report the accuracies of the benchmark system trained
with F0 statistics for sentence and time-based segmentations.

Proposed system Benchmark system
Segmentation level Segmentation level

Emotion Sentence Time-based Chunk Word Sentence Time-based Chunk Word

EMA Neutral-happiness 0.893 0.877 0.853 0.817 0.843 0.673 0.659 0.612
Neutral-anger 0.795 0.790 0.790 0.733 0.737 0.632 0.619 0.592
Neutral-sadness 0.547 0.553 0.480 0.470 0.653 0.581 0.560 0.544
Neutral-emotional 0.742 0.744 0.773 0.745 0.714 0.668 0.667 0.629

EMO-DB Neutral-fear 0.709 0.580 – – 0.642 0.578 – –
Neutral-disgust 0.711 0.750 – – 0.658 0.544 – –
Neutral-happiness 0.789 0.694 – – 0.763 0.610 – –
Neutral-boredom 0.706 0.595 – – 0.513 0.502 – –
Neutral-sadness 0.663 0.722 – – 0.706 0.566 – –
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Neutral-anger 0.777 0.706 – – 0.825 0.615 – –
Neutral-emotional 0.713 0.744 – – 0.690 0.523 – –

heir F0 contours are linearly time-warped to the average segment duration. The resulting set of F0 contours was
mployed as input to estimate the functional PCA described in Fig. 2(a). This evaluation is conducted using the EMA
nd EMO-DB databases. Since we do not have word segmentation for the EMO-DB database, we only report results
n the time-based segmentation.

The testing utterances are segmented according to the sub-sentence units. After extracting and post-processing
heir F0 contours, the projections onto the functional PCA basis are estimated for each segment (Fig. 2(b)). The
DC classifiers, which are trained at the sub-sentence levels, are employed to classify each testing segment using a

eave-one-speaker-out scheme.
Table 6 presents the average performance for the time-based, chunk and word level segmentations. The results for

entence level with lexicon-independent references are also shown (values extracted from Table 5). Table 6 shows that
n general the accuracies achieved at sentence level are higher than the ones achieved at sub-sentence levels. Time-based
egmentation provides the highest emotional classification accuracy among the sub-sentence unit. As can be seen in
able 4, the differences in accuracy between sentence and time-based sub-sentence unit classifiers are not significant
ith all the emotional categories (EMA database). Similar results are observed with the EMO-DB database. However,
ore significant differences in accuracy are observed when sentence and word level based classifiers are compared.
his result is consistent with our previous work which suggests that shorter speech units are not as effective to capture
motional information from the F0 contour (Busso et al., 2009). Table 6 provides the results for the benchmark system
or sentence and time-based segmentations. The functional PCA projections consistently produces better performance
han global F0 statistics. This result is particularly clear with time-based segmentation. Notice that as the window size
s reduced, the statistics derived from the F0 contour are less reliable. In contrast, the functional PCA projections can
apture local emotional variations conveyed in short segments.

. Validation of the approach in a non-acted corpus

The proposed approach is validated with the spontaneous SEMAINE database (McKeown et al., 2010) (see Table 1
nd Section 2.1). Instead of assigning an emotional label for each sentence, the subjective evaluations correspond to
ontinuous assessment of the emotional content in real time using Feeltrace (50 values per second). Therefore, this
atabase is ideal to evaluate whether the proposed approach can detect localized emotional information conveyed
ithin the sentence. Previous studies have considered this database to recognize high and low values of valence,
rousal, expectancy and power (Kim et al., 2011; Meng and Bianchi-Berthouze, 2011; Cen et al., 2011). They reported
ccuracies around 50% in binary classifications at word level. Since the evaluation setups were different, the reported
erformances cannot be directly compared with our results. However, these studies show the challenging task of
ecognizing the emotional state from this corpus.
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Table 7
Inter-evaluator agreement and subjective-objective correlations with the SEMAINE database for different window length (IEA = correlation between
the subjective evaluation of one subject and the mean of the remaining raters in the database, ρ(S, O) = correlation between the average subjective
evaluation and the objective metric, ρ(�S/�t, O) = correlation between the derivative of the average subjective evaluation and the objective metric).

Window length (s) IEA ρ(S, O) ρ(�S/�t, O)

0.25 0.347 0.235 0.327
0.50 0.351 0.250 0.396

1.00 0.363 0.215 0.438

We compare the similarity between an objective metric derived from the projections of the functional PCA basis with
the average values of the subjective evaluations. The experiments were carried out by using time-based segmentation,
as explained above. The WSJ1 database was employed to build the lexicon-independent neutral functional PCA basis.
For each window, the projections into this basis are estimated. Motivated by the results in Fig. 4, we compute the norm
of the projection, which is used as an objective metric of the emotional prominence conveyed in speech. This norm
is smoothed with a median filter. As a ground truth, we estimated a subjective emotional prominence measure. While
using Feeltrace, the evaluators are instructed to place the pointer in the center of the coordinate system to describe
neutral speech. The distance of the pointer from the center is regarded as the emotional intensity of the speech (Cowie
et al., 2000). Therefore, we define the subjective metric e(t) as:

e(t) =
√

a2(t) + v2(t) (7)

where a(t) and v(t) are the average activation and valence subjective curves given by the human evaluators.
The use of Feeltrace as an evaluation tool introduces some challenges. The raters have to sense the stimuli, perceive

the message, decide its emotional attributes and move the pointer according to their perceptual judgments, all this in
real time. This perceptual process introduces a delay that is intrinsically speaker independent (Eyben et al., 2010).
However, the proposed approach captures the instantaneous emotional content in the signal. The lag between the
signals is addressed by allowing a variable shift between the objective and subjective metrics. This lag is estimated for
each sentence by maximizing the correlation between the metrics. The lag is forced to be lower than 0.5 s (a similar
threshold is proposed in Nicolaou et al. (2011) to address the synchronization issue).

Table 7 presents the average Pearson’s correlation between the subjective and objective metrics describing the
emotional prominence in the SEMAINE database (column ρ(S, O)). These results are estimated with time-based
segments of various lengths (0.25, 0.5 and 1 s), with 50% of overlap. The averaged correlation between the objective
and subjective metrics is ρ = 0.25, when the segment window is set to 0.5 s. As a comparison, Table 7 also shows
the inter-evaluator agreement (IEA) estimated as the averaged correlation between the curves of one rater and the
averaged curves of the other raters (column IEA). The inter-evaluator agreement is ρ = 0.35 when the segment window
is set to 0.5 s. Although our proposed method provides a lower correlation, the proposed objective metric approaches
the correlation observed between evaluators. Notice that this comparison is not completely fair, since the evaluators
made their judgments after watching the video and listening to the speech. In contrast, the proposed objective metric
is estimated by making use of only F0 contours. Fig. 5(a) presents an example with subjective and objective metrics
for a given utterance in the SEMAINE database (the x-axis corresponds to time). For graphical reasons, a constant
normalization factor was applied to the objective measure. For this example, the correlation between both curves is
ρ = 0.51. This figure also shows the lag between the metrics.

We noticed that in certain sentences, the correlation between the subjective and objective metrics was low or even
negative. Fig. 5(b) shows an example in which the correlation between the curves was ρ = −0.24. An interesting
pattern in this figure is the cumulative behavior of the subjective curve, which was also observed in other sentences. We
hypothesize that, after perceiving a localized emotional segment with high intensity, human evaluators tend to keep the
cursor position in the same place for some time even though the intrinsic emotional intensity decreases. This cumulative
behavior also agree with studies that show that individuals are more sensitive to relative variations in the emotional

intensity (Russell and Fehr, 1987). In fact, the highest variation in the subjective curve shown in Fig. 5(b) coincides
with the highest emotional prominence measured by the proposed objective metric. By considering these findings, we
decide to compare the proposed objective metric with the derivative of the subjective curves (i.e., variations rather than
absolute values). For example, Fig. 5(b) shows the derivative of the subjective evaluation (dashed line). The correlation
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Fig. 5. (a) Example of subjective (dotted), derivative of subjective (dashed) and objective (solid) metrics. In this example, the correlation between
subjective and objective metrics is equal to ρ = 0.51. (b) Example of subjective (dotted), derivative of subjective (dashed) and objective (solid)
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etrics. In this example, the correlation between the derivative of subjective and objective metrics is equal to ρ = 0.55.

etween this signal and the proposed metric is ρ = 0.55. Table 7 shows the correlation between the proposed objective
etric and the derivative of the subjective metrics across all the sentences (column ρ(�S/�t, O)). The correlations are

igher than when absolute values of the subjective curves are employed (column ρ(S, O)). Interestingly, the correlation
alues are even higher than the inter-evaluation agreement, when the window lengths is set to 0.5 or 1 s.

Finally, we use the values of activation and valence given by the evaluators to create neutral and emotional classes.
s mentioned, the center of the coordinate in Feeltrace corresponds to neutral speech. Therefore, if the subjective
etric e(t), defined in Eq. (7), is smaller than a threshold (eth) the segment is considered as neutral. If e(t) is outside

his circle, the segment is considered emotional. We set eth = 0.3, which produces balanced classes (neutral/emotional
atio equals to 1.1357). Notice that similar threshold was used by Schuller et al. (2011). With these classes, we conduct
inary classification experiments using time-based segmentation. The window size of the segments is 0.5 s. The WSJ1
atabase is employed to build the lexicon-independent neutral functional PCA basis. We estimate the projections into
his basis, which are used to classify the speech segments as neutral or emotional with a QDC classifier. Table 8
ompares the results achieved by the proposed method and by the benchmark classifier trained with F0 statistics. The
roposed approach achieves an accuracy of 62.7% which is 5% higher than the accuracy of the benchmark method.
his result suggests that the proposed method captures emotional information conveyed on the F0 contour producing

etter performance than classifiers trained with features extracted from F0 statistics.

able 8
inary classification (SEMAINE). The classes are created by thresholding the activation/valence scores. We report the accuracy, average precision,
verage recall and F-score.

Accuracy Average precision Average recall F-score

roposed system 0.621 0.618 0.623 0.618
enchmark 0.571 0.574 0.575 0.564
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6. Conclusions

This paper proposed a novel method to detect emotional modulation in F0 contours by using neutral reference models
with functional PCA basis functions. The projections into this basis define the features that are used to train an emotion
detection system. The approach was evaluated under different conditions. First, we built lexicon-dependent conditions
(i.e., one basis per sentence), which achieved accuracies as high as 75.8% in binary emotion classification tasks. This
performance is 6.2% higher than the ones achieved by a benchmark classifier trained with global F0 statistics. Then, we
evaluated lexicon-independent functional PCA basis, built with F0 contours extracted from utterances with different
lexical content. The results showed that the degradation in accuracy provided by lexicon-independent models was not
significant when compared with the lexicon-dependent system (i.e. from 75.8% to 74.2%). The proposed system was
then applied at the sub-sentence level to detect the most emotionally salient segments. The difference in accuracy
between sentence and time-based segment classifiers was not significant across all the emotional categories. Finally,
the approach was validated with a spontaneous database. The objective emotional prominence metric given by the
functional PCA projections correlates with subjective evaluations. Furthermore, the system achieved 62.7% accuracy
in binary classification which is 5% higher than benchmark classifier.

Our future work includes the incorporation of other prosodic features such as energy contour and duration. Likewise,
the proposed scheme can be extended to detect specific emotional categories (e.g., happiness versus anger). For example,
we can build emotion dependent functional PCA basis with F0 contours extracted from sentences labeled with a target
emotion. Alternatively, the emotion detection system can be used as a first step in a more sophisticated multi-class
emotion recognition system, in which emotional speech samples are further assigned to finer emotional labels (e.g.,
happiness versus anger). The combination of FDA with the polynomial representation of curves can also be proposed
as future research. Finally, the functional PCA based method presented in this paper can be even extended to other
speech processing tasks such as prosody assessment in second language learning. Basically, the idea is to train a
functional PCA basis by using prosodic patterns extracted from native speech. Then, the testing F0 contours generated
by non-native speakers can be assessed by employing the projections onto the native speaker basis.
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