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Fully Functional Static and Dynamic Succinct Trees
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We propose new succinct representations of ordinal trees and match various space/time lower bounds. It is
known that any n-node static tree can be represented in 2n + o(n) bits so that a number of operations on
the tree can be supported in constant time under the word-RAM model. However, the data structures are
complicated and difficult to dynamize. We propose a simple and flexible data structure, called the range
min-max tree, that reduces the large number of relevant tree operations considered in the literature to a
few primitives that are carried out in constant time on polylog-sized trees. The result is extended to trees of
arbitrary size, retaining constant time and reaching 2n+O(n/polylog(n)) bits of space. This space is optimal
for a core subset of the operations supported and significantly lower than in any previous proposal.

For the dynamic case, where insertion/deletion (indels) of nodes is allowed, the existing data structures
support a very limited set of operations. Our data structure builds on the range min-max tree to achieve
2n+O(n/ log n) bits of space and O(log n) time for all operations supported in the static scenario, plus indels.
We also propose an improved data structure using 2n + O(n log log n/ log n) bits and improving the time to
the optimal O(log n/ log log n) for most operations. We extend our support to forests, where whole subtrees
can be attached to or detached from others, in time O(log1+ε n) for any ε > 0. Such operations had not been
considered before.

Our techniques are of independent interest. An immediate derivation yields an improved solution to
range minimum/maximum queries where consecutive elements differ by ±1, achieving n + O(n/polylog(n))
bits of space. A second one stores an array of numbers supporting operations sum and search and limited
updates, in optimal time O(log n/ log log n). A third one allows representing dynamic bitmaps and sequences
over alphabets of size σ , supporting rank/select and indels, within zero-order entropy bounds and time
O(log n log σ/(log log n)2) for all operations. This time is the optimal O(log n/ log log n) on bitmaps and polylog-
sized alphabets. This improves upon the best existing bounds for entropy-bounded storage of dynamic
sequences, compressed full-text self-indexes, and compressed-space construction of the Burrows-Wheeler
transform.
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16:2 G. Navarro and K. Sadakane

1. INTRODUCTION

Trees are one of the most fundamental data structures, needless to say. A classical
representation of a tree with n nodes uses O(n) pointers or words. Because each pointer
must distinguish all of the nodes, it requires log n bits1 in the worst case. Therefore, the
tree occupies �(n log n) bits. This causes a space problem for storing a large set of items
in a tree. Much research has been devoted to reducing the space to represent static
trees [Jacobson 1989; Munro and Raman 2001; Munro et al. 2001a; Munro and Rao
2004; Benoit et al. 2005; Chiang et al. 2005; Geary et al. 2006a, 2006b; Delpratt et al.
2006; He et al. 2007; Golynski et al. 2007; Raman et al. 2007; Sadakane 2007a; Lu and
Yeh 2008; Farzan and Munro 2008; Ferragina et al. 2009; Farzan et al. 2009; Barbay
et al. 2011b; Jansson et al. 2012] and dynamic trees [Munro et al. 2001b; Raman and
Rao 2003; Chan et al. 2007; Arroyuelo 2008; Farzan and Munro 2011; Davoodi and
Rao 2011; Joannou and Raman 2012], achieving so-called succinct data structures for
trees.

A succinct data structure stores objects using space asymptotically equal to the
information-theoretic lower bound while simultaneously supporting a number of prim-
itive operations on the objects in constant time. Here, the information-theoretic lower
bound for storing an object from a universe with cardinality L is log L bits, because
in the worst case, this number of bits is necessary to distinguish any two objects.
The size of a succinct data structure storing an object from the universe is thus
(1 + o(1)) log L bits.

In this article, we are interested in ordinal trees, in which the children of a node are
ordered. The information-theoretic lower bound for representing an ordinal tree with
n nodes is 2n − �(log n) bits because there exist

(2n−1
n−1

)
/(2n − 1) = 22n/�(n

3
2 ) such trees

[Munro and Raman 2001]. We assume that the computation model is the word RAM
with word length �(log n) in which arithmetic and logical operations on �(log n)-bit
integers and �(log n)-bit memory accesses can be done in O(1) time.

Basically, there exist three types of succinct representations of ordinal trees: the
balanced parentheses (BP) sequence [Jacobson 1989; Munro and Raman 2001], the
level-order unary degree sequence (LOUDS) [Jacobson 1989; Delpratt et al. 2006], and
the depth-first unary degree sequence (DFUDS) [Benoit et al. 2005; Jansson et al. 2012].
An example of them is shown in Figure 1. LOUDS is a simple representation, but it lacks
many basic operations, such as the subtree size of a given node. Both the BP sequence
and DFUDS build on a sequence of BP, the former using the intuitive depth-first-search
representation and the latter using a more sophisticated one. The advantage of DFUDS
is that it supports a more complete set of operations by simple primitives, most notably
going to the i-th child of a node in constant time. In this article, we focus on the BP
representation and achieve constant time for a large set of operations, including all
those handled with DFUDS. Moreover, as we manipulate a sequence of BP, our data
structure can be used to implement a DFUDS representation as well.

1.1. Our Contributions

We propose new succinct data structures for ordinal trees encoded with BP, in both
static and dynamic scenarios.

Static Succinct Trees. For the static case, we obtain the following result.

THEOREM 1.1. For any ordinal tree with n nodes, all operations in Table I except
insert and delete are carried out in constant time O(c) with a data structure using
2n + O(n/ logc n) bits of space on a �(log n)-bit word RAM, for any constant c > 0. The

1The base of the logarithm is 2 throughout this article.
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Fig. 1. Succinct representations of trees.

data structure can be constructed from the BP sequence of the tree, in O(n) time using
O(n) bits of space.

The space complexity of our data structures significantly improves upon the
lower-order term achieved in previous representations. For example, the extra data
structure for level_anc requires O(n log log n/

√
log n) bits [Munro and Rao 2004],

or O(n(log log n)2/ log n) bits2 [Jansson et al. 2012], and that for child requires
O(n/(log log n)2) bits [Lu and Yeh 2008]. Ours requires O(n/ logc n) bits for all of the
operations. We show in the Conclusions section that this redundancy is optimal if a
core subset of the operations is to be supported.

The simplicity and space efficiency of our data structures stem from the fact that any
query operation in Table I is reduced to a few basic operations on a bit vector, which can
be efficiently solved by a range min-max tree. This approach is different from previous
studies in which each operation needs distinct auxiliary data structures. Therefore,
their total space is the sum over all data structures. For example, the first succinct
representation of BP [Munro and Raman 2001] supported only findclose, findopen, and
enclose (and other easy operations), and each operation used different data structures.
Later, many further operations, such as lmost_leaf [Munro et al. 2001a], lca [Sadakane
2007a], degree [Chiang et al. 2005], child and child_rank [Lu and Yeh 2008], and
level_anc [Munro and Rao 2004], were added to this representation by using other
types of data structures for each. There exists another elegant data structure for BP
supporting findclose, findopen, and enclose [Geary et al. 2006a]. This reduces the size
of the data structure for these basic operations but still needs extra auxiliary data
structures for other operations.

Dynamic Succinct Trees. Our approach is suitable for the dynamic maintenance of
trees. Former approaches in the static case use two-level data structures to reduce the
size, which causes difficulties in the dynamic case. On the other hand, our approach
using the range min-max tree is easily applied in this scenario, resulting in simple and
efficient dynamic data structures. This is illustrated by the fact that all operations are
supported. The following theorem summarizes our results.

THEOREM 1.2. On a �(log n)-bit word RAM, all operations on a dynamic ordinal tree
with n nodes can be carried out within the worst-case complexities given in Table I, using
a data structure that requires 2n+O(n log log n/ log n) bits. Alternatively, all operations
of the table can be carried out in O(log n) time using 2n + O(n/ log n) bits of space.

Note that Table I offers two variants. In variant 1, we achieve O(log n/ log log n) for
most operations, including insert and delete, but we solve degree, child, and child_rank
naively. In variant 2, we achieve O(log n) complexity for these, yet also for insert and

2This data structure is for DFUDS, but the same technique can be also applied to BP.
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16:4 G. Navarro and K. Sadakane

Table I. Operations Supported by Our Data Structure
The time complexities are for the dynamic case; in the static case, all operations take O(1) time.

The first group, basic operations, is used to implement the others but could have other uses.

Time Complexity
Operation Description Variant 1 | Variant 2
inspect(i) P[i] O( log n

log log n )

findclose(i) Position of parenthesis matching P[i] O( log n
log log n )

/ findopen(i)
enclose(i) Position of tightest open parenthesis enclosing i O( log n

log log n )

rank
(

(i) Number of open/close parentheses in P[0, i] O( log n
log log n )

/ rank
)

(i)

select
(

(i) Position of i-th open/close parenthesis O( log n
log log n )

/ select
)

(i)

rmqi(i, j) Position of min/max excess value in range [i, j] O( log n
log log n )

/ RMQi(i, j)
pre rank(i) Preorder/postorder rank of node i O( log n

log log n )
/ post rank(i)
pre select(i) Node with preorder/postorder i O( log n

log log n )
/ post select(i)
isleaf(i) Whether P[i] is a leaf O( log n

log log n )

isancestor(i, j) Whether i is an ancestor of j O( log n
log log n )

depth(i) Depth of node i O( log n
log log n )

parent(i) Parent of node i O( log n
log log n )

first child(i) First/last child of node i O( log n
log log n )

/ last child(i)
next sibling(i) Next/previous sibling of node i O( log n

log log n )
/ prev sibling(i)
subtree size(i) Number of nodes in the subtree of node i O( log n

log log n )
level anc(i, d) Ancestor j of i s.t. depth( j) = depth(i) − d O(log n)
level next(i) Next/previous node of i in BFS order O(log n)
/ level prev(i)
level lmost(d) Leftmost/rightmost node with depth d O(log n)
/ level rmost(d)
lca(i, j) Lowest common ancestor of two nodes i, j O( log n

log log n )

deepest node(i) (First) deepest node in the subtree of i O( log n
log log n )

height(i) Height of i (distance to its deepest node) O( log n
log log n )

degree(i) q = number of children of node i O( q log n
log log n ) | O(log n)

child(i, q) q-th child of node i O( q log n
log log n ) | O(log n)

child rank(i) q = number of siblings to the left of node i O( q log n
log log n ) | O(log n)

in rank(i) Inorder of node i O( log n
log log n )

in select(i) Node with inorder i O( log n
log log n )

leaf rank(i) Number of leaves to the left of leaf i O( log n
log log n )

leaf select(i) i-th leaf O( log n
log log n )

lmost leaf(i) Leftmost/rightmost leaf of node i O( log n
log log n )

/ rmost leaf(i)
insert(i, j) Insert node given by matching parent. at i and j O( log n

log log n ) | O(log n)

delete(i) Delete node i O( log n
log log n ) | O(log n)
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delete.3 The theorem also offers an alternative where we solve all operations in time
O(log n), with the reward of reducing the extra space to O(n/ log n). We give yet another
trade-off later, in Lemma 7.4.

The time complexity O(log n/ log log n) is optimal: Chan et al. [2007, Theorem 5.2]
showed that just supporting the most basic operations of Table I (findopen, findclose,
and enclose, as we will see) plus insert and delete requires this time even in the amor-
tized sense, by a reduction from Fredman and Saks [1989] lower bounds on rank
queries.

Moreover, we are able to attach and detach whole subtrees, in time O(log1+ε n) for any
constant ε > 0 (see Section 2.3 for the precise details). These operations had never been
considered before in succinct tree representations and may find various applications.

By-Products. Our techniques are of more general interest. A subset of our data
structure is able to solve the well-known “range minimum query” problem [Bender and
Farach-Colton 2000]. In the important case where consecutive elements differ by ±1,
we improve upon the best current space redundancy of O(n log log n/ log n) bits [Fischer
2010].

COROLLARY 1.3. Let E[0, n − 1] be an array of numbers with the property that E[i] −
E[i − 1] ∈ {−1,+1} for 0 < i < n, encoded as a bit vector P[0, n− 1] such that P[i] = 1 if
E[i]− E[i−1] = +1 and P[i] = 0 otherwise. Then, in a RAM machine, we can preprocess
P in O(n) time and O(n) bits such that range maximum/minimum queries are answered
in constant O(c) time and O(n/ logc n) extra bits on top of P.

Another direct application, to the representation of a dynamic array of numbers,
yields an improvement to the best current alternative [Mäkinen and Navarro 2008] by
a �(log log n) time factor. If the updates are limited, further operations sum (that gives
the sum of the numbers up to some position) and search (that finds the position where
a given sum is exceeded) can be supported, and our complexity matches the lower
bounds for searchable partial sums by Pǎtraşcu and Demaine [2006] (if the updates
are not limited, one can still use previous results [Mäkinen and Navarro 2008], which
are optimal in that general case). We present our result in a slightly more general form.

LEMMA 1.4. A sequence of n variable-length constant-time self-delimiting4 bit codes
x1 . . . xn, where |xi| = O(log n), can be stored within (

∑ |xi|)(1 + o(1)) bits of space so that
we can (1) compute any sequence of codes xi, . . . , xj, (2) update any code xi ← y, (3) insert
a new code z between any pair of codes, and (4) delete any code xd from the sequence, all
in O(log n/ log log n) time (plus j − i for (1)). Moreover, let f (xi) be a nonnegative integer
function computable in constant time from the codes. If the updates and indels are such
that | f (y) − f (xi)|, f (z), and f (xd) are all O(log n), then we can also support operations
sum(i) = ∑i

j=1 f (xi) and search(s) = max{i, sum(i) ≤ s} within the same time.

For example, we can store n numbers 0 ≤ ai < 2k within kn+o(kn) bits, by using their
k-bit binary representation [ai]2 as the code, and their numeric value as f ([ai]2) = ai, so
that we support sum and search on the sequence of numbers. If the numbers are very
different in magnitude, we can δ-encode them to achieve (

∑
log ai)(1 + o(1)) +O(n) bits

of space. We can also store bits, seen as 1-bit codes, in n + o(n) bits and and carry out
sum = rank and search = select, insertions and deletions, in O(log n/ log log n) time.

3In the conference version of this article [Sadakane and Navarro 2010], we erroneously affirm that we
can obtain O(log n/ log log n) for all of these operations, as well as level anc, level next/level prev, and
level lmost/level rmost, for which we can actually obtain only O(log n).
4This means that one can distinguish the first code xi from a bit stream xiα in constant time.
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16:6 G. Navarro and K. Sadakane

A further application of our results to the compressed representation of sequences
achieves a result summarized in the next theorem.

THEOREM 1.5. A sequence S[0, n − 1] over alphabet [1, σ ] can be stored in nH0(S) +
O(n log σ/ logε n + σ logε n) bits of space, for any constant 0 < ε < 1, and support
the operations rank, select, insert, and delete, all in time O( log n

log log n(1 + log σ

log log n)). For
polylogarithmic-sized alphabets, this is the optimal O(log n/ log log n); otherwise, it is
O( log n log σ

(log log n)2 ).

This time complexity slashes the the best current result [González and Navarro 2008]
by a �(log log n) factor (the relation with results that appeared after our conference
publication [He and Munro 2010; Navarro and Nekrich 2012] will be discussed later).
The optimality of the polylogarithmic case stems again from Fredman and Saks [1989]
lower bound on rank on dynamic bitmaps. This result has immediate applications to
building compressed indexes for text, building the Burrows-Wheeler transform (BWT)
within compressed space, and so on. The structure also allows us to attach and detach
substrings, which is novel and may find various interesting applications.

1.2. Organization of the Paper

In Section 2, we review basic data structures used in this article. Section 3 describes
the main ideas for our new data structures for ordinal trees. Sections 4 and 5 describe
the static construction. In Sections 6 and 7, we give two data structures for dynamic
ordinal trees. In Section 8, we derive our new results on compressed sequences and
applications. In Section 9, we conclude and give future work directions.

2. PRELIMINARIES

Here we describe BP sequences and basic data structures used in this article.

2.1. Succinct Data Structures for rank/select

Consider a bit string S[0, n− 1] of length n. We define rank and select for S as follows:
rankc(S, i) is the number of occurrences of c ∈ {0, 1} in S[0, i], and selectc(S, i) is
the position of the i-th occurrence of c in S. Note that rankc(S, selectc(S, i)) = i and
selectc(S, rankc(S, i)) ≤ i.

There exist many succinct data structures for rank/select [Jacobson 1989; Munro
1996; Raman et al. 2007; Pǎtraşcu 2008]. A basic one uses n + o(n) bits and supports
rank/select in constant time on the word RAM with word length �(log n). The space
can be reduced if the number of 1’s is small. For a string with m 1’s, there exists a data
structure for constant-time rank/select using nH0(S) + O(n log log n/ log n) bits, where
H0(S) = m

n log n
m+ n−m

n log n
n−m = mlog n

m+O(m) is called the empirical zero-order entropy
of the sequence. The space overhead on top of the entropy has been recently reduced
[Pǎtraşcu 2008] to O(ntt/ logt n+ n3/4) bits for any integer t > 0, while supporting rank
and select in O(t) time. This can be built in linear worst-case time.5

A crucial technique for succinct data structures is table lookup. For small-size prob-
lems, we construct a table that stores answers for all possible sequences and queries.
For example, for rank and select, we use a table storing all answers for all 0,1 patterns
of length 1

2 log n. Because there exist only 2
1
2 log n = √

n different patterns, we can store
all answers in a universal table (i.e., not depending on the bit sequence) that uses

5They use a predecessor structure by Pătraşcu and Thorup [2006], more precisely their result achieving time
“lg �−lg n

a .” which is a simple modification of van Emde Boas’ data structure.
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√
n · polylog(n) = o(n/polylog(n)) bits, which can be accessed in constant time on a word

RAM with word length �(log n).
The definition of rank and select on bitmaps generalizes to arbitrary sequences over

an integer alphabet [1, σ ], as well as the definition of zero-order empirical entropy of
sequences, to H0(S) = ∑

1≤c≤σ
nc
n log n

nc
, where c occurs nc times in S. A compressed

representation of general sequences that supports rank/select is achieved through a
structure called a wavelet tree [Grossi et al. 2003; Navarro 2012]. This is a complete
binary tree that partitions the alphabet [1, σ ] into contiguous halves at each node. The
node stores a bitmap that marks the branch to which each letter belongs. The tree has
height �log σ�, and it reduces rank and select operations to analogous operations on
its bitmaps in a root-to-leaf or leaf-to-root traversal. If the bitmaps are represented
within their zero-order entropy, the total space adds up to nH0(S) + o(n log σ ) and the
operations are supported in O(log σ ) time. This can be improved to O(� log σ

log log n�), while
maintaining the same asymptotic space, by using a multiary wavelet tree of arity
�(

√
log n), and replacing the bitmaps by sequences over small alphabets, which still

can answer rank/select in constant time [Ferragina et al. 2007].

2.2. Succinct Tree Representations

A rooted ordered tree T , or ordinal tree, with n nodes is represented in BP form by a
string P[0, 2n − 1] of BP of length 2n, as follows. A node is represented by a pair of
matching parentheses ( . . . ) , and subtrees rooted at the node are encoded in order
between the matching parentheses (see Figure 1 for an example). A node v ∈ T is
identified with the position i of the open parenthesis P[i] representing the node.

There exist many succinct data structures for ordinal trees. Among them, the ones
with maximum functionality [Farzan and Munro 2008] support all operations in Table I,
except insert and delete, in constant time using 2n+O(n log log log n/ log log n)-bit space.
Our static data structure supports the same operations and reduces the space to 2n +
O(n/polylog(n)) bits.

2.3. Dynamic Succinct Trees

We consider insertion and deletion of internal nodes or leaves in ordinal trees. In this
setting, there exist no data structures supporting all of the operations in Table I. The
data structure of Raman and Rao [2003] supports, for binary trees, parent, left and
right child, and subtree_size of the current node in the course of traversing the tree in
constant time, and updates in O((log log n)1+ε) time. Note that this data structure as-
sumes that all traversals start from the root. Farzan and Munro [2011] obtain constant
time for simple updates and basic traversal operations (parent, first_child, last_child,
next_sibling, prev_sibling) and show that obtaining the same for more sophisticated op-
erations requires limiting the update patterns. Chan et al. [2007] gave a dynamic data
structure using O(n) bits and supporting findopen, findclose, enclose, and updates in
O(log n/ log log n) time. They also gave another data structure using O(n) bits and sup-
porting findopen, findclose, enclose, lca, leaf_rank, leaf_select, and updates in O(log n)
time.

We consider a flexible node updating protocol (consistent with that of Chan et al.
[2007]) that supports inserting a new leaf, a new tree root, or an internal node that
will enclose a range of the consecutive children of some existing node. It also sup-
ports removing a leaf, the tree root (only if it has zero or one child), and an internal
node, whose children will become children of its parent. On a BP representation, it is
enough to allow inserting any pair of matching parentheses in the tree. On LOUDS

ACM Transactions on Algorithms, Vol. 10, No. 3, Article 16, Publication date: April 2014.



16:8 G. Navarro and K. Sadakane

and DFUDS, supporting this model may be more complex, as it may require abrupt
changes in node arities.

Furthermore, we consider the more sophisticated operation (which is simple on clas-
sical trees) of attaching a new subtree as a child of a node, instead of just a leaf. The
model is that this new subtree is already represented with our data structures. Both
trees are thereafter blended and become a single tree. Similarly, we can detach any
subtree from a given tree so that it becomes an independent entity represented with
our data structure. This allows for extremely flexible support of algorithms handling
dynamic trees, far away from the limited operations allowed in previous work. This
time, we have to consider a maximum possible value for log n (say, w, the width of the
system-wide pointers). Then we require 2n+O(n log w/w+√

2w) bits of space and carry
out the queries in time O(w/ log w) or O(w), depending on the tree structure we use.
Insertions and deletions take O(w1+ε) time for any constant ε > 0 if we wish to allow
attachment and detachment of subtrees, which then can also be carried out in time
O(w1+ε).

2.4. Dynamic Compressed Bitmaps and Sequences

Let B[0, n − 1] be a bitmap. We want to support operations rank and select on B, as
well as operations insert(B, i, b), which inserts bit b between B[i] and B[i + 1], and
delete(B, i), which deletes position B[i] from B. Chan et al. [2007] handle all of these
operations in O(log n/ log log n) time (which is optimal [Fredman and Saks 1989]) using
O(n) bits of space (actually, by reducing the problem to a particular dynamic tree).
Mäkinen and Navarro [2008] achieve O(log n) time and nH0(B) + O(n log log n/

√
log n)

bits of space. The results can be generalized to sequences. González and Navarro [2008]
achieve nH0 +O(n log σ/

√
log n) bits of space and O(log n(1 + log σ

log log n)) time to handle all
of the operations on a sequence over alphabet [1, σ ]. They give several applications to
managing dynamic text collections, construction of static compressed indexes within
compressed space, and construction of the BWT [Burrows and Wheeler 1994] within
compressed space. We improve all of these results in this article, achieving the optimal
O(log n/ log log n) on polylog-sized alphabets and reducing the lower-order term in the
compressed space by a �(log log n) factor.

3. FUNDAMENTAL CONCEPTS

In this section, we give the basic ideas of our ordinal tree representation. In the follow-
ing sections, we build on these to define our static and dynamic representations.

We represent a possibly non-BP6 sequence by a 0,1 vector P[0, n − 1] (P[i] ∈ {0, 1}).
Each opening/closing parenthesis is encoded by ( = 1 and ) = 0.

First, remember that several operations of Table I either are trivial in a BP represen-
tation, or are easily solved using enclose, findclose, findopen, rank, and select [Munro
and Raman 2001]. These are

inspect(i) = P[i] (or rank1(P, i) − rank1(P, i − 1) if there is no access to P[i]
isleaf(i) = [P[i + 1] = 0]

isancestor(i, j) = i ≤ j ≤ findclose(P, i)
depth(i) = rank1(P, i) − rank0(P, i)

parent(i) = enclose(P, i)
pre rank(i) = rank1(P, i)

6Later, we will use these constructions to represent arbitrary segments of a balanced sequence.
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pre select(i) = select1(P, i)
post rank(i) = rank0(P, findclose(P, i))
post select(i) = findopen(select0(P, i))
first child(i) = i + 1(if P[i + 1] = 1, else i is a leaf)
last child(i) = findopen(P, findclose(P, i) − 1)(if P[i + 1] = 1, else i is a leaf)

next sibling(i) = findclose(i) + 1(if P[findclose(i) + 1] = 1, else i is last sibling)
prev sibling(i) = findopen(i − 1)(if P[i − 1] = 0, else i is the first sibling)
subtree size(i) = (findclose(i) − i + 1)/2.

Hence, the preceding operations will not be considered further in the article. Let us
now focus on a small set of primitives needed to implement most of the other operations.
For any function g(·) on {0, 1}, we define the following.

Definition 3.1. For a 0,1 vector P[0, n − 1] and a function g(·) on {0, 1},

sum(P, g, i, j) def=
j∑

k=i

g(P[k])

fwd search(P, g, i, d) def= min{ j ≥ i | sum(P, g, i, j) = d}
bwd search(P, g, i, d) def= max{ j ≤ i | sum(P, g, j, i) = d}

rmq(P, g, i, j) def= min{sum(P, g, i, k) | i ≤ k ≤ j}
rmqi(P, g, i, j) def= argmin

i≤k≤ j
{sum(P, g, i, k)}

RMQ(P, g, i, j) def= max{sum(P, g, i, k) | i ≤ k ≤ j}
RMQi(P, g, i, j) def= argmax

i≤k≤ j
{sum(P, g, i, k)}.

The following function is particularly important.

Definition 3.2. Let π be the function such that π (1) = 1, π (0) = −1.
Given P[0, n − 1], we define the excess array E[0, n − 1] of P as an integer array
such that E[i] = sum(P, π, 0, i).

Note that E[i] stores the difference between the number of opening and closing
parentheses in P[0, i]. When P[i] is an opening parenthesis, E[i] = depth(i) is the
depth of the corresponding node and is the depth minus 1 for closing parentheses. We
will use E as a conceptual device in our discussions; it will not be stored. Note that
given the form of π , it holds that |E[i + 1] − E[i]| = 1 for all i.

The preceding operations are sufficient to implement the basic navigation on paren-
theses, as the next lemma shows. Note that the equation for findclose is well known,
and the one for level_anc has appeared as well [Munro and Rao 2004], but we give
proofs for completeness.

LEMMA 3.3. Let P be a BP sequence encoded by {0, 1}. Then findclose, findopen,
enclose, and level_anc can be expressed as follows:

findclose(i) = fwd search(P, π, i, 0)
findopen(i) = bwd search(P, π, i, 0)
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enclose(i) = bwd search(P, π, i, 2)
level anc(i, d) = bwd search(P, π, i, d + 1).

PROOF. For findclose, let j > i be the position of the closing parenthesis matching the
opening parenthesis at P[i]. Then j is the smallest index >i such that E[ j] = E[i]−1 =
E[i−1] (because of the node depths). Since by definition E[k] = E[i−1]+sum(P, π, i, k)
for any k > i, j is the smallest index >i such that sum(P, π, i, j) = 0. This is, by
definition, fwd search(P, π, i, 0).

For findopen, let j < i be the position of the opening parenthesis matching the closing
parenthesis at P[i]. Then j is the largest index <i such that E[ j − 1] = E[i] (again,
because of the node depths).7 Since by definition E[k − 1] = E[i] − sum(P, π, k, i)
for any k < i, j is the largest index <i such that sum(P, π, j, i) = 0. This is
bwd search(P, π, i, 0).

For enclose, let j < i be the position of the opening parenthesis that most tightly
encloses the opening parenthesis at P[i]. Then j is the largest index <i such that
E[ j − 1] = E[i] − 2 (note that now P[i] is an opening parenthesis). Now we reason as
for findopen to get sum(P, π, j, i) = 2.

Finally, the proof for level_anc is similar to that for enclose. Now j is the largest index
<i such that E[ j − 1] = E[i] − d − 1, which is equivalent to sum(P, π, j, i) = d + 1.

We also have the following, easy or well-known, equalities:

lca(i, j) = max(i, j), if isancestor(i, j) or isancestor( j, i)
parent(rmqi(P, π, i, j) + 1), otherwise [Sadakane 2002]

deepest node(i) = RMQi(P, π, i, findclose(i))
height(i) = depth(deepest node(i)) − depth(i)

level next(i) = fwd search(P, π, findclose(i), 0)
level prev(i) = findopen(bwd search(P, π, i, 0))

level lmost(d) = fwd search(P, π, 0, d)
level rmost(d) = findopen(bwd search(P, π, n − 1,−d)).

We also show that the preceding functions unify the algorithms for computing
rank/select on 0,1 vectors and those for BP sequences. Namely, let φ,ψ be functions
such that φ(0) = 0, φ(1) = 1, ψ(0) = 1, ψ(1) = 0. Then the following equalities hold.

LEMMA 3.4. For a 0,1 vector P,

rank1(P, i) = sum(P, φ, 0, i)
select1(P, i) = fwd search(P, φ, 0, i)
rank0(P, i) = sum(P, ψ, 0, i)
select0(P, i) = fwd search(P, ψ, 0, i).

Therefore, in principle, we must focus only on the following set of primitives,
fwd_search, bwd_search, sum, rmqi, RMQi, degree, child, and child_rank, for the rest
of the article.

Our data structure for queries on a 0,1 vector P is basically a search tree in which
each leaf corresponds to a range of P and each node stores the last, maximum, and
minimum values of prefix sums for the concatenation of all ranges up to the subtree
rooted at that node.

7Note that E[ j] − 1 = E[i] could hold at other places as well, where P[ j] is a closing parenthesis.
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Fig. 2. An example of the range min-max tree using function π and showing the m/M values.

Definition 3.5. A range min-max tree for a bit vector P[0, n − 1] and a function g(·)
is defined as follows. Let [�1, r1], [�2, r2], . . . , [�q, rq] be a partition of [0, n − 1] where
�1 = 0, ri + 1 = �i+1, rq = n − 1. Then the i-th leftmost leaf of the tree stores the sub-
vector P[�i, ri], as well as e[i] = sum(P, g, 0, ri), m[i] = e[i − 1] + rmq(P, g, �i, ri) and
M[i] = e[i − 1] + RMQ(P, g, �i, ri). Each internal node u stores in e[u]/m[u]/M[u] the
last/minimum/maximum of the e/m/M values stored in its child nodes. Thus, the root
node stores e = sum(P, g, 0, n−1), m = rmq(P, g, 0, n−1), and M = RMQ(P, g, 0, n−1).

Example 3.6. An example of range min-max tree is shown in Figure 2. Here we
use g = π , and thus the nodes store the minimum/maximum values of array E in the
corresponding interval.

4. A SIMPLE DATA STRUCTURE FOR POLYLOGARITHMIC-SIZE TREES

Building on the previous ideas, we give a simple data structure to compute fwd_search,
bwd_search, and sum in constant time for (not necessarily balanced) bit vectors of
polylogarithmic size. This will be used to handle chunks of larger trees in later sec-
tions. Then we consider the particular case of BP and complete all operations on
polylogarithmic-sized trees.

The general idea is that we will use a range min-max tree of constant height and
sublogarithmic arity k. This arity will allow us encoding k accumulators (like e, m, and
M) within a number of bits small enough to maintain a universal table with all possible
k-tuples of values. Hence, any desired function on the nodes can be precomputed in
constant time using universal tables.

Let g(·) be a function on {0, 1} taking values in {1, 0,−1}. We call such a function ±1
function. Note that there exist only six such functions where g(0) 	= g(1), which are
indeed φ,−φ,ψ,−ψ,π,−π .

Let w be the bit length of the machine word in the RAM model, and c ≥ 1 any
constant. We have a bit vector P[0, n − 1], of moderate size n ≤ N = wc. Assume that
we wish to solve the operations for an arbitrary ±1 function g(·), and let G[i] denote
sum(P, g, 0, i), analogously to E[i] for g = π .

Our data structure is a range min-max tree TmM for vector P and function g(·). Let
s = 1

2w. We imaginarily divide vector P into �n/s� chunks of length s. These form
the partition alluded in Definition 3.5: �i = s · (i − 1). Thus, the values m[i] and M[i]
correspond to minima and maxima of G within each chunk, and e[i] = G[ri].

Furthermore, the tree will be k-ary and complete, for k = �(w/(c log w)). Thus, the
leaves store all elements of arrays m and M. Because it is complete, the tree can be
represented just by three integer arrays e′[0,O(n/s)], m′[0,O(n/s)], and M′[0,O(n/s)],
like a heap.
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Because −wc ≤ e′[i], m′[i], M′[i] ≤ wc for any i, arrays e′, m′, and M′ occupy k
k−1 · n

s ·
�log(2wc + 1)� = O(nc log w/w) bits each. The depth of the tree is �logk(n/s)� = O(c).

The following fact is well known; we reprove it for completeness.

LEMMA 4.1. Any range [i, j] ⊆ [0, n− 1] in TmM is covered by a disjoint union of O(ck)
subranges where the leftmost and rightmost ones may be subranges of leaves of TmM,
and the others correspond to whole nodes of TmM.

PROOF. Let a be the smallest value such that i ≤ ra and b be the largest
such that j ≥ �b. Then the range [i, j] is covered by the disjoint union [i, j] =
[i, ra][�a+1, ra+1] . . . [�b−1, rb−1][�b, j] (we can discard the case a = b, as then we have
already one leaf covering [i, j]). Then [i, ra] and [�b, j] are the leftmost and rightmost
leaf subranges alluded in the lemma; all others are whole tree nodes.

It remains to show that we can re-express this disjoint union using O(ck) tree nodes.
If all of the k children of a node are in the range, we replace the k children by the parent
node and continue recursively level by level. Note that if two parent nodes are created
in a given level, then all other intermediate nodes of the same level must be created
as well, because the original/created nodes form a range at any level. At the end, there
cannot be more than 2k − 2 nodes at any level, because otherwise, k of them would
share a single parent and would have been replaced. As there are c levels, the obtained
set of nodes covering [i, j] is of size O(ck).

Example 4.2. In Figure 2 (where s = k = 3), the range [3, 18] is covered by
[3, 5], [6, 8], [9, 17], [18, 18]. They correspond to nodes d, e, f , and a part of leaf k,
respectively.

4.1. Supporting Forward and Backward Searches

Computing fwd search(P, g, i, d) is done as follows (bwd_search is symmetric). First
we check if the chunk of i, [�k, rk] for k = �i/s
, contains fwd search(P, g, i, d) with a
table lookup using vector P, by precomputing a simple universal table of 2s log s =
O(

√
2w log w) bits.8 If so, we are done. Else, we compute the global target value that

we seek, d′ = G[i − 1] + d = e[k] − sum(P, g, i, rk) + d (the sum inside the chunk is also
computed in constant time using table lookup). Now we divide the range [rk + 1, n− 1]
into subranges I1, I2, . . . represented by range min-max tree nodes u1, u2, . . . as in
Lemma 4.1 (note these are simply all right siblings of the parent, all right siblings
of the grandparent, and so on, of the range min-max tree node holding the chunk
[�k, rk]). Then, for each Ij , we check if the target value d′ is between m[uj] and M[uj],
the minimum and maximum values of subrange Ij . Let Ik be the first j such that m[uj] ≤
d′ ≤ M[uj], then fwd search(P, g, i, d) lies within Ik. If Ik corresponds to an internal
tree node, we iteratively find the leftmost child of the node whose range contains d′,
until we reach a leaf. Finally, we find the target within the chunk corresponding to the
leaf by table lookups, using P again.

Example 4.3. In Figure 2, where G = E and g = π , computing findclose(3) =
fwd search(P, π, 3, 0) = 12 can be done as follows. Note that this is equivalent to
finding the first j > 3 such that E[ j] = E[3 − 1] + 0 = 1. First examine the node
�3/s
 = 1 (labeled d in the figure). We see that the target 1 does not exist within d after
position 3. Next we examine node e. Since m[e] = 3 and M[e] = 4, e does not contain
the answer either. Next we examine the node f . Because m[ f ] = 1 and M[ f ] = 3, the

8Using integer division and remainder, a segment within a chunk can be isolated and padded in constant
time. If this is not allowed, the table must be slightly larger, 2ss2 log s = O(

√
2ww2 log w) bits, which would

not change our final results.
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answer must exist in its subtree. Therefore, we scan the children of f from left to right
and find the leftmost one with m[·] ≤ 1, which is node h. Because node h is already a
leaf, we scan the segment corresponding to it and find the answer 12.

The sequence of subranges arising in this search corresponds to a leaf-to-leaf path
in the range min-max tree, and it contains O(ck) ranges according to Lemma 4.1. We
show now how to carry out this search in time O(c) rather than O(ck).

According to Lemma 4.1, the O(ck) nodes can be partitioned into O(c) sequences
of consecutive sibling nodes. We will manage to carry out the search within each
such sequence in O(1) time. Assume that we have to find the first j ≥ i such that
m[uj] ≤ d′ ≤ M[uj], where u1, u2, . . . , uk are consecutive sibling nodes in TmM. We first
check if m[ui] ≤ d′ ≤ M[ui]. If so, the answer is ui. Otherwise, if d′ < m[ui], the answer
is the first j > i such that m[uj] ≤ d′, and if d′ > M[ui], the answer is the first j > i
such that M[uj] ≥ d′. The next lemma proves it.

LEMMA 4.4. Let u1, u2, . . . be a sequence of TmM nodes containing consecutive intervals
of P. If g(·) is a ±1 function and d < m[u1], then the first j such that d ∈ [m[uj], M[uj]]
is the first j > 1 such that d ≥ m[uj]. Similarly, if d > M[u1], then it is the first j > 1
such that d ≤ M[uj].

PROOF. Since g(·) is a ±1 function and the intervals are consecutive, M[uj] ≥ m[uj−1]−
1 and m[uj] ≤ M[uj−1] + 1. Therefore, if d ≥ m[uj] and d < m[uj−1], then d < M[uj] + 1,
thus d ∈ [m[uj], M[uj]]; and of course d 	∈ [m[uk], M[uk]] for any k < j, as j is the first
index such that d ≥ m[uj]. The other case is symmetric.

Thus, the problem is reduced to finding the first j > i such that m[ j] ≤ d′, among (at
most) kconsecutive sibling nodes (the case M[ j] ≥ d′ is symmetric). We build a universal
table with all possible sequences of k values m[·] and all possible −wc ≤ d′ ≤ wc values,
and for each such sequence and d′ we store the first j in the sequence such that m[ j] ≤ d′
(or we store a mark telling that there is no such position in the sequence). Thus, the
table has (2wc + 1)k+1 entries and log(k + 1) bits per entry. By choosing the constant of
k = �(w/(c log w)) so that k ≤ w

2 log(2wc+1) − 1, the total space is O(
√

2w log w) (and the
arguments for the table fit in a machine word). With the table, each search for the first
node in a sequence of consecutive siblings can be done in constant rather than O(k)
time, and hence the overall time is O(c) rather than O(ck). Note that we store the m′[·]
values in heap order, and therefore the k consecutive sibling values to input to the table
are stored in contiguous memory; thus, they can be accessed in constant time. We use
an analogous universal table for M[·].

Finally, the process to solve sum(P, g, i, j) in O(c) time is simple. We descend in the
tree up to the leaf [�k, rk] containing j. We obtain sum(P, g, 0, �k − 1) = e[k − 1] and
compute the rest, sum(P, g, �k, j), in constant time using a universal table that we have
already introduced. We repeat the process for sum(P, g, 0, i −1) and then subtract both
results. We have proved the following lemma.

LEMMA 4.5. In the RAM model with w-bit word size, for any constant c ≥ 1
and a 0,1 vector P of length n < wc, and a ±1 function g(·), fwd search(P, g, i, j),
bwd search(P, g, i, j), and sum(P, g, i, j) can be computed in O(c) time using the range
min-max tree and universal lookup tables that require O(

√
2w log w) bits.

4.2. Supporting Range Minimum Queries

Next we consider how to compute rmqi(P, g, i, j) and RMQi(P, g, i, j). Because the
algorithm for RMQi is analogous to that for rmqi, we consider only the latter.
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From Lemma 4.1, the range [i, j] is covered by a disjoint union of O(ck) subranges,
each corresponding to some node of the range min-max tree. Let μ1, μ2, . . . be the
minimum values of the subranges. Then the minimum value in [i, j] is the minimum
of them. The minimum values in each subrange are stored in array m′, except for at
most two subranges corresponding to leaves of the range min-max tree. The minimum
values of such leaf subranges are found by table lookups using P, by precomputing a
universal table of O(

√
2w log w) bits. The minimum value of a subsequence μ�, . . . , μr

that shares the same parent in the range min-max tree can also be found by table
lookups. The size of such a universal table is O((2wc + 1)k log k) = O(

√
2w) bits.9 Hence,

we find the node containing the minimum value μ among μ1, μ2, . . . , in O(c) time. If
there is a tie, we choose the leftmost one.

If μ corresponds to an internal node of the range min-max tree, we traverse the tree
from the node to a leaf having the leftmost minimum value. At each step, we find the
leftmost child of the current node having the minimum in constant time using our
precomputed table. We repeat the process from the resulting child until reaching a
leaf. Finally, we find the index of the minimum value in the leaf in constant time by a
lookup on our universal table for leaves. The overall time complexity is O(c). We have
proved the following lemma.

LEMMA 4.6. In the RAM model with w-bit word size, for any constant c ≥ 1 and a 0,1
vector P of length n < wc, and a ±1 function g(·), rmqi(P, g, i, j) and RMQi(P, g, i, j)
can be computed in O(c) time using the range min-max tree and universal lookup tables
that require O(

√
2w) bits.

4.3. Other Operations

The previous development on fwd search, bwd search, rmqi, and RMQi, has been gen-
eral for any g(·). Applied to g = π , they solve a large number of operations, as shown
in Section 3. For the remaining ones, we focus directly on the case g = π and assume
that P is the BP representation of a tree.

It is obvious how to compute degree(i), child(i, q), and child rank(i) in time propor-
tional to the degree of the node. To compute them in constant time, we add another
array, n′[·], to the data structure. In the range min-max tree, each node stores (in array
m′[·]) the minimum value of the subrange of the node. Now we also store, in n′[·], the
multiplicity of the minimum value of each subrange.

LEMMA 4.7. The number of children of node i is equal to the number of occurrences of
the minimum value in E[i + 1, findclose(i) − 1].

PROOF. Let d = E[i] = depth(i) and j = findclose(i). Then E[ j] = d− 1 and all excess
values in E[i + 1, j − 1] are ≥ d. Therefore, the minimum value in E[i + 1, j − 1] is
d. Moreover, for the range [ik, jk] corresponding to the k-th child of i, E[ik] = d + 1,
E[ jk] = d, and all values between them are > d. Therefore, the number of occurrences
of d, which is the minimum value in E[i + 1, j − 1], is equal to the number of children
of i.

Now we can compute degree(i) in constant time. Let d = depth(i) and j = findclose(i).
We partition the range E[i + 1, j − 1] into O(ck) subranges, each of which corresponds
to a node of the range min-max tree. Then for each subrange whose minimum value is
d, we sum up the number of occurrences of the minimum value (n′[·]). The number of
occurrences of the minimum value in leaf subranges can be computed by table lookup

9Again, we can isolate subranges using integer division and remainder; otherwise, we need O((2wc +
1)kk2 log k) = O(

√
2ww2 log w) bits, which would not affect our final result.
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on P, with a universal table using O(
√

2w log w) bits. The time complexity is O(c) if we
use universal tables that let us process sequences of (up to) k consecutive children at
once—that is, telling the minimum m[·] value within the sequence and the number of
times that it appears (adding up n[·] values). As the result depends on m[·] and n[·]
values, this table requires O((2wc + 1)2k · 2 log(2wc + 1)) bits. This is O(

√
2w log w) if we

limit k = w
4 log(2wc+1) − 1 (indeed the final “−1” is needed for operation child in the next

paragraph).
Operation child rank(i) can be computed similarly by counting the number of minima

in E[parent(i), i−1]. Operation child(i, q) follows the same idea of degree(i), except that
in the node where the sum of n′[·] exceeds q, we must descend until the range min-max
leaf that contains the opening parenthesis of the q-th child. This search is also guided
by the n′[·] values of each node and is done also in O(c) time. Here we need another
universal table that tells at which position the number of occurrences of the minimum
value exceeds some threshold, which requires O((2wc + 1)2k+1 log k) = O(

√
2w log w)

bits.
For operations leaf rank, leaf select, lmost leaf, and rmost leaf, we define a bit

vector P1[0, n − 1] such that P1[i] = 1 ⇐⇒ P[i] = 1 ∧ P[i + 1] = 0. Then
leaf rank(i) = rank1(P1, i) and leaf select(i) = select1(P1, i) hold. The other operations
are computed by lmost leaf(i) = select1(P1, rank1(P1, i − 1) + 1) and rmost leaf(i) =
select1(P1, rank1(P1, findclose(i))). Note that we need not store P1 explicitly; it can be
computed from P when needed. We only need the extra data structures for constant-
time rank and select, which can be reduced to the corresponding sum and fwd_search
operations on the virtual P1 vector.

Finally, we recall the definition of inorder rank of nodes, which is essential for com-
pressed suffix trees.

Definition 4.8. (From Sadakane [2007a].) The inorder rank of an internal node v is
defined as the number of visited internal nodes, including v, in a left-to-right depth-first
traversal, when v is visited from a child of it and another child of it will be visited next.

Note that an internal node with q children has q − 1 inorder ranks, so leaves and
unary nodes have no inorder rank. We define in rank(i) as the smallest inorder rank of
internal node i and in select( j) as the (internal) the tree node whose (smallest) inorder
rank is j.

To compute in rank and in select, we use another bit vector P2[0, n − 1] such that
P2[i] = 1 ⇐⇒ P[i] = 0 ∧ P[i + 1] = 1. The following lemma gives an algorithm to
compute the inorder rank of an internal node.

LEMMA 4.9. (From Sadakane [2007a].) Let i be an internal node, and let j = in rank(i),
so i = in select( j). Then

in rank(i) = rank1(P2, findclose(P, i + 1))
in select( j) = enclose(P, select1(P2, j) + 1).

Note that in select( j) will return the same node i for any of its degree(i) − 1 inorder
ranks.

Once again, we need not store P2 explicitly.

4.4. Reducing Extra Space

Apart from vector P[0, n− 1], we need to store vectors e′, m′, M′, and n′. In addition, to
implement rank and select using sum and fwd_search, we would need to store vectors
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e′
φ , e′

ψ , m′
φ , m′

ψ , M′
φ , and M′

ψ, which maintain the corresponding values for functions φ

and ψ (recall Lemma 3.4). However, note that sum(P, φ, 0, i) and sum(P, ψ, 0, i) are
nondecreasing, thus the minimum/maximum within the chunk is just the value of the
sum at the beginning/end of the chunk. Moreover, as sum(P, π, 0, i) = sum(P, φ, 0, i) −
sum(P, ψ, 0, i) and sum(P, φ, 0, i) + sum(P, ψ, 0, i) = i, it turns out that both eφ[i] =
(ri +e[i])/2 and eψ [i] = (ri −e[i])/2 are redundant. Analogous formulas hold for internal
nodes. Moreover, any sequence of k consecutive such values can be obtained, via table
lookup, from the sequence of k consecutive values of e[·], because the ri values increase
regularly at any node. Hence, we do not store any extra information to support φ and ψ .

If we store vectors e′, m′, M′, and n′ naively, we require O(nc log w/w) bits of extra
space on top of the n bits for P.

The space can be largely reduced by using a recent technique by Pǎtraşcu [2008].
They define an aB-tree over an array A[0, n−1], for n a power of B, as a complete tree of
arity B, storing B consecutive elements of A in each leaf. Additionally, a value ϕ ∈ � is
stored at each node. This must be a function of the corresponding elements of A for the
leaves and a function of the ϕ values of the children and of the subtree size for internal
nodes. The construction is able to decode the B values of ϕ for the children of any node
in constant time, and to decode the B values of A for the leaves in constant time, if they
can be packed in a machine word.

In our case, A = P is the vector, B = k = s is our arity, and our trees will be of
size N = Bc, which is slightly smaller than the wc that we have been assuming. Our
values are tuples ϕ ∈ 〈−Bc,−Bc, 0,−Bc〉 . . . 〈Bc, Bc, Bc, Bc〉 encoding the m, M, n, and
e values at the nodes, respectively. Next we adapt their result to our case.

LEMMA 4.10. (Adapted from Pǎtraşcu [2008, Theorem 8].) Let |�| = (2B + 1)4c and
B be such that (B + 1) log(2B + 1) ≤ w

8c (thus, B = �( w
c log w

)). An aB-tree over bit vector
P[0, N−1], where N = Bc, with values in �, can be stored using N+2 bits, plus universal
lookup tables of O(

√
2w) bits. It can obtain the m, M, n, or e values of the children of any

node and descend to any of those children in constant time. The structure can be built
in O(N + w3/2) time, plus O(

√
2wpoly(w)) for the universal tables.

The “+w3/2” construction time comes from a fusion tree [Fredman and Willard 1993]
that is used internally on O(w) values. It could be reduced to wε time for any constant
ε > 0 and navigation time O(1/ε), but we prefer to set c > 3/2 so that N = Bc dominates
it.

These parameters still allow us to represent our range min-max trees while yielding
the complexities that we had found, as k = �(w/(c log w)) and N ≤ wc. Our accesses to
the range min-max tree are either (i) partitioning intervals [i, j] into O(ck) subranges,
which are easily identified by navigating from the root in O(c) time (as the k children
are obtained together in constant time), or (ii) navigating from the root while looking
for some leaf based on the intermediate m, M, n, or e values. Thus, we retain all of our
time complexities.

The space, instead, is reduced to N + 2 + O(
√

2w), where the latter part comes from
our universal tables and those of Lemma 4.10 (our universal tables become smaller
with the reduction from w and s to B). Note that our vector P must be exactly of length
N; padding is necessary otherwise. Both the padding and the universal tables will lose
relevance for larger trees, as seen in the next section.

The next theorem summarizes our results in this section.

THEOREM 4.11. On a w-bit word RAM, for any constant c > 3/2, we can represent a
sequence P of N = Bc parentheses describing a tree in BP form, for sufficiently small
B = �( w

c log w
), computing all operations of Table I in O(c) time, with a data structure
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depending on P that uses N + 2 bits and universal tables (i.e., not depending on P)
that use O(

√
2w) bits. The preprocessing time is O(N + √

2wpoly(w)) (the second term is
needed only once for universal tables), and its working space is O(N) bits.

5. A DATA STRUCTURE FOR LARGE TREES

In practice, one can use the solution of the previous section for trees of any size,
achieving O( k log n

w
logk n) = O( log n

log w−log log n) = O(log n) time (using k = w/ log n) for all
operations with an extremely simple and elegant data structure (especially if we choose
to store arrays m′, etc., in simple form). In this section, we show how to achieve constant
time on trees of arbitrary size.

For simplicity, let us assume in this section that we handle trees of size wc in Section 4.
We comment at the end the difference with the actual size Bc handled.

For large trees with n > wc nodes, we divide the parentheses sequence into blocks of
length wc. Each block (containing a possibly nonbalanced sequence of parentheses) is
handled with the range min-max tree of Section 4. The main idea is that queries that
cannot be solved inside a block can make use of more classical data structures, as long
as these are built on O(n/wc) elements, so their space will be negligible. Some of those
structures are known, yet some new ones are introduced.

Let m1, m2, . . . , mτ , M1, M2, . . . , Mτ , and e1, e2, . . . , eτ be the minima, maxima, and
excess of the τ = �2n/wc� blocks, respectively. These values are stored at the root nodes
of each TmM tree and can be obtained in constant time.

5.1. Forward and Backward Searches on π

We consider extending fwd search(P, π, i, d) and bwd search(P, π, i, d) to trees of arbi-
trary size. We focus on fwd search, as bwd search is symmetric.

We first try to solve fwd search(P, π, i, d) within the block j = �i/wc
 of i. If the
answer is within block j, we are done. Otherwise, we must look for the first excess
d′ = e j−1 + sum(P, π, 0, i − 1 − wc · ( j − 1)) + d (where the sum is local to block j) in the
following blocks. Then the answer lies in the first block r > j such that mr ≤ d′ ≤ Mr.
Thus, we can apply again Lemma 4.4, starting at [mj+1, Mj+1]: if d′ 	∈ [mj+1, Mj+1], we
must either find the first r > j +1 such that mr ≤ d′, or such that Mr ≥ d′. Once we find
such block, we complete the operation with a local fwd search(P, π, 0, d′ − er−1) query
inside it.

The problem is how to achieve constant-time search, for any j, in a sequence of length
τ . Let us focus on left-to-right minima, as the others are similar.

Definition 5.1. Let m1, m2, . . . , mτ be a sequence of integers. We define for each
1 ≤ j ≤ τ the left-to-right minima starting at j as lrm( j) = 〈 j0, j1, j2, . . .〉, where j0 = j,
jr < jr+1, mjr+1 < mjr , and mjr+1, . . . , mjr+1−1 ≥ mjr .

The following lemmas are immediate.

LEMMA 5.2. The first element ≤ x after position j in a sequence of integers
m1, m2, . . . , mτ , where lrm( j) = 〈 j0, j1, j2, . . .〉, is mjr for some r > 0.

LEMMA 5.3. Let lrm( j)[pj] = lrm( j ′)[pj ′]. Then lrm( j)[pj + i] = lrm( j ′)[pj ′ + i] for all
i > 0.

That is, once the lrm sequences starting at two positions coincide in a position, they
coincide thereafter. Lemma 5.3 is essential to store all of the τ sequences lrm( j) for
each block j in compact form. We form a tree Tlrm, which is essentially a trie composed
of the reversed lrm( j) sequences. The tree has τ nodes, one per block. Block j is a child
of block j1 = lrm( j)[1] (note lrm( j)[0] = j0 = j)—that is, j is a child of the first block
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Fig. 3. A tree representing the lrm( j) sequences of values m1 . . . m9.

j1 > j such that mj1 < mj . Thus, each j-to-root path spells out lrm( j), by Lemma 5.3.
We add a fictitious root to convert the forest into a tree. Note that this structure was
independently discovered10 by Fischer [2010], who called it “2d-Min-Heap” and showed
how to build it in linear time.

Example 5.4. Figure 3 illustrates the tree built from the sequence 〈m1 . . . m9〉 =
〈6, 4, 9, 7, 4, 4, 1, 8, 5〉. Then lrm(1) = 〈1, 2, 7〉, lrm(2) = 〈2, 7〉, lrm(3) = 〈3, 4, 5, 7〉, and
so on.

If we now assign weight mj −mj1 to the edge between j and its parent j1, the original
problem of finding the first jr > j such that mjr ≤ d′ reduces to finding the first ancestor
jr of node j such that the sum of the weights between j and jr exceeds d′′ = mj − d′.
Thus, we need to compute weighted level ancestors in Tlrm. Note that the weight of an
edge in Tlrm is at most wc.

LEMMA 5.5. For a tree with τ nodes where each edge has an integer weight in [1, W],
after O(τ log1+ε

τ ) time preprocessing, a weighted level ancestor query is solved in O(t +
1/ε) time on an �(log(τW))-bit word RAM, for any ε > 0 and integer t > 0. The size of
the data structure is O(τ log τ log(τW) + τWtt

logt(τW ) + (τW)3/4) bits.

PROOF. We use a variant of Bender and Farach-Colton [2004] 〈O(τ log τ ),O(1)〉 algo-
rithm. Let us ignore weights for a while. We extract a longest root-to-leaf path of the
tree, which disconnects the tree into several subtrees. Then we repeat the process re-
cursively for each subtree until we have a set of paths. Each such path, say of length �,
is extended upward, adding other � nodes toward the root (or less if the root is reached).
The extended path is called a ladder, and it is stored as an array so that level ancestor
queries within a ladder are trivial. This partitioning guarantees that a node of height
h has also height h in its path, and thus at least its first h ancestors are in its ladder.
Moreover, the union of all ladders has at most 2τ nodes and thus requires O(τ log τ )
bits.

For each tree node v, an array of its (at most) log τ ancestors at depths depth(v) −
2i, i ≥ 0, is stored (hence, the O(τ log τ )-words space and time). To solve the query
level anc(v, d), the ancestor v′ at distance d′ = 2�log d
 from v is obtained. Since v′ has
height at least d′, it has at least its first d′ ancestors in its ladder. But from v′, we need
only the ancestor at distance d − d′ < d′, so the answer is in the ladder.

To include the weights, we must be able to find the node v′ and the answer considering
the weights instead of the number of nodes. We store for each ladder of length � a sparse
bitmap of length at most �W , where the i-th 1 left to right represents the i-th node
upward in the ladder, and the distance between two 1’s, the weight of the edge between
them. All of the bitmaps are concatenated into one (so each ladder is represented by a

10Published in the same year of the conference version of our article [Sadakane and Navarro 2010].
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couple of integers indicating the extremes of its bitmap). This long bitmap contains at
most 2τ 1’s, and because weights do not exceed W , at most 2τW 0’s. Using the sparse
bitmaps of Pǎtraşcu [2008], it can be represented using O(τ log W + τWtt

logt(τW ) + (τW)3/4)
bits and support rank/select in O(t) time.

In addition, we store for each node the log τ accumulated weights toward ancestors
at distances 2i using fusion trees [Fredman and Willard 1993]. These can store z keys
of � bits in O(z�) bits and, using O(z5/6(z1/6)4) = O(z1.5) preprocessing time, answer
predecessor queries in O(log� z) time (via an �1/6-ary tree). The 1/6 can be reduced
to achieve O(z1+ε) preprocessing time and O(1/ε) query time for any desired constant
0 < ε ≤ 1/2.

In our case, this means O(τ log τ log(τW)) bits of space, O(τ log1+ε
τ ) construction

time, and O(1/ε) access time. Thus, we can find in constant time, from each node v,
the corresponding weighted ancestor v′ using a predecessor query. If this corresponds
to (unweighted) distance 2i, then the true ancestor is at distance < 2i+1, and thus it is
within the ladder of v′, where it is found in O(t) further time using rank/select on the
bitmap of ladders (each node v has a pointer to its 1 in the ladder corresponding to the
path to which it belongs).

To apply this lemma for our problem of computing fwd search outside blocks, we have
W = wc and τ = n

wc . Then the size of the data structure becomes O( n log2 n
wc + ntt

logt n + n3/4).
By choosing ε = min(1/2, 1/c), the query time is O(c + t) and the preprocessing time is
O(n) for c > 3/2.

5.2. Other Operations

For computing rmqi and RMQi, we use a simple data structure [Bender and Farach-
Colton 2000] on the mr and Mr values, later improved to require only O(τ ) bits on top
of the sequence of values [Sadakane 2002; Fischer and Heun 2007]. The extra space
is thus O(n/wc) bits, and it solves any query up to the block granularity. For solving
a general query [i, j], we should compare the minimum/maximum obtained with the
result of running queries rmqi and RMQi within the blocks covering the two extremes
of the boundary [i, j].

For computing child, child rank, and degree, only some parenthesis pairs must be
cared about. We consider all pairs (i, j) of matching parentheses ( j = findclose(i)) such
that i and j belong to different blocks. If we define a graph whose vertices are blocks
and the edges are the pairs of parentheses considered, the graph is outerplanar since
the parenthesis pairs nest [Jacobson 1989], yet there are multiple edges among nodes.
To remove these, we choose the tightest pair of parentheses for each pair of vertices.
These parenthesis pairs are called pioneers. Since they correspond to edges of a planar
graph, the number of pioneers is O(n/wc).

For the three queries, it is enough to consider only nodes that completely include
a block (otherwise, the query is solved in constant time by considering at most two
adjacent blocks; we can easily identify such nodes using findclose). Furthermore, among
them, it is enough to consider pioneers: assume that the parentheses pair (i, i′) contains
a whole block but it is not a pioneer. Then there exists a pioneer pair ( j, j ′) contained
in (i, i′), where j is in the same block of i and j ′ is in the same block of i′. Thus, the
block contained in (i, i′) contains no children of (i, i′), as all its parentheses descend
from ( j, j ′). Moreover, all children of (i, i′) start either in the block of i or in the block of
i′, since ( j, j ′) or an ancestor of it is a child of (i, i′). So again the operations are solved in
constant time by considering two blocks. Such cases can be identified by doing findclose
on the last child of i starting in its block and seeing if that child closes in the block of i′.
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Let us call marked the nodes to consider (i.e., pioneers that contain a whole block).
There are O(n/wc) marked nodes, thus for degree we can simply store the degrees of
marked nodes using O( n log n

wc ) bits of space, and the others are computed in constant
time as explained.

For child and child_rank, we set up a bitmap C[0, 2n− 1] where marked nodes v are
indicated with C[v] = 1 and preprocess C for rank queries so that satellite information
can be associated to marked nodes. Using again the result of Pǎtraşcu [2008], vector C
can be represented in at most 2n

wc log(wc) + O( ntt

logt n + n3/4) bits so that any bit C[i] can
be read, and any rank on C can be computed, in O(t) time.

We will focus on children of marked nodes placed at the blocks fully contained in
those nodes, as the others are inside the two extreme blocks and can be dealt with in
constant time. Note that a block fully contained in some marked nodes can contain
children of at most one of them (i.e., the innermost).

For each marked node v, we store a list formed by the blocks fully contained in v,
and the marked nodes children of v, in left-to-right order of P. The blocks store the
number of children of v that start within them, and the children-marked nodes store
simply a 1 (indicating that they contain 1 child of v). Both store their position inside
the list as well. The length of all sequences adds up to O(n/wc) because each block and
marked node appears in at most one list. Their total sum of children is at most n for
the same reason. Thus, it is easy to store all of the number of children as gaps between
consecutive 1’s in a bitmap, which can be stored within the same space bounds of the
other bitmaps in this section (O(n) bits, O(n/wc) 1’s).

Using this bitmap, child and child rank can easily be solved using rank and select.
For child(v, q) on a marked node v, we start using p = rank1(Cv, select0(Cv, q)) on the
bitmap Cv of v. This tells the position in the list of blocks and marked nodes of v where
the q-th child of v lies. If it is a marked node, then that node is the child. If instead
it is a block v′, then the answer corresponds to the q′-th minimum within that block,
where q′ = q − rank0(select1(Cv, p)). (Recall that we first have to see if child(v, q) lies in
the block of v or in that of findclose(v), using a within-block query in those cases, and
otherwise subtracting from q the children that start in the block of v.)

For child rank(u), we can directly store the answers for marked blocks u. Else, it
might be that v = parent(u) starts in the same block of u or that findclose(v) is in the
same block of findclose(u), in which case we solve child rank(u) with an in-block query
and the help of degree(v). Otherwise, the block where u belongs must be in the list of
v, say at position pu. Then the answer is rank0(Cv, select1(Cv, pu)) plus the number of
minima in the block of u until u − 1.

Finally, the remaining operations require just rank and select on P, or the virtual
bit vectors P1 and P2. For rank, it is enough to store the answers at the end of blocks
and finish the query within a single block. For select1(P, i) (and similarly for select0
and for P1 and P2), we make up a sequence with the accumulated number of 1’s in
each of the τ blocks. The numbers add up to 2n and thus can be represented as gaps
of 0’s between consecutive 1’s in a bitmap S[0, 2n − 1], which can be stored within the
previous space bounds. Computing x = rank1(S, select0(S, i)), in time O(t), lets us know
that we must finish the query in block x, querying its range min-max tree with the
value i′ = select0(S, i) − select1(S, x).

5.3. The Final Result

Recall from Theorem 4.11 that we actually use blocks of size Bc, not wc, for B = O( w
c log w

).
The sum of the space for all of the block is 2n + O(n/Bc), plus shared universal tables
that add up to O(

√
2w) bits. Padding the last block to size exactly Bc adds up another

negligible extra space.
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On the other hand, in this section, we have extended the results to larger trees of
n nodes, adding time O(t) to the operations. By properly adjusting w to B in these
results, the overall extra space added is O( n(c log B+log2 n)

Bc + ntt

logt n + √
2w + n3/4) bits. Using

a computer word of w = log n bits, setting t = c, and expanding B = O( log n
c log log n), we get

that the time for any operation isO(c) and the total space simplifies to 2n+O( n(c log log n)c

logc−2 n
).

Construction time is O(n). We now analyze the working space for constructing the
data structure. We first convert the input BP sequence P into a set of aB-trees, each
of which represents a part of the input of length Bc. The working space is O(Bc) from
Theorem 4.11. Next we compute marked nodes: we scan P from left to right, and if P[i]
is an opening parenthesis, we push i in a stack, and if it is closing, we pop an entry from
the stack. At this point, it is very easy to spot marked nodes. Because P is nested, the
values in the stack are monotone. Therefore, we can store a new value as the difference
from the previous one using unary code. Thus, the values in the stack can be stored
in O(n) bits. Encoding and decoding the stack values takes O(n) time in total. Once
the marked nodes are identified, the compressed representation of Pǎtraşcu [2008] for
bit vector C is built in O(n) space as well, as it also cuts the bitmap into polylog-sized
aB-trees and then computes some directories over just O(n/polylog(n)) values.

The remaining data structures, such as the lrm sequences and tree, the lists of the
marked nodes, and the Cv bitmaps, are all built on O(n/Bc) elements, thus they need
at most O(n) bits of space for construction.

By rewriting c − 2 − δ as c, for any constant δ > 0, we get our main result on static
ordinal trees, Theorem 1.1.

6. A SIMPLE DATA STRUCTURE FOR DYNAMIC TREES

In this section, we give a simple data structure for dynamic ordinal trees. In addition
to the previous query operations, we allow inserting or deleting a pair of matching
parentheses, which supports the node update operations described in Section 2.3.

The main idea in this section is to use one single range min-max tree for the whole
parentheses sequence and then implement it as a dynamic balanced binary tree. We
first deal with some memory allocation technicalities to avoid wasting �(n) bits at the
leaf buckets, then go on to describe the dynamic range min-max tree.

6.1. Memory Management

We store a 0,1 vector P[0, 2n − 1] using a dynamic min-max tree. Each leaf of the
min-max tree stores a segment of P in verbatim form. The length � of each segment is
restricted to L ≤ � ≤ 2L for some parameter L > 0.

If insertions or deletions occur, the length of a segment will change. We use a standard
technique for dynamic maintenance of memory cells [Munro 1986]. We regard the
memory as an array of cells of length 2L each, hence allocation is easily handled in
constant time. We use L + 1 linked lists sL, . . . , s2L where each si uses an exclusive
set of cells to store all segments of length i. Those segments are packed consecutively,
without wasting any extra space in the cells of linked list si (except possibly at the
head cell of each list). Therefore, a cell (of length 2L) stores (parts of) at most three
segments, and a segment spans at most two cells. Tree leaves store pointers to the cell
and offset where its segment is stored. If the length of a segment changes from i to j,
it is moved from si to sj . The space generated by the removal is filled with the head
segment in si, and the removed segment is stored at the head of sj .

If a segment is moved, pointers to the segment from a leaf of the tree must change.
For this sake, we store back pointers from each segment to its leaf. Each cell also
stores a pointer to the next cell of its list. Finally, an array of pointers for the heads
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of sL, . . . , s2L is necessary. Overall, the space for storing a 0,1 vector of length 2n is
2n + O( n log n

L + L2) bits.
The rest of the dynamic tree will use sublinear space, and thus we allocate fixed-size

memory cells for the internal nodes, as they will waste at most a constant fraction of
the allocated space.

With this scheme, scanning any segment takes O(L/ log n) time, by processing it
by chunks of �(log n) bits. This is also the time to compute operations fwd search,
bwd search, rmqi, and so forth, on the segment using universal tables. Moving a seg-
ment to another list is also done in O(L/ log n) time.

6.2. A Dynamic Tree

We give a simple dynamic data structure that represents an ordinal tree with n nodes
using 2n + O(n/ log n) bits and supports all query and update operations of Table I in
O(log n) worst-case time.

We divide the 0,1 vector P[0, 2n − 1] into segments of length from L to 2L, for
L = log2 n. We use a balanced binary tree for representing the range min-max tree. If
a node v of the tree corresponds to a range P[i, j], the node stores i(v) = i and j(v) = j,
as well as e(v) = sum(P, π, i, j), m(v) = rmq(P, π, i, j), M(v) = RMQ(P, π, i, j), and n(v),
the number of times m(v) occurs in P[i, j].

It is clear that fwd search, bwd search, rmqi, RMQi, rank, select, degree, child, and
child rank can be computed in O(log n) time by using the same algorithms developed
for small trees in Section 4. These operations cover all of the functionality of Table I.
Note that the values we store are now local to the subtree (so that they are easy to
update), but global values are easily derived in a top-down traversal.

For example, to compute depth(i) starting at the min-max tree root v with children vl
and vr, we first see if j(vl) ≥ i, in which case we continue at vl; otherwise, we obtain the
result from vr and add e(vl) to it. As another example, to solve fwd search(P, π, i, d), we
first convert d into the global value d′ ← depth(i) + d and then see if j(vl) ≥ i, in which
case we first try on vl. If the answer is not there or j(vl) < i, we try on vr, looking for
global depth d′ − e(vl). This will only traverse O(log n) nodes, as seen in Section 4.

Since each node uses O(log n) bits, and the number of nodes is O(n/L), the total space
is 2n+O(n/ log n) bits. This includes the extra O( n log n

L + L2) term for the leaf data. Note
that we need to maintain several universal tables that handle chunks of 1

2 log n bits.
These require O(

√
n · polylog(n)) extra bits, which is negligible.

If an insertion/deletion occurs, we update a segment and the stored values in the leaf
for the segment. From the leaf, we step back to the root, updating the values as follows:

i(v), j(v) = i(vl), j(vr)
e(v) = e(vl) + e(vr)

m(v) = min(m(vl), e(vl) + m(vr))
M(v) = max(M(vl), e(vl) + M(vr))
n(v) = n(vl), if m(vl) < e(vl) + m(vr),

n(vr), if m(vl) > e(vl) + m(vr),
n(vl) + n(vr), otherwise.

If the length of the segment exceeds 2L, we split it into two and add a new node. If,
instead, the length becomes shorter than L, we find the adjacent segment to the right.
If its length is L, we concatenate them; otherwise, we move the leftmost bit of the right
segment to the left one. In this manner, we can keep the invariant that all segments
have length L to 2L. Then we update all values in the ancestors of the modified leaves,
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as explained. If a balancing operation (i.e., a rotation) occurs, we also update the values
in the involved nodes. All of these updates are carried out in constant time per involved
node, as their values are recomputed using the preceding formulas. Thus, the update
time is also O(log n).

When �log n� changes, we must update the allowed values for L, recompute universal
tables, change the width of the stored values, and so forth. Mäkinen and Navarro [2008]
have shown how to do this for a very similar case (dynamic rank/select on a bitmap).
Their solution of splitting the bitmap into three parts and moving border bits across
parts to deamortize the work applies verbatim to our sequence of parentheses; thus, we
can handle changes in �log n� without altering the space nor the time complexity (except
for O(w) extra bits in the space due to a constant number of system-wide pointers, a
technicality we ignore). We have one range min-max tree for each of the three parts
and adapt all algorithms in the obvious way.11

7. A FASTER DYNAMIC DATA STRUCTURE

Instead of the balanced binary tree, we use a B-tree with branching factor �(
√

log n),
as done by Chan et al. [2007]. Then the depth of the tree is O(log n/ log log n), and we
can expect to reduce the time complexities to this order. The challenge is to support
the operations within nodes, which handle �(

√
log n) values, in constant time. We will

achieve it for some operations, whereas others will stay O(log n) time.
To reduce the time complexities, we must slightly decrease the lengths of the seg-

ments, which range from L to 2L, setting L = log2 n/ log log n. Now each leaf can be
processed in time O(log n/log log n) using universal tables. This reduction affects the
required space for the range min-max tree and the parenthesis vector, which is now
2n + O(n log log n/ log n) bits (the internal nodes use O(log3/2 n) bits, but there are only
O( n

L
√

log n
) of them).

Each internal node v of the range min-max tree has k children, for
√

log n ≤ k ≤
2
√

log n in principle (we will relax the constants later). Let c1, c2, . . . , ck be the children
of v and [�1, r1], . . . , [�k, rk] be their corresponding subranges. We store (i) the children
boundaries �i, (ii) sφ[1, k] and sψ [1, k] storing sφ/ψ [i] = sum(P, φ/ψ, �1, ri), (iii) e[1, k]
storing e[i] = sum(P, π, �1, ri), (iv) m[1, k] storing m[i] = e[i − 1] + rmq(P, π, �i, ri),
M[1, k] storing M[i] = e[i − 1] + RMQ(P, π, �i, ri), and (v) n[1, k] storing in n[i] the
number of times m[i] occurs within the subtree of the i-th child. Note that the values
stored are local to the subtree (as in the simpler balanced binary tree version, Section 6)
but cumulative with respect to previous siblings. Note also that storing sφ , sψ, and e
is redundant, as noted in Section 4.4, but now we need sφ/ψ in explicit form to achieve
constant-time searching into their values, as it will be clear soon.

Apart from simple accesses to the stored values, we need to support the following
operations within any node:

—p(i): the largest j ≥ 2 such that � j−1 ≤ i (or 1 of there is no such j).
—wφ/ψ (i): the largest j ≥ 2 such that sφ/ψ [ j − 1] ≤ i (or 1 if there is no such j).
— f (i, d): the smallest j ≥ i such that m[ j] ≤ d ≤ M[ j].
—b(i, d): the largest j ≤ i such that m[ j] ≤ d ≤ M[ j].
—r(i, j): the smallest x such that m[x] is minimum in m[i, j].
—R(i, j): the smallest x such that M[x] is maximum in M[i, j].

11One can act as if one had a single range min-max tree where the first two levels were used to split the
three parts (these first nodes would be special in the sense that their handling of insertions/deletions would
reflect the actions on moving bits between the three parts).
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—n(i, j): the number of times that the minimum within the subtrees of children i to j
occurs within that range.

—r(i, j, t): the x such that the t-th minimum within the subtrees of children i to j occurs
within the x-th child.

—update: updates the data structure upon ±1 changes in some child.

Simple operations involving rank and select on P are carried out easily with
O(log n/log log n) applications of p(i) and wφ/ψ (i). For example, depth(i) is computed,
starting from the root node, by finding the child j = p(i) to descend, then recursively
computing depth(i − � j) on the j-th child, and finally adding e[ j − 1] to the result.
Handling φ for P1 and P2 is immediate; we omit it.

Operations fwd search / bwd search can be carried out via O(log n/ log log n) appli-
cations of f (i, d)/b(i, d). Recalling Lemma 4.1, the interval of interest is partitioned
into O(

√
log n · log n/ log log n) nodes of the B-tree, but these can be grouped into

O(log n/ log log n) sequences of consecutive siblings. Within each such sequence, a sin-
gle f (i, d)/b(i, d) operation is sufficient. For example, for fwd search(i, d), let us assume
that d is a global excess to find (i.e., start with d ← d + depth(i) − 1). We start at the
root v of the range min-max tree and compute j = p(i), so the search starts at the
j-th child, with the recursive query fwd search(i − � j, d− e[ j − 1]). If the answer is not
found in that child, query j ′ = f ( j + 1, d) tells that it is within child j ′. We then enter
recursively into the j ′-th child of the node with fwd search(i − � j ′ , d − e[ j ′ − 1]), where
the answer is sure to be found.

Operations rmqi and RMQi are solved similarly, using O(log n/ log log n) applications
of r(i, j)/R(i, j). For example, to compute rmq(i, i′) (the extension to rmqi is obvious), we
start with j = p(i) and j ′ = p(i′). If j = j ′, we answer with e[ j − 1] + rmq(i − � j, i′ − � j)
on the j-th child of the current node. Otherwise, we recursively compute e[ j − 1] +
rmq(i − � j, � j+1 − � j − 1), e[ j ′ − 1] + rmq(0, i′ − � j ′ ), and, if j + 1 < j ′, m[r( j + 1, j ′ − 1)],
and return the minimum of the two or three values.

For degree, we partition the interval as for rmqi and then use m[r(i, j)] in each node to
identify those holding the global minimum. For each node holding the minimum, n(i, j)
gives the number of occurrences of the minimum in the range. Thus, we apply r(i, j)
and n(i, j)O(log n/ log log n) times. Operation child_rank is very similar, by redefining
the interval of interest, as before. Finally, solving child is also similar, except that when
we exceed the desired rank in the sum (i.e., in some node, it holds n(i, j) ≥ t, where t is
the local rank of the child we are looking for), we find the desired min-max tree branch
with r(i, j, t) and continue on the child with t ← t − n(i, r(i, j, t) − 1) using one r(i, j, t)
operation per level.

7.1. Dynamic Partial Sums

Let us now face the problem of implementing the basic operations. Our first tool is a
result by Raman et al. [2001], which solves several subproblems of the same type.

LEMMA 7.1 (FROM RAMAN ET AL. [2001]). Under the RAM model with word size �(log n),
it is possible to maintain a sequence of logε n nonnegative integers x1, x2, . . . of log n bits
each, for any constant 0 ≤ ε < 1, such that the data structure requires O(log1+ε n) bits
and carries out the following operations in constant time: sum(i) = ∑i

j=1 xj, search(s) =
max{i, sum(i) ≤ s}, and update(i, δ), which sets xi ← xi + δ, for − log n ≤ δ ≤ log n. The
data structure also uses a precomputed universal table of size O(nε′

) bits for any fixed
ε′ > 0. The structure can be built in O(logε n) time except the table.

Then we can store �, sφ , and sψ in differential form and obtain their values via sum.
Operations p and wφ/ψ are then solved via search on � and sφ/ψ , respectively This also
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eliminates the problem of a change in one subtree propagating to the accumulators
of its right siblings, and thus we can handle ±1 changes in the subtrees in constant
time. The same can be done with e, provided we fix the fact that it can contain negative
values by storing e[i] + 2�log n� (this works for constant-time sum, yet not for search).
In addition, we can store M[i] − e[i − 1] + 1 ≥ 0 and e[i − 1] − m[i] + 1 ≥ 0, which
depend only on the subtree, and reconstruct any M[i] or m[i] in constant time using
sum on e, which eliminates the problem of propagating changes in e[i] to m[i +1, k] and
M[i + 1, k]. Local changes to m[i] or M[i] can be applied directly.

7.2. Cartesian Trees

Our second tool is the Cartesian tree [Vuillemin 1980; Sadakane 2007b]. A Cartesian
tree for an array B[1, k] is a binary tree in which the root node stores the minimum
value B[μ], and the left and the right subtrees are Cartesian trees for B[1, μ − 1] and
B[μ + 1, k], respectively. If there exist more than one minimum value position, then μ
is the leftmost. Thus, the tree shape has enough information to determine the position
of the leftmost minimum in any range [i, j]. As it is a binary tree of k nodes, a Cartesian
tree can be represented within 2k bits using parentheses and the bijection with general
trees. It can be built in O(k) time.

We build Cartesian trees for m[1, k] and for M[1, k] (this one taking maxima). Since
2k = O(

√
log n), universal tables let us answer in constant time any query of the

form r(i, j) and R(i, j), as these depend only on the tree shape, as explained. All of the
universal tables that we will use on Cartesian trees take O(2O(

√
log n) ·polylog(n)) = o(nα)

bits for any constant 0 < α < 1.
We also use Cartesian trees to solve operations f (i, d) and b(i, d). However, these do

not depend only on the tree shape, but on the actual values m[i, k]. We focus on f (i, d)
since b(i, d) is symmetric. Following Lemma 4.4, we first check whether m[i] ≤ d ≤ M[i],
in which case the answer is i. Otherwise, the answer is either the next j such that
m[ j] ≤ d (if d < m[i]) or M[ j] ≥ d (if d > M[i]). Let us focus on the case d < m[i], as the
other is symmetric. By Lemma 5.2, the answer belongs to lrm(i), where the sequence
is m[1, k].

The next lemma shows that any lrm sequence can be deduced from the topology of
the Cartesian tree.12

LEMMA 7.2. Let C be the Cartesian tree for m[1, k]. Then lrm(i) is the sequence of nodes
of C in the upward path from i to the root, which are reached from the left child.

PROOF. The left and right children of node i contain values not smaller than i. All
nodes in the upward path are equal to or smaller than i. Those reached from the
right must be at the left of position i. Their left children are also to the left of i.
Ancestors j reached from the left are strictly smaller than i and appear to the right of
i. Furthermore, they are smaller than any other element in their right subtree, which
includes all positions from i to j, and thus they belong to lrm(i). Finally, the right
descendants of those ancestors j are not in lrm(i) because they appear after j and
equal to or larger than m[ j].

The Cartesian tree can have precomputed lrm(i) for each i, as this depends only on the
tree shape, and thus are stored in universal tables. This is the sequence of positions
in m[1, k] that must be considered. We can then binary search this sequence, using
the technique described to retrieve any desired m[ j], to compute f (i, d) in O(log k) =
O(log log n) time.

12This is not surprising if we consider that the lrm and the Cartesian trees are related by the usual isomor-
phism to convert general into binary trees [Davoodi et al. 2012].
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7.3. Complete Trees

We arrange a complete binary tree on top of the n[1, k] values so that each node of the
tree records (i) one leaf where the subtree minimum is attained and (ii) the number
of times the minimum arises in its subtree. This tree is arranged in heap order and
requires O(log3/2 n) bits of space.

A query n(i, j) is answered essentially as in Section 6: we find the O(log k) nodes that
cover [i, j], find the minimum m[·] value among the leaves stored in (i) for each covering
node (recall we have constant-time access to m), and add up the number of times (field
(ii)) that the minimum of m[i, j] occurs. This takes overall O(log k) time.

A query r(i, j, t) is answered similarly, stopping at the node where the left-to-right
sum of the fields (ii) reaches t, and then going down to the leaf x where t is reached.
Then the t-th occurrence of the minimum in subtrees i to j occurs within the x-th
subtree.

When an m[i] or n[i] value changes, we must update the upward path toward the
root of the complete tree using the update formula for n(v) given in Section 6. This is
also sufficient when e[i] changes: although this implicitly changes all of the m[i + 1, k]
values, the local subtree data outside the ancestors of i are unaffected. Finally, the root
n(v) value will become an n[i′] value at the parent of the current range min-max tree
node (just as the minimum of m[1, k], maximum of M[1, k], excess e[k], and so forth,
which can be computed in constant time as we have seen).

Since these operations take time O(log k) = O(log log n) time, the time complexity
of degree, child, and child_rank is O(log n). Update operations (insert and delete) also
require O(log n) time, as we may need to update n[·] for one node per tree level. However,
as we see later, it is possible to achieve time complexity O(log n/ log log n) for insert and
delete for all other operations. Therefore, we might choose not to support operations
n(i, j) and r(i, j, t) to retain the lower update complexity. In this case, operations degree,
child, and child_rank can only be implemented naively using first_child, next_sibling,
and parent.

7.4. Updating Cartesian Trees

We have already solved some simple aspects of updating, but not yet how to maintain
Cartesian trees. When a value m[i] or M[i] changes (by ±1), the Cartesian trees might
change their shape. Similarly, a ±1 change in e[i] induces a change in the effective
value of m[i +1, k] and M[i +1, k]. We store mand M in a way independent of previous e
values, but the Cartesian trees are built upon the actual values of mand M. Let us focus
on m, as M is similar. If m[i] decreases by 1, we need to determine if i should go higher
in the Cartesian tree. We compare i with its Cartesian tree parent j = Cparent(i) and,
if (a) i < j and m[i] − m[ j] = 0, or if (b) i > j and m[i] − m[ j] = −1, we must carry
out a rotation with i and j. Figure 4 shows the two cases. As it can be noticed, case
(b) may propagate the rotations toward the new parent of i, as m[i] is smaller than the
previous root m[ j].

In order to carry out those propagations in constant time, we store an array d[1, k]
so that d[i] = m[i] − m[Cparent(i)] if this is ≤ k + 1, and k + 2 otherwise. Since d[1, k]
requires O(k log k) = O(

√
log n log log n) = o(log n) bits of space, it can be manipulated

in constant time using universal tables. With d[1, k] and the current Cartesian tree
as input, a universal table can precompute the outcome of the changes in d[·] and
the corresponding sequence of rotations triggered by the decrease of m[i] for any i, so
we can obtain in constant time the new Cartesian tree and the new table d[1, k]. The
limitation of values up to k+ 2 is necessary for the table fitting in a machine word, and
its consequences will be discussed soon.
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Fig. 4. Rotations between i and its parent j when m[i] decreases by 1. The edges between any x and its
parent are labeled with d[x] = m[x]−m[Cparent(x)], if these change during the rotation. The d[·] values have
already been updated. On the left, when i < j; on the right, when i > j.

Fig. 5. Rotations between i and its children when m[i] increases by 1. The edges between any x and its
parent are labeled with d[x] = m[x]−m[Cparent(x)], if these change during the rotation. The d[·] values have
already been updated. On the left (right), when the edge to the left (right) child becomes invalid after the
change in d[·].

Similarly, if m[i] increases by 1, we must compare i with its two children: (a) the
difference with its left child must not fall below 1 and (b) the difference with its right
child must not fall below 0. Otherwise, we must carry out rotations as well, depicted
in Figure 5. Although it might seem that case (b) can propagate rotations upward
(due to the d − 1 at the root), this is not the case because d had just been increased
as m[i] grew by 1. In case both (a) and (b) arise simultaneously, we must apply the
rotation corresponding to (b) and then that of (a). No further propagation occurs. Again,
universal tables can precompute all of these updates.
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For changes in e[i], the universal tables have precomputed the effect of carrying out
all of the changes in m[i + 1, k], updating all of the necessary d[1, k] values and the
Cartesian tree. This is equivalent to precomputing the effect of a sequence of k − i
successive changes in m[·].

Our array d[1, k] distinguishes values between 0 and k + 2. As the changes to the
structure of the Cartesian tree only depend on whether d[i] is 0, 1, or larger than 1,
and all updates to d[i] are by ±1 per operation, we have sufficient information in d[·]
to correctly predict any change in the Cartesian tree shape for the next k updates.
We refresh table d[·] fast enough to ensure that no value of d[·] is used for more
than k updates without recomputing it, as then its imprecision could cause a flaw.
We simply recompute cyclically the cells of d[·], one per update. That is, at the i-th
update arriving at the node, we recompute the cell i′ = 1 + (i mod k), setting again
d[i′] = min(k + 2, m[i′] − m[Cparent(i′)]); note that Cparent(i′) is computed from the
Cartesian tree shape in constant time via table lookup. Note the values of m[·] are
always up to date because we do not keep them in explicit form but with e[i − 1]
subtracted (and, in turn, e is not maintained explicitly but via partial sums).

7.5. Handling Splits and Merges

In case of splits or merges of segments or internal range min-max tree nodes, we must
insert or delete children in a node. To maintain the range min-max tree dynamically,
we use a data structure by Fleischer [1996]. This is an (a, 2b)-tree (for a ≤ 2b) storing
n numeric keys in the leaves, and each leaf is a bucket storing at most 2 loga n keys.
It supports constant-time insertion and deletion of a key once its location in a leaf is
known.

Each leaf owns a cursor, which is a pointer to a tree node. This cursor traverses
the tree upward, looking for nodes that should be split, moving one step per insertion
received at the leaf. When the cursor reaches the root, the leaf has received at most
loga n insertions and thus it is split into two new leaves. These leaves are born with
their cursor at their common parent. In addition, some edges must be marked. Marks
are considered when splitting nodes (see Fleischer [1996] for details). The insertion
steps are as follows:

(1) Insert the new key into the leaf B. Let v be the current node where the cursor of B
points.

(2) If v has more than b children, split it into v1 and v2, and unmark all edges leaving
from those nodes. If the parent of v has more than b children, mark the edges to v1
and v2.

(3) If v is not the root, set the cursor to the parent of v. Otherwise, split B into two
halves, and let the cursor of both new buckets point to their common parent.

To apply this to our data structure, let a = √
log n, b = 2

√
log n. Then the arity is in

the range 1 ≤ k ≤ 4
√

log n, the height of the tree is O(log n/ log log n), and each leaf
should store �(log n/ log log n) keys. Instead, our structure stores �(log2 n/ log log n)
bits in each leaf. If Fleischer’s structure handles O(log n)-bit numbers, it turns out
that the leaf size is the same in both cases. The difference is that our insertions are
bitwise, whereas Fleischer’s insertions are number-wise (i.e., in packets of O(log n)
bits). Therefore, we can use the same structure, yet the cursor will return to the leaf
�(log n) times more frequently than necessary. Thus, we only split a leaf when the
cursor returns to it and it has actually exceeded size 2L. This means that leaves can
actually reach size L′ = 2L + O(log n/ log log n) = 2L(1 + O(1/ log n)), which is not a
problem. Marking/unmarking of children edges is easily handled in constant time by
storing a bit vector of length 2b in each node.
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Fleischer’s update time is constant. Ours is O(
√

log n), because if we split a node into
two, we fully reconstruct all of the values in those two nodes and their parent. This can
be done in O(k) = O(

√
log n) time, as the structure of Lemma 7.1, the Cartesian trees,

and the complete trees can be built in linear time. Nevertheless, this time is dominated
by the O(log n/ log log n) cost of inserting a bit at the leaf.

Deletion of nodes may make the parent node arity fall below a. This is handled
as in Fleischer’s structure by deamortized global rebuilding. This increases only the
sublinear size of the range min-max tree; the leaves are not affected.

Deletions at leaves, however, are handled as before, ensuring that they have always
between L and L′ bits. This may cause some abrupt growth in their length. The most
extreme case arises when merging an underflowing leaf of L − 1 bits with its sibling
of length L. In this case, the result is of size 2L − 1, close to overflowing, it cannot be
split, and the cursor may be far from the root. This is not a problem, however, as we
have still sufficient time before the merged leaf reaches size L′.

7.6. The Final Result

We have obtained the following result.

LEMMA 7.3. For a 0,1 vector of length 2n representing a tree in BP form, there exists a
data structure using 2n+O(n log log n/ log n) bits supporting fwd search and bwd search
in O(log n) time, and updates and all other queries except degree, child, and child_rank,
in O(log n/ log log n) time. Alternatively, degree, child, child_rank, and updates can be
handled in O(log n) time.

The complexity of fwd_search and bwd_search is not completely satisfactory, as we
have reduced many operators to those. To achieve better complexities, we note that most
operators that reduce to fwd_search and bwd_search actually reduce to the less general
operations findclose, findopen, and enclose on parentheses. Those three operations can
be supported in time O(log n/ log log n) by adapting the technique of Chan et al. [2007].
They use a tree of similar layout as ours: leaves storing �(log2 n/ log log n) parentheses
and internal nodes of arity k = �(

√
log n), where Lemma 7.1 is used to store seven

arrays of numbers recording information on matched and unmatched parentheses on
the children. Those are updated in constant time upon parenthesis insertions and
deletions, and they are sufficient to support the three operations. They report O(n)
bits of space because they do not use a mechanism like the one that we describe in
Section 6.1 for the leaves; otherwise, their space would be 2n + O(n log log n/ log n) as
well. Note, on the other hand, that they do not achieve the times that we offer for the
important lca and related operations.

This completes the main result of this section, Theorem 1.2.

7.7. Updating Whole Subtrees

We consider now attaching and detaching whole subtrees. Now we assume that log n is
fixed to some sufficiently large value—for example, log n = w—the width of the system-
wide pointers. Hence, no matter the size of the trees, they use segments of the same
length, and the times are a function of w and not of the actual tree size.

Now we cannot use Fleischer [1996] data structure, because a detached subtree
could have dangling cursors pointing to the larger tree of which it belonged. As a
result, the time complexity for insert or delete changes to O(

√
log n · log n/ log log n) =

O(log3/2 n/ log log n). To improve it, we change the degree of the nodes in the range
min-max tree from �(

√
log n) to �(logε n) for any fixed constant ε > 0. This makes the

ACM Transactions on Algorithms, Vol. 10, No. 3, Article 16, Publication date: April 2014.



16:30 G. Navarro and K. Sadakane

complexity of insert and delete O( 1
ε

log1+ε n/ log log n) = O(log1+ε n) and multiplies all
query time complexities by the constant O(1/ε).

First we consider attaching a tree T 1 to another tree T 2—that is, the root of T 1

becomes a child of a node of T 2, which can be a leaf or already have other chil-
dren. Let P1[0, 2n1 − 1] and P2[0, 2n2 − 1] be the BP sequences of T 1 and T 2, re-
spectively. Then this attaching operation corresponds to creating a new BP sequence
P ′ = P2[0, p]P1[0, 2n1 − 1]P2[p+ 1, 2n2 − 1] for some position p (so p is the position of
the new parent of T 1 if it will become a first child, or otherwise it is the position of the
closing parenthesis of the new previous sibling of T 1).

If p and p + 1 belong to the same segment, we cut the segment into two, say Pl =
P2[l, p] and Pr = P2[p + 1, r]. If the length of Pl (Pr) is less than L, we concatenate it
to the left (right) segment of it. If its length exceeds 2L, we split it into two. We also
update the upward paths from Pl and Pr to the root of the range min-max tree for T 2

to reflect the changes done at the leaves. Those changes are not by ±1, so accumulators
must be rebuilt from scratch in time O( 1

ε
logε n).

Now we merge the range min-max trees for T 1 and T 2 as follows. Let h1 be the height
of the range min-max tree of T 1, and let h2 be the height of the lca, say v, between Pl
and Pr in the range min-max tree of T 2. If h2 > h1 then we can simply concatenate the
root of T 1 at the right of the ancestor of Pl of height h1, then split the node if it has
overflowed, and finish.

If h2 ≤ h1, we divide v into vl and vr so that the rightmost child of vl is an ancestor
of Pl and the leftmost child of vr is an ancestor of Pr. We do not yet care about vl or
vr being too small. We repeat the process on the parent of v until reaching the height
h2 = h1 + 1. Let us call u the ancestor where this height is reached (we leave for later
the case where we split the root of T 2 without reaching the height h1 + 1).

Now we add T 1 as a child of u, between the child of u that is an ancestor of Pl and the
child of u that is an ancestor of Pr. All leaves have the same depth, but the ancestors
of Pl and of Pr at heights h2 to h1 might be underfull as we have cut them arbitrarily.
We glue the ancestor of height h of Pl with the leftmost node of height h of T 1, and that
of Pr with the rightmost node of T 1, for all h2 ≤ h ≤ h1. Now there are no underfull
nodes, but they may have overflowed. We verify the node sizes in both paths, from
height h = h2 to h1 + 1, splitting them as necessary. At height h2, the node can be split
into two, adding another child to its parent, which can thus be split into three, adding
in turn two children to its parent; however, from there on, nodes can only be split into
three and add two more children to their parent. Hence, the overall process of fixing
arities takes time O( 1

ε
log1+ε n/ log log n).

If node u does not exist, then T 1 is not shorter than T 2. In this case, we have divided
T 2 into left and right parts, of heights hl and hr, respectively. We attach the left part
of T 2 to the leftmost node of height hl in T 1 and the right part of T 2 to the rightmost
node of height hr in T 1. Then we fix arities in both paths, similarly as before.

Detaching is analogous. After splitting the leftmost and rightmost leaves of the area
to be detached, let Pl and Pr be the leaves of T preceding and following the leaves that
will be detached. We split the ancestors of Pl and Pr until reaching their lca; let it be v.
Then we can form a new tree with the detached part and remove it from the original
tree T . Again, the paths from Pl and Pr to v may contain underfull nodes. But now Pl
and Pr are consecutive leaves, so we can merge their ancestor paths up to v and then
split as necessary.

Similarly, the leftmost and rightmost path of the detached tree may contain underfull
nodes. We merge each node of the leftmost (rightmost) path with its right (left) sibling
and then split if necessary. The root may contain as few as two children. Overall, the
process takes O(log1+ε n) time.
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7.8. Using DFUDS Representation

The structure described in this section can be used to maintain any BP sequence,
supporting operations rank, select, findopen, findclose, enclose, insert, and delete in
time O(log n/ log log n) and using 2n + O(n log log n/ log n) bits. If we use it to encode
the DFUDS representation [Benoit et al. 2005] of a tree, a number of the operations of
Table I can be translated into those basic operations [Jansson et al. 2012]. In particular,
operations degree, child, and child rank can be supported within this time complexity.
On the other hand, operations related to depth are not directly supported.

Insertion of a new leaf as the q-th child of a node i is carried out by inserting a new
) at position child(i, q) and then a ( at position i. Insertion of a new internal node

encompassing the q-th to q′-th children of i requires inserting q′ − q + 1 symbols (

followed by a ) at position child(i, q) and then removing q′ − q symbols ( at position
i. This can be done in time O(log n/ log log n) if q′ − q = O(log2 n/ log log n). Deletion is
analogous. We then have the following result.

LEMMA 7.4. On a �(log n)-bit word RAM, all operations on a dynamic ordinal tree
with n nodes given in Table I, except depth, level anc, level next, level prev, level lmost,
level rmost, deepest node, post rank, post select, and height, can be carried out within
time O(log n/ log log n) using a data structure that requires 2n+O(n log log n/ log n) bits.
Insertions and deletions are limited to nodes of arity O(log2 n/ log log n).

8. IMPROVING DYNAMIC COMPRESSED SEQUENCES

The techniques that we have developed in the article are of independent interest. We
illustrate this point by improving the best current results on sequences of numbers with
sum and search operations, dynamic compressed bitmaps, and their many by-products.

8.1. Codes, Numbers, and Partial Sums

We now prove Lemma 1.4 on sequences of codes and partial sums, improving previous
results by Mäkinen and Navarro [2008] and matching lower bounds [Pǎtraşcu and
Demaine 2006]. The idea is to concatenate all codes xi, and store information in the
internal nodes of the tree on cumulative code lengths, to locate any desired xi, and
cumulative f (·) values, to support sum and search.

Section 7 shows how to maintain a dynamic bitmap P supporting various operations
in time O(log n/ log log n), including insertion and deletion of bits (parentheses in P).
This bitmap P will now be the concatenation of the (possibly variable-length) codes xi.
We will ensure that each leaf contains a sequence of whole codes (no code is split at a
leaf boundary). As these are of O(log n) bits, we only need to slightly adjust the lower
limit L to enforce this: after splitting a leaf of length 2L, one of the two new leaves
might be of size L − O(log n).

We process a leaf by chunks of b = 1
2 log n bits: a universal table (easily computable

in O(
√

npolylog(n)) time and space) can tell us how many whole codes are there in the
next b bits, how much their f (·) values add up to, and where the last complete code ends
(assuming that we start reading at a code boundary). Note that the first code could
be longer than b, in which case the table lets us advance zero positions. In this case,
we decode the next code directly. Thus, in constant time (at most two table accesses
plus one direct decoding), we advance in the traversal by at least b bits. If we surpass
the desired position with the table, we reprocess the last O(log n) codes using a second
table that advances by chunks of O(

√
log n) bits, and finally process the last O(

√
log n)

codes directly. Thus, in time O(log n/ log log n), we can access a given code in a leaf (and
subsequent ones in constant time each), sum the f (·) values up to some position, and
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find the position where a given sum s is exceeded. We can also easily modify a code or
insert/delete codes by shifting all other codes of the leaf in time O(log n/ log log n).

In internal nodes of the range min-max tree, we use the structure of Lemma 7.1 to
maintain the number of codes stored below the subtree of each child of the node. This
allows determining in constant time the child to follow when looking for any code xi,
thus access to any codes xi . . . xj is supported in time O(log n/ log log n + j − i).

When a code is inserted/deleted at a leaf, we must increment/decrement the number
of codes in the subtree of the ancestors up to the root; this is supported in constant time
by Lemma 7.1. Splits and merges can be caused by indels and by updates. They force the
recomputation of their whole parent node, and Fleischer’s technique is used to ensure a
constant number of splits/merges per update. Note that we are inserting not individual
bits but whole codes of O(log n) bits. This can easily be done, but now O(log n/ log log n)
insertions/updates can double the size of a leaf, and thus we must consider splitting
the leaf every time the cursor returns to it (as in the original Fleischer’s proposal, not
every log n times as when inserting parentheses), and we must advance the cursor
upon insertions and updates.

In addition, we must allow leaves of sizes between L and L′ = 3L (but still split
them as soon as they exceed 2L bits). In this way, after a merge produces a leaf of size
2L − 1, we still have time to carry out L = O(log n/ log log n) further insertions before
the cursor reaches the root and splits the leaf. (Recall that if the merge produces a
leaf larger than 2L, we can immediately split it, so 2L is the worst case that we must
handle.)

For supporting sum and search, we also maintain at each node the sum of the
f (·) values of the codes stored in the subtree of each child. Then we can determine
in constant time the child to follow for search and the sum of previous subtrees for
sum. However, insertions, deletions, and updates must alter the upward sums only by
O(log n) units so that the change can be supported by Lemma 7.1 within the internal
nodes in constant time.

8.2. Dynamic Bitmaps

Apart from its general interest, handling a dynamic bitmap in compressed form is
useful for maintaining satellite data for a sample of the tree nodes. A dynamic bitmap
B could mark which nodes are sampled, so if the sampling is sparse enough, we would
like B to be compressed. A rank on this bitmap would give the position in a dynamic
array where the satellite information for the sampled nodes is stored. This bitmap
would be accessed by preorder (pre_rank) on the dynamic tree. That is, node v is
sampled iff B[pre rank(v)] = 1, and if so, its data is at position rank1(B, pre rank(v)) in
the dynamic array of satellite data. When a tree node is inserted or deleted, we need
to insert/delete its corresponding bit in B.

In the following discussion, we prove the next lemma, which improves and indeed
simplifies previous results [Chan et al. 2007; Mäkinen and Navarro 2008], then we
explore several by-products.13

LEMMA 8.1. We can store a bitmap B[0, n − 1] in nH0(B) + O(n log log n/ log n)
bits of space, while supporting the operations rank, select, insert, and delete, all in
time O(log n/ log log n). We can also support attachment and detachment of contiguous
bitmaps within time O(log1+ε n) for any constant ε > 0, yet now log n is a maximum
fixed value across all operations.

13Very recently, He and Munro [2010] achieved a similar result (excluding attachment and detach-
ment of sequences) independently and with a different technique. Their space redundancy, however, is
O(n log log n/

√
log n)—that is, �(

√
log n) times larger than ours.
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To achieve zero-order entropy space, we use the (c, o) encoding of Raman et al. [2007].
The bits are grouped into small chunks of b = log n

2 bits, and each chunk is represented
by two components: the class ci, which is the number of bits set, and the offsetoi,
which is an identifier of that chunk within those of the same class. Whereas the |ci|
lengths add up to O(n log log n/ log n) extra bits, the |oi| = �log

(b
ci

)� components add up
to nH0(B) + O(n/ log n) bits [Pagh 2001].

We plan to store whole chunks in leaves of the range min-max tree. A problem is
that the insertion or even deletion of a single bit in the representation by Raman et al.
[2007] can up to double the size of the compressed representation of the segment,
because it can change all of the alignments. This occurs, for example, when moving
from 0b1b0b1b . . . to 10b−101b−110b−101b−1 . . . , where we switch from all ci = 0 or b,
and |oi| = 0, to all ci = 1 or b − 1, and |oi| = �log b�. This problem can be dealt
with (laboriously) on binary trees [Mäkinen and Navarro 2008; González and Navarro
2008], but not on our k-ary tree, because Fleischer’s scheme does not allow leaves being
partitioned often enough.

We propose a different solution that ensures an insertion cannot make the leaf ’s
physical size grow by more than O(log n) bits. Instead of using the same b value for all
of the chunks, we allow any 1 ≤ bi ≤ b. Thus, each chunk is represented by a triple
(bi, ci, oi), where oi is the offset of this chunk among those of length bi having ci bits set.
To ensure O(n log log n/ log n) space overhead over the entropy, we state the invariant
that any two consecutive chunks i, i + 1 must satisfy bi + bi+1 > b. Thus, there are
O(n/b) chunks, and the overhead of the bi and ci components, representing each with
�log(b + 1)� bits, is O(n log b/b). It is also easy to see that the inequality [Pagh 2001]∑ |oi| = ∑�log

(bi
ci

)� = log �
(bi

ci

)+O(n/ log n) ≤ log
(n

m

)+O(n/ log n) = nH0(B)+O(n/ log n)
holds, where m is the number of 1’s in the bitmap.

To maintain the invariant, the insertion of a bit is processed as follows. We first
identify the chunk (bi, ci, oi) where the bit must be inserted and compute its new de-
scription (b′

i, c′
i, o′

i). If b′
i > b, we split the chunk into two, (bl, cl, ol) and (br, cr, or),

for bl, br = b′
i/2 ± 1. Now we check left and right neighbors (bi−1, ci−1, oi−1) and

(bi+1, ci+1, oi+1) to ensure the invariant on consecutive chunks holds. If bi−1 + bl ≤ b,
we merge these two chunks, and if br + bi+1 ≤ b, we merge these two as well. Merging
is done in constant time by obtaining the plain bitmaps, concatenating them, and re-
encoding them, using universal tables (which we must have for all 1 ≤ bi ≤ b). Deletion
of a bit is analogous; we remove the bit and then consider the conditions bi−1 + b′

i ≤ b
and b′

i + bi+1 ≤ b. It is easy to see that no insertion/deletion can increase the encoding
by more than O(log n) bits.

Now let us consider codes xi = (bi, ci, oi). These are clearly constant-time self-
delimiting and |xi| = O(log n), so we can directly use Lemma 1.4 to store them in
a range min-max tree within n′ + O(n′ log log n′/ log n′) bits, where n′ = nH0(B) +
O(n log log n/ log n) is the size of our compressed representation. Since n′ ≤ n +
O(n log log n/ log n), we have O(n′ log log n′/ log n′) = O(n log log n/ log n), and the overall
space is as promised in the lemma. We must only take care of checking the invariant
on consecutive chunks when merging leaves, which takes constant time.

Now we use the sum/search capabilities of Lemma 1.4. Let fb(bi, ci, oi) = bi and
fc(bi, ci, oi) = ci. As both are always O(log n), we can have sum/search support on them.
With search on fb, we can reach the code containing the j-th bit of the original sequence,
which is key for accessing an arbitrary bit. For supporting rank, we need to descend
using search on fb and accumulate the sum on the fc values of the left siblings as
we descend. For supporting select, we descend using search on fc and accumulate the
sum on the fb values. Finally, for insertions and deletions of bits, we first access the
proper position and then implement the operation via a constant number of updates,
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insertions, and deletions of codes (for updating, splitting, and merging our triplets).
Thus, we implement all of the operations within time O(log n/ log log n).

We can also support attachment and detachment of contiguous bitmaps by apply-
ing essentially the same techniques developed in Section 7.7. We can have a bitmap
B′[0, n′ − 1] and insert it between B[i] and B[i + 1], or we can detach any B[i, j] from
B and convert it into a separate bitmap that can be handled independently. The com-
plications that arise when cutting the compressed segments at arbitrary positions are
easily handled by splitting codes. Zero-order compression is retained, as it is due to the
sum of the local entropies of the chunks, which are preserved (small resulting segments
after the splits are merged as usual).

8.3. Sequences and Text Indices

We now aim at maintaining a sequence S[0, n − 1] of symbols over an alphabet [1, σ ]
so that we can insert and delete symbols, and also compute symbol rankc(S, i) and
selectc(S, i), for 1 ≤ c ≤ σ . This has in particular applications to labeled trees: we can
store the sequence S of the labels of a tree in preorder so that S[pre rank(i)] is the
label of node i. Insertions and deletions of nodes must be accompanied with insertions
and deletions of their labels at the corresponding preorder positions, and this can be
extended to attaching and detaching subtrees. Then we not only have easy access to the
label of each node, but we can also use rank and select on S to find the r-th descendant
node labeled c, or compute the number of descendants labeled c. If the BP represent
the tree in DFUDS format [Benoit et al. 2005], we can instead find the first child of a
node labeled c using select.

We divide the sequence into chunks of maximum size b = 1
2 logσ n symbols and

store them using an extension of the (ci, oi) encoding for sequences [Ferragina et al.
2007]. Here, ci = (c1

i , . . . , cσ
i ), where ca

i is the number of occurrences of character a
in the chunk. For this code to be of length O(log n), we need σ = O(log n/ log log n);
more stringent conditions will arise later. To this code, we add the bi component as in
Section 8.2. This takes nH0(S) + O( nσ log log n

log n ) bits of space. In the range min-max tree
nodes, which we again assume to hold �(logε n) children for some constant 0 < ε < 1,
instead of a single fc function as in Section 8.2, we must store one fa function for
each a ∈ [1, σ ], requiring extra space O( nσ log log n

log n ). Symbol rank and select are easily
carried out by considering the proper fa function. Insertion and deletion of symbol a
is carried out in the compressed sequence as before, and only fb and fa sums must be
incremented/decremented along the path to the root.

In case a leaf node splits or merges, we must rebuild the partial sums for all of the
σ functions fa (and the single function fb) of a node, which requires O(σ logε n) time.
In Section 7.5, we have shown how to limit the number of splits/merges to one per
operation, thus we can handle all the operations within O(log n/ log log n) time as long
as σ = O(log1−ε n/ log log n). This, again, greatly simplifies the solution by González
and Navarro [2008], who used a collection of partial sums with indels.

Up to here, the result is useful for small alphabets only. González and Navarro [2008]
handle larger alphabets by using a multiary wavelet tree (Section 2.1). Recall that this
is a complete r-ary tree of height h = �logr σ� that stores a string over alphabet [1, r] at
each node. It solves all operations (including insertions and deletions) by h applications
of the analogous operation on the sequences over alphabet [1, r].

Now we set r = log1−ε n/ log log n and use the small-alphabet solution to handle
the sequences stored at the wavelet tree nodes. The height of the wavelet tree is
h = O(1 + log σ

(1−ε) log log n). The zero-order entropies of the small-alphabet sequences add
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up to that of the original sequence, and the redundancies add up to O( n log σ

(1−ε) logε n log log n).

The operations require O( log n
log log n(1 + log σ

(1−ε) log log n)) time. By slightly altering ε, we obtain
Theorem 1.5, where term O(σ logε n) owes to representing the wavelet tree itself, which
has O(σ/r) nodes.

The arity of the nodes fixed to �(logε n) allows us attach and detach substrings in
time O(r log1+ε n) on a sequence with alphabet size r. This has to be carried out on each
of the O(σ/r) wavelet tree nodes, reaching overall complexity O(σ log1+ε n).

The theorem has immediate application to the handling of compressed dynamic
text collections, construction of compressed static text collections within compressed
space, and construction of the BWT within compressed space. We state them here for
completeness; for their derivation, refer to the original articles [Mäkinen and Navarro
2008; González and Navarro 2008].

The first result refers to maintaining a collection of texts within high-entropy space
so that one can perform searches and also insert and delete texts. Here, Hh refers to
the h-th order empirical entropy of a sequence (e.g., see Manzini [2001]). We use a
sampling step of logσ n log log n to achieve it.

COROLLARY 8.2. There exists a data structure for handling a collection C of texts
over an alphabet [1, σ ] within size nHh(C) + o(n log σ ) + O(σ h+1 log n+ mlog n+ w) bits,
simultaneously for all h. Here, n is the length of the concatenation of m texts, C =
0 T10 T2 · · · 0 Tm, and we assume that σ = o(n) is the alphabet size and w = �(log n)
is the machine word size under the RAM model. The structure supports counting of the
occurrences of a pattern P in O(|P| log n

log log n(1 + log σ

log log n)) time, and inserting and deleting

a text T in O(log n + |T | log n
log log n(1 + log σ

log log n)) time. After counting, any occurrence can

be located in time O( log2 n
log log n(1 + log log n

log σ
)). Any substring of length � from any T in the

collection can be displayed in time O( log2 n
log log n(1 + log log n

log σ
) + �

log n
log log n(1 + log σ

log log n)). For h ≤
(α logσ n) − 1, for any constant 0 < α < 1, the space complexity simplifies to nHh(C) +
o(n log σ ) + O(mlog n + w) bits.

The second result refers to the construction of the most succinct self-index for text
within the same asymptotic space required by the final structure. This is tightly related
to the construction of the BWT, which has many applications.

COROLLARY 8.3. The alphabet-friendly FM-index [Ferragina et al. 2007], as well as
the BWT [Burrows and Wheeler 1994], of a text T [0, n − 1] over an alphabet of size σ ,
can be built using nHh(T ) + o(n log σ ) bits, simultaneously for all h ≤ (α logσ n) − 1 and
any constant 0 < α < 1, in time O(n log n

log log n(1 + log σ

log log n)).

On polylog-sized alphabets, we build the BWT in o(n log n) time. Even on a large
alphabet σ = �(n), we build the BWT in o(n log2 n) time. This slashes by a log log n
factor the corresponding previous result [González and Navarro 2008]. Other previous
results that focus on using little space are as follows. Okanohara and Sadakane [2009]
achieved optimal O(n) construction time with O(n log σ log logσ n) bits of extra space
(apart from the n log σ bits of the sequence). Hon et al. [2009] achieve O(n log log σ ) time
and O(n log σ ) bits of extra space. Our construction, instead, works within compressed
space.

Very recently, Navarro and Nekrich [2012] improved in part upon Theorem 1.5
by reducing the time of all operations to O(log n/ log log n), independently of σ . The
time for updates, however, is amortized. This allows them to partly outperform our
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results in Corollary 8.2 (yet with amortized update times) and completely outper-
form our Corollary 8.3, where they can build the FM-index and the BWT in time
O(n log n/ log log n) = o(n log n).

Although it is not obvious at a first glance, our construction permits more general op-
erations on the sequence, such as range searches [Mäkinen and Navarro 2007; Navarro
2012]. These require tracking sequence positions and intervals toward the sequence
inside any node of the wavelet tree, which is done via rank and select operations on
the node sequences. The solution of Navarro and Nekrich [2012] precisely avoids using
those operations in the intermediate wavelet tree nodes. This is sufficient for access-
ing symbols and supporting rankc and selectc operations, but not for general tracking
of intervals inside the wavelet tree. The lower bound �((log n/ log log n)2) for dynamic
range counting [Patrascu 2007] suggests that our solution is indeed optimal if such
range search capabilities are to be supported.

9. CONCLUDING REMARKS

We have proposed flexible and powerful data structures for the succinct representation
of ordinal trees. For the static case, all known operations are done in constant time
using 2n + O(n/polylog(n)) bits of space for a tree of n nodes and a polylog of any
degree. This significantly improves upon the redundancy of previous representations.
The core of the idea is the range min-max tree. This simple data structure reduces all
of the operations to a handful of primitives, which run in constant time on polylog-
sized subtrees. It can be used in stand-alone form to obtain a simple and practical
implementation that achieves O(log n) time for all of the operations. We then show how
constant time can be achieved by using the range min-max tree as a building block for
handling larger trees.

The simple variant using one range min-max tree has actually been implemented
and compared with the state of the art over several real-life trees [Arroyuelo et al.
2010]. It has been shown that it is by far the smallest and fastest representation in
most cases, as well as the one with widest coverage of operations. It requires around
2.37 bits per node and carries out most operations within a microsecond on a standard
PC.

For the dynamic case, there have been no data structures supporting several of the
usual tree operations. The data structures of this article support all of the operations,
including node insertion and deletion, in O(log n) time, and a variant supports most of
them in O(log n/ log log n) time, which is optimal in the dynamic case even for a very
reduced set of operations. The solution is based on dynamic range min-max trees, and
especially the first variant is extremely simple and implementable (indeed, a recent
publication [Joannou and Raman 2012] studies its implementation issues, obtaining
good performance results). The flexibility of the structure is illustrated by the fact that
we can support much more complex operations, such as attaching and detaching whole
subtrees.

Our work contains several ideas of independent interest. An immediate applica-
tion to storing a dynamic sequence of numbers supporting operations sum and search
achieves optimal time O(log n/ log log n). Another application is the storage of dynamic
compressed sequences achieving zero-order entropy space and improving the redun-
dancy of previous work. It also improves the times for the operations, achieving the
optimal O(log n/ log log n) for polylog-sized alphabets. This, in turn, has several appli-
cations to compressed text indexing. Our lrm trees have recently been applied to the
compression of permutations [Barbay et al. 2011a]. Our range min-max trees have also
been used to represent longest common prefix information on practical compressed
suffix trees [Cánovas and Navarro 2010].
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Pǎtraşcu and Viola [2010] have recently shown that n + n/w�(t) bits are necessary
to compute rank or select on bitmaps in worst-case time O(t). This lower bound holds
also in the subclass of balanced bitmaps14 (i.e., those corresponding to BP sequences),
which makes our redundancy on static trees optimal as well, at least for some of the
operations. Since rank or select can be obtained from any of the operations depth,
pre_rank, post_rank, pre_select, post_select, any BP representation supporting any of
these operations in time O(t) requires 2n + n/w�(t) bits of space. Still, it would be good
to show a lower bound for the more fundamental set of operations findopen, findclose,
and enclose.

On the other hand, the complexityO(log n/ log log n) is known to be optimal for several
basic dynamic tree operations (findopen, findclose, and enclose), but not for all. It is
also not clear if the redundancy O(n/r) achieved for the dynamic trees, r = log n for
the simpler structure and r = log log n/ log n for the more complex one, is optimal to
achieve the corresponding O(r) operation times. Finally, it would be good to achieve
O(log n/ log log n) time for all operations or prove it impossible.
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P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. 2007. Compressed representations of sequences and
full-text indexes. ACM Transactions on Algorithms 3, 2, Article 20.

J. Fischer. 2010. Optimal succinctness for range minimum queries. In Proceedings of the 9th Symposium on
Latin American Theoretical Informatics (LATIN). LNCS 6034. 158–169.

J. Fischer and V. Heun. 2007. A new succinct representation of RMQ-information and improvements in the
enhanced suffix array. In Proceedings of the 1st International Symposium on Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies (ESCAPE). LNCS 4614. 459–470.

R. Fleischer. 1996. A simple balanced search tree with O(1) worst-case update time. International Journal
of Foundations of Computer Science 7, 2, 137–149.

M. Fredman and M. Saks. 1989. The cell probe complexity of dynamic data structures. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing (STOC). 345–354.

M. Fredman and D. Willard. 1993. Surpassing the information theoretic bound with fusion trees. Journal of
Computer and Systems Science 47, 3, 424–436.

R. Geary, N. Rahman, R. Raman, and V. Raman 2006a. A simple optimal representation for balanced
parentheses. Theoretical Computer Science 368, 3, 231–246.

R. Geary, R. Raman, and V. Raman. 2006b. Succinct ordinal trees with level-ancestor queries. ACM Trans-
actions on Algorithms 2, 4, 510–534.

A. Golynski, R. Grossi, A. Gupta, R. Raman, and S. S. Rao. 2007. On the size of succinct indices. In Proceedings
of the 15th Annual European Symposium on Algorithms (ESA). LNCS 4698. 371–382.
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V. Mäkinen and G. Navarro. 2007. Rank and select revisited and extended. Theoretical Computer Science
387, 3, 332–347.
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