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ABSTRACT
We present a method for identifying localized secondary populations in stellar velocity data
using Bayesian statistical techniques. We apply this method to the dwarf spheroidal galaxy
Ursa Minor and find two secondary objects in this satellite of the Milky Way. One ob-
ject is kinematically cold with a velocity dispersion of 4.25 ± 0.75 km s−1 and centred at
(9.1 arcmin ± 1.5, 7.2 arcmin ± 1.2) in relative RA and Dec. with respect to the centre of
Ursa Minor. The second object has a large velocity offset of −12.8+1.75

−1.5 km s−1 compared
to Ursa Minor and centred at (−14.0 arcmin+2.4

−5.8,−2.5 arcmin+0.4
−1.0). The kinematically cold

object has been found before using a smaller data set, but the prediction that this cold object
has a velocity dispersion larger than 2.0 km s−1 at 95 per cent confidence level differs from
previous work. We use two- and three-component models along with the information crite-
ria and Bayesian evidence model selection methods to argue that Ursa Minor has additional
localized secondary populations. The significant probability for a large velocity dispersion in
each secondary object raises the intriguing possibility that each has its own dark matter halo,
that is, it is a satellite of a satellite of the Milky Way.
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1 IN T RO D U C T I O N

The Milky Way dwarf spheroidal galaxies (dSphs) are the faintest
but most numerous of the Galactic satellites. About 22 dSphs have
been discovered with nine known before the Sloan Digital Sky Sur-
vey (SDSS). The latter satellites are often collectively referred to as
the classical dSphs. Thus, thanks to the advent of the SDSS, the num-
ber of known Milky Way dSphs has more than doubled (Willman
et al. 2005; Belokurov et al. 2006; Sakamoto & Hasegawa 2006;
Zucker et al. 2006a,b; Belokurov et al. 2007; Irwin et al. 2007;
Walsh, Jerjen & Willman 2007). The classical systems are in gen-
eral brighter and more extended than their post-SDSS counterparts,
usually referred to as the ultrafaint dwarfs. The dSph population of
the Milky Way have a wide range of luminosities, 103−7 L�, and
sizes (half-light radii) from 40 to 1000 pc (Mateo 1998; Simon &
Geha 2007; Martin, de Jong & Rix 2008), but span a narrow range
of dynamical mass: M(r < 300 pc) ≈ 107 M� for most of the dwarfs
(Strigari et al. 2008). In the context of hierarchical structure forma-
tion scenario, these dSphs would reside in the dark matter subhaloes
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of the Milky Way host halo and so the dynamical mass provides an
estimate of the amount of dark matter in subhaloes. The dynamical
mass-to-light ratios span a large range of 8–4000 (in solar units);
some of these systems are the most dark matter dominated systems
known (Walker et al. 2009b; Wolf et al. 2010; Martinez et al. 2011;
Simon et al. 2011).

Simulations also predict that subhaloes should have their own
subhaloes (‘sub-subhaloes’, e.g. Shaw et al. 2007; Diemand et al.
2008; Kuhlen, Diemand & Madau 2008; Springel et al. 2008).
While their presence in cold dark matter (CDM) simulations has
been verified, the mass function of these sub-subhaloes has not
been well quantified. The subhalo mass function is seen to follow
a universal profile when scaled to the virial mass of the host halo.
If the sub-subhaloes follow the same pattern, then we expect to see
a sub-subhalo with Vmax � 0.3Vmax(subhalo) (Springel et al. 2008).
We are motivated by this fact to search for stellar content that could
be associated with these sub-subhaloes.

Several dSphs show signs of stellar substructure or multiple dis-
tinct chemo-kinematic populations (Fornax, Sculptor, Sextans, Ursa
Minor, Canes Venatici I). For instance, in Fornax, there are stel-
lar overdensities along the minor axis, possibly remnants of past
mergers (Coleman et al. 2004, 2005) and five globular clusters
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Table 1. Observed and derived properties of Ursa Minor.

Parameter Value

Distance a 77 ± 4 kpc
Luminosity a 3.9+1.7

−1.3 × 105 L�,V
Core radius a 17.9 arcmin ± 2.1
Tidal radius a 77.9 arcmin ± 8.9
Half-light radius a 0.445 ± 0.044 kpc
Deprojected half-light radius a (r1/2) 0.588 ± 0.058 kpc
Average velocity dispersion b 11.61 ± 0.63 km s−1

Mean velocity b −247 ± 0.8 km s−1

Dynamical mass within r1/2
a 5.56+0.79

−0.72 × 107 M�
Mass-to-light ratio within r1/2

a 290+140
−90 M�/L�

Ellipticity c 0.56 ± 0.05
Center (J2000.0) d (15h09m10.s2, 67◦12′52′′)
Position angle e 49.◦4

Notes. References are as follows: aWolf et al. (2010) and references
therein, bThis paper, cMateo (1998), dKleyna et al. (2003), eKleyna
et al. (1998).

(Mackey & Gilmore 2003). In addition, Fornax’s metal-rich and
metal-poor stellar components seem to have different velocity dis-
persions (Battaglia et al. 2006). Similarly, Sextans and Sculptor each
contain two kinematically distinct secondary populations with dif-
ferent metallicities (Bellazzini, Ferraro & Pancino 2001; Battaglia
et al. 2008). Sculptor’s populations have different velocity disper-
sion profiles, in addition to their distinct metallicities (Battaglia
et al. 2008), whereas Sextans has localized kinematically distinct
population either near its centre (Kleyna et al. 2004; Battaglia et al.
2011) or near its core radius (Walker et al. 2006). There are claims
of two populations with distinct velocity and metallicity distribu-
tions in the brightest ultrafaint dwarf, Canes Venatici I (Ibata et al.
2006), but this is not seen in two other data sets (Simon & Geha
2007; Ural et al. 2010). The Boötes I ultrafaint could also have
two kinematically distinct populations with different scalelengths
(Koposov et al. 2011), although this was not apparent in earlier
data sets (Muñoz et al. 2006; Martin et al. 2007). The largest of
these Boötes I data sets contains 37 member stars and this has to be
weighed against the results of Ural et al. (2010), who suggest that
at least 100 stars are required to differentiate two populations.

Among the classical dSphs, only Draco has a lower V-band lu-
minosity but Ursa Minor is twice as extended as Draco (in terms of
its half-light radius; Irwin & Hatzidimitriou 1995; Palma et al.
2003). Its observed and derived properties are summarized in
Table 1. Ursa Minor is also likely the most massive satellite in
terms of its dark matter halo, apart from the Magellanic Clouds and
the disrupting Sagittarius dSph. These properties make Ursa Minor
an ideal target to search for substructure. The Vmax at infall for the
subhalo hosting Ursa Minor should be greater than 25 km s−1 but
probably no larger than about 50 km s−1 (Boylan-Kolchin, Bullock
& Kaplinghat 2012), and thus, we can expect Ursa Minor to have a
sub-subhalo with Vmax in the range of 8–16 km s−1.

Several photometric studies with different magnitude limits and
overall extent observed, have reported additional localized stellar
components of the stellar distribution that deviates from a smooth
density profile (Olszewski & Aaronson 1985; Kleyna et al. 1998;
Palma et al. 2003), particularly near the centre (Demers et al. 1995;
Eskridge & Schweitzer 2001). To the north-west of the centre,
a secondary peak in the spatial distribution is seen in contours
and isopleths (Irwin & Hatzidimitriou 1995; Kleyna et al. 1998;
Bellazzini et al. 2002; Palma et al. 2003). However, different stud-
ies have concluded that this secondary peak is inconclusive or of

low significance (Irwin & Hatzidimitriou 1995; Kleyna et al. 1998;
Bellazzini et al. 2002; Palma et al. 2003). Smaller scale stellar sub-
structure is, however, seen with higher significance (Eskridge &
Schweitzer 2001; Bellazzini et al. 2002). Combining proper motion
information with shallow photometric data in the central 20 arcmin
of Ursa Minor, Eskridge & Schweitzer (2001) claim that the dis-
tribution of stars in Ursa Minor shows high significance for stellar
substructure in clumps of ∼3 arcmin in size. Bellazzini et al. (2002)
used the presence of a secondary peak in the distribution of the dis-
tance to the 200th neighbouring star to argue that the surface density
profile of Ursa Minor is not smooth. In addition, the stellar density
is not symmetric along the major axis with the density falling more
rapidly on the Western side (Eskridge & Schweitzer 2001; Palma
et al. 2003) Statistically significant S-shaped morphology is also
seen in contours of the red giant branch stars (Palma et al. 2003).
Some authors argue that these features could point towards tidal
interactions (Eskridge & Schweitzer 2001; Palma et al. 2003).

Spectroscopic studies of Ursa Minor (Hargreaves et al. 1994;
Armandroff, Olszewski & Pryor 1995; Kleyna et al. 2003;
Wilkinson et al. 2004; Muñoz et al. 2005) have shown a rela-
tively flat velocity dispersion profile of σ ≈ 8–12 km s−1. Kleyna
et al. (2003, hereafter K03) used a two-component model to test
whether the second peak in photometry had a counterpart in veloc-
ity data. They found a second kinematically distinct population with
σ = 0.5 km s−1 and �v = −1 km s−1. Our results lends support to
this discovery by K03, but we do not agree on the magnitude of the
velocity dispersion of the substructure. We discuss this in greater
detail later.

K03 argued through numerical simulations that the stellar clump
they discovered could survive if the dark matter halo of Ursa Minor
had a large core (about 0.85 kpc) but not a cusp like the prediction
for inner parts of haloes of 1/r from CDM simulations (Navarro,
Frenk & White 1997). Additional numerical simulations including
the Ursa Minor stellar clump have confirmed this result (Lora et al.
2012). Similar conclusions have been reached using the observed
projected spatial distribution of the five globular clusters in Fornax
dSph (Mackey & Gilmore 2003). The survival of these old globular
clusters has been interpreted as evidence that the dark matter halo of
Fornax may have a large core in stark contrast to the predictions of
dark-matter-only CDM simulations (Goerdt et al. 2006; Sánchez-
Salcedo, Reyes-Iturbide & Hernandez 2006; Cowsik et al. 2009;
Cole et al. 2012). Thus, the study of the properties of the substructure
in Ursa Minor has far reaching implications for the dark matter halo
of this dSph and by extension the properties of the dark matter
particle. Our study is complementary to the recent studies using
the presence of multiple stellar populations in Fornax and Sculptor
that also seem to point towards a cored dark matter density profile
(Battaglia et al. 2008; Walker & Peñarrubia 2011; Amorisco &
Evans 2012).

Current methods for finding kinematic substructure in the dSphs
have relied on likelihood comparison parameter tests (K03; Ural
et al. 2010), non-parametric Nadaraya–Watson estimator (Walker
et al. 2006), or metallicity cuts and kinematics (Battaglia et al.
2011), but not Bayesian methods. Hobson & McLachlan (2003)
presented a Bayesian method for finding objects in noisy data. The
object detection method is able to find two or more objects using
only a two-component model in photometric data. This method can
be extended to include spectroscopic line-of-sight velocity data to
search for objects using kinematics, as well as structural proper-
ties. We apply this method to Ursa Minor to search for counterparts
to stellar substructure (Irwin & Hatzidimitriou 1995; Kleyna et al.
1998) and the kinematically cold feature found by K03. In the
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Figure 1. The binned line-of-sight velocity data (red dashed) in Ursa Minor. Right: overplotted is the most probable Gaussian with σ = 11.51 and a
v = −247.25 (black solid) from the null model (single Gaussian component). Left: the line-of-sight velocity distributions of the secondary objects and primary
populations. The lines correspond to the velocity dispersions of different populations found with the Bayesian object detection method; velocity offset object
(blue dot–dot–space), cold object (green dotted), primary distribution (purple dot–dashed), and the total (black solid). Each component is weighted by its
average number of stars found using the Bayesian object detection method. When spatial information is taken into account, the additional kinematic components
provide a better fit to the Ursa Minor data.

next subsection, we discuss the localized velocity dispersions and
average velocities. In Section 2, we present the object detection
method and model selection techniques used to quantify whether
detection is real or not. In Section 3, we present our results and
access the significance of them. In Section 4, we discuss the impli-
cations of localized substructures, and we conclude in Section 5.

1.1 Data and motivation for more complex models

The spectroscopic data we used contain 212 Ursa Minor member
stars (Muñoz et al. 2005); the sample that K03 used to discover the
cold feature contained 134 stars. In Fig. 1, we show the line-of-sight
velocities binned with the best-fitting single component Gaussian
(right) and the combined fit from our object detection model (left).
When positional information is included in addition to the velocity
information, both models have comparable χ2. The mean, disper-
sion, and positional information of these Gaussian distributions
were derived from our Bayesian object detection that is the subject
of this paper. As a prelude to our final results, we note that the
centres of all three populations (the primary and two secondaries)
found through the object detection method are spatially segregated.

Before we develop the Bayesian methodology and model compar-
ison methods to show the significance of (or lack thereof), we would
like to dissect the data to see if secondary populations are visible as
strong local deviations in either mean velocity or velocity disper-
sion. To this end, we grid a 50 arcmin × 30 arcmin region around the
centre of Ursa Minor finely and for each grid point, we find the av-
erage velocity v and velocity dispersion σ in a 5 arcmin × 5 arcmin
bin using the expectation-maximization method (see equations 12b
and 13 of Walker et al. 2009a). We disregard grid points where there
are fewer than seven stars in the bin. We have plotted the smoothed
σ and v maps created using this method in Fig. 2. The velocity dis-
persion map is the upper-left panel and the average velocity map is
the upper-right panel. The data are rotated such that the major axis is
aligned with the abscissa (θ = 49.◦4, see Table 1 for the photometric
properties of Ursa Minor we use). There are two interesting features
evident: in the σ map, roughly centred at (11 arcmin, −4 arcmin),
the σ drops below 6 km s−1 whereas globally, σ = 11.5 km s−1, and
in the v map centred at (−13 arcmin, 6 arcmin), v evidently differs
from Ursa Minor’s overall average (�|v| > 10 km s−1). We have
also plotted the number density (lower-left panel) and the positions

of the stars (lower-right panel) in Fig. 2 to show the distribution
of data and that the kinematic peculiarities are not artefacts due
to a low number of stars. The number density map is created the
same way as the v and σ maps and shows that both features are in
regions that are reasonably sampled. In the plot with the positions
of the stars, we have also indicated the most probable locations
for the centres and the extent of the two features as found by our
Bayesian object detection method. We caution the reader that the
plotted extents (tidal radii) of these features have large error bars
(see Table 2).

The centre of the dip in σ (upper-left panel of Fig. 2) is near the
spectroscopic feature found by K03 and the secondary density peak
seen in the photometry by several authors (Irwin & Hatzidimitriou
1995; Kleyna et al. 1998; Bellazzini et al. 2002; Palma et al. 2003).
The average velocity feature we see does not correspond to any pre-
vious noted photometry or kinematic features. However, we note
that the stellar isodensity contours of Ursa Minor are significantly
asymmetric (Kleyna et al. 1998; Palma et al. 2003) and could hide
both features. We now turn to describing our Bayesian object de-
tection method for finding secondary objects and model selection
methods for assessing their significance.

2 M E T H O D O L O G Y: T H E O RY

This paper has two primary objectives: to present a statistical
methodology for detecting discrete features within a kinematic data
set and apply this methodology to the Milky Way satellite galaxy
Ursa Minor. In this section, we detail the statistical techniques used
to detect kinematic objects within the Ursa Minor data set. The
pertinent question we are addressing is whether statistically dis-
tinct kinematic objects can be detected within a galaxy’s stellar
line-of-sight kinematic data and, if such an object is detected, how
certain can we be that this object is an actual physical attribute of
the system. Thus, we require that any methodology used to detect
multiple smaller composite objects within the kinematic data set
have two important properties. First, any proposed algorithm must
be able to discern an unspecified numbers of statistically separable
features within a galaxy’s kinematic data set. And secondly, this
methodology must allow for some kind of determination of the
significance of a proposed object detection.
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Figure 2. The local kinematics of Ursa Minor using the Muñoz et al. (2005) data set. Upper left: a map of the velocity dispersion of Ursa Minor. A portion
of the lower-right quadrant drops below 6 km s−1 while the rest of the galaxy is relatively uniform. Upper right: the average velocity of Ursa Minor found
concurrently with the velocity dispersion. In the upper-left quadrant, the deviation �v > 10−15 km s−1 relative to Ursa Minor while the rest of the galaxy
does not differ more than 5 km s−1. To make the contour plots, the velocity dispersion and the average velocity were found within a 5 arcmin × 5 arcmin bin
(5 arcmin � 110 pc for a distance of 77 kpc). Lower left: the stellar density profile of the stars in the Muñoz et al. (2005) data set. Lower right: the most
probable locations and sizes (tidal radii) of the two objects using the Bayesian object detection method in Ursa Minor. Both of these locations correspond to
the deviations seen in the average velocity and velocity dispersion maps. The coordinate system used here is such that the x-axis lines up with the major axis
which has a position angle of 49.◦4 (Kleyna et al. 1998). The adopted centre for Ursa Minor was RA = 15h09m10.s2, Dec. = +67◦12′52′ ′ (J2000.0) (K03). For
the entire sample, we obtain a mean velocity v = −247.25 km s−1 and velocity dispersion σ = 11.51 km s−1.

To meet these criteria, we employ a Bayesian object detection
technique first introduced by Hobson & McLachlan (2003). In our
implementation, the data distribution is modelled with two separate
components: a background distribution referred to as the primary
distribution, in our case, the Ursa Minor dSph (Pp), and a ‘sec-
ondary’ distribution (Ps) which is interpreted here as a feature or
object of the Ursa Minor data set. Thus, the actual distribution is of
the form

P(di |M ) = (1 − F )Pp(di |Mp) + FPs(di |Ms), (1)

where F is the total fraction of stars in the secondary population,
di represents an individual element of the Ursa Minor data set D
(D = {di}), and M denotes the parameter set of the respective dis-
tribution’s model. A major benefit of this type of analysis is that
data sets with multiple features will cause the secondary population
parameter posteriors to become multimodal, where each individual
mode represents a unique feature. This enables us to search for
an arbitrary number of objects without requiring an overly com-
plicated probability distribution. In addition, the pieces of local
Bayesian evidence of each mode can be used as a selection criterion.
The evidence Z ≡ P(D |H ) is equal to the integral of the product
of the likelihood, L(M ) ≡ P(D |M , H ) = ∏

i P(di |M , H ), and
prior probability, Pr(M ) ≡ P(M |H ):

P(D |H ) = Z =
∫

L(M )Pr(M )dM . (2)

The evidence is the average likelihood value before the input of
data. Here, the probability density of the parameter set M (i.e.

P(M |D, H )), or posterior, is related to the evidence by Bayes’
theorem

P(M |D, H ) = P(D |M , H )Pr(M )

Z
. (3)

Later, we use the evidence as a criterion for selecting between two
models, or hypotheses (H): one that assumes a ‘secondary’ feature
represented by equation (1) (H1) and another ‘null hypothesis’ that
only assumes the background distribution Pp (H0). In Section 2.2,
we use both models directly in the ratio of pieces of evidence, or
Bayes factor, and indirectly in the determination of the Kullback–
Leibler divergence, a quantity the quantifies the amount of infor-
mation gained from the assumption of one hypothesis over another.
Through a large set of Monte Carlo simulations, these criteria are
then used to derive confidence levels (CL) on the exclusion of the
null hypothesis.

To calculate the evidence and sample the posterior space, a
Bayesian multinested sampling technique was utilized (Skilling
2004; Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009). The
nested sampling method calculates the evidence of a model and
as a by-product of the computation the posterior is also evaluated.
The algorithm transforms the multidimensional evidence integral
equation (2), through the ‘prior volume’ X (dX = π(θ )dDθ ), into a
one-dimensional integral. If the inverse of the prior volume exists
and is a monotonically decreasing function of the ‘prior volume’,
the evidence integral can be transformed into Z = ∫ 1

0 L(X)dX.
This integral can be evaluated by sampling the likelihood in a
decreasing sequence of prior volumes. The multinest algorithm
breaks the prior volume into multidimensional ellipsoids which
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Table 2. Parameters, priors, and posteriors. σs and σp are the velocity dispersions of the secondary and
primary populations. vs and vp are the average velocities of the secondary and primary populations. xcen

and ycen refer to the x and y centres of the secondary population. Note that the data were rotated such that the
x-axis and the major axis are parallel. rtidal is the tidal radius in a top-hat model for the secondary population.
Ftotal is the ratio of stars in the secondary population to the total population. For the first section, the 4th and
5th columns denote the values when detecting the two objects individually. The two cuts indicated in the
table as ‘Cuts 1 and 2’ are defined as follows. Cut 1 is 0 ≤ σ ≤ 10 km s−1 and −252 ≤ v ≤ −242 km s−1

to find the cold spot object. Cut 2 is 0 ≤ σ ≤ 20 km s−1 and −267 ≤ v ≤ −237 km s−1 to find the velocity
offset object. In the second section, the 4th and 5th column denote the values calculated for the two objects
simultaneously using a three-component model. The coordinates xcen and ycen of the objects were only
allowed to vary within ±0.1 kpc of the value obtained from the Bayesian object detection method. flocal is
the weighted average fraction of secondary population stars in each secondary object’s location.

Parameter Type Prior (units) Cold spot Velocity offset

Model parameters from Bayesian object detection method

σs Flat Cuts 1/2 (see caption) 3.5+1.75
−2.25 8.75+1.5

−2.25

σp Flat 0–20 km s−1 11.75 ± 0.5 10.75 ± 0.5

vs Flat Cuts 1/2 (see caption) −246.75+1.75
−2.0 −258.75+2.0

−1.75

vp Flat −242 to −252 km s−1 −247.5 ± 0.75 −245.25 ± 0.75

xcen Flat −0.6 to 0.6 kpc 0.25+0.04
−0.06 −0.24 ± 0.09

ycen Flat −0.4 to 0.4 kpc −0.07+0.03
−0.07 0.23 ± 0.02

rtidal Flat in log10 10–300 (pc) 151+53
−28 251+24

−22

Ftotal Flat in log10 10−5–1 0.79+0.21
−0.16 0.32+0.47

−0.26

Secondary population model parameters from simultaneous three-component modelling

xcen Flat −0.24 ± 0.1 kpc 0.26 ± 0.02 −0.23+0.095
−0.035

ycen Flat 0.23 ± 0.1 kpc −0.07 ± 0.01 0.22 ± 0.02

rtidal Flat in log10 10–300 pc 151+151
−10 269+26

−24

σs Flat Cuts 1/2 (see caption) 4.25 ± 0.75 9.25 ± 1.25

σp Flat 0–20 km s−1 11.5 ± 0.5 11.5 ± 0.5

vs Flat Cuts 1/2 (see caption) −246.25 ± 1.0 −258.0 ± 1.5

vp Flat −252 to −242 km s−1 −245.25+0.75
−0.5 −245.25+0.75

−0.5

flocal Derived − 70 per cent (15.8/22.5) 85 per cent (27.0/31.6)

helps sample degenerate parameter spaces and speeds up computa-
tion. This sampling algorithm possesses all the capabilities required
for this project: multimodal posteriors can be explored efficiently,
and the evidence is inherently evaluated (for a more in-depth ex-
planation of the method see Feroz & Hobson 2008; Feroz et al.
2009).

2.1 Likelihood

Our methodology utilizes a two-component probability distribution
similar to that in the K03 paper (also see Martinez et al. 2011). We
base the ‘primary’ (p) and ‘secondary’ (s) probability distributions
on a Gaussian with mean velocity vp,s, using the velocity errors εi,
and the assumption of a constant velocity dispersion, σp,s, as the
spread

Pp,s(vi, Ri |Mp,s) =
exp

[
− 1

2
(vi−vp,s)2

(σ 2
p,s+ε2

i )

]
√

2π(σ 2
p,s + ε2

i )

ρp,s(Ri)

Np,s
. (4)

Here, ρp,s(R) is the 2D stellar number density normalized to the
total number in the population (Np,s).

Unfortunately, because of spatial selection biases, ρp,s(R) is dif-
ficult to model. To account for this uncertainty, we consider only
the ‘conditional’ likelihood (see Martinez et al. 2011 for details):

Pp,s(vi |Ri,M ) = Pp,s(vi, Ri |M )/(ρp,s(Ri)/Np,s). (5)

With this, equation (1) becomes

P(vi |Ri,M ) = (1 − f (Ri))Pp(vi |Ri, Mp) + f (Ri)Ps(vi |Ri, Ms),

(6)

where f(Ri) is now the ‘local’ fraction of stars in the secondary
population defined by

f (Ri) = Is(Ri |Ms)

Is(Ri |Ms) + αIp(Ri |Mp)
. (7)

Here, we have introduced the variable α = Ns/Np. Instead of vary-
ing α directly, we found that, in some instances, using total fraction
as a free parameter simplifies the analysis1

Ftotal =
∫

Is dxdy∫
Is dxdy + α

∫
Ip dxdy

. (8)

For the primary population, we assume a 2D king stellar density
profile whose parameters are fixed to the observed photometry.
The secondary object’s density profile is taken to be a top-hat.2

1 We also tried a constant fraction within the location of the second popula-
tion. In all three parametrizations of α, the same objects are found.
2 Additional stellar profiles were used for the secondary population including
a King and Plummer profile. Both objects were still detected. The scale radii
for the King and Plummer stellar profiles were unconstrained.
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Our Bayesian object detection model constituted of eight parame-
ters: two primary kinematic parameters, two secondary kinematic
parameters, the x and y centre and tidal radius for the secondary pop-
ulation and the total fraction. The parameters, priors, and posteriors
are listed in the first row of Table 2.

2.2 Model selection

Even with accurate probability density modelling and thorough pa-
rameter space exploration, any object detection methodology will
have fairly limited capabilities if the significance of a detection
cannot be determined. In this section, we introduce three com-
monly used model selection techniques to quantitatively derive
CL between the multiple component and single component (null
model) hypotheses. The techniques used are: the Bayes Factor (B01

or ln B01), a direct calculation of the Kullback–Leibler divergence
(DKL) (Kullback & Leibler 1951), and deviance information crite-
rion (DIC; Spiegelhalter et al. 2002).3 For a general review of model
selection in cosmology, particularly Bayesian methods, see Liddle,
Mukherjee & Parkinson (2006) and Trotta (2008). For a review of
the use of information criterion in cosmology, see Takeuchi (2000)
and Liddle (2007).

The Bayes factor is the ratio of the evidence of two models or
hypotheses. It is defined as

B01 = P(D |H1)

P(D |H0)
, (9)

where H0 and H1 are the two different hypotheses. The general
rule of thumb is that B01 > 1 favours hypothesis H1 and B01 < 1
favours hypothesis H0. The significance of B01 is usually computed
as ln B01 with ln B01 < 1, 1 < ln B01 < 2.5, 2.5 < ln B01 < 5, ln B01

> 5 corresponding to inconclusive, weak, moderate and strong
evidence, respectively, in favour of hypothesis H1 (as advocated by
Trotta 2008). The Bayes factor has the advantage that it is an output
of our sampling algorithm but, it inherently penalizes the model
with a larger parameter space. This penalization encodes Occam’s
razor in the Bayes factor.

The DKL represents the information gain by switching from the
posterior distribution of H0 to the posterior distribution of H1. The
DKL is written

DKL(P1,P0) =
∫

ln

(P(M |D, H1)

P(M |D, H0)

)
P(M |D, H1)dM , (10)

where P0,P1 are the posterior distributions under hypotheses H0

and H1, respectively.
The DIC (Spiegelhalter et al. 2002) is related to the amount of in-

formation gained through the full posterior as opposed to assuming
only the prior probability distribution (i.e. DKL(P, Pr)):

DIC ≡ −2D̂KL(P, Pr) + 2Cb, (11)

where Cb ≡ χ2(M ) − χ2(M ), χ2 ≡ −2 ln(L), and D̂KL(P, Pr) ≡
ln(L(M )) − ln(Z) (Trotta 2008).

We also introduce the total membership as a physically inter-
pretable model selection method tailored for the problem at hand.
The membership that a star is part of the secondary population

3 Two other common information criterion are the Akaike information cri-
terion (AIC; Akaike 1974) and the Bayesian information criterion. These
information criterion are Gaussian approximations to the DKL and Bayes
factor, respectively. We do not use these as we have a direct calculation of
them.

is derived from the posterior by the ratio of the secondary likeli-
hood to total likelihood (Martinez et al. 2011). For the ith star, the
membership is

mi = f (Ri)Ps(vi |Ri, Ms)

(1 − f (Ri))Pp(vi |Ri, Mp) + f (Ri)Ps(vi |Ri, Ms)
. (12)

As the membership is derived from the posterior, each star will have
its own probability distribution. Our data set contains 212 stars and
so to simplify the analysis, we use the average membership of each
star’s probability distribution. A global model selection parameter,
the total average membership, can be found and interpreted as the
average number of stars contained in the secondary population.
We find (see Figs 3 and 4) that the membership correlates with
each of the other model selection parameters (i.e. a model with high
evidence will have high membership and a model with low evidence
will have low membership).

2.3 Testing the method with mock data

We created 100 mock data sets containing a second population to test
whether known secondary objects could be detected using our ob-
ject detection method. The second populations were located at either
(0.2, −0.1) or (−0.23, 0.24) kpc (roughly the locations of the cold
and velocity offset objects). The kinematic and structural parameters
of this second population were selected to mimic the cold and ve-
locity offset objects. The positions and velocity errors from the Ursa
Minor data set were used to simulate observational errors. To pick
which population a star is assigned to, the local fraction was found
via equation (8) and membership was randomly assigned with the
second population weighted by the local fraction. The primary popu-
lation parameters were the best-fitting values from Ursa Minor pho-
tometry and the kinematics of the entire sample: rtidal = 1.745 kpc,
rcore = 0.401 kpc, ellipticity εp = 0.56, σ = 11.5 km s−1, and
v = −247 km s−1. The second population’s base parameters were:
εs = 0, θs = 0.0, Ftotal = 60/212, rcore = 0.05 kpc, �vs = 0 km s−1,
σ = 4 km s−1, rtidal = 0.15 kpc for (0.2, −0.1) location. For the
(−0.23, 0.24) location, we used a slightly larger value for tidal ra-
dius, rtidal = 0.25 kpc. We note that both populations were created
assuming an underlying King profile but the object detection used
a top-hat model when finding the second population, identically to
how the objects were found in the actual data. Each individual mock
data set had 1–3 secondary parameters that deviated from the base
parameters to test how each parameter affected the detection. In
some sets, we did not expect to find the secondary population, for
example, if they had small tidal radius or small secondary popula-
tion fraction.

The results for model selection of the DKL, DIC, ln B01, and total
membership using two different kinematic priors are summarized
in Fig. 3 (secondary population located at (0.2, −0.1)) and Fig. 4
(secondary population located at (−0.23, 0.24)). In both figures, the
two columns show different kinematic priors with the left-hand col-
umn showing the cuts to find kinematically cold objects (0 ≤ σ ≤
10 km s−1, −252 ≤ v ≤ −242 km s−1) and the right-hand column
has the cuts to find objects with a significant velocity offset (0 ≤ σ ≤
20 km s−1, −267 ≤ v ≤ −237 km s−1); this cut will also find the
kinematically cold objects, but in the Ursa Minor case the velocity
offset object was significantly more likely and tended to dominate
the posterior. The symbols for these columns are labelled/coloured
according to whether the x and y posterior was peaked (compared
to the back ground) around the location of the secondary popula-
tion: peaked/‘found’ (red square), not peaked/‘not found’ (green ×),
‘possible’ peaks (blue triangle), double peaked with one correct
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Figure 3. Model selection tests using DKL, DIC, log BF = ln B01 (cf. Section 2.2 for definitions) for 50 mock data sets located at (0.2, −0.1). Also shown
for comparison are the results for the actual Ursa Minor data set. A more negative DIC favours the secondary object hypothesis more strongly, while the
same is true for larger values of DKL and Bayes factor. Left-hand column: figures in column 1 show the results of the analysis of the mock data sets in
exactly the same way as the real data set was analysed to look for the cold object with cuts on mean velocity and dispersion given by 0 ≤ σ ≤ 10 km s−1 and
−252 ≤ v ≤ −242 km s−1 (Cut 1). The top panel shows DKL, the middle panel DIC and the bottom panel the logarithm of the Bayes factor (written in the text
as ln B01). Mock data sets that had second populations with significant differences in their kinematics with respect to the background population were found
with our object detection method. The symbols are labelled/coloured according to whether the x and y posterior is peaked compared to the background around
the locations of the secondary populations: peaked/found (red square), not peaked/ not found (green ×), possible peaks (blue triangle) and multiple peaks (light
blue diamond). The results for the actual Ursa Minor data set are shown as filled black circle. Right-hand column: this panel has the same symbols and colours
as the leftmost column. The difference here is that the velocity cuts used are broader (and the same as that used to find the velocity offset object). The cuts are
0 ≤ σ ≤ 20 km s−1 and −267 ≤ v ≤ −237 km s−1 (Cut 2).

(light blue diamond). Results for the actual Ursa Minor data with
corresponding cuts are shown as filled black circle. The ‘possible’
peaks are posteriors where there was a peak near the second popula-
tion’s centre, a small/medium peak somewhere else in the posterior,
or a small peak at the correct location. The double peaked data had
one peak at the correct location and a second at another location. The
‘possible’ sets tended to span the border between ‘found’ and ‘not
found’ and were not easily categorized otherwise. This definition of
‘found’/‘not found’ corresponds to higher likelihood values at the
locations of secondary populations (similar to the K03 method).

Both figures show a clear trend between the ‘found’ and ‘not
found’ sets in all the model selection methods. Note that more neg-
ative DIC corresponds to favouring the more complicated model.
Sets that are ‘not found’ by the object detection have model selec-
tion criteria that is equivalent to the model selection criteria of null
hypothesis mock data sets (i.e. sets made with no second popula-
tion), cf. Section 3.1. Most importantly, the model selection criteria
for the two objects found in Ursa Minor data also lie in the ‘found’
section of the mock data’s selection criteria. From the analysis of
these mock data sets, we conclude that our method is fully capable
of detecting the cold and velocity offset, and the model selection

criteria favour the presence of two additional components in Ursa
Minor.

3 R ESULTS

We have found two objects in the Ursa Minor data set of Muñoz
et al. (2005) using a Bayesian object detection method. The first
object, referred to as the ‘cold object’ here, is kinematically cold,
σcold = 3.5+1.8

−2.3 km s−1, with an average velocity close to that of the
full Ursa Minor sample, vcold = −246.8+1.8

−2.0 km s−1. The location
coincides with the location of the K03 stellar clump. The second
object, referred to as the velocity offset object, has a large aver-
age velocity offset compared to the mean velocity of Ursa Minor,
vvo = −258.8+2.0

−1.8 km s−1 with a dispersion of σvo = 8.8+1.5
−2.3 km s−1.

The kinematics and structural properties are summarized in the
first section of Table 2. The model selection tests for the cold
object are: Total Membership = 15.8, DKL = 4.8, DIC = −26.1,
ln B01 = 0.9. The model selection tests for the velocity offsets ob-
ject are: Total Membership = 27.0, DKL = 13.9, DIC = −36.5,
ln B01 = 3.6. In Figs 3 and 4, the results of model selection test
are plotted alongside the mock set distributions (filled black dot).
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Bayesian object detection 1725

Figure 4. Model selection tests using DKL, DIC, ln B01 for 50 mock sets located at (−0.24, 0.23) and the Ursa Minor data. The layout is the same as Fig. 3.
The third column from left displays the results from the scrambled mock data sets instead of the null hypothesis mock data sets plotted in Fig. 3.

All of the model selections tests favour the additional secondary
objects with moderate to high significance except for the Bayes
factor which has weak to moderate significance for the cold and ve-
locity offset objects.4 This significance is based on the recommen-
dations of Trotta (2008), Ghosh, Delampday & Samanta (2006) and
Spiegelhalter et al. (2002). However, it is important to judge the
significance of the information criteria and the Bayes factor for the
problem at hand. We do this by generating null data sets and deriv-
ing the information criteria and Bayes factor in the same way as the
real data are handled. When this test is performed, we find that the
CL of both objects are above the 98 per cent CL (see Table 2). In ad-
dition, all of the model selection values, for both locations/objects,
lie in the ‘found’ region of the mock sets of Figs 3 and 4.

3.1 Significance of information criteria and Bayes’ factor

In order to assess the significance of the model selection tests,
knowledge of the false positive rate is helpful. We make use of two
types of tests for false positives: null hypothesis mock data sets and
scrambled data sets. Null hypothesis mock data sets are constructed
by redrawing the line-of-sight velocities from a Gaussian with Ursa
Minor kinematics.5 To simulate positional and velocity errors, the
positions of stars and the line-of-sight velocity errors were kept. The
scrambled sets were constructed by repicking a random observed
line-of-sight velocity and line-of-sight velocity error pair, without

4 Assuming a uniform prior on the tidal radius of the objects instead of a
prior in log10 increases the B01 to 1.4 and 5.7 for the cold and velocity offset
spots, respectively.
5 We used v = −247.0 km s−1 and σ = 11.5 km s−1.

replacement, for each star in the data set. 1000 null hypothesis mock
data sets and scrambled data sets were constructed and analysed
with our object detection method.

The results of the object detection method and our employed
model selection tests for the null hypothesis mock data sets and the
scrambled mock data sets are shown in Fig. 5. The top and bottom
rows refer to the null hypothesis and scrambled tests, respectively.
The DKL (right-hand column), DIC (middle column), and ln B01

(left-hand column) are binned and the maximum is normalized to
unity. The analysis with the cuts to find cold objects (0 ≤ σ ≤
10 km s−1, −252 ≤ v ≤ −242 km s−1) is shown in red, while that
with cuts to find objects with significant velocity offset (0 ≤ σ ≤
20 km s−1, −267 ≤ v ≤ −237 km s−1) is shown in blue. The model
selection results for the real Ursa Minor data are plotted as vertical
lines: cold object with green dotted line and velocity offset object
with purple dash–dotted line. The CL of the model selection criteria
for the null hypothesis mock data sets and scrambled data sets are
above the 98.5 per cent CL with every model selection criteria.
They are summarized in Table 3. Even though the ln B01 shows
weak evidence for the cold object according to standard definitions,
it is still above the 95 per cent CL for both the null hypothesis mock
data sets and scrambled data sets.

3.2 Narrowing down secondary population parameters using
a three-component model

In the detection phase, the kinematic properties of one object are de-
termined while the other is part of the background. To reliably calcu-
late the kinematic properties of each secondary object, we introduce
a model with two secondary populations fixed within 0.1 kpc from
the best-fitting centre locations. Equation (7) is modified to include
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Figure 5. Histograms of DKL, DIC, and Bayes factor from analyses of 1000 null hypothesis mock data (top rows) and 1000 scrambled data sets (bottom rows)
with Cut 1 (red dotted) and Cut 2 (blue solid). The vertical lines show the DKL, DIC, and Bayes factor values for the actual Ursa Minor data set with Cut 1
(green dotted) and Cut 2 (magenta dot–dashed). The inferred CL for the Ursa Minor data is ≥98.5 per cent for all tests.

Table 3. CL computed from null hypothesis and scrambled mock data sets. The inferred CL refers to the number of null hypothesis mock data sets and
scrambled data sets that have a model selection value lower than that of the actual Ursa Minor data. The 95 per cent CL value is defined such that 95 per
cent of the null hypothesis or scrambled data sets have a value below this. Both additional populations found in the Ursa Minor data are above the 98 per
cent CL for all the model selection methods. The two cuts indicated in the table as ‘Cuts 1 and 2’ are defined as follows. Cut 1 is 0 ≤ σ ≤ 10 km s−1 and
−252 ≤ v ≤ −242 km s−1 used to find the cold spot object in the data. Cut 2 is 0 ≤ σ ≤ 20 km s−1 and −267 ≤ v ≤ −237 km s−1 used to find the velocity
offset object in the data.

Test using null hypothesis mock data sets
Total average Information entropy Bayesian evidence
membership DKL DIC ln B01

Value at 95 per cent CL from null hypothesis mock data sets using Cut 1 5.25 1.28 −16.35 0.17
Cold object values from data (inferred CL) 15.82 (99.8 per cent) 4.82 (99.7 per cent) −26.08 (99.5 per cent) 0.87 (99.7 per cent)
Value at 95 per cent CL from null hypothesis mock data sets using Cut 2 4.49 1.84 −17.79 0.13
Velocity offset object values from data (inferred CL) 27.02 (>99.9 per cent) 13.93 (>99.9 per cent) −36.49 (99.9 per cent) 3.59 (>99.9 per cent)

Test using scrambled data sets

Total average Information entropy Bayesian evidence
membership DKL DIC ln B01

Value at 95 per cent CL from scrambled mock data sets using Cut 1 6.99 2.22 −20.45 0.40
Cold object values from data (inferred CL) 15.82 (99.7 per cent) 4.82 (99.1 per cent) −26.08 (98.5 per cent) 0.87 (99.0 per cent)
Value at 95 per cent CL from scrambled mock data sets using Cut 2 3.89 1.46 −16.30 0.07
Velocity offset object values from data (inferred CL) 27.02 (>99.9 per cent) 13.93 (>99.9 per cent) −36.49 (>99.9 per cent) 3.59 (>99.9 per cent)

a third component. Two normalization parameters are required,
α2 = N2

N1
, and αp = Np

N1
where N1 and N2 denote the normalization

of the first and second object. The results for the kinematic param-
eters are: σ cold = 4.3 ± 0.8 km s−1, vcold = −246.3 ± 1.0 km s−1,
σ vo = 9.3 ± 1.3 km s−1, and vvo = −258.0 ± 1.5 km s−1, respec-
tively. These values are in full agreement with the values obtained
using the two-component (Bayesian object detection) method.

The normalization ratios, as defined, are not easily interpreted.
So we introduce a derived parameter, local fraction or flocal, that is

defined as the weighted average of stars with memberships greater
than 50 per cent in the secondary population compared to the to-
tal number of stars within the secondary object’s tidal radius. In
short, it is a measure of the fraction of secondary stars in each
object’s location. We derive flocal, cold = 15.8/22.5 or 70 per cent
and flocal, vo = 27.0/31.6 or 85 per cent. Clearly, we are able to find
these objects only because they seem to have a high local fraction.
The kinematics and structural properties of the secondary popula-
tion model are summarized in the second section of Table 2. In
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Bayesian object detection 1727

Figure 6. The posteriors for the secondary populations in Ursa Minor using the three-parameter model. The secondary populations are fixed at (0.25,−0.07)kpc
and (+0.24, 0.23)kpc and allowed to vary 0.1 kpc in both coordinates. They correspond to the cold (black solid) and the velocity offset (red dots) objects,
respectively. Upper left: the x coordinate posteriors for of the secondary populations. Upper right: the y coordinate posteriors for the secondary populations.
Lower left: the velocity dispersion posteriors of the cold object (black solid), velocity offset object (red dotted), and the primary (blue dashed). Lower right:
the average velocity posteriors of the cold object (black solid), velocity offset object (red dotted), and the primary (blue dashed). The secondary populations
have distinct kinematic properties and are both localized.

upper-left and -right panels of Fig. 6, we have plotted the posteriors
for the x and y centres, respectively, for the cold (black solid) and
velocity offset objects (red dotted). The centres for the cold and
velocity offset object are (0.25, −0.07) kpc and (+0.24, 0.23) kpc
and the two panels show the deviation from the ‘fixed’ centres. The
lower-right (lower-left) panel of Fig. 6 is the posterior of the σs (vs)
for the cold (black solid), velocity offset objects (red dotted), and
primary (blue dashed). The Bayes factor of this model is 10.0. The
three-component model is highly favoured compared to the null
model.

An increased prior volume for the centres and tidal radius in the
three-component model changes the posteriors for the structural
parameters of the velocity offset object but does not change its
kinematics. By only allowing more freedom in the location of the
centres (200 pc versus 100 pc), the posteriors of both centres gain
tails. An increase in the maximum tidal radius (in the prior) of
the objects (500 pc from 300 pc) increases the size of the velocity
offset object, and moves its centre roughly 150 pc away from the
centre of Ursa Minor while the same change introduces tails in
the posterior of the cold object. This change is from several stars
in the outer region of Ursa Minor that have consistent kinematics
with the velocity offset object. Given these results, it is fair to say
that the size and centre of the secondary objects are not known with
high precision and more data will help considerably. However, our
conclusions regarding kinematics seem to be robust.

3.3 Perspective motion

Line-of-sight velocity measurements for the Milky Way satellites
receive a small contribution from x and y direction velocities of the
star (where z is along the line of sight to the centre of the galaxy),

and this contribution increases with distance from the centre (Feast,
Thackeray & Wesselink 1961; Kaplinghat & Strigari 2008). A sim-
ilar contribution could also arise due to solid-body rotation or some
other physical mechanism (such as tides) that leads to a velocity
gradient. Motivated by the large velocity-offset we found, we ask
whether the inclusion of this effect changes our conclusions. The
observed line-of-sight velocity of a star may be written as

vlos = vz − vxx/D − vyy/D, (13)

where D is the distance to the galaxy and (x, y) are the pro-
jected coordinates on the sky. This method has been applied
to dSph’s Carina, Fornax, Sculptor, and Sextans with results
that agree HST and ground-based proper motion measurements
(Walker, Mateo & Olszewski 2008). Observations from the HST
find a proper motion for Ursa Minor of (μα , μδ) = (−50 ± 17,
22 ± 16) mas century−1 (Piatek et al. 2005). The proper mo-
tion we find assuming only a single kinematics population is
(μα , μδ) = (529 ± 848, −280 ± 449) mas century−1, which is
an order of magnitude larger (when comparing the mean) than the
HST measurement and has enormous error bars. To see how much
of an effect that the secondary objects have on this calculation,
we repeat the measurement and remove stars from the sample in
three ways: remove stars with high membership in the velocity off-
set object, high membership in both objects, or remove all stars
in the object’s location. The proper motions are measured to be:
(μα , μδ) = (117 ± 90, 163 ± 127) mas century−1, (μα , μδ) =
(−84 ± 79, −185 ± 174) mas century−1, and (μα , μδ) =
(−67 ± 60, −203 ± 181) mas century−1, respectively. These com-
parisons provide clear proof that it is hard to estimate the tangential
velocity with perspective motion if there are secondary populations
in the data set.
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To investigate this issue further, we run a three-component model
to detect the two secondary objects when including perspective
motion. We add this effect into our likelihood function by changing
the model velocity for all three components (cf. vp,s in equation
4) to vlos, i given by equation (13) with xi and yi for each star
measured from the centre of Ursa Minor. Each component has its
own vz, but vx and vy are the same for all three components. Note
that the actual tangential velocity of the two secondary compo-
nents is now implicitly tied to the vz value – there is no hope of
disentangling them given the small projection on the sky of the sec-
ondary components. We then impose the same constraints on the
centre as before (cf. Section 3.2). We find results that are consistent
with those we found in Section 3.2 in the absence of perspective
motion: xcold = 0.245+0.03

−0.04 kpc, ycold = −0.065+0.015
−0.025 kpc, and xvo =

−0.275+0.04
−0.035 kpc, yvo = 0.24 ± 0.025 kpc. The kinematic proper-

ties are the same as without perspective motion except with larger
error bars. Thus, the three-component model with the prior on the
centres provides a different fit and favours the presence of the sec-
ondary objects over perspective motion. Had perspective motion or a
velocity gradient or rotation been a better fit to the likelihood instead
of either of the objects, this would not have been the case since the
likelihood allows for the freedom to dial down the fraction of stars in
the secondary objects. In this three-component fit, the mean velocity
of Ursa Minor is (−311 ± 212, −548+357

−324, −245.5 ± 0.75) km s−1,
in good agreement with the results obtained when stars in the loca-
tions populated by the secondary populations are removed.

We also explored the effect of using the Bayesian object de-
tection method with perspective motion. This could lead to faulty
results (and we show below that it does) because the velocity offset
spot has a large impact on the determination of the background
parameters – specifically the perspective motion. With the veloc-
ity cuts to find the cold object, we find a mean velocity for Ursa
Minor of (−100+100

−100, −1125+275
−250,−247.5+0.5

−0.5) km s−1 and a disper-
sion in the line-of-sight velocity of 11.0 ± 0.5 km s−1. The disper-
sion of the cold object is now consistent with zero at about 1σ ,
3.25 ± 3.0 km s−1 and the location of the centres is now much
less well determined. However, the values obtained for the perspec-
tive motion are unphysically large, and hence, this is clearly not
the correct model to be considered. With the ±20 km s−1 velocity
cut (to find the velocity offset object), we find a mean velocity
for Ursa Minor of (−200+150

−150, −1175+400
−400,−247+1.0

−1.25) km s−1 and
10.75 ± 0.5 km s−1 for its dispersion in the line-of-sight velocity.
The centre, as with the other object, is no longer tightly constrained,
and the hint for deviation in mean velocity for this object is muted
(−258+7.5

−4.5 km s−1). Thus, we arrive at the conclusion (unsurpris-
ingly) that varying background parameters in Bayesian object de-
tection methods can lead to faulty results in data sets containing
multiple signals if those signals have a significant effect on the
determination of the background parameters. In particular, for this
analysis we saw that the presence of the velocity offset spot affects
the magnitude and the direction of the inferred tangential motion and
hence the object detection method has trouble fitting one secondary
location and perspective motion. But with two localized secondary
populations and perspective motion the method still picks out both
secondary objects. Thus, the three component model is preferred
by this data set.

A tangential velocity measured using perspective motion could
also be hiding a possible solid-body rotation. An order of mag-
nitude estimate of this rotation speed would be vrot = Re

D

√
v2
x+v2

y

(Re = 445 ± 44 pc, D = 77 ± 4 kpc). Using the results presented
in this section, we calculate vrot ∼ 7 km s−1 with entire data set, and
vrot ∼ 4 km s−1 when the velocity offset population is removed, and

when both secondary populations are removed or when all stars
near the secondary populations are removed. The rotation speeds
are all comparable but in each estimate the rotation is about a dif-
ferent axis. The summary of our results from this section is that
a larger data set is required to simultaneously constrain properties
of the secondary populations and rotation or proper motion. The
results of our three-component analysis suggest that the data prefer
the presence of both secondary objects to perspective motion (or a
rotation that masquerades as it).

4 D I SCUSSI ON

We discuss how our results compare to previous work and pos-
sible explanations for our results. K03 utilized a likelihood test
comparing two (Ursa Minor dSph plus a secondary population)
and one component kinematic models to estimate the locations
of secondary populations and to find the best-fitting parameters
of the secondary populations. They discovered a stellar clump (a
likelihood ratio of ∼104) located at (10 arcmin, 4 arcmin) (on-sky
frame relative to the Ursa Minor centre) with kinematic parame-
ters, σ = 0.5 km s−1, vs = −1 km s−1, and clump fraction of 0.7
(fraction of stars in the second population). The kinematically
cold object found with our object detection method is centred
at (10.8 arcmin ± 1.8, 5.5 arcmin ± 0.9) (on-sky frame relative to
Ursa Minor centre), has a size of 6.7 arcmin ± 0.5, with kinematic
properties σ = 4.25 ± 0.75 km s−1, and �v = −1.1+1.5

−1.25 km s−1.
The difference between our results and those of K03 lie in the
velocity dispersion of the cold object. We have considerably
more stars (in total 212 to 134 of K03) and are therefore able to
infer the dispersion with much greater confidence. We find the mean
value for the velocity dispersion to be close to 4 km s−1, similar to
the dispersion of Segue 1 dSph (Simon et al. 2011). In addition, our
methodology allows us to compute error bars on model parameters.

The main uncertainty in our estimates of the dispersion for cold
and velocity offset objects is the presence of perspective motion
or solid-body rotation. Perspective motion by itself cannot explain
these secondary populations. A three-component analysis (i.e. main
Ursa Minor population and both secondary populations) with the
coordinates of the centres fixed to within 100 pc and including
perspective motion (with unconstrained tangential velocity) prefers
the presence of both the secondary populations. In this analysis, the
velocity dispersions of the cold or velocity offset objects are not
significantly different from the values obtained without including
perspective motion.

To estimate the luminosity of the secondary objects, we use the
total membership of the objects with the assumption that the stars
were drawn uniformly from the three distributions of Ursa Minor.
We find the luminosity of the cold and velocity offset objects to
be 4 × 104 and 6 × 104 L�. The luminosity of the K03 object
is 1.5 × 104 L�, and given the uncertainties we would chalk this
down as agreement between the two analyses. The dynamical mass
within half-light radius of dispersion supported systems can be
estimated to about 20 per cent accuracy using the line-of-sight
velocity dispersions and the half-light radius (Walker et al. 2009b;
Wolf et al. 2010). Assuming that the ratio of r1/2/rtidal of the objects
is the same as that of Ursa Minor, we find M1/2 = 6 × 105 M�, and
M1/2 = 5 × 106 M� for the cold and velocity offset object. From
this, M/L(r1/2) ≈ 30 M�/L� and M/L(r1/2) ≈ 175 M�/L� for
the cold and velocity offset objects. If we use this same estimator
to find the velocity dispersions assuming the objects are relaxed
systems with only stellar components and M/L = 2 (as in K03), we
estimate a velocity dispersion of σ = 1.0 km s−1 for both the cold
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and velocity offset objects. This differs from the velocity dispersion
found through our object detection method by 4σ and 6.6σ for the
cold and velocity offset objects, respectively. Note that the estimator
for M1/2 assumes that the system is dynamical equilibrium, which
may not be the case here. If our current results hold up with the
addition of more data, then either these objects have highly inflated
velocity dispersions due to the influence of motion in binary stellar
systems or tidal disruption, or these objects really do have a much
larger mass than inferred from their luminosities. In the latter case,
we would have found a satellite of Ursa Minor, the first detection of
a satellite of a satellite galaxy. We discuss each of these possibilities
briefly below.

Contribution of binary orbital motion to the line-of-sight ve-
locities can inflate the observed line-of-sight velocities of stars
(Aaronson & Olszewski 1987; Hargreaves, Gilmore & Annan 1996;
Olszewski, Pryor & Armandroff 1996; McConnachie & Côté 2010;
Minor et al. 2010). A galaxy with a lower intrinsic velocity disper-
sion has a higher chance of having its observed dispersion inflated.
A dSph with a velocity dispersion between 4 and 10 km s−1 is
highly unlikely to be inflated by more than 30 per cent (Minor
et al. 2010, for an application of this method see Simon et al. 2011,
Martinez et al. 2011). The objects we found have observed velocity
dispersions in this range. Assuming both objects are inflated by 30
per cent, their actual intrinsic velocity dispersion would be between
2.5−3.3 km s−1 and 7.1 km s−1, respectively, for the cold and veloc-
ity offset objects. These velocity dispersions are still much higher
than 1 km s−1 (that is expected for a relaxed stellar system, i.e. a
globular cluster). It is unlikely that binary orbital motion alone can
account for the large velocity dispersions inferred from this data
set for both secondary populations. With multi-epoch data, we will
be able test this hypothesis directly as was done for Segue 1 dSph
(Martinez et al. 2011).

To assess the effect of tidal disruption from Ursa Minor, we
calculate the Jacobi Radius, rJ, and compare rJ to the mean tidal
radius estimated from our three-component analysis. To calculate
the Jacobi radius, we consider both an NFW (Navarro et al. 1997)
and a pseudo-isothermal (cored) profile for the halo of Ursa Minor.
To set the NFW density profile of Ursa Minor, we pick NFW scale
radius rs = 1 kpc and estimate the density normalization ρs using
M1/2 values from Wolf et al. (2010) for an NFW profile. We find
that if the actual distance of the centre of the objects is equal to the
projected distance from the centre of Ursa Minor, then rJ < rt. If the
objects are further than about 1 kpc away, then rJ > rt with the NFW
profile. The situation for a pseudo-isothermal profile (1/(r2 + r2

0 ))
with r0 = 300 pc is similar, with rJ > rt if the objects are further
than about 1–2 kpc from the centre of Ursa Minor. The rJ estimates
indicate that tides from Ursa Minor could have an effect on these
objects even if they are protected by their own dark matter haloes.
The survival of globular cluster sized objects in dSphs has far-
reaching implications for the density profile of the host halo (K03;
Goerdt et al. 2006; Strigari et al. 2006; Cowsik et al. 2009; Lora
et al. 2012). The objects we find are more extended and massive
than the globular cluster sized objects considered in such work in
the past. Thus, these constraints will have to reevaluated.

Generically, the estimated high dispersions of these objects and
their survival are facts at odds with each other. The age of Ursa
Minor (∼12 Gyr) is much longer than the crossing time for stars
inside Ursa Minor of ∼150 Myr (assuming a typical velocity of
10 km s−1). The crossing times for the stars in the cold and velocity
offset object are ∼50 Myr. These objects have had time to make
multiple orbits around Ursa Minor, and it is hard to see how they
could have survived given the short crossing times unless they have

been recently captured by Ursa Minor and are now in the process
of tidal disruption (which would account for the inflated velocity
dispersion). However, this is not a likely scenario since Ursa Minor
probably fell into the Milky Way early, between 8 and 11 Gyr
(Rocha, Peter & Bullock 2012), and capturing a large object after
that is unlikely. It is more reasonable to assume that these objects
have survived for long because they were protected by a dark matter
halo of their own. The reality is probably more complicated: these
objects may have their own dark matter haloes and at the same time
are being tidally disrupted. These implications are intimately tied to
the dark matter halo of Ursa Minor and pinning down the properties
of these objects would help to decipher if the dark matter halo of
Ursa Minor has a cusp or a core.

5 C O N C L U S I O N

We have presented a method for finding multiple local-
ized kinematically-distinct populations (stellar substructure) in
line-of-sight velocity data. In the nearby dwarf spheroidal
galaxy Ursa Minor, we have found two secondary popula-
tions: ‘cold’ and ‘velocity offset (vo)’ objects. The estimated
velocity dispersions are σ cold = 4.25 ± 0.75 km s−1 and
σ vo = 9.25 ± 1.25 km s−1, and the estimated mean velocities are
vcold = −246.25 ± 1.0 km s−1 and vvo = −258.0 ± 1.5 km s−1.
They are located at (0.25+0.04

−0.06, −0.07+0.03
−0.07) kpc (cold object) and

(−0.24 ± 0.09, 0.23 ± 0.02) kpc (velocity offset object) with re-
spect to the centre of Ursa Minor. The location of the cold object
matches that found earlier by K03, but our results reveal that the
velocity dispersion of this cold object could be large with a mean
value close to 4 km s−1. To assess the significance of our detections,
we employed the Bayes factor and information criteria DKL and
DIC supplemented with the analysis of mock data sets with sec-
ondary populations, null hypothesis mock data sets and scrambled
data sets. The two secondary objects have >98.5 per cent CL in all
the model selection tests employed.

If the velocity dispersions are as large as our Bayesian analysis
seems to indicate, then these objects are likely undergoing tidal
disruption or are embedded in a dark matter halo. The two possibil-
ities are not exclusive of each other. If these objects are dark matter
dominated, this would be the first detection of a satellite galaxy.

As emphasized by K03, the presence of localized substructure has
important implications for inner density profile of the dark matter
halo of Ursa Minor. The shape of the inner profile (cusp or core) has
important implications for the properties of the dark matter particle
with cold dark matter model predicting a cuspy inner density profile.
If the stellar substructure is hosted by its own dark matter halo, then
it has further implications for dark matter models since this would
likely be the smallest bound dark matter structure discovered.
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