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Abstract The Gibbs sampler is an iterative algorithm used to simulate Gaussian ran-
dom vectors subject to inequality constraints. This algorithm relies on the fact that
the distribution of a vector component conditioned by the other components is Gaus-
sian, the mean and variance of which are obtained by solving a kriging system. If
the number of components is large, kriging is usually applied with a moving search
neighborhood, but this practice can make the simulated vector not reproduce the tar-
get correlation matrix. To avoid these problems, variations of the Gibbs sampler are
presented. The conditioning to inequality constraints on the vector components can be
achieved by simulated annealing or by restricting the transition matrix of the iterative
algorithm. Numerical experiments indicate that both approaches provide realizations
that reproduce the correlation matrix of the Gaussian random vector, but some con-
ditioning constraints may not be satisfied when using simulated annealing. On the
contrary, the restriction of the transition matrix manages to satisfy all the constraints,
although at the cost of a large number of iterations.
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1 Introduction

The simulation of Gaussian random vectors subject to inequality constraints arises in
the analysis of spatial data, when all or part of the data values are interval constraints
rather than single numbers. In a mineral resources evaluation, this situation occurs
when the depth of a geological horizon is greater than the depth at which drilling
has been stopped, when a measured grade is smaller than a detection limit, or when
working with soft data defined by lower and upper bounds (Journel 1986). Interval
constraints are also encountered when simulating continuous variables represented
by chi-square random fields, as well as indicators and categorical variables repre-
sented by truncated Gaussian or plurigaussian random fields (Matheron et al. 1987;
Le Loc’h et al. 1994; Bárdossy 2006; Emery 2005, 2007a, 2007b; Armstrong et al.
2011). For instance, let d be a positive integer and consider an indicator variable
obtained by truncating a stationary Gaussian random field Y = {Y(x) : x ∈ R

d} at a
given threshold y ∈ R. The following procedure can be used to simulate the indicator
(Lantuéjoul 2002):

(1) Simulate Y at the data locations, conditioned by the indicator data.
(2) Simulate Y at the target locations of Rd , conditioned by the Y -vector obtained in

step (1).
(3) Truncate the simulated Gaussian random field to obtain a realization of the indi-

cator.

Any multivariate Gaussian simulation algorithm can be considered in step (2).
Regarding step (1), one can use an iterative algorithm known as the Gibbs sam-
pler. This algorithm is currently widely used to simulate Gaussian random vec-
tors subject to constraints and relies on the fact that the value of Y at a given
data location, conditioned by the values at the other data locations, has a Gaus-
sian distribution whose mean and variance can be calculated by solving a kriging
system (Geweke 1991; Freulon and de Fouquet 1993; Freulon 1994; Wilhelm and
Manjunath 2011). In practice, when the data are numerous, kriging is performed
with a moving search neighborhood rather than with a unique search neighbor-
hood, which may make the simulated vector not follow the desired distribution.
These problems are investigated in the following sections, by considering first the
case of nonconditional simulation (Sect. 2), then the case of conditional simulation
(Sect. 3).

2 Nonconditional Simulation

In this section, it is of interest to simulate a Gaussian random field with zero mean,
unit variance, and known spatial correlation structure at a set of n locations x1, . . . ,xn

of R
d . Put another way, one wants to simulate a Gaussian random vector Y =

(Y1, . . . , Yn)
T with zero mean and variance-covariance matrix C = [Cij ]i,j=1,...,n

having unit diagonal entries

∀i ∈ {1, . . . , n}, Cii = 1. (1)
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2.1 Using a Unique Search Neighborhood

Y can be simulated iteratively by Gibbs sampling: At each iteration, one of the vector
components is selected and updated according to its distribution conditional to the
other components. Specifically, the algorithm is as follows.

Algorithm 1 (Traditional Gibbs Sampler, Unique Search Neighborhood)

(1) Initialize the simulation by an arbitrary vector of size n, for example, Y(0) =
(0, . . . ,0)T .

(2) For k = 1,2, . . . ,K :

(a) Select an index i ∈ {1, . . . , n}. Any selection strategy can be considered (reg-
ular selection, pure random selection, etc.), provided that all the indices
in {1, . . . , n} are selected infinitely often as K tends to infinity (Amit and
Grenander 1991; Roberts and Sahu 1997; Levine and Casella 2006). This
condition will be assumed to be satisfied in all the algorithms presented in
this work.

(b) Set Y(k) = Y(k−1), except for the ith component that is replaced by

Y
(k)
i =

∑

j �=i

λj,iY
(k−1)
j + σiU

(k), (2)

where λj,i is the simple kriging weight assigned to Yj when estimating Yi ,
σ 2

i is the associated simple kriging variance and U(k) is a standard Gaussian

random variable independent of {Y (k−1)
j : j �= i}.

(3) Return Y(K).

The sequence of simulated vectors {Y(k) : k ∈ N} forms a Markov chain whose
state space is R

n. The chain is aperiodic and irreducible, that is, any state can be
reached from any other state by a finite number of steps. Furthermore, the target Gaus-
sian distribution is invariant for the transition matrix of the chain, that is, if Y(k−1) is
a Gaussian random vector with zero mean and variance-covariance matrix C, then so
is Y(k). Altogether, these three properties (irreducibility, aperiodicity, and existence
of an invariant distribution) imply that the chain converges in distribution to a Gaus-
sian random vector with zero mean and variance-covariance matrix C (Tierney 1994;
Roberts 1996; Lantuéjoul 2002). In practice, the chain is stopped after a finite
number K of iterations, resulting in a random vector Y(K) whose distribution
may differ from the target distribution, although the difference (measured by the
total variation distance between distributions) becomes negligible if K is large
enough. Several practical criteria to determine how large K must be have been
proposed in the literature (Lantuéjoul 2002; Emery 2007a, 2008; Armstrong et al.
2011).
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2.2 Using a Moving Search Neighborhood

If n is greater than a few thousands, calculating the kriging weights and kriging vari-
ances becomes computationally prohibitive. To circumvent this issue, one option is
to apply kriging with a moving search neighborhood and to modify the algorithm as
follows (Freulon and de Fouquet 1993).

Algorithm 2 (Traditional Gibbs Sampler, Moving Search Neighborhood)

(1) Initialize the simulation by an arbitrary vector of size n, for example, Y(0) =
(0, . . . ,0)T .

(2) For k = 1,2, . . . ,K :

(a) Select an index i ∈ {1, . . . , n}.
(b) Find the subset J of indices such that {xj : j ∈ J } belong to a neighborhood

centered on xi with given characteristics (maximum distance to xi along each
direction, splitting into angular sectors, maximum number of locations within
each sector, etc.).

(c) Set Y(k) = Y(k−1), except for the ith component that is replaced by

Y
(k)
i =

∑

j �=i

λ̃j,iY
(k−1)
j + σ̃iU

(k), (3)

where λ̃j,i and σ̃ 2
i are the simple kriging weights and simple kriging variance

obtained when estimating Yi from {Yj : j ∈ J, j �= i}, and U(k) is a standard

Gaussian random variable independent of {Y (k−1)
j : j �= i}. In Eq. (3), the

convention λ̃j,i = 0 has been used for j /∈ J .

(3) Return Y(K).

As in Algorithm 1, the sequence of simulated vectors {Y(k) : k ∈ N} forms a
irreducible and aperiodic Markov chain whose state space is R

n. Whether or not
this chain converges in distribution depends on whether or not there exists a dis-
tribution that is invariant for the transition matrix of the chain (Tierney 1994;
Lantuéjoul 2002). To find out this invariant distribution, first note that at each iteration
the random vector Y(k) is a zero-mean Gaussian random vector. Hence, if it exists,
the invariant distribution should be Gaussian with zero mean. Let C̃ = [C̃ij ]i,j=1,...,n

be its variance-covariance matrix. Then, if Y(k−1) is a Gaussian random vector with
zero mean and variance-covariance matrix C̃, so is Y(k). Using Eq. (3), this implies
the following identities

∀i ∈ {1, . . . , n}, ∀� ∈ {1, . . . , n} − {i}, C̃i� = cov
{
Y

(k)
i , Y

(k)
�

}

=
∑

j �=i

λ̃j,icov
{
Y

(k−1)
j , Y

(k−1)
�

}

=
∑

j �=i

λ̃j,i C̃j�, (4)
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and

∀i ∈ {1, . . . , n}, C̃ii = cov
{
Y

(k)
i , Y

(k)
i

}

=
∑

j �=i

∑

��=i

λ̃j,i λ̃�,icov
{
Y

(k−1)
j , Y

(k−1)
�

} + σ̃ 2
i var

{
U(k)

}

=
∑

j �=i

∑

��=i

λ̃j,i λ̃�,i C̃j� + σ̃ 2
i . (5)

Using Eq. (4), Eq. (5) becomes

∀i ∈ {1, . . . , n}, C̃ii =
∑

��=i

λ̃�,i C̃i� + σ̃ 2
i . (6)

Equations (4) and (6) can be rewritten in matrix form

B̃C̃ = I, (7)

with I the identity matrix of size n × n and

B̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ̃ 2

1

−λ̃2,1

σ̃ 2
1

· · · −λ̃n−1,1

σ̃ 2
1

−λ̃n,1

σ̃ 2
1

−λ̃1,2

σ̃ 2
2

1
σ̃ 2

2

−λ̃n−1,2

σ̃ 2
2

−λ̃n,2

σ̃ 2
2

...
. . .

...

−λ̃1,n−1

σ̃ 2
n−1

−λ̃2,n−1

σ̃ 2
n−1

1
σ̃ 2

n−1

−λ̃n,n−1

σ̃ 2
n−1

−λ̃1,n

σ̃ 2
n

−λ̃2,n

σ̃ 2
n

· · · −λ̃n−1,n

σ̃ 2
n

1
σ̃ 2

n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Accordingly, if it exists, the Gaussian distribution with zero mean and variance-
covariance matrix C̃ = B̃−1 is invariant for the transition matrix and, therefore, is
the limit distribution of the chain. In the case of a unique search neighborhood (Al-
gorithm 1), it is known (Dubrule 1983) that B̃ is the inverse of C, thus the chain
converges in distribution to a Gaussian random vector with zero mean and variance-
covariance matrix C. However, in the case of a moving search neighborhood (Algo-
rithm 2), the chain may not converge in distribution because C̃ may not be a valid
variance-covariance matrix, that is, a symmetric positive semidefinite matrix. The
conditions for the existence of a limit distribution are:

(1) B̃ is a symmetric matrix, that is,

∀i, j ∈ {1, . . . , n}, λ̃j,i σ̃
2
j = λ̃i,j σ̃

2
i . (9)

(2) The eigenvalues of B̃ are nonnegative.

2.3 Numerical Experiments

To study the effect of a moving search neighborhood, numerical experiments have
been conducted with the following parameters:
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Table 1 Properties of matrix B̃ for each covariance model and moving search neighborhood

Covariance
model

Neighborhood
radius

Relative Frobenius
norm of B̃ − B̃T

Minimum real
eigenvalue of B̃

Number of
nonreal
eigenvalues

Maximum imaginary
part of complex
eigenvalues

Spherical 5 0.0016 −0.0080 6 8.22 × 10−15

Spherical 15 0.0053 −0.0200 14 0.0033

Spherical 25 0.0007 0.0073 4 4.16 × 10−15

Cubic 5 0.0010 −0.0232 38 3.33 × 10−11

Cubic 15 0.0095 −1.4919 120 0.6620

Cubic 25 0.0015 0.0072 68 0.0038

• The simulated random vector Y is a realization of a stationary Gaussian ran-
dom field with an isotropic spherical covariance (Case 1) or an isotropic cubic
covariance (Case 2), in both cases with a range of 15 units, over a regular two-
dimensional grid with 50 × 50 nodes and a mesh of 1 × 1.

• The grid nodes are visited according to a random permutation strategy (Galli and
Gao 2001) and the Gibbs sampler is stopped after 2,500,000 iterations, which cor-
responds to 1,000 permutations.

• The moving search neighborhood used for calculating the kriging weights and krig-
ing variances is a disc centered at the target node. Three disc radii are considered
(5, 15, and 25 units), for which the number of grid nodes found in the neighborhood
can reach 80, 708, and 1960, respectively.

Figures 1 and 2 present the map of the final realization and a plot of the mini-
mum and maximum simulated values as a function of the iteration number. When
using a moving search neighborhood of 5 or 25 units, the apparent spatial varia-
tions agree with the covariance models (continuous variations for the spherical co-
variance, smooth variations for the cubic covariance), while the minimum and max-
imum simulated values fluctuate in a range that is consistent with what is expected
from a standard Gaussian random field. However, things go wrong with a moving
search neighborhood of 15 units: The map shows exaggeratedly smooth spatial vari-
ations or artifacts (Figs. 1(b) and 2(b)), and the range of the extreme simulated val-
ues becomes excessively large when the number of iterations increases (Figs. 1(e)
and 2(e)). To explain these results, it is interesting to have a look at the matrix B̃
defined in Eq. (8). Table 1 summarizes some properties of this matrix (minimum
real eigenvalue, number of complex nonreal eigenvalues, maximum imaginary part
of the complex eigenvalues, Frobenius norm of B̃ − B̃T relative to the Frobenius
norm of B̃) in each case. These properties allow checking whether or not B̃ satis-
fies the conditions for the existence of a limit distribution and, if not, how distant
is this matrix from a symmetric positive semidefinite matrix. Not surprisingly, the
case with a moving search neighborhood of radius 15 is the one for which B̃ is
far from being symmetric (higher relative Frobenius norm of B̃ − B̃T , larger num-
ber of nonreal eigenvalues) and has negative real eigenvalues with larger absolute
values. Note that the requirement for a symmetric matrix (Eq. (9)) are never sat-
isfied, thus, in all the cases, the sequences of simulated vectors do not converge
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in distribution. Accordingly, even with the moving search neighborhoods of ra-
dius 5 or 25, the observed spatial variations or the range of simulated values may
not agree with the target distribution if the algorithm is stopped after more itera-
tions.

2.4 An Alternative for a Unique Search Neighborhood

To avoid using a moving search neighborhood, an alternative has been proposed by
Galli and Gao (2001) and further examined by Lantuéjoul and Desassis (2012) and
Arroyo et al. (2012). Let B = C−1 and X = BY (equivalently, Y = CX). Instead of
simulating Y, the idea is to simulate X, which is a Gaussian random vector with zero
mean and variance-covariance matrix B, and to set Y = CX once the simulation of X
is completed. As the determination of kriging weights and kriging variances relies on
the inverse of the variance-covariance matrix (i.e., B−1 = C), it is no longer necessary
to invert C, so that a unique search neighborhood can be considered. The algorithm
is therefore as follows.

Algorithm 3 (Gibbs Sampler on X, Unique Search Neighborhood)

(1) Initialize the simulation by an arbitrary vector of size n, for example, X(0) =
(0, . . . ,0)T .

(2) For k = 1,2, . . . ,K :

(a) Select an index i ∈ {1, . . . , n}.
(b) Set X(k) = X(k−1), except for the ith component that is replaced by

X
(k)
i =

∑

j �=i

�j,iX
(k−1)
j + siV

(k), (10)

where �j,i is the simple kriging weight assigned to Xj when estimating Xi ,
s2
i is the associated simple kriging variance and V (k) is a standard Gaussian

random variable independent of {X(k−1)
j : j �= i}. Letting Cij be the entry of

C at row i and column j , then (Dubrule 1983)

s2
i = 1

Cii

, (11)

�j,i = −Cij

Cii

. (12)

Let Y(k) = CX(k). Recalling that Cii = 1 (Eq. (1)), Eq. (10) can be rewritten
as

X
(k)
i = X

(k−1)
i − Y

(k−1)
i + V (k). (13)

(3) Return Y(K) = CX(K).

To speed up calculations, one can rewrite Algorithm 3 to directly simulate Y.
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Algorithm 4 (Gibbs Sampler on Y, Unique Search Neighborhood)

(1) Initialize the simulation by an arbitrary vector of size n, for example, Y(0) =
(0, . . . ,0)T .

(2) For k = 1,2, . . . ,K :

(a) Select an index i ∈ {1, . . . , n}.
(b) Set Y(k) = Y(k−1) + δCi , where Ci is the ith column of C, δ = −Y

(k−1)
i +

V (k) and V (k) is a standard Gaussian random variable independent of Y(k−1).

(3) Return Y(K).

This algorithm has been recently proposed by Lantuéjoul and Desassis (2012) and
Arroyo et al. (2012). Using different approaches, these authors also established a
variant in which several indices are selected in step 2(a).

3 Simulation Conditioned to Inequality Constraints

In the scope of truncated Gaussian and plurigaussian simulation, it is necessary to
simulate the Gaussian random vector Y subject to inequality constraints on its com-
ponents

∀i ∈ {1, . . . , n}, ai < Yi < bi, (14)

where the bounds a1, . . . , an, b1, . . . , bn are real numbers or infinite. Two approaches
(simulated annealing and restriction of the transition matrix) will be explored.

3.1 Simulated Annealing

Simulated annealing is an iterative procedure that can be used to simulate random
vectors subject to complex conditioning constraints (Lantuéjoul 2002; Chilès and
Delfiner 2012). The algorithm relies on three components: (i) a Markov chain that
has the nonconditional distribution (here, a Gaussian with zero mean and variance-
covariance matrix C) as its limit distribution, (ii) an objective function O(.) that mea-
sures the discrepancy between the simulated vector and the conditioning constraints,
and (iii) a cooling schedule that defines a temperature tk at the kth iteration of the
algorithm. For instance, the objective function can be defined as follows

O(Y) =
n∑

i=1

(
max{ai − Yi,0} + max{Yi − bi,0}), (15)

so that O(Y) ≥ 0, with the equality O(Y) = 0 if all the conditioning constraints are
satisfied. As for the temperature, one example is to consider a cooling schedule of the
form

∀k > 0, tk = t0α
k, (16)

with given values of t0 in ]0,+∞[ and α in ]0,1[.
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To avoid convergence problems due to a moving search neighborhood, the Markov
chain considered for the simulated annealing procedure will be the Gibbs sampler
proposed in Sect. 2.4 (Algorithm 4).

Algorithm 5 (Gibbs Sampler Combined with Simulated Annealing)

(1) Initialize the simulation by an arbitrary vector Y(0) of size n, for example, a vec-
tor of zeros or a nonconditional realization of Y.

(2) For k = 1,2, . . . ,K :

(a) Select an index i ∈ {1, . . . , n}.
(b) Set Y′ = Y(k−1) +δCi , where Ci is the ith column of C, δ = −Y

(k−1)
i +V (k)

and V (k) is a standard Gaussian random variable independent of Y(k−1).
(c) Simulate a random variable U uniformly distributed in [0,1].
(d) Calculate the current temperature tk , according to the chosen cooling sched-

ule.
(e) If U < exp{O(Y(k−1))−O(Y′)

tk
}, set Y(k) = Y′. Otherwise, set Y(k) = Y(k−1).

(3) Return Y(K).

One issue with the above algorithm is that the rate of convergence to the target
conditional distribution may be slow, depending on the chosen initial state and cool-
ing schedule. If the algorithm is stopped after a finite number (K) of iterations, one
obtains a random vector Y(K) that may not satisfy all the conditioning constraints
(Eq. (14)). An illustration of this situation will be presented at Sect. 3.3.

3.2 Restriction of the Transition Matrix

The idea of restricting the transition matrix of the Gibbs sampler has been proposed
by several authors (Geweke 1991; Freulon and de Fouquet 1993; Kotecha and Djuric
1999; Wilhelm and Manjunath 2011), who modified Algorithm 1 to forbid any transi-
tion to a state that does not satisfy the conditioning constraints (Eq. (14)). In practice,
when the number n of vector components is large, a unique search neighborhood is
impractical and a moving search neighborhood is used instead (Freulon and de Fou-
quet 1993), but as seen in Sect. 2.2, this is likely to make the sequence of simu-
lated vectors not converge in distribution. To avoid such problems, rather than Algo-
rithm 1, one can consider Algorithm 3 and restrict its transition matrix, as explained
next.

Algorithm 6 (Gibbs Sampler on X, with Restriction of the Transition Matrix)

(1) Initialize the simulation by a vector X(0) that satisfies the conditioning con-
straints. This requires finding a solution to the following system of linear in-
equalities

∀i ∈ {1, . . . , n}, ai <

n∑

j=1

CijXj < bi. (17)
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The set of solutions of the above system is an open convex region of R
n,

delimited by the hyperplanes defined by the equations
∑n

j=1 CijXj = ai and∑n
j=1 C�jXj = b� for all the indices i and � such that ai and b� are finite.

(2) For k = 1,2, . . . ,K :

(a) Select an index i ∈ {1, . . . , n}.
(b) Set X(k) = X(k−1), except for the ith component that is replaced by

X
(k)
i =

∑

j �=i

�j,iX
(k−1)
j + V (k), (18)

where �j,i is the simple kriging weight assigned to Xj when estimat-
ing Xi and V (k) is a standard Gaussian random variable independent of
{X(k−1)

j : j �= i} satisfying the constraints in Eq. (17). V (k) has a truncated
Gaussian distribution whose range of values is an open interval bounded by
(Eqs. (17)–(18))

max
p∈{1,...,n}:Cpi �=0

{
min

(
ap − βpi

Cpi

,
bp − βpi

Cpi

)}
(19)

and

min
p∈{1,...,n}:Cpi �=0

{
max

(
ap − βpi

Cpi

,
bp − βpi

Cpi

)}
, (20)

with βpi = ∑
j �=i (Cpj + Cpi�j,i)X

(k−1)
j .

(c) Set Y(k) = CX(k).

(3) Return Y(K).

The sequence of simulated vectors {X(k) : k ∈ N} forms a Markov chain that is
aperiodic and irreducible: Irrespective of the current state, any point of the convex
open region solution of Eq. (17) can be reached in a finite number of iterations. Fur-
thermore, let X = BY be a Gaussian random vector with zero mean and variance-
covariance matrix B = C−1, and assume that X(k−1) is a random vector with the
distribution of X conditioned by the inequality constraints in Eq. (17). Because the
transition matrix in step (2) is identical to the transition matrix of Algorithm 3, except
for the restrictions Eqs. (19) and (20) that make X(k) satisfy Eq. (17), the distribution
of X(k) is the same as that of X(k−1), that is, this distribution is invariant for the
transition matrix. Hence, the conditions for convergence (irreducibility, aperiodicity,
and existence of an invariant distribution) are satisfied (Lantuéjoul 2002): The chain
{X(k) : k ∈ N} converges in distribution to a Gaussian random vector with zero mean
and variance-covariance matrix B conditioned by the constraints of Eq. (17). Equiva-
lently, the chain {Y(k) : k ∈ N} converges in distribution to a Gaussian random vector
with zero mean and variance-covariance matrix C conditioned by the constraints of
Eq. (14). In practice, the main difficulty of Algorithm 6 is the initialization step, for
which one may need to solve a large system of linear inequalities. To avoid this dif-
ficulty, it is convenient to rewrite this algorithm to directly simulate Y, as proposed
next.
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Algorithm 7 (Gibbs Sampler on Y, with Restriction of the Transition Matrix)

(1) Initialize the simulation by a vector Y(0) that satisfies the conditioning the con-
straints of Eq. (14).

(2) For k = 1,2, . . . ,K :

(a) Select an index i ∈ {1, . . . , n}.
(b) Set Y(k) = Y(k−1) + δCi , where Ci is the ith column of C, δ = −Y

(k−1)
i +

V (k) and V (k) is a truncated Gaussian random variable independent of
Y(k−1), such that the conditioning constraints of Eq. (14) are satisfied. The
bounds for V (k) are

max
j∈{1,...,n}:Cij �=0

{
min

(
aj − γij

Cij

,
bj − γij

Cij

)}
(21)

and

min
j∈{1,...,n}:Cij �=0

{
max

(
aj − γij

Cij

,
bj − γij

Cij

)}
, (22)

with γij = Y
(k−1)
j − CijY

(k−1)
i .

(3) Return Y(K).

As this algorithm is formally equivalent to Algorithm 6, the chain {Y(k) : k ∈ N}
converges in distribution to a Gaussian random vector with zero mean and variance-
covariance matrix C conditioned by the constraints of Eq. (14).

3.3 Numerical Experiments

We consider the two cases presented in Sect. 2.3 (simulation of a Gaussian random
field with an isotropic spherical or cubic covariance model on a 50 × 50 grid) and
now focus on simulation under inequality constraints. For the sake of simplicity, these
constraints will be of the form

∀i ∈ {1, . . . , n}, Yi < 0 or Yi > 0. (23)

Two simulation algorithms are used: simulated annealing (Algorithm 5) and re-
striction of the transition matrix (Algorithm 7). In simulated annealing, the initial
state Y(0) is a nonconditional realization of Y obtained by Algorithm 4. The objec-
tive function and the cooling schedule presented in Eqs. (15) and (16) have been
used, with an initial temperature t0 = 10,000 and a cooling parameter α = 0.999999.
For the restriction of the transition matrix approach, one option to define the initial
state is to simulate each vector component Yi via an acceptance-rejection method, by
drawing a standard Gaussian random variable as many times as necessary until the
simulated value satisfies the conditioning constraint (Eq. (23)). However, since the
vector components are simulated independently one from another, this leads to an
initial state with no spatial structure and a considerable number K of iterations are
necessary to get a final random vector with the desired correlation matrix. To obtain
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a spatially structured initial state, another option is to run Algorithm 2 with a restric-
tion of the transition matrix, that is, the distribution of U(k) in Eq. (3) is conditioned
to the constraints given in Eq. (23). This option has been chosen in the experiments
shown below, using a search radius of 5 units and a total of 2,500,000 iterations. For
each covariance model (spherical and cubic), the experiment consists of the following
steps:

(1) Construct a nonconditional simulation of Y. This step has been achieved by using
the algorithm proposed by Arroyo et al. (2012), a variant of Algorithm 4 in which
several vector components (in the present case, four components associated with
adjacent grid nodes) are selected at each iteration, instead of a single component.

(2) Using the realization of step (1), define the conditioning constraints, depending
on the signs of the simulated values (Eq. (23)).

(3) Use these constraints to construct a conditional simulation of Y, using Algo-
rithm 5 (simulated annealing) or Algorithm 7 (restriction of the transition ma-
trix).

The overall procedure (steps 1–3) is repeated 50 times, with different seeds for
random number generation each time. To ensure that the distribution of the simu-
lated vector is close to the target conditional distribution, a large number of iterations
(K = 25,000,000) has been chosen for step (2) of Algorithms 5 and 7. This can be
checked by comparing the experimental covariance of the conditional realizations
with the prior covariance model: on average, the experimental covariance practically
matches the prior model (Fig. 3). Reducing the number of iterations (for instance, to
K = 5,000,000) significantly decreases the computation time but may lead to a mis-
match in the covariance reproduction, as illustrated in Fig. 4 for the restriction of the
transition matrix algorithm applied to the simulation of a random vector with a cubic
covariance. Examples of nonconditional and conditional realizations are presented
in Fig. 5 for the restriction of the transition matrix (Algorithm 7), corroborating that
the conditional realizations satisfy the interval constraints and have the same spatial
correlation structure as the nonconditional realizations. A similar figure can be ob-
tained for simulated annealing (Algorithm 5), except that some conditioning data are
not satisfied as the algorithm is stopped before the objective function could reach a
zero value (Fig. 6; Table 2). The number of conditioning data that are not satisfied
could be decreased further at the cost of an increase of the number of iterations and of
the associated computation time. From this viewpoint, the restriction of the transition
matrix approach is preferable to simulated annealing.

4 Conclusions

The Gibbs sampler is an iterative algorithm that allows constructing a sequence of
random vectors converging in distribution to a Gaussian random vector with zero
mean and given variance-covariance matrix. However, convergence may no longer
take place if a moving search neighborhood is used in the iteration stage. To avoid
such problems, an alternative version of the algorithm has been presented, consisting
of simulating a Gaussian random vector with the inverse covariance matrix. This new
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Fig. 3 Prior covariance models (solid lines), experimental covariances (dashed lines) and average ex-
perimental covariances (stars) for conditional realizations obtained via simulated annealing (a), (b) and
restriction of transition matrix (c), (d) with K = 25,000,000 iterations

Fig. 4 Prior covariance model
(solid line), experimental
covariances (dashed lines) and
average experimental
covariances (stars) for
conditional realizations obtained
via restriction of transition
matrix with K = 5,000,000
iterations
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Table 2 Number of
conditioning constraints that are
not satisfied after 25,000,000
iterations (statistics over 50
realizations)

Minimum Maximum Mean Mean absolute
value

Spherical covariance 167 394 259.3 0.589

Cubic covariance 37 175 85.6 0.054

version can easily be performed with a unique search neighborhood. Furthermore, it
lends itself to the simulation of a random vector conditioned to inequality constraints,
by incorporating either a simulated annealing procedure or a restriction of the transi-
tion matrix in the iterative algorithm. In practice, simulated annealing only manages
to approximately satisfy the conditioning constraints, whereas the restriction of the
transition matrix can exactly satisfy these constraints. In both cases, a large number
of iterations may be needed to accurately reproduce the target correlation matrix (for
indication, the numerical experiments realized in this work have considered a number
of iterations equal to ten thousand times the number of conditioning constraints). The
number of iterations should be increased if the number of conditioning constraints
increases or if these constraints are very restrictive (for example, if they consist of
narrow intervals).
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