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a b s t r a c t

The production of 75% of the current drug molecules and 35% of all chemicals could be achieved through
bioprocessing (Arundel and Sawaya, 2009). To accelerate the transition from a petroleum-based chemical
industry to a sustainable bio-based industry, systems metabolic engineering has emerged to computa-
tionally design metabolic pathways for chemical production. Although algorithms able to provide specific
metabolic interventions and heterologous production pathways are available, a systematic analysis for all
possible production routes to commodity chemicals in Escherichia coli is lacking. Furthermore, a pathway
prediction algorithm that combines direct integration of genome-scale models at each step of the search to
reduce the search space does not exist. Previous work (Feist et al., 2010) performed a model-driven
evaluation of the growth-coupled production potential for E. coli to produce multiple native compounds
from different feedstocks. In this study, we extended this analysis for non-native compounds by using an
integrated approach through heterologous pathway integration and growth-coupled metabolite produc-
tion design. In addition to integration with genome-scale model integration, the GEM-Path algorithm
developed in this work also contains a novel approach to address reaction promiscuity. In total, 245 unique
synthetic pathways for 20 large volume compounds were predicted. Host metabolismwith these synthetic
pathways was then analyzed for feasible growth-coupled production and designs could be identified for
1271 of the 6615 conditions evaluated. This study characterizes the potential for E. coli to produce
commodity chemicals, and outlines a generic strain design workflow to design production strains.

& 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

1. Introduction

The global chemical industry has been driven by petroleum
feedstocks for the past 100 years, where synthetic organic chem-
istry played a key role. Today, the global chemical market landscape
is beginning to change, based on new possibilities for bio-based
product and process development. The renewed interest
in industrial biotechnology is due to several reasons. First, the
increases in petroleum prices squeeze commodity chemical produc-
tion margins, increasing economically attractiveness of bio-based
processes. Second, there is a strong socio-economic driver towards
green chemistry and renewable feedstocks (Keasling, 2012). Third,
due to technological developments, the past 20 years has seen the
successful demonstration of metabolic engineering enabling the
generation of microbial strains for the production of a wide range of

chemical compounds (Atsumi and Liao, 2008; Lee et al., 2012;
Peralta-Yahya et al., 2012). The availability of high-throughput
technologies, the advances of computational methods, and emer-
gence of genome-scale systems analysis to analyze large amount of
omics data, has given rise to the concept of ‘systems metabolic
engineering’ (Jang et al., 2012; Lee et al., 2012; Palsson and Zengler,
2010) where the focus has shifted from perturbing individual
pathways to manipulating the organisms as a whole. Genome-
scale models (GEMs) can now be used as query platforms to
examine new strategies and interventions as they contain a parts
list of cellular components and their interactions (Feist et al., 2007,
2009; Orth et al., 2011). By using constraint-based reconstruction
and analysis (COBRA) approaches (Schellenberger et al., 2011),
outcomes of cellular metabolism have been predicted successfully
for the production of various compounds (Bordbar et al., 2014; Kim
et al., 2008; Lee et al., 2012; McCloskey et al., 2013; Yim et al., 2011).
Moreover, model-driven evaluations for the production potential
for growth-coupled native products in Escherichia coli have been
performed (Feist et al., 2010). However, a comprehensive computa-
tional analysis for the production of valuable non-native E. coli
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metabolites has not been performed. Therefore, we developed a
systematic workflow in order to evaluate the production potential
of 20 industrially relevant chemicals (Assary and Broadbelt, 2011;
Curran and Alper, 2012; Fischer et al., 2008; Lee et al., 2012; Paster
et al., 2003; Werpy et al., 2004; Zeng and Sabra, 2011) in E. coli, by
integrating a combination of computational methods and develop-
ing a new pathway prediction algorithm, GEM-Path (Genome-scale
Model Pathway Predictor).

Computational approaches for the prediction of non-native
pathways exist, but are limited in their design and scope. Different
approaches have been implemented for pathway prediction (Arita,
2000; Carbonell et al., 2011; Cho et al., 2010; Dale et al., 2010;
Greene et al., 1999; Hatzimanikatis et al., 2005; Heath et al., 2010;
Hou et al., 2003; McShan et al., 2003; Pharkya et al., 2004), where
increasing attention has been focused mainly on retrosynthetic
algorithms (Carbonell et al., 2011; Cho et al., 2010; Henry et al.,
2010; Yim et al., 2011) based on Biochemical Reaction Operators
(BROs). In these analyses, BROs are used to go from a target
compound to a predefined set of metabolites in an iterative
backward search. In summary, all of these methods shared
basically the same workflow, first calculating all structurally
possible pathways and then scoring them using different kinds
of metrics. During the synthetic pathway calculation, these algo-
rithms unnecessarily expand the reaction space, generating all
possible pathways that link a specific metabolite to a final specific
product without performing pathway integration with content
known to exist in a given production host. Furthermore, previous
algorithms do not integrate the bioprocessing condition-specific
cofactor usage/generation, substrate usage, strain/oxygenation
conditions, and related energy balances during the computation
of pathways. In order to address these problems, we developed
GEM-Path, by integrating retrosynthetic algorithms based on BROs
and filtering procedures with GEMs at each iteration step. Further-
more, a novel reaction promiscuity analysis is introduced, which is
based on known reaction substrate similarities. These two features
distinguish GEM-Path from other computational approaches.

Once a synthetic pathway is successfully established, additional
approaches can be taken to further engineer the host strain and
synthetic pathways for enhanced production of a desired chemical.
Adaptive laboratory evolution together with COBRA methods and
organism-specific models has proven successful for the calculation
of wild type E. coli optimal growth rates (Ibarra et al., 2002), native
E. coli metabolite production through knock-outs (Fong et al.,
2005), and for non-native E. coli metabolite production through
heterologous pathway incorporation and knock-out implementa-
tions (Yim et al., 2011). Furthermore, the use of adaptive labora-
tory evolution together with growth-coupled knock-outs design,
allows to select for strains with higher target compound produc-
tion rates by coupling them to the selection for faster growth
(Portnoy et al., 2011). Here, we integrate each of the predicted
pathways under several different substrates/strain/oxygenation
conditions with growth-coupled designs generated through reac-
tion knock-outs by utilizing the RobustKnock (Tepper and Shlomi,
2010) and GDLS (Lun et al., 2009) algorithms. Finally, in order to
characterize E. coli's potential production landscape for the studied
compounds and for designs implementation purposes, a produc-
tivity analysis for maximum theoretical yield and maximum
theoretical growth-coupled yield was performed.

2. Methods

2.1. Model and flux balance analysis

The metabolic reconstruction of E. coli iJO1366 was utilized as a
basis for synthetic pathway calculations, yield analysis, and further

strain designs. This model has been proven to be predictive for
computations of growth rates and metabolite excretion rates on a
range of substrates and genetic conditions (Feist et al., 2007; Orth
et al., 2011). For all phenotype simulation, flux balance analysis
(FBA) was used. The biomass objective function (BOFcore), main-
tenance energy, and basic constraints were set according to the
reported values in the reconstruction. FBA used the assumption of
steady-state metabolic flux as described elsewhere (Orth et al.,
2010). All computations were performed using MATLABs (The
Mathworks Inc., Natick, MA, USA) and the COBRA Toolbox
(Schellenberger et al., 2011) software packages with TOMLAB
(Tomlab Optimization Inc., San Diego, CA, USA) solvers.

2.2. GEM-Path algorithm: chemoinformatics tools and techniques

Throughout the process of synthetic pathway generation,
chemoinfomatic tools were essential for integrating computational
chemical analysis into genome-scale model theory. In order to
properly handle molecular structures, a range of chemoinfomatic
techniques were incorporated into the COBRA Toolbox MATLABs

environment. For this purpose, in-house methods and functions,
which are described below, were developed based on ChemAxon
(ChemAxon Ltd., Budapest, Hungary) software package libraries.

Chemical representation: for compound and reaction represen-
tation MDL Molfiles (Dalby et al., 1992) were used. A Molfile
contains information about the atoms, bonds, connectivity, and
coordinates of a molecule. The Molfile consists of some header
information, the connection table containing atom information,
then bond connections and types, followed by sections for
more complex information.
SMIRKS & SMARTS: for BRO representation, SMIRKS (James et
al., 2004) was used as a language for describing generic
reactions by using a SMARTS (James et al., 2004) representation
of the reaction's substructures. A SMARTS pattern may include
not only a specification of reaction center but also a specifica-
tion of a local structure that must occur or is necessarily absent
based on our best understanding of the relevant biochemistry
(Silverman, 2002). BROs were constructed based on the smal-
lest substructure related to the structural change of the main
substrates and products in the reaction. Based on previous
studies (Henry et al., 2010; Mu et al., 2011; Yim et al., 2011), a
set of 443 irreversible BROs were defined to generate novel
biochemical reactions and pathways. Approximately 76% of the
reactions in KEGG (Kanehisa et al., 2006) and 72% of the
reactions in BRENDA (Curran and Alper, 2012) involved
a transformation captured in this defined BRO set. Furthermore,
depending on the BROs's nature, three different types of
metabolic transformation were defined: (i) ‘1-1’ BROs simulate
the substrate conversion without including any co-products
and co-substrates in the BRO, (ii) ‘2-1’ BROs simulate anabolic
conversions, merging the substrate with a cosubstrate, and
(iii) ‘1–2’ BROs simulate catabolic conversions, where the
substrate breaks into the corresponding product and a
co-product. 2–2 transformations were ignored since they can
be represented by a 2�1 transformation followed by a 1–2
transformation. Co-products and co-substrates were selected
from E. coli's metabolome information. This formulation allows
a host-specific integration at the reaction prediction level.
Standardization and mass balance: since MDL Molfiles might
come from different sources, a standardization procedure was
performed. For each molecular structure, stereochemical infor-
mation was removed and the major protonation form at pH
7 was determined. For each reaction, mass balance was
performed using previously standardized molecular structures.
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If hydrogen did not reach the balance, reaction stoichiometry
was corrected.
Substrate fingerprint: substrates were represented by chemical
fingerprints. A chemical fingerprint (CFP) is a simple record of
the fragments present in a chemical structure. The chemical
fingerprint (CFP) of a molecule is defined as CFP¼(Fi), where Fi
refers to a molecular fragment with real occurrence in a
molecule. Fi is obtained by the molecular fragmentation
method. Each Fi in the fingerprint is represented in bit string
where each position of the sequence is represented by ‘1’ or ‘0’
digits, depending on the presence or absence of the structural
pattern predefined by Fi. Previous studies have shown good
results by using linear fragments from 5 to 6 bonds (Hu et al.,
2012; Latino and Aires-de-Sousa, 2009). In this study linear
fragmentation up to 6 bonds was used.
Tanimoto coefficient (TC): the premise of similarity searching is
that similar structures have similar fingerprints. Here, we used
the TC dissimilarity (TCdiss) metric to determine how similar
two fingerprints were. Values of this metric are non-negative
numbers. A zero dissimilarity value indicates that the two
fingerprints are identical, and the larger the value of the
dissimilarity coefficient the higher the difference between the
two structures. In its original form, the Tanimoto metric is a
similarity metric (TCsim):

Tsim ¼ Bða&bÞ
BðaÞþBðbÞ�Bða&bÞ

where a and b are two binary fingerprints, & denotes binary
bit-wise and-operator, | denotes bit-wise or-operator, and B(x)
is the number of 1 bits in any binary fingerprint x:

BðxÞ ¼ jfxi ¼ 1gjxiA 0;1f g; i¼ 1;……;ngj ¼ ∑
n

i ¼ 1
xi

From that it is straightforward to obtain a dissimilarity mea-
sure:

Tdiss ¼ 1�Tsim

It is worth noting that if the TCdiss between two fingerprints is
0, it means that both molecules share the exact same finger-
print. While this does not mean that both molecules are the
same, it does mean that both molecules share the same bonds
according to the fragmentation process, since the molecular
fingerprint only represents the presence or absence of a given
particular bond pattern.
Exact topology matching: molecular graphs consist of nodes and
edges, with atoms corresponding to the nodes and bonds
corresponding to the edges. When we compare structures
represented as graphs, the graph patterns must match. The
type of atoms and bonds must be similar during the structural
search. In this study, no stereochemical information was used
for matching compounds, only bond and atom connectivity for
structural matching was analyzed. A full structure search
solution in MolSearch is based on a substructure search
algorithm (Ullmann's algorithm) combined with various heur-
istics and an additional check to verify that the number of
heavy atoms are the same in the query and target molecules.

2.3. GEM-Path algorithm: databases

The E. coli metabolome was defined based on the GEM iJO1366.
Metabolites were extracted from the model and downloaded from
PubChem's (Bolton et al., 2008) compound database. Metabolites
were saved as molfiles and named after their BiGG (Schellenberger

et al., 2010) identifier. For reaction existence and reaction pro-
miscuity analysis, the BRENDA (Scheer et al., 2011) database file
and molecular structure molfiles were downloaded. Three digit EC
number databases were generated by lumping together all reac-
tions with similar third level EC numbers. Each entry in the
database specifies the corresponding known biochemical reaction
formula, the corresponding four digit EC number association,
reaction-organism association, and substrate structure file. In cases
where a specific reaction-organism association reported affinity for
more than one substrate, an entry specifying all substrates was
generated. For this purpose all reactions were assumed to be reversible
and cofactors were not assigned as substrates.

2.4. GEM-Path algorithm: thermodynamic analysis

Thermodynamic analysis was performed by calculating the
ΔrG0 (KJ/mol) where ΔrG01 was estimated based on the group
contribution method (Jankowski et al., 2008). Intracellular con-
centrations were defined based on previous studies (Bennett et al.,
2009). For unknown concentrations, estimations were calculated
based on the non-polar surface area and compound charge (Bar-
Even et al., 2011).

2.5. GEM-Path algorithm: promiscuity analysis

This analysis takes into account only substrate reaction pro-
miscuity. Based on the similarity (TC) of the native and non-native
substrates, a reaction promiscuity space can be generated and
potential promiscuous activities determined depending on the
distance between the promiscuous space and the metabolite to
analyze. Thus, a similarity matrix based on the TC was calculated
between every possible metabolite that the specific reaction-
organism association could catalyze; cofactors were excluded from
the matrix. Then, the reaction promiscuity space was defined by
performing multilinear regression analysis on the similarity
matrix, and an average distance between each native metabolite
and space centroid was calculated. By dividing the potential
promiscuous target substrate distance from the centroid over the
average native distance from the centroid, the reaction promiscu-
ity score (PS) was calculated. If the score was lower than 1.2, the
reaction is considered to be promiscuous for the target substrate
(Fig. 1). The reaction promiscuity score was tested and validated by
using E. coli's promiscuous reaction information from iJO1366
(Supplementary Figs 1 and 2).

2.6. Theoretical analysis of the production potential in E. coli

To evaluate the production efficiency of each product under
different metabolic conditions and to determine the most pre-
dominant metabolic subsystems that work as precursor sources
for product formation, an initial theoretical analysis was per-
formed calculating the maximum theoretical yield in E. coli for
all predicted pathways. This analysis was executed by:
(i) incorporating the heterologous pathways to the model, (ii)
setting an uptake rate to 120 C-mmol gDW�1 h�1 for each carbon
source, 20 mmol gDW�1 h�1 O2 (Varma et al., 1993) when
specified, (iii) setting the reactions CYTBDpp, CYTBD2pp, and
CYTBO3_4pp to 0 mmol gDW�1 h�1 for the ECOM strain
(Portnoy et al., 2008), (iv) setting a minimal growth rate to sustain
growth as 0.1 h�1 (as set by the amount of flux necessary through
the BOFcore), and v) using FBA to maximize the flux through each
of the exchange reactions in the model for the target compound.
For each predicted pathway, phenotypic results were reported in
terms of yield; specific product yield (Yp/s) defined as the maxi-
mum amount of carbon product that can be generated per unit of
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carbon substrate.

Yp=s ¼
Cproductnproduction rateproduct
Csubstratenproduction ratesubstrate

cmmolproduct
cmmolsubstrate

� �

where C is the number of carbons in the substrate and product.
This metric provides a proper comparison between pathways
productivities, since it standardizes the carbon consumption for
each substrate.

2.7. Strain design computations

Before strain design, the model was preprocessed based on the
problem formulation described by Feist et al. (2010). Preprocessing
was condition specific and was performed for each pathway/
substrate/oxygenation combination. The method utilizes six steps
in which the model was reduced and target reactions were
selected for knock-out simulations. By reducing the model and
constraining the reaction set that could serve as a target for a
reaction knock-out, computation time was effectively reduced
when performing Robust Knock and GDLS algorithms.

RobustKnock and GDLS were implemented in the COBRA Tool-
box framework as described in their original documentation. First,
RobustKnock was utilized to design strains of E. coli for each
target/substrate/oxygenation combination for a maximum of 2 and
3 reaction knock-outs. RobustKnock predicts reaction deletion
strategies that lead to the over-production of compounds of
interest by accounting for the presence of competing pathways
in the network. Specifically, this method extends OptKnock to
pinpoint specific enzyme-catalyzed reactions that should be
removed from a metabolic network, such that the production of
the desired product becomes an obligatory byproduct of biomass
formation. The predicted set of reaction knock-outs eliminates all
competing pathways that may hinder the chemical's production
rate, resulting in more robust predictions than those obtained with
OptKnock. This is achieved by searching for a set of reaction knock-
outs under which the minimal guaranteed production rate of a
chemical of interest is maximized, instead of simply assuming that
the maximized production rate would be achieved by chance, as in
OptKnock. The method is based on a bi-level max–min optimiza-
tion problem that is efficiently solved via a transformation to a
standard mixed-integer linear programming (MILP) problem. If
the solution exists, this algorithm finds the global optima set of
knock-outs that evaluate the maximum achievable yield for a
specific target compound. Because of the nature of this algorithm
and the large amount of combinations to simulate, a search with
four knock-outs makes the computational time of the simulations
intractable. Because of this, GDLS was used to evaluate the
maximum theoretical yield for four knock-outs. GDLS is a scalable,

heuristic, algorithmic method that employs an approach based on
local search with multiple search paths (k¼2), that results in an
effective, low-complexity search of the space of genetic manipula-
tions. Still, solutions found with this method do not assure a global
optimum. Consumption rate for the main carbon substrate in each
simulation was set to 120 C-mmol gDW�1 h�1. If aerobic condi-
tions were used, an oxygen uptake rate of 20 mmol gDW�1 h�1

was also set. For the ECOM strain reactions CYTBDpp, CYTBD2pp,
and CYTBO3_4pp were set to 0 mmol gDW�1 h�1.

3. Results

A systematic workflow was developed and organized into three
phases (Fig. 2). First, a synthetic pathway algorithmwas developed
which integrates GEMs directly into computation and industrially
relevant target compounds for simulation were defined. Second,
pathway production capabilities were examined in a number of
production environments. Each pathway was incorporated into
the E. coli GEM and analyzed in terms of maximal theoretical yield
under different substrate, oxygenation, and strain conditions.
Third, strain design computations was performed through a
maximum yield analysis, utilizing the RobustKnock (Tepper and
Shlomi, 2010) and GDLS (Lun et al., 2009) algorithms. The result
was a compendium of candidate synthetic pathways leading to 20
large volume commodity chemicals and strain designs to couple
their production to growth.

3.1. Synthetic pathway prediction algorithm development

GEM-Path combines and integrates different computational
approaches (Supplementary Table 1). The motivation for generat-
ing this new framework was that no existing tool combined a
comprehensive search of the biochemical space through reaction
operators, a thermodynamic analysis of each step, and a filtering of
possible reactions at each step through integration with a strain-
specific GEM.

3.1.1. Biochemical Reaction Operators (BROs) formulation
An initial step in the design process was to define the set of

Biochemical Reaction Operators (BROs) that accurately describes
the biochemical reaction space. A total of 443 BROs were defined
(see Section 2). For use in GEM-Path, each BRO was assigned a
specific cofactor use based on the BiGG database (Schellenberger
et al., 2010) terminology, and the corresponding third-level EC
number.
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shows specifically how the promiscuity analysis was performed. First, for a predicted reaction the third level BRENDA EC number database was identified (yellow box). For
each reaction in the databases structural information regarding substrates, cofactor uses and species were determined. Second, the predicted reaction substrate (green circle)
was compared to the corresponding third level BRENDA EC number database substrates by calculating the TC. From bottom to top, substrate pairs of TCs were sorted in
decreasing order. Third, starting from the lowest TC (a1) until a predicted reaction and BRENDA reaction association was found (an), an iterative decision making algorithm
determines whether the predicted reaction exists in BRENDA or there is any reaction in the database able to show promiscuous activity. Fourth, when a specific reaction is
sent to promiscuous analysis, non-specific substrates (blue circles) for the reaction/species association are assigned according to BRENDA databases. By calculating the TC
between all of the substrates a reaction promiscuity space was generated. From this space, distances from the centroid for each substrates and promiscuity score were
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3.1.2. Pathway predictor (GEM-Path) algorithm
The pathway predictor algorithm was developed in an iterative

manner (Supplementary Fig. 3). The process can be broken down
into four major steps:

(a) Starting from the target metabolite, predictor constraints were
set, such as maximal pathway length, metabolites to compute
at each iteration, a thermodynamic threshold, and a reaction
promiscuity threshold.

(b) Predefined BROs were applied to the target in a retrosynthetic
manner for generating the corresponding substrates. After
BROs application, the corresponding cofactors and third level
EC numbers were assigned together with reaction structure
files for further analysis. All predicted reactions were then
checked for mass balance. If mass balance was not fulfilled,
reactions were discarded from the process. Next, predicted
metabolites were structurally compared against E. coli's meta-
bolome. Substrate dissimilarities were sorted in terms of the
TC (see Section 2), and an exact match analysis was performed
for TCs equal to 0 since this does not necessarily mean that the
compared molecules are the same. If the predicted metabolite
matches any compound in the metabolome, FBA was per-
formed in order to validate the potential production.

(c) A thermodynamic analysis was performed by calculating the
ΔrG (kJ/mol). Each predicted reaction was checked in terms of
thermodynamic feasibility for existence of further reactions
and potential promiscuity analysis. Reactions with ΔrG lower
than or equal to 25 kJ/mol were defined as feasible reactions
and saved to continue the checking process. The threshold was
set based on estimated variability calculated elsewhere (Henry
et al., 2007).

(d) As shown in Fig. 1, in order to determine reaction existence,
predicted reactions were compared against BRENDA. The
database was structured by lumping together all reactions
with similar third level EC numbers. Each level contains
known biochemical reactions with the corresponding four
digit EC number association, reaction-organism association,
and substrate structure file. The third level EC number asso-
ciation for the predicted reaction facilitates the identification

of the third level EC class BRENDA sub group for substrate
comparison. By calculating TC, predicted substrates could be
compared against all corresponding substrates present in the
BRENDA subgroup. The results were sorted and analyzed
starting with the most similar compound. Dissimilarities equal
to 0 were structurally compared by performing an exact match
comparison (see Section 2). If the substrates were structurally
similar, reaction cofactors were compared. In cases where the
predicted reaction matches a reaction in BRENDA, a specific
reaction-organism association was assigned to the reaction
and the pathway prediction procedure was continued. Other-
wise, a substrate promiscuity analysis was performed by
considering the reaction-organism association substrate infor-
mation. If the reaction is considered to be promiscuous, the
algorithm saves the reaction, otherwise, it proceeds by analyz-
ing the potential promiscuity for the next sorted substrate.
In order to decide whether a reaction might be promiscuous or
not, a reaction promiscuity score was calculated based on the
similarity between the reaction native substrate and the
predicted substrate (Fig. 1, step 4). The reaction promiscuity
score was calculated and analyzed by using E. coli's promiscu-
ous reaction information from iJO1366 (Supplementary
Figs. 1 and 2). Based on the previous analysis, the reaction
promiscuity score threshold was set to 1.2.

After the filtering steps, only the 120 predicted compounds
closest to E. coli's metabolome were allowed to continue the
algorithm. This process was repeated 4 times, which means path-
ways of a maximal length of 4 were obtained. The GEM-Path
algorithm overcame the disadvantages of previous methods by not
setting a specific metabolite source for the target compound
formation, instead leaving open the possibility to reach any
metabolite in the metabolome. Furthermore, structural compar-
ison gives the ability to focus on the retrosynthesis direction most
similar to the corresponding region of the host metabolome.
It should be noted that these characteristics could be extended
to other organisms, predicting synthetic heterologous pathways in
a host-context specific manner. After completion of this computa-
tional procedure, the resulting pathways were characterized and
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version of this article.)
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used for theoretical yield analysis under different strain, oxygena-
tion, and substrate conditions. All of the predicted pathways are
given in Supplementary Fig. 9 and specified in Supplementary
Table 8. Thus, a comprehensive list of feasible biochemical path-
ways leading to the target compound formation was established.

3.2. Description of substrate and product selection

Important production capabilities of the synthetic pathways
predicted by GEM-Path were assessed using the E. coli GEM. For
theoretical yield analysis, three primary substrates were evaluated
based on the cost and availability of suitable feedstock (Sauer et al.,
2008; Vickers et al., 2012), E. coli's metabolic capacity for catalyz-
ing such carbon sources, and unique design potential (e.g., glucose
and fructose are not unique and are examples of interconverted
substrates with little to no cost to the cell, (Feist et al., 2010)). The
first two substrates were glucose and xylose, five- and six-carbon
sugars, present in lignocellulosic biomass, representing about
40–50% and 20–30% by dry weight of plant material, respectively
(Wyman et al., 2005). The use of this type of feedstock is expected
to increase with the incentive to produce biofuel and bio–based
chemicals (Perlack and Stokes, 2011). The third substrate was
glycerol, a three-carbon molecule and a byproduct of biodiesel
production (Ma and Hanna, 1999), whose availability is expected
to increase in the coming years (Yang et al., 2012). In addition,
three different starting strains and oxygenation conditions were

analyzed for each product during the synthetic pathway calcula-
tions procedure. These are a wild-type strain under aerobic
conditions, a wild-type strain under anaerobic conditions, and
the ‘ECOM’ (E. coli cytochrome oxidase mutant) strain under
aerobic conditions (Portnoy et al., 2008). The ECOM strain has
the advantage of “aerobic fermentation” as the strain cannot use
oxygen as a terminal electron acceptor. The list of targeted over-
production metabolites included 20 different bulk chemicals with
biological production potential and precursors for commercially
valuable chemical production are shown in Fig. 3. The selection of
the 20 target compounds was determined by evaluating reports
generated by the US Department of Energy (Paster et al., 2003;
Werpy et al., 2004), which includes chemicals that are currently
being produced on an industrial scale (Zeng and Sabra, 2011) and
metabolites that are described as precursors to or potential target
biofuel compounds (Assary and Broadbelt, 2011; Curran and Alper,
2012; Fischer et al., 2008; Lee et al., 2012). By comparing the target
compound list with iJO1366 E. coli's metabolome, 4 out of 20
products were assigned as native and 16 as non-native. Synthetic
pathways for native products were calculated in order to explore
the possibility of more productive pathways for their synthesis.

3.3. Predicted pathways and reaction specifications

The synthetic pathway calculation procedure using GEM-Path
was applied to all selected target compounds of interest and
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validated by comparing the output pathways with previous
computationally calculated and experimentally implemented
pathways. In summary, 245 pathways, 221 reactions, and 59
non-native intermediate metabolites were calculated after 4 itera-
tions of the algorithm (i.e., a maximal pathway length of 4). In
total, 25%, 39%, 28%, and 8% of the pathways were of length 4, 3,
2 and 1, respectively. For each product, pathways combining
potential promiscuous reactions, already known reactions (i.e., in
BRENDA), and different co-factor (i.e., using NADþ or NADPþ) uses
were generated. In total, 44 different precursors from the native
E. coli metabolome were determined that connected to the
synthetic pathways. Furthermore, 42 gap-filling reactions inter-
connecting native E. coli's metabolites were identified which
enabled production of a targeted compound. This set includes
reactions which may be the reverse reaction of a native enzymatic
step in the existing network or have completely unique chemistry
acting on a native metabolite.

The number of reactions and pathways predicted using GEM-
Path varied across the 20 target compounds analyzed. For 1,4-
butanediol, 1,3-propanediol, 3-hydroxypropanoate, and acrylic
acid, the number of reactions and pathways were the highest
(Fig. 3). In total, approximately 51% of all predicted reactions were
categorized as ‘known’, which means that each predicted reaction
has an exact biochemical reaction association according to
BRENDA (Fig. 3a purple sub-segments). Reactions represented by
yellow sub-segments in Fig. 3 correspond to predicted biochemical
reaction steps assigned as ‘promiscuous’ from the promiscuity
analysis. Furthermore, for each of these reactions, a potential
reaction from BRENDA that might carry flux through the synthetic
pathway was assigned. The promiscuity score distribution is
represented in Fig. 3c. As expected, all 112 ‘known’ reactions were
represented with a promiscuity index equal to 0 and ‘promiscuous’
reactions were distributed around 1.

A predicted pathway can be either entirely ‘known’ (Fig. 3b
purple sub-segments), meaning every reaction in the pathway has
an exact biochemical reaction association according to BRENDA, or
partially known, where one or more reactions in the pathway
were predicted as ‘promiscuous’ (Fig. 3b yellow subsegments).
According to the classification in Fig. 3b, all of the pathways able
to generate 1,4-butanediol, acrylic acid, acrylamide, and
3-hydroxyvalerate in E. coli contain at least one promiscuous
reaction. In order to analyze the fraction of known reactions
present in a pathway, we defined the Known Reaction Fractional
Index (KRFI) between 0 and 1, where 1 means that the pathway
has been completely reconstructed from ‘known’ reactions and
0 means that it has been completely reconstructed from ‘promis-
cuous’ reactions. Based on the previous definition, 30% of all
predicted pathways were entirely ‘known’. In Fig. 3d, entirely
‘known’ pathways are represented with a KRFI equal to 1, and the
rest of the pathways correspond to partially known pathways
distributed from 0 to 1. In total, approximately 40% of the
predicted reactions were oxidoreductases, acting on hydroxyl or
aldehyde groups with NADþ or NADPþ acceptors. Carbon–oxygen
and carbon–carbon lyases correspond to around 20%, and trans-
ferases, specifically CoA-transferases, were 8% of all of the reac-
tions. This set of generic biochemical transformations details the
chemical nature of the predicted reactions that most often enable
the production of the targeted non-native compounds in E. coli
(see Supplementary Table 3).

3.4. GEM-Path validation

In order to validate the proposed algorithm, previous work
examining computational and experimentally implemented het-
erologous pathways in E. coli were compared to the GEM-Path
calculated pathways. According to a bibliographic search, 14 out of

20 target compounds were found to be referenced and targeted by
patents or scientific publications. The maximum theoretical yield
calculated by GEM-Path for the targeted compounds was then
compared to production levels from the bibliographic search set
(Table 1). In order to determine the production potential for the
novel pathway calculated using GEM-Path, a maximum theoretical
production comparison was performed for experimentally and
computationally reported pathways (Table 1). The analysis was
performed by calculating the target production ratio between the
highest flux carrying novel pathways predicted by GEM-Path over
the experimentally and computationally reported pathways. Simu-
lations were run under aerobic and anaerobic conditions, by using
glucose, xylose, and glycerol as a carbon source. Values over
1 indicated that GEM-Path's novel pathways have higher produc-
tion potential than already referenced pathways. Considerable
improvements over experimentally implemented pathways were
found in the GEM-Path set, specifically under anaerobic condi-
tions, for 1,4-butanediol, 1,3-propanediol, isopropanol, and 3-
hydroxybutyrate on various substrates. Distinct, but equal yield
pathways were calculated for 1,3-propanediol and 1-butanol. In
addition, already known implemented pathways for 1-propanol,
2-phenylethanol, 2,3-propanediol, 2,3-butanediol, 3-methyl-buta-
nol, 2-methyl-butanol, and 4-hydroxybutyrate were found
(Table 1). These findings revealed that GEM-Path calculated path-
ways contained experimentally-implemented pathways found in
the literature screen and that the selected reaction rules were able
to represent the known biochemistry and serve as validation of
the approach.

For the synthetic design of biochemical pathways, considerable
attention has been focused on BRO-based computational tools
(Medema et al., 2012). As such, the pathways predicted from GEM-
Path were compared against computationally-predicted pathways
from three different BRO based algorithms; BioPath for the
production of 1,4-butanediol (Yim et al., 2011), BNICE for the
production of 3-hydroxypropanoate (Hatzimanikatis et al., 2005),
and the one developed by Cho et al., for the production of several
alcohols (Cho et al., 2010). The first comparison was for the
synthetic pathway prediction of 1,4-butanediol by using the
BioPath algorithm. When analyzing individual reactions, 91% off
all reactions were able to be predicted by GEM-Path indepen-
dently. Furthermore, through FBA analysis, novel pathways gen-
erated with GEM-Path were able to achieve higher theoretical
productivity compared to BioPath reported pathways. Specifically
for pathways 13 and 14 (see 1,4-butanediol pathways map in
Supplementary Fig. 9), under aerobic condition and using glucose,
xylose, and glycerol, a 10% theoretical productivity increase over
BioPath predicted pathway was calculated. Moreover, by using the
same substrates under anaerobic conditions, an approximately
30% increase over BioPath predicted pathways was calculated. The
second case studied was for the synthetic pathway prediction of 3-
hydroxypropanoate by using the BNICE algorithm. This framework
is able to produce all thermodynamically feasible pathways from
a source metabolite to a target compound. In this case, GEM-Path
was able to generate 11% of all predicted pathways by this
algorithm, and 87% of all reactions. This result was expected since
both algorithms share similar BROs. By applying the reaction
existence and promiscuity analysis based on BRENDA, GEM-Path
was able to constrain the predicted pathways by reporting only a
feasible subset of pathways. According to FBA simulations, novel
pathways generated with GEM-Path were able to achieve the same
maximum theoretical production rates compared to BNICE gener-
ated pathways, specifically for pathways 12, 13, and 3 (see 3-
hydroxypropanoate pathways map in Supplementary Fig. 9).
When using xylose and glucose as substrates, production rates
were 76% higher than glycerol. Under aerobic conditions, no
substantial increments in theoretical production rates between
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Table 1
Comparison of GEM-Path predictions to previously identified pathways from literature.

Target compound Experimental Computational

Anaerobic Aerobic Ref. Anaerobic Aerobic Ref.

Glucose Xylose Glycerol Glucose Xylose Glycerol Glucose Xylose Glycerol Glucose Xylose Glycerol

1,4-butanediol 1.3 1.3 1.3 1.1 1.1 1.1 (Yim et al., 2011) 1.3 1.3 1.3 1.1 1.1 1.1 (Yim et al., 2011)
1,3-propanediol 1.2 1.3 1 1 1 1 (Laffend et al., 1997; Nagarajan

and Nakamura, 1998; Tang et
al., 2009; Zeng and Sabra, 2011)

— — — — — — –

3-hydroxypropanoate 1 1 1 1 1 1 (Lynch, 2011; Suthers and
Cameron, 2005; Wang et al.,
2012)

1 1 1 1 1 1 (Henry et al., 2010)

1-propanol 1 0.9 0.9 1 1 1 (Pharkya, 2011; Shen and Liao,
2008, 2013)

2.4 2.8 3.3 1.2 1.2 1.1 (Cho et al., 2010)

1-butanol 1 1 1 1 1 1 (Atsumi et al., 2008; Bramucci
et al., 2008; Lee and Park, 2008;
Shen et al., 2011)

1 1 1 1 1 1 (Cho et al., 2010)

Isopropanol 1.2 1.2 1.9 1 1 1.1 (Hanai et al., 2007; Jojima et al.,
2008; Pharkya, 2011)

— — — — — — –

Isobutanol 0.8 0.7 0.8 1 1 1 (Atsumi et al., 2010; Trinh,
2012)

0.8 0.7 0.8 1 1 1 (Cho et al., 2010)

3-hydroxybutyrate 1.2 1.2 1.5 1 1 1 (Tseng et al., 2009; Valentin
and Dennis, 1997)

— — — — — — –

2-phenylethanol 0.9 0.9 0.9 1 1 1 (Hwang et al., 2009; Koma et
al., 2012)

0.9 0.9 0.9 1 1 1 (Cho et al., 2010)

2,3-propanediol 1 1 1 1 1 1 (Altaras and Cameron, 1999;
Soucaille et al., 2008)

— — — — — — –

2,3-butanediol 1 1 1 1 1 1 (Ji et al., 2011; Lu et al., 2012;
Yan et al., 2009)

— — — — — — –

3-methyl-1-butanol 1 1 1 1 1 1 (Connor et al., 2010) 1 1 1 1 1 1 (Cho et al., 2010)
2-methyl-1-butanol 1 1 1 1 1 1 (Cann and Liao, 2008) 1 1 1 1 1 1 (Cho et al., 2010)
4-hydroxybutyrate 1 1 1 1 1 1 (Zhou et al., 2012) — — — — — — –

For each target compound, the maximum theoretical productivity ratio between novel pathways generated by GEM-Path and experimentally implemented or computationally generated pathways is shown. Empty spaces (—)
indicate that no referenced pathways for the corresponding target compound were found.
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GEM-Path and previously generated BNICE pathways were identi-
fied. Finally, the third case analyzed after the synthetic pathway
generation was Cho, et. al. Here, the author introduces a novel
scoring algorithm in order to extract the most feasible pathways.
The framework was validated for the production of 1-propanol,
1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol,
and 2-phenylethanol from a variety of 2-ketoacids. When compar-
ing the results between GEM-Path and Cho's predictions for each
product, the same pathways were found for each case. Still,
according to the simulations, none of the remaining pathways
predicted by GEM-Path were able to achieve the production rates
of pathways previously generated by Cho´s algorithm. Pathway
and reaction prediction discrepancies were due to the filtering
procedure, specifically during the promiscuity analysis, where only
the most promising reactions were allowed to constitute a path-
way in GEM-Path. However, of note is that the vast majority of
reactions predicted in the referenced work was also predicted with
GEM-Path. Specifically, GEM-Path was able to simulate 92% and
32% of all reactions and pathways, respectively. Furthermore,
discrepancies arose due to a lack of connectivity between the host
metabolic network and the predicted synthetic pathways in the
referenced work and also from the predefined pathway length
which allowed a maximum pathway length of four. A number of
differences can be the result of the GEM-Path algorithm immedi-
ately stopping the search through each branch when it reaches the
metabolome; the three other algorithms mentioned above do not
have this stipulation.

When comparing GEM-Path with other computational tools
(see Supplementary Table 1), its most characteristic features are its
capability to shrink the biochemical reaction solution space by
calculating the closest pathways to the metabolome and its ability
to select mechanistically-feasible reactions from BRENDA. These
properties rely on the integration of the promiscuity analysis and
GEMS into the reaction prediction algorithm. Furthermore, GEM-
Path is able to systematically integrate physiological conditions
(e.g., carbon source and oxygenation) into the pathway generation
procedure, allowing for the consideration of the active content
under a given condition and not reactions or nodes that cannot be
reached under a desired media condition. Furthermore, when
comparing GEM-Path to previous tools, it shows a wider predictive
capacity as it, (i) takes into account more cofactors, (ii) does not
constrain the search to only one compound source, instead every
metabolite in the metabolome might work as a source, and
(iii) allows generation of anabolic and catabolic reactions. Never-
theless, some solutions might be hindered as not all nodes (i.e.,
predicted compounds) were allowed to continue through the
prediction algorithm when compared to the E. coli metabolome.
However, GEM integration into GEM-Path allows the algorithm to
find more than one precursor present in the metabolic network
without constraining the search to only one compound.

3.5. Theoretical yield analysis of the production potential in E. coli

The production potential landscape in E. coli was outlined by
calculating and plotting the maximum theoretical yield for each target
compound in terms of carbon moles captured (i.e., C-mol). Simulations
were performed by combining all predicted pathways with the
corresponding substrate utilization and oxygenation conditions (see
Section 2). In total, 2205 flux balance analysis (FBA) combinations
were calculated (Supplementary Fig. 4). Maximum theoretical yields
(Fig. 4a–c) and the corresponding pathways were tabulated for each
target compound (Table 2). Results were grouped together based on
strain and oxygenation conditions and a yield interval was applied to
plot the number of pathways for different substrates (Fig. 4a–c).
Furthermore, in order to determine the most efficient subsystem for
product formation, results were clustered in terms of yield and E. coli's

precursor metabolic subsystems (Fig. 4d). The specific analysis for each
strain/oxygenation condition can be found in Supplementary note.
Overall, the average yields for WT/aerobic, ECOM/aerobic, and WT/
anaerobic were 0.68, 0.53, and 0.38, respectively. By defining the
ECOM/aerobic condition as an intermediate state of aerobiosis
between WT/aerobic and WT/anaerobic, a correlation between the
aerobiosis state of the cell and the production potential can be drawn.
As shown in Fig. 4a–c, a pronounced displacement of maximum
theoretical yield distributions towards lower yields is directly corre-
lated with the extent of anaerobiosis. This trend is also shown in
Fig. 4d, where a gradual shift from lower anaerobic yield to higher
aerobic yields can be visualized. Furthermore, this pattern is shown
together with a preference for glycerol as a substrate under aerobic
conditions and for glucose under anaerobic conditions. Pathways near
central carbon metabolism subsystems are able to achieve higher
yields (Fig. 4d).

3.6. Strain design

Utilizing the synthetic pathways identified for each target com-
pound, strain design simulations were performed to determine if
reaction knock-outs could increase production. The predicted synthetic
pathways were independently incorporated into the E. coli GEM and
further model preprocessing was executed according to a previously
developed approach (Feist et al., 2010). Growth-coupled designs,
which couple the optimal production of biomass and energy genera-
tion to the production of the compound of interest, were chosen as
objectives for the strain design performed here. A combination of the
RobustKnock (Tepper and Shlomi, 2010) and the GDLS (Lun et al.,
2009) algorithms with the conditioned model of iJO1366 (Orth et al.,
2011) was used. First, RobustKnock was utilized to design strains of
E. coli for each target/substrate/oxygenation combination for a max-
imum of two and three reaction knock-outs allowed. GDLS was used
in order to decrease computational time and to evaluate the max-
imum theoretical growth-coupled yield for four knock-outs.

All reactions which were identified in the strain design process
for elimination were collected and analyzed (see Supplementary
Table 4). Growth-coupled designs could be found for 1271 different
target/substrate/oxygenation/knock-out combinations (Supplementary
Table 7). Overall, this number was 19% out of the 6615 possible
conditions examined. The results of the design analysis are given in
Table 3. Result landscapes of maximum growth-coupled yield for each
target compound are shown in Fig. 5. Overall, production could be
growth-coupled in 75% of the targeted compounds and 43% of all
predicted pathways. Targets which could not be growth-coupled were
2,3-propanediol, 3-methyl-1-butanol, 2-methyl-1-butanol, 4-hydroxy-
butytare, and 2-phenylethanol. In total, 84 different reaction knock-
outs were identified across all selected target reactions, some of them
participating more frequently in strain designs. Pyruvate formate lyase
and ATP synthase occurred 12 times more often than the average 44
knock-outs per reaction in all designs (1271). Pyruvate kinase occurred
7.4 times more and acetate kinase, pyruvate dehydrogenase, triose-
phosphate isomerase, glucose-6-phosphate isomerase, ribulose 5-
phosphate 3-epirase, glutamate dehydrogenase, alcohol dehydrogen-
ase, and malate dehydrogenase occurred approximately 2.8 times
more often than the average. As stated earlier (Feist et al., 2010), this
uneven distribution of reaction knock-out occurrences suggests that
certain reactions are critical for diverting carbon flux.

Approximately 8% of all designs were above a molar yield
for carbon of 0.6, and this corresponded to designs for 9 out of 20
targeted compounds. When comparing different oxygenation
conditions, most of the designs were calculated under wild type/
anaerobic conditions (40%), followed by wild type/aerobic (33%),
and ECOM/aerobic (23%). The highest average yield for all possible
designs was calculated for wild type/anaerobic as being approxi-
mately 17% and 91% higher than the ECOM/aerobic and wild type
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aerobic, respectively. The predominant substrate for growth-
coupled designs was glycerol (40%), then xylose (32%), and glucose
(28%). The average growth-coupled yield distribution follows a
similar trend where glycerol was 21% and 56% higher than xylose
and glucose, respectively. According to the previous study (Feist et
al., 2010), the larger the number of allowable knock-outs for a
given target compound, the greater the maximum achievable
yield. This trend was observed when comparing RobustKnock for
two and three knock-out designs, where the average maximum
growth-coupled yield was 21% higher for three versus two knock-
outs. When comparing GDLS strain designs for four knock-outs to
RobustKnock strain designs for three knock-outs, 37% of all designs
were able to achieve higher C-mol yield when allowing four knock
outs. Furthermore, for 9% of all designs, GDLS was able to find
a growth-coupled design when RobustKnock could not (see
Supplementary Fig. 6). However, when comparing GDLS output
for four knock-outs to RobustKnock for 3 knock-outs, no increase
in the average maximum achievable yield was observed (i.e., for
519 3-KO designs, the average C-mol yield was 0.35 whereas for
352 4-KO designs, the average yield was 0.34). This can be because
the GDLS algorithm is not guaranteed to find an optimal solution
(Lun et al., 2009), but this value could increase given a longer run
time or different starting parameters.

Overall, the growth-coupled yield analysis revealed a positive
correlation between the total number of strain designs and the
number of predicted pathways for each target compound (Table 3).
The same correlation was observed when comparing the number of
independent growth-coupled pathways and the number of predicted
pathways for each target compound. When examining specific tar-
geted products, approximately 40% of all predicted pathways were
able to couple the target compound production with growth across
any of the predefined oxygenation/substrate/knock-out conditions.
Strain design C-mol yield averages for the production of 1-butanol

were higher than the corresponding medial yield for other target
compounds. For acrylamide, acrylic acid, and 3-hydroxypropanoate,
the average yield was higher, only when compared to other targets on
xylose. 1-propanol, isopropanol, and 1,3-propanediol yield averages
were higher under ECOM/aerobic, and 1,4-butanediol under wild type/
anaerobic using glycerol as a substrate. Specifications regarding the
number of predicted strain designs and average yield for each pathway
are shown in Supplementary Table 4. As expected, depending on the
pathway precursor, intermediates, stoichiometry, and cofactors
involved, specific combinations for oxygenation/substrate/knock-out
lead to different productivities. As shown in Fig. 5, for each target
compound, most of the production potentials were under the max-
imum theoretical yield average. This behavior is due to the resulting
strain designs being predicted as heterofermentative strains and also
because some knock-outs significantly constrain the production
potential. Still, some promising strain designs with growth-coupled
yield between the average theoretical yield plus standard deviation
and the highest theoretical yield values were found in silico.
The pathways are outlined in Supplementary Fig. 6 and strain designs
were specified in Supplementary Table 2. Specifically, pathways for the
production of 1,3-propanediol, 1-butanol, 3-hydroxypropanoate,
acrylic acid, and acrylamide were identified. Analysis on the potential
experimental implementation is shown in Supplementary text.

In order to compare and determine the growth coupled production
potential for the novel pathway calculated using GEM-Path and the
already reported pathways (computationally or experimentally), an
analysis was performed by calculating the ratio between the highest
growth-coupled production for the novel pathways predicted by GEM-
Path over the experimentally or computationally reported pathways.
Results were displayed under aerobic, ECOM, and anaerobic condi-
tions, by using glucose, xylose, and glycerol as a carbon source. Values
over 1 indicated that GEM-Path's novel pathways have higher growth-
coupled production potential than already referenced pathways
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(Table 4). Specifically, for 3-hydroxypropanoate, 1-propanol, and
1-butanol, considerable improvements were found on various sub-
strates and oxygenation conditions. Furthermore, for 1,4-butanediol,
isopropanol, isobutanol, and 3-hydroxybutarte, only growth-coupled
designs associated to novel pathways from GEM-Path were found.

3.7. GEM-Path output example

3.7.1. Case I: production of 1,3-propanediol
A output example for the production of 1,3-propanediol using

GEM-Path is shown in Fig. 6. Two different GEM-Path calculated
pathways were outlined: Pathway #7 (reactions 6 and 3) that has
already been experimentally implemented, and pathway #16
(reactions 17, 12, 16, and 3). For pathway #16, specific output
relating to the existence of catalyzing reactions from BRENDA and
the promiscuity analysis are shown. For reaction 3, 6, and 17, exact
matches in the BRENDA database were found, sharing identical
cofactors, substrates, and products. This is represented by a
substrate TC equal to 0 during the search. Furthermore, the species
and EC number were reported (Ishikura et al., 2005; Kajiura et al.,
2007; Wang et al., 2012). It is worthwhile to note that for
homologous enzymes, there was no ranking in terms of species
shown to carry out a given reaction. The algorithm reports only
the first hit, associated with the corresponding species and the
predicted reaction. For experimental purposes, it may be necessary
to use the predicted EC Number and a database such as BRENDA to
find multiple possible enzyme options that can be evaluated. The
concept of sorting in terms of species distances between the host
and the species associated with the predicted reaction was not
considered. Attempts have been made to mine content for homo-
logous expression in E. coli (Bayer et al., 2009), but this is an active
field of research. According to the iterative algorithm shown in
Fig. 1, no exact substrate structural matches were found for
reactions 12 and 16. Instead, a promiscuity analysis was per-
formed, obtaining the corresponding reactions from BRENDA.
The promiscuity space is represented by a multi-dimensional
space, obtained from the multi-linear regression analysis. For
simplicity, and in order to describe the promiscuity analysis
output,, a two dimensional space was outlined in Fig. 6 and the
native BRENDA reaction substrate's (blue circles) distances from
the centroid (red circle) were normalized to 1, and the tested
substrate (green circle) was outlined at a distance equal to the
promiscuity score. For reaction 12 and 16, a PS equal to 1.1 and
0.69 was calculated, respectively. The BRENDA predicted reaction
was reported showing the substrate difference in terms of the TC,
the corresponding species, and EC number (Furuyoshi et al., 1991).
In order to avoid extensive computation, the algorithm chooses
and saves the first possible solution for the particular species and
related promiscuity score, leaving behind a number of additional
feasible solutions able to fulfill the PS threshold. Reaction 17
represents a reaction gap filled by the algorithm. As shown in
Fig. 6, the only reaction that connects the D-malate (mal-D)
metabolite to E. coli metabolism are transport reactions through
the periplasmic and external membrane (iMALDt2_2pp and MAL-
Dtex, respectively). Since mal-D was not set as a media constitu-
ent, there was no option for it to be generated by the network. By
calculating reaction 17, it was feasible to connect a heterologous
pathway to central carbon metabolism, specifically to oxaloacetate
(oaa). Note that E. coli does contain malate dehydrogenase (MDH)
which reversibly converts L-malate to oaa, but it is not implied
that it can convert it to D-malate (Sutherland and McAlister-Henn,
1985).

Following synthetic calculation of heterologous pathways
for each target compound, strain design computations were
performed to engineer host cell metabolism. Continuing with the
current example for 1,3-propandiol production, productionTa

b
le

2
Ta

rg
et
ed

co
m
p
ou

n
d
s
an

d
th
eo

re
ti
ca
l
m
ax

im
u
m

yi
el
d
an

al
ys
is
.

Ta
rg

et
co

m
p
o
u
n
d

N
at
iv
e
o
r
n
o
n
-n

at
iv
e

N
o
.o

f
ca

rb
o
n
s

N
o.

o
f
co

m
p
u
te
d

p
at
h
w
ay

s
N
o
.o

f
u
n
iq
u
e
re
ac

ti
o
n
s

in
ea

ch
p
at
h
w
ay

A
er
o
b
ic

(C
-m

o
l
yi
el
d
/p
at
h
w
ay

ID
)

A
er
o
b
ic

EC
O
M

(C
-m

o
l
yi
el
d
/
p
at
h
w
ay

ID
)

A
n
ae

ro
b
ic

(C
-m

o
l
yi
el
d
/p
at
h
w
ay

ID
)

G
lu
co

se
X
yl
o
se

G
ly
ce

ro
l

G
lu
co

se
X
yl
o
se

G
ly
ce

ro
l

G
lu
co

se
X
yl
o
se

G
ly
ce

ro
l

1,
4-
b
u
ta
n
ed

io
l

N
on

-n
at
iv
e

4
4
4

21
70

/1
3

69
/1
3

82
/1
3

70
/1
3

66
/1
3

78
/1
3

70
/1
3

66
/1
3

78
/1
4

1,
3-
p
ro

p
an

ed
io
l

N
on

-n
at
iv
e

3
41

26
69

/1
6

69
/1
4

84
/7

57
/1
4

54
/1
6

79
/3
4

57
/1
6

52
/1
6

79
/7

3-
h
yd

ro
xy

p
ro

p
an

o
at
e

N
at
iv
e

3
25

33
96

/1
2

96
/1
3

97
/3

96
/1
2

96
/1
3

97
/1
2

96
/1
2

96
/1
3

71
/1
2

A
cr
il
ic

ac
id

N
on

-n
at
iv
e

3
23

33
96

/2
96

/2
97

/1
96

/2
96

/2
97

/2
96

/1
96

/2
71

/1
1-
p
ro

p
an

o
l

N
on

-n
at
iv
e

3
19

12
64

/3
64

/2
75

/3
64

/1
64

/2
75

/1
64

/3
64

/4
75

/1
1-
b
u
ta
n
o
l

N
on

-n
at
iv
e

4
18

11
64

/5
64

/1
5

75
/1
0

64
/4

64
/4

75
/1
0

64
/1
1

64
/5

75
/5

Is
o
p
ro

p
an

o
l

N
on

-n
at
iv
e

3
14

8
63

/4
62

/4
72

/1
61

/3
59

/3
63

/4
58

/3
56

/3
54

/1
Is
o
b
u
ta
n
o
l

N
on

-n
at
iv
e

4
13

16
64

/2
64

/1
74

/1
64

/2
64

/1
72

/1
64

/1
64

/1
66

/1
A
cr
yl
am

id
e

N
on

-n
at
iv
e

3
10

15
96

/3
96

/3
97

/3
96

/3
96

/3
97

/3
96

/3
96

/2
71

/2
3-
h
yd

ro
xy

b
u
ty
ra
te

N
on

-n
at
iv
e

4
9

8
83

/5
82

/1
93

/5
79

/2
77

/1
82

/1
73

/2
68

/1
49

/1
2-
p
h
en

yl
et
h
an

o
l

N
on

-n
at
iv
e

8
5

7
73

/9
73

/9
83

/9
47

/1
4
4/
2

50
/6

36
/5

31
/1

36
/6

2-
k
et
o-

b
u
ta
n
o
ic

ac
id

N
at
iv
e

4
5

6
94

/1
93

/1
97

/1
84

/1
78

/1
80

/1
84

/1
78

/1
69

/1
2,
3-
p
ro

p
an

ed
io
l

N
on

-n
at
iv
e

3
4

4
68

/1
68

/1
79

/2
55

/1
51

/1
56

/2
55

/1
51

/1
40

/1
2-
k
et
o-

is
o
va

le
ri
c
ac

id
N
at
iv
e

5
3

3
86

/3
85

/3
97

/3
84

/3
82

/3
90

/3
79

/3
69

/3
49

/3
3-
h
yd

ro
xy

va
le
ra
te

N
on

-n
at
iv
e

5
3

6
75

/2
74

/2
85

/2
54

/2
51

/2
49

/2
4
4/
2

38
/2

27
/2

2,
3-
b
u
ta
n
ed

io
l

N
on

-n
at
iv
e

4
2

3
70

/1
69

/1
79

/1
70

/1
68

/1
74

/1
69

/1
66

/1
53

/1
3-
m
et
h
yl
-1
-b

u
ta
n
o
l

N
on

-n
at
iv
e

5
2

3
62

/1
61

/1
70

/1
58

/1
57

/1
60

/1
49

/1
43

/1
53

/1
2
-m

et
h
yl
-1
-b

u
ta
n
o
l

N
on

-n
at
iv
e

5
2

3
60

/1
59

/1
70

/1
42

/1
39

/1
50

/1
36

/1
31

/1
36

/1
4-
h
yd

ro
xy

b
u
ty
ra
te

N
at
iv
e

4
2

2
78

/1
77

/1
88

/1
64

/1
58

/1
45

/1
4
4/
1

39
/1

26
/1

2-
k
et
o-

va
le
ri
c
ac

id
N
on

-n
at
iv
e

5
1

1
88

/1
88

/1
97

/1
88

/1
87

/1
92

/1
88

/1
87

/1
70

/1

Fo
r
ea

ch
ta
rg
et

co
m
p
ou

n
d
,m

ax
im

u
m

th
eo

re
ti
ca
l
yi
el
d
s
(C
-m

ol
)
w
er
e
re
p
or
te
d
fo
r
d
if
fe
re
n
t
st
ra
in

an
d
su

bs
tr
at
e
co

n
d
it
io
n
s.

Sh
ow

n
n
ex

t
to

th
e
yi
el
d
is

th
e
co

rr
es
p
on

d
in
g
p
at
h
w
ay

ID
sh

ow
n
in

Su
p
p
le
m
en

ta
ry

p
at
h
w
ay

s.

M.A. Campodonico et al. / Metabolic Engineering 25 (2014) 140–158150



envelopes of growth-coupled designs for pathways #7 and #16
were outlined in Fig. 8a. Furthermore, a productivity analysis
under different conditions was performed (Fig. 8b), where shaded
areas represent the maximum theoretical production rate by
setting the computational minimal growth rate to 0.1 h�1, and
solid areas represent the maximum growth-coupled production
rate. As mentioned before, the overall trend shows that under
aerobic conditions, maximum theoretical production is higher flux
compared to anaerobic. Moreover, by using glycerol as a substrate
instead of glucose, higher productivities were calculated for both
aerobic and anaerobic conditions. Specifically, when comparing
the maximum theoretical production for pathways #16 and #7
under aerobic conditions, an increase of 17% and 25% was
observed, and under anaerobic conditions a 6% and 67% increase
was observed over glucose, respectively.

Depending on the inserted heterologous pathway, different flux
distributions were calculated. For pathways #16 and #7, the flux
solution ratio for maximum theoretical production when using
glycerol over glucose as substrates was calculated and qualitatively
outlined (see Supplementary Fig. 7). For both pathways under
aerobic conditions, there was a decrease in the carbon dioxide
evolution when using glycerol as a substrate (approximately 50%
less carbon dioxide was produced). Looking at the flux

distributions, for pathway #16, no activity was predicted for the
pentose phosphate pathway (PPP) when using glycerol as a
substrate, and a higher target production rate when using glycerol
was observed. This was due to the glycerol uptake metabolism,
which is able to produce nadh and nadph similar to the PPP, but
without generating carbon dioxide in the process, leading to more
efficient carbon metabolism. For anaerobic conditions, a similar
trend and a mixed acid fermentation behavior was observed. By
comparing the maximum theoretical production for both path-
ways under the same conditions (same substrate and oxygena-
tion), pathway #16 is able to achieve higher productivity by using
glucose as a substrate, approximately 4% and 22% more under
aerobic and anaerobic conditions, respectively. Still, by using
glycerol as a carbon source, the productivity decreases approxi-
mately, 3% and 22% less under aerobic and anaerobic conditions,
respectively. This result demonstrated that the novel GEM-Path
predicted pathways #16 is more suited to implement linked to a
glucose based fermentation process. According to Fig. 8a and b,
growth-coupled designs were only found for glycerol under both
anaerobic and aerobic conditions. No growth-coupled designs
associated with glucose under anaerobic conditions were found,
and under aerobic conditions, only a low productivity growth
coupled design for pathway #16 was found.

acrylamide

acrilic acid
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Fig. 5. Analysis of predicted yields for identified strain designs: the circumference of the plot is divided into 20 different segments, each corresponding to a specific target
compound. The yield is represented along the radius, where the center and the perimeter represent C-mol yields equal to 0 and 1, respectively. Two different kinds of results
are plotted in this diagram. First, the theoretical maximal growth-coupled yield for different knock-out and strain/substrate combinations were plotted for each target
compound. Colored points represent the strain condition for wild type/aerobic (red), ECOM/aerobic (blue), and wild type/anaerobic (green). The shape defines a specific
substrate use for xylose (þ), glycerol (n), and glucose (o). The second set of results corresponds to the average maximal theoretical yield (black line) for each compound (each
compound can have multiple predicted pathways) with the corresponding standard deviation (brown line) added to this mean. These values were calculated from the
theoretical yield analysis, where all the simulations regarding strain/substrate conditions were taken into account. Finally, the highest maximal theoretical yield value is
represented by the red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.7.2. Case-study II: production of isopropanol
GEM-Path predicted pathways for the production of isopropa-

nol are shown in Fig. 7. For the production of isopropanol, two
different GEM-Path calculated pathways were outlined: Pathway

#13 (reactions 7, 8, and 1) which has been experimentally
implemented, and Pathway #1 (reactions 1 and 3). For Pathway
#1, specific output relating to a promiscuity analysis is shown.
For reaction 1, an exact match in the BRENDA database was found,

Table 4
Comparison of GEM-Path growth coupled design to previously identified pathways from literature.

Target compound Aerobic ECOM Anaerobic

Glucose Xylose Glycerol Glucose Xylose Glycerol Glucose Xylose Glycerol

1,4-butanediol 0.13n 0.22n 0.36n 0.47n 0.50n 0.60n 0.40n 0.51n 0.60n

1,3-propanediol 0.14n 0.16n 1,15E — — 1,00E — 1,12E 0,86E

3-hydroxypropanoate 1,76C 2,16C 0,51E 1,21C 2,48C 22,5C 1,67C 1,46C 2,29C

1-propanol 1,85E 0,78E 0,79E 0.36n 0,65E 0.48n 0,82E 0,68E 0,85E

1-butanol 1,34E 1,57E 2,32E 2,03E/C 2,31E/C 1,06E 1,05E/C 1,03E 1,16E

Isopropanol 0.18n 0.17n 0.21n — — 0.48n 0.38n 0.40n 0.50n

Isobutanol — — 0.01n 0.35n 0.37n 0.58n 0.54†E/C 0,01E/C —

3-hydroxybutyrate 0.61n 0.35n 0.43n 0.60n 0.52n 0.66n 0.30n — 0.12n

2-phenylethanol — — — — — — — — —

2,3-propanediol — — — — — — — — —

2,3-butanediol — — — — — — 0.37†E 0.40†E —

3-methyl-1-butanol — — — — — — — — —

2-methyl-1-butanol — — — — — — — — —

4-hydroxybutyrate — — — — — — — — —

For each target compound, the growth-coupled ratio between novel pathways generated by GEM-Path and experimentally implemented (E) and/or computationally
generated pathways (C) are shown. Empty spaces (—) indicate that no referenced pathways for the corresponding target compound were found.

n No experimentally implemented nor previous computationally predicted pathways were able to growth couple the target compound production. Maximum growth-
coupled yield associated with new pathway predicted by GEM-Path is reported.

† Only experimentally or previous computationally predicted pathway were able to growth couple the target compound production. Maximum growth-coupled yield is
reported.

Table 3
Predicted yields for growth-coupled strain designs by production interval and product.

Total no. of
strain designs

Oxygenation
No. of designs/avg. C-mol yield

Substrate
No. of designs/avg. C-mol yield

Knock outs
No. of designs/avg. C-mol yield

Aerobic ECOM Anaerobic Glucose Xylose Glycerol 2 KO 3 KO 4 KO

Yield interval for growth-coupled designs
0.8–1.0 10 2/0.93 8/0.93 0/0 0/0 5/0.94 5/0.92 0/0 8/0.93 2/0.94
0.6–0.8 89 17/0.61 16/0.64 56/0.64 3/0.61 17/0.64 69/0.64 15/0.65 43/0.64 31/0.63
0.4–0.6 342 35/0.47 70/0.49 237/0.50 38/0.51 121 /0.48 183/0.51 105/0.5 146/0.50 91/0.48
0.2–0.4 461 123/0.29 130/0.32 208/0.32 169/0.31 138/0.31 154/0.32 133/0.31 185/0.31 143/0.32
0–0.2 369 248/0.1 59/0.05 62/0.08 149/0.1 121/0.10 99/0.06 147/0.07 137/0.11 85/0.09
Overall 1271 425/0.21 283/0.34 563/0.4 359/0.25 402/0.32 510/0.39 400/0.29 519/0.35 352/0.34
Percentage 19% 33% 22% 44% 28% 32% 40% 31% 41% 28%

Target compound
Acrylamide 77 23/0.13 26/0.31 28/0.33 29/0.20 25/0.39 23/0.21 27/0.22 31/0.30 19/0.28
Acrilic acid 152 38/0.13 67/0.30 47/0.31 56/0.21 49/0.34 47/0.24 44/0.22 65/0.28 43/0.27
3-hydroxypropanoate 110 34/0.19 36/0.28 40/0.32 38/0.18 36/0.36 36/0.26 35/0.22 45/0.31 30/0.26
1-propanol 143 55/0.15 6/0.41 82/0.39 41/0.25 47/0.25 55/0.38 63/0.26 50/0.33 30/0.36
Isopropanol 34 18/0.11 1/0.48 15/0.39 10/0.19 11/0.22 13/0.30 12/0.19 12/0.26 10/0.28
1-butanol 211 62/0.35 25/0.44 124/0.49 53/0.36 56/0.39 102/0.51 76/0.41 96/0.43 39/0.52
Isobutanol 23 1/0.01 17/0.32 5/0.23 6/0.28 8/0.22 9/0.35 1/0.00 18/0.36 4/0.03
1,3-propanediol 106 40/0.26 3/0.50 63/0.35 4/0.14 30/0.20 72/0.38 31/0.30 41/0.37 34/0.28
2,3-propanediol 0 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00
1,4-butanediol 375 144/0.21 88/0.35 143/0.44 110/0.23 129/0.31 136/0.43 100/0.30 145/0.34 130/0.34
2,3-butanediol 2 0/0.00 0/0.00 2/0.38 1/0.37 1/0.40 0/0.00 0/0.00 2/0.38 0/0.00
3-methyl-1-butanol 0 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00
2-methyl-1-butanol 0 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00
2-keto-isovaleric acid 1 0/0.00 1/0.54 0/0.00 0/0.00 0/0.00 1/0.54 0/0.00 0/0.00 1/0.54
2-keto-valeric acid 1 0/0.00 0/0.00 1/0.50 0/0.00 0/0.00 1/0.50 0/0.00 1/0.50 0/0.00
3-hydroxyvalerate 2 0/0.00 2/0.00 0/0.00 0/0.00 0/0.00 2/0.00 1/0.00 0/0.00 1/0.00
2-keto-butanoic acid 17 5/0.14 3/0.31 9/0.50 4/0.39 6/0.39 7/0.31 4/0.36 7/0.34 6/0.38
3-hydroxybutyrate 17 5/0.41 8/0.53 4/0.11 7/0.42 4/0.36 6/0.40 6/0.30 6/0.43 5/0.46
4-hydroxybutyrate 0 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00
2-phenylethanol 0 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00 0/0.00

The number of strain designs and the corresponding average yield are separated by “/”. Results were tabulated for each yield interval under different oxygenation/substrate/
knock-out conditions. Overall values were added at the bottom. The number of strain designs and the corresponding average yield are separated by “/”. Results were
tabulated for target compounds under different oxygenation/substrate/knock-out conditions. Furthermore, the number of predicted strain designs and the number of
growth-coupled pathway for each target compound were tabulated.
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sharing the same cofactors, substrates, and products. This is
represented by a substrate TC equal to 0 during the search.
Furthermore, a species known to carry out this reaction and EC
number were reported (Drewke and Ciriacy, 1988). Although the
reaction was reported to proceed in the reverse direction, no
evidence showing reaction irreversibility was found. Conversely,
no exact substrate structural match was found for reaction 3. Thus,
a promiscuity analysis was performed, obtaining the correspond-
ing reaction from BRENDA. The promiscuity space is represented
by 11 different native substrates (n¼11). In order to describe the
promiscuity analysis output and for simplicity, a two dimensional
space was outlined (as described above). According to the results, a
PS equal to 0.88 was calculated. The BRENDA predicted reaction
was reported showing the substrate difference in terms of the TC
along with a corresponding species and EC number. For the other
pathway (i.e. #13), reaction 7 represents a reaction gap filled by
the algorithm. As shown in Fig. 7, two different reactions connect
acetoacetate (acac) to other metabolites in the network. The first
reaction is ACACCT, which is an irreversible reaction on pathway
#13 opposite the isopropanol production direction, and the second
reaction is a transport reaction. Since acac was not set as a media
constituent, there was no option for it to be generated by the
network. By calculating Reaction 7, it was feasible to connect the
heterologous pathway to central carbon metabolism, specifically
to acetyl-coa (accoa). It should be noted that there is experimental
evidence for the existence of a reversible ACACT1r reaction (Fujii
et al., 2010; Gulevich et al., 2012), but there is also contradictory
evidence indicating that operation in this direction could be highly
unfavorable (Lan and Liao, 2012; McCloskey et al., 2014).

Nonetheless, the GEM-Path algorithm uses the content as defined
in the model (Orth et al., 2011) and curation is a helpful step after
promising production pathways are identified. Beyond identifying
pathways, growth coupled-designs utilizing pathways #1 and #13
were outlined in Fig. 8b. Furthermore, a max theoretical produc-
tion analysis under different conditions was performed (Fig. 8d),
where shaded areas represent the maximum theoretical produc-
tion by setting the computational growth rate to 0.1 h�1, and
solid areas show the maximum growth-coupled productivity. As
mention before, the overall trend shows that under aerobic
conditions, pathways are capable of carrying higher theoretical
flux as compared to anaerobic. Moreover, by using glycerol as a
substrate instead of glucose, higher productivities were calculated
for aerobic conditions. For anaerobic conditions and using glycerol
as a substrate, only pathway #1 was able to achieve higher flux
compared to glucose.

A maximum theoretical production analysis for isopropanol
revealed differences in production potential when using glycerol
or glucose as a substrate. For both pathways under aerobic
conditions, a decrease in carbon dioxide evolution was observed
when using glycerol as a substrate. For both pathways, approxi-
mately 25% less carbon dioxide was produced. Looking at the flux
distribution (see Supplementary Fig. 8), for pathway #1 and #13,
no activity in the PPP during glycerol consumption was observed,
due to the same reason described in the first 1,3-propanediol case
study. For anaerobic conditions, specifically for pathway #1, a mix
acid fermentation behavior was observed. Higher productivity was
observed compared to glycerol for pathway #13 under anaerobic
conditions and using glucose as a substrate. Byproduct formation
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during glycerol growth was critical in diminishing the productiv-
ity. By comparing the pathway's maximum theoretical production
under the same conditions (same substrate and oxygenation),
pathway #1 is able to achieve higher productivity by using glucose
as a substrate, approximately 1% and 7% more under aerobic and
anaerobic conditions, respectively. When utilizing glycerol as a
carbon source, the productivity increases approximately 6% and
94% under anaerobic conditions, respectively. This result demon-
strated that the novel GEM-Path predicted pathway #1 shows a
higher theoretical potential when using a glycerol based fermen-
tation process. As indicated in Fig. 8c and d, growth-coupled
designs were only found for pathway #1. Growth-coupled pro-
ductivities similar to the maximum theoretical achievable produc-
tivity were found using both glycerol and glucose as a substrate
and under anaerobic conditions.

4. Discussion

The aim of this work was to outline the production potential for
20 industrially-relevant chemicals in E. coli and generate feasible
designs for production strains. The enabling technology generated
for the project was a computational pipeline including chemoin-
formatics, bioinformatics, constraint-based modeling, and GEMs
to aid in the process of metabolic engineering of microbes
for industrial bioprocessing purposes. The main results from this
study are, (i) a comprehensive mapping from E. coli's native
metabolome to commodity chemicals that are 4 reactions or less
away from a natural metabolite, (ii) sets of metabolic interven-
tions, specifically knock-outs and knock-ins, that coupled the
target chemical production to growth rate, (iii) the development
of a retrosynthetic based pathway predictor algorithm containing

a novel integration with GEMs and reaction promiscuity analysis,
and (iv) a complete strain design workflow integrating synthetic
pathway prediction with growth-coupled designs for the produc-
tion of non-native compounds in a target organism of interest.

For synthetic pathway predictions, considerable attention
has been focused on retrosynthetic algorithms, where a backward
search for synthetic pathways is performed by an iterative appli-
cation of Biochemical Reaction Operators (BROs) from a target
compound to a predefined source of metabolites (Medema et al.,
2012). Based on 443 BROs included in this work, a retrosynthetic
pathway predictor algorithm was developed which incorporates
GEMs into the procedure. The GEM-Path algorithm is also coupled
together with database analysis for reaction existence and reaction
promiscuity inference. Predictions were compared to literature,
and showed a good agreement with previously reported algo-
rithms. Due to the filtering procedure at each iteration step,
specifically the promiscuity analysis, the number of generated
pathways was considerably lower as compared with previous
algorithms, diminishing the candidates required for further
experimental implementation. In total, GEM-Path generated 245
synthetic pathways for the production of 20 different compounds
in E. coli. The majority of the predicted pathways involved at least
one promiscuous reaction. Since the promiscuity analysis is based
on E.C. reaction numbers instead of genes, an enzymatic validation
step may be necessary to confirm the predicted functionality
before introduction into a production host.

Theoretically, all synthetic pathways identified in this work are
able to produce the target compound under a given substrate/
oxygenation/strain conditions and in total, they characterize the
production space. Novel pathways able to achieve high yield were
found for a range of commodity chemicals. According to the
theoretical maximum yield analysis, pathways implemented
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under wild type aerobic conditions tend to have a greater
production potential compared to the other strain/oxygenation
conditions. Furthermore, when changing the anaerobiosis thresh-
old, the more anaerobic the condition of a strain, the less overall
production could be achieved. Lower maximum theoretical yields
observed under anaerobic conditions (vs. aerobic) are expected, as
no oxygen is essentially an additional constraint, limiting the
capability of the network (just like the removal of a key reaction in
the network). Based on a C-mol Yield basis, under wild-type/aerobic
conditions, glycerol is found to be the most efficient substrate for
heterologous target compound production. However, for wild-type/
anaerobic, xylose and glucose are the most efficient substrates. In
addition, precursor yield analysis reveals that pathways having
precursors closest to the central metabolism are able to achieve
higher yields which agrees with logic as central metabolic reactions
carry the most flux in the network (Almaas et al., 2004).

Growth-coupled production of a specific metabolite depends
on the energy benefit that the cell can obtain through the pathway
activation related to the growth-coupled metabolite. Growth-
coupled design algorithms operate by knocking out reactions, thus
generating an energy imbalance that is recovered by then coupling
different pathways to growth. The final metabolite involved in

these pathways works as a final electron acceptor, thus, under
anaerobic conditions, pathways are more susceptible to coupling
to growth. The ability to find growth-coupled designs preferen-
tially under anaerobic conditions can be seen by analyzing the
overall results, where growth-coupled designs under wild-type
anaerobic conditions were found to be present more frequently
and were able to achieve higher yields. Further, designs with
glycerol as a substrate had the highest yields anaerobically. Thus,
under anaerobic conditions, growth-coupled designs are easier to
obtain compared to aerobic conditions. Furthermore, for most of
the predicted reactions contributing to a growth-coupled design,
approximately 40%, were oxidoredutases with NAD or NADP
acceptors. Removal of these reactions facilitates growth-coupling
as they shift the flow of electrons in metabolism (King and Feist,
2013).

Designs highlighted in this work were selected according to
their production potential (i.e., yield, Yp/s). Nevertheless, further
improvements are needed for the design and production workflow
to promote success in experimental implementation. For instance,
toxicity due to product or co-product formation was not evaluated
during the design pipeline; this might lead to the production of
toxic compounds together with cell death. Due to the scope of the
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GEMs used in this work (i.e., metabolic GEMs), key regulatory
steps were not taken into account. Furthermore, the impact of low
substrate affinity of predicted promiscuous enzymes might lead to
false positive results, decreasing the in vivo maximum achievable
yield. However, to generate non-native products, it is obvious that
new production pathways are necessary and thus that was the
focus of this work. Furthermore, growth coupled designs, such as
those produced here, provide an extra tool for metabolic engineers
by allowing for the use of selection pressure to achieve a desired
production state. For reactions predicted as promiscuous, in vitro
enzyme analysis might be necessary to identify and characterize
the potential promiscuous activity. Moreover, in order to avoid
undesirable metabolite sinks, a promiscuity analysis regarding
native metabolites must be taken into account when reactions
are incorporated into metabolism. Lastly, as in any production
strain project, enzyme efficiency issues and heterologous codon
optimization (Medema et al., 2012) must also be considered for
product formation.

Taken together, the workflow presented here finds that the 20
major commodity chemicals are within 4 reactions from the metabolic
network of E. coli. Further, it maps out all the feasible pathways linking
the chemical structures of these commodity chemicals to the meta-
bolic network of E. coli and their theoretical yields. It also maps out the
chemical reactions and enzymatic requirements for building these
pathways. Thus, in a way, we have generated a pathway atlas that can
guide the global metabolic engineering and strain design efforts
needed to convert the petroleum-based industry to a biomass-based
industry, and thus forms the basis for a grand challenge undertaken by
the community.

Acknowledgments

We would like to thank for Karsten Zengler, Joshua Lerman,
Nikolaus Sonnenschein, Zachary King and Daniel Zielinski for their
input and feedback on the project. Funding for this work was
provided by the Novo Nordisk Foundation. Also we would like to
thank MCESESUP2: Doctoral Scholarship for study abroad, the
Conicyt Basal Centre Grant for the CeBiB FB0001 and Project
UCH0717 National Doctoral Scholarship, Chile.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.ymben.2014.07.009.

References

Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N., Barabasi, A.L., 2004. Global organiza-
tion of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843.

Altaras, N.E., Cameron, D.C., 1999. Metabolic engineering of a 1,2-propanediol
pathway in Escherichia coli. Appl. Environ. Microbiol. 65, 1180–1185.

Arita, M., 2000. Metabolic reconstruction using shortest paths. Simul. Pract. Theory
8, 109–125.

Arundel, A., Sawaya, D., 2009. The bioeconomy to 2030: Designing a policy agenda.
Assary, R.S., Broadbelt, L.J., 2011. 2-Keto Acids to branched-chain alcohols as

biofuels: application of reaction network analysis and high-level quantum
chemical methods to understand thermodynamic landscapes. Comput. Theor.
Chem. 978 (1), 160–165.

Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Chou,
K.J., Hanai, T., Liao, J.C., 2008. Metabolic engineering of Escherichia coli for
1-butanol production. Metab. Eng. 10, 305–311.

Atsumi, S., Liao, J.C., 2008. Metabolic engineering for advanced biofuels production
from Escherichia coli. Curr. Opin. Biotechnol. 19, 414–419.

Atsumi, S., Wu, T.Y., Eckl, E.M., Hawkins, S.D., Buelter, T., Liao, J.C., 2010. Engineering
the isobutanol biosynthetic pathway in Escherichia coli by comparison of three
aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol.
85, 651–657.

Bar-Even, A., Noor, E., Flamholz, A., Buescher, J.M., Milo, R., 2011. Hydrophobicity
and charge shape cellular metabolite concentrations. PLoS Comput. Biol. 7,
e1002166.

Bayer, T.S., Widmaier, D.M., Temme, K., Mirsky, E.A., Santi, D.V., Voigt, C.A., 2009.
Synthesis of methyl halides from biomass using engineered microbes. J. Am.
Chem. Soc. 131, 6508–6515.

Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J., Rabinowitz, J.D.,
2009. Absolute metabolite concentrations and implied enzyme active site
occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599.

Bolton, E.E., Wang, Y., Thiessen, P.A., Bryant, S.H., 2008. PubChem: integrated
platform of small molecules and biological activities. Annu. Rep. Comput.
Chem. 4, 217–241.

Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O., 2014. Constraint-based models
predict metabolic and associated cellular functions. Nat. Rev. Genet. 15,
107–120.

Bramucci, M. G., Flint, D., Miller, E. S., Nagarajan, V., Sedkova, N., Singh, M., Van Dyk,
T. K., 2008. Method for the production of 1-butanol. U.S. Patent Application
2/110503.

Cann, A.F., Liao, J.C., 2008. Production of 2-methyl-1-butanol in engineered
Escherichia coli. Appl. Microbiol. Biotechnol. 81, 89–98.

Carbonell, P., Planson, A.G., Fichera, D., Faulon, J.L., 2011. A retrosynthetic biology
approach to metabolic pathway design for therapeutic production. BMC Syst.
Biol. 5, 122.

Cho, A., Yun, H., Park, J.H., Lee, S.Y., Park, S., 2010. Prediction of novel synthetic
pathways for the production of desired chemicals. BMC Syst Biol. 4, 35.

Connor, M.R., Cann, A.F., Liao, J.C., 2010. 3-Methyl-1-butanol production in Escher-
ichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol.
Biotechnol. 86, 1155–1164.

Curran, K.A., Alper, H.S., 2012. Expanding the chemical palate of cells by combining
systems biology and metabolic engineering. Metab. Eng. 14, 289–297.

Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K., Grier, D.L., Leland, B.A.,
Laufer, J., 1992. Description of several chemical structure file formats used by
computer programs developed at Molecular Design Limited. J. Chem. Inf.
Comput. Sci. 32, 244–255.

Dale, J.M., Popescu, L., Karp, P.D., 2010. Machine learning methods for metabolic
pathway prediction. BMC Bioinform. 11, 15.

Drewke, C., Ciriacy, M., 1988. Overexpression, purification and properties of alcohol
dehydrogenase IV from Saccharomyces cerevisiae. Biochim. Biophys. Acta. 950,
54–60.

Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D.,
Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.O., 2007. A genome-scale meta-
bolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260
ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121.

Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L., Palsson, B.O., 2009. Reconstruction of
biochemical networks in microorganisms. Nat. Rev. Microbiol. 7, 129–143.

Feist, A.M., Zielinski, D.C., Orth, J.D., Schellenberger, J., Herrgard, M.J., Palsson, B.O.,
2010. Model-driven evaluation of the production potential for growth-coupled
products of Escherichia coli. Metab. Eng. 12, 173–186.

Fischer, C.R., Klein-Marcuschamer, D., Stephanopoulos, G., 2008. Selection and
optimization of microbial hosts for biofuels production. Metab. Eng. 10,
295–304.

Fong, S.S., Burgard, A.P., Herring, C.D., Knight, E.M., Blattner, F.R., Maranas, C.D.,
Palsson, B.O., 2005. In silico design and adaptive evolution of Escherichia coli for
production of lactic acid. Biotechnol. Bioeng. 91, 643–648.

Fujii, T., Ito, K., Katsuma, S., Nakano, R., Shimada, T., Ishikawa, Y., 2010. Molecular
and functional characterization of an acetyl-CoA acetyltransferase from the
adzuki bean borer moth Ostrinia scapulalis (Lepidoptera: Crambidae). Insect
Biochem. Mol. Biol. 40, 74–78.

Furuyoshi, S., Nawa, Y., Kawabata, N., Tanaka, H., Soda, K., 1991. Purification and
characterization of a new NAD(þ)-dependent enzyme, L-tartrate decarboxy-
lase, from Pseudomonas sp. group Ve-2. J. Biochem. 110, 520–525.

Greene, N., Judson, P.N., Langowski, J.J., Marchant, C.A., 1999. Knowledge-based
expert systems for toxicity and metabolism prediction: DEREK, StAR and
METEOR. SAR QSAR Environ. Res. 10, 299–314.

Gulevich, A.Y., Skorokhodova, A.Y., Sukhozhenko, A.V., Shakulov, R.S., Debabov, V.G.,
2012. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis
through the inverted aerobic fatty acid beta-oxidation pathway. Biotechnol.
Lett. 34, 463–469.

Hanai, T., Atsumi, S., Liao, J.C., 2007. Engineered synthetic pathway for isopropanol
production in Escherichia coli. Appl. Environ. Microbiol. 73, 7814–7818.

Hatzimanikatis, V., Li, C., Ionita, J.A., Henry, C.S., Jankowski, M.D., Broadbelt, L.J.,
2005. Exploring the diversity of complex metabolic networks. Bioinformatics
21, 1603–1609.

Heath, A.P., Bennett, G.N., Kavraki, L.E., 2010. Finding metabolic pathways using
atom tracking. Bioinformatics 26, 1548–1555.

Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., 2007. Thermodynamics-based meta-
bolic flux analysis. Biophys. J. 92, 1792–1805.

Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., 2010. Discovery and analysis of
novel metabolic pathways for the biosynthesis of industrial chemicals:
3-hydroxypropanoate. Biotechnol. Bioeng. 106, 462–473.

Hou, B.K., Wackett, L.P., Ellis, L.B., 2003. Microbial pathway prediction: a functional
group approach. J. Chem. Inf. Comput. Sci. 43, 1051–1057.

Hu, Q.N., Zhu, H., Li, X., Zhang, M., Deng, Z., Yang, X., 2012. Assignment of EC
numbers to enzymatic reactions with reaction difference fingerprints. PLoS One
7, e52901.

M.A. Campodonico et al. / Metabolic Engineering 25 (2014) 140–158156

http://dx.doi.org/10.1016/j.ymben.2014.07.009
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref1
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref1
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref2
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref2
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref3
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref3
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref4
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref4
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref4
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref4
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref5
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref5
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref5
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref6
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref6
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref7
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref7
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref7
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref7
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref8
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref8
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref8
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref9
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref9
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref9
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref10
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref10
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref10
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref11
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref11
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref11
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref12
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref12
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref12
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref13
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref13
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref14
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref14
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref14
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref15
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref15
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref16
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref16
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref16
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref17
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref17
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref18
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref18
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref18
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref18
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref19
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref19
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref20
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref20
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref20
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref21
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref21
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref21
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref21
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref22
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref22
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref23
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref23
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref23
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref24
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref24
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref24
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref25
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref25
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref25
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref26
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref26
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref26
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref26
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref27
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref27
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref27
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref27
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref27
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref27
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref28
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref28
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref28
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref29
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref29
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref29
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref29
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref30
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref30
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref31
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref31
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref31
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref32
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref32
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref33
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref33
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref34
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref34
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref34
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref35
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref35
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref36
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref36
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref36


Hwang, J.Y., Park, J., Seo, J.H., Cha, M., Cho, B.K., Kim, J., Kim, B.G., 2009.
Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using
aromatic transaminase with yeast Ehrlich pathway. Biotechnol. Bioeng. 102,
1323–1329.

Ibarra, R.U., Edwards, J.S., Palsson, B.O., 2002. Escherichia coli K-12 undergoes
adaptive evolution to achieve in silico predicted optimal growth. Nature 420,
186–189.

Ishikura, Y., Tsuzuki, S., Takahashi, O., Tokuda, C., Nakanishi, R., Shinoda, T., Taguchi,
H., 2005. Recognition site for the side chain of 2-ketoacid substrate in d-lactate
dehydrogenase. J. Biochem. 138, 741–749.

James, C. A., Weininger, D., Delany, J., 2004. Daylight theory manual. Daylight
Chemical Information Systems Inc.. 3951.

Jang, Y.S., Park, J.M., Choi, S., Choi, Y.J., do.Y, Seung, Cho, J.H., Sang, Y.L, 2012.
Engineering of microorganisms for the production of biofuels and perspectives
based on systems metabolic engineering approaches. Biotechnol. Adv. 30,
989–1000.

Jankowski, M.D., Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., 2008. Group
contribution method for thermodynamic analysis of complex metabolic net-
works. Biophys. J. 95, 1487–1499.

Ji, X.J., Huang, H., Ouyang, P.K., 2011. Microbial 2,3-butanediol production: a state-
of-the-art review. Biotechnol. Adv. 29, 351–364.

Jojima, T., Inui, M., Yukawa, H., 2008. Production of isopropanol by metabolically
engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1219–1224.

Kajiura, H., Mori, K., Shibata, N., Toraya, T., 2007. Molecular basis for specificities of
reactivating factors for adenosylcobalamin-dependent diol and glycerol dehy-
dratases. FEBS J. 274, 5556–5566.

Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S.,
Katayama, T., Araki, M., Hirakawa, M., 2006. From genomics to chemical
genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357.

Keasling, J.D., 2012. Synthetic biology and the development of tools for metabolic
engineering. Metab. Eng. 14, 189–195.

Kim, T.Y., Sohn, S.B., Kim, H.U., Lee, S.Y., 2008. Strategies for systems-level metabolic
engineering. Biotechnol. J. 3, 612–623.

King, Z.A., Feist, A.M., 2013. Optimizing cofactor specificity of oxidoreductase
enzymes for the generation of microbial production strains—optswap.
Ind. Biotechnol. 9, 236–246.

Koma, D., Yamanaka, H., Moriyoshi, K., Ohmoto, T., Sakai, K., 2012. Production of
aromatic compounds by metabolically engineered Escherichia coli with an
expanded shikimate pathway. Appl. Environ. Microbiol. 78, 6203–6216.

Laffend, L. A., Nagarajan, V., Nakamura, C. E., 1997. Bioconversion of a fermentable
carbon source to 1, 3-propanediol by a single microorganism. U.S. Patent No.
5686276.

Lan, E.I., Liao, J.C., 2012. ATP drives direct photosynthetic production of 1-butanol in
cyanobacteria. Proc. Natl. Acad. Sci. U.S.A 109, 6018–6023.

Latino, D.A., Aires-de-Sousa, J., 2009. Assignment of EC numbers to enzymatic
reactions with MOLMAP reaction descriptors and random forests. J. Chem. Inf.
Model. 49, 1839–1846.

Lee, J.W., Na, D., Park, J.M., Lee, J., Choi, S., Lee, S.Y., 2012. Systems metabolic
engineering of microorganisms for natural and non-natural chemicals. Nat.
Chem. Biol. 8, 536–546.

Lee, S. Y., Park, J. H., 2008. Enhanced butanol producing microorganisms and
method for preparing butanol using the same. WO Patent WO/2008/072921.

Lu, M., Lee, S., Kim, B., Park, C., Oh, M., Park, K., Lee, S.Y., Lee, J., 2012. Identification
of factors regulating Escherichia coli 2,3-butanediol production by continuous
culture and metabolic flux analysis. J. Microbiol. Biotechnol. 22, 659–667.

Lun, D.S., Rockwell, G., Guido, N.J., Baym, M., Kelner, J.A., Berger, B., Galagan, J.E.,
Church, G.M., 2009. Large-scale identification of genetic design strategies using
local search. Mol. Syst. Biol. 5, 296.

Lynch, M. D., 2011. Compositions and methods for 3-hydroxypropionate bio-
production from biomass. US Patent 80486242011.

Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Bioresour. Technol. 70,
1–15.

McCloskey, D., Gangoiti, J.A., King, Z.A., Naviaux, R.K., Barshop, B.A., Palsson, B.O.,
Feist, A.M., 2014. A model-driven quantitative metabolomics analysis of aerobic
and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and
thermodynamically consistent. Biotechnol. Bioeng. 111, 803–815.

McCloskey, D., Palsson, B.O., Feist, A.M., 2013. Basic and applied uses of genome-
scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 9,
661.

McShan, D.C., Rao, S., Shah, I., 2003. PathMiner: predicting metabolic pathways by
heuristic search. Bioinformatics 19, 1692–1698.

Medema, M.H., van Raaphorst, R., Takano, E., Breitling, R., 2012. Computational
tools for the synthetic design of biochemical pathways. Nat. Rev. Microbiol. 10,
191–202.

Mu, F., Unkefer, C.J., Unkefer, P.J., Hlavacek, W.S., 2011. Prediction of metabolic
reactions based on atomic and molecular properties of small-molecule com-
pounds. Bioinformatics 27, 1537–1545.

Nagarajan, V., Nakamura, C. E., 1998. Production of 1, 3-propanediol from glycerol
by recombinant bacteria expressing recombinant diol dehydratase. US Patent
5821092.

Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., Nam, H., Feist, A.M., Palsson, B.O., 2011.
A comprehensive genome-scale reconstruction of Escherichia coli metabolism-
2011. Mol. Syst. Biol. 7, 535.

Orth, J.D., Thiele, I., Palsson, B.Ø., 2010. What is flux balance analysis?
Nat. Biotechnol. 28, 245–248.

Palsson, B., Zengler, K., 2010. The challenges of integrating multi-omic data sets.
Nat. Chem. Biol. 6, 787–789.

Paster, M., Pellegrino, J. L., Carole, T.M., Energetics, I., U.S. Department of Energy, O.
o. E. E., Renewable Energy, O. o. t. B. P., 2003. Industrial Bioproducts: Today and
Tomorrow. Energetics, Incorporated.

Peralta-Yahya, P.P., Zhang, F., del Cardayre, S.B., Keasling, J.D., 2012. Microbial
engineering for the production of advanced biofuels. Nature 488, 320–328.

Perlack, R. D., Stokes, B. J., 2011. US billion-ton update: biomass supply for a
bioenergy and bioproducts industry. Oak Ridge National Laboratory.

Pharkya, P., 2011. Microorganisms and methods for the co-production of isopropa-
nol eith primary alcohols, diols and acids. WO Patent WO/2011/031897.

Pharkya, P., Burgard, A.P., Maranas, C.D., 2004. OptStrain: a computational frame-
work for redesign of microbial production systems. Genome Res. 14,
2367–2376.

Portnoy, V.A., Bezdan, D., Zengler, K., 2011. Adaptive laboratory evolution-
harnessing the power of biology for metabolic engineering. Curr. Opin.
Biotechnol. 22, 590–594.

Portnoy, V.A., Herrgard, M.J., Palsson, B.O., 2008. Aerobic fermentation of D-glucose
by an evolved cytochrome oxidase-deficient Escherichia coli strain. Appl.
Environ. Microbiol. 74, 7561–7569.

Sauer, M., Porro, D., Mattanovich, D., Branduardi, P., 2008. Microbial production of
organic acids: expanding the markets. Trends Biotechnol. 26, 100–108.

Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen,
C., Stelzer, M., Thiele, J., Schomburg, D., 2011. BRENDA, the enzyme information
system in 2011. Nucleic Acids Res. 39, D670–D676.

Schellenberger, J., Park, J.O., Conrad, T.M., Palsson, B.O., 2010. BiGG: a biochemical
genetic and genomic knowledgebase of large scale metabolic reconstructions.
BMC Bioinform. 11, 213.

Schellenberger, J., Que, R., Fleming, R.M., Thiele, I., Orth, J.D., Feist, A.M., Zielinski, D.
C., Bordbar, A., Lewis, N.E., Rahmanian, S., Kang, J., Hyduke, D.R., Palsson, B.O.,
2011. Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307.

Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M., Liao, J.C., 2011. Driving forces
enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl.
Environ. Microbiol. 77, 2905–2915.

Shen, C.R., Liao, J.C., 2008. Metabolic engineering of Escherichia coli for 1-butanol
and 1-propanol production via the keto-acid pathways. Metab. Eng. 10,
312–320.

Shen, C.R., Liao, J.C., 2013. Synergy as design principle for metabolic engineering of
1-propanol production in Escherichia coli. Metab. Eng. 17, 12–22.

Silverman, R.B., 2002. The Organic Chemistry of Enzyme-Catalyzed Reactions.
Academic Press.

Soucaille, P., Meynial, S. I., Voelker, F., Figge, R., 2008. Microorganisms and methods
for production of 1, 2-propanediol and acetol. U.S. Patent Application 12/
532469.

Sutherland, P., McAlister-Henn, L., 1985. Isolation and expression of the Escherichia
coli gene encoding malate dehydrogenase. J. Bacteriol. 163, 1074–1079.

Suthers, P. F., Cameron, D. C., 2005. Production of 3-hydroxypropionic acid in
recombinant organisms. US Patent 6852517.

Tang, X., Tan, Y., Zhu, H., Zhao, K., Shen, W., 2009. Microbial conversion of glycerol
to 1,3-propanediol by an engineered strain of Escherichia coli. Appl. Environ.
Microbiol. 75, 1628–1634.

Tepper, N., Shlomi, T., 2010. Predicting metabolic engineering knockout strategies
for chemical production: accounting for competing pathways. Bioinformatics
26, 536–543.

Trinh, C.T., 2012. Elucidating and reprogramming Escherichia coli metabolisms for
obligate anaerobic n-butanol and isobutanol production. Appl. Microbiol.
Biotechnol. 95, 1083–1094.

Tseng, H.C., Martin, C.H., Nielsen, D.R., Prather, K.L., 2009. Metabolic engineering of
Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate.
Appl. Environ. Microbiol. 75, 3137–3145.

Valentin, H.E., Dennis, D., 1997. Production of poly(3-hydroxybutyrate-co-4-hydro-
xybutyrate) in recombinant Escherichia coli grown on glucose. J. Biotechnol. 58,
33–38.

Varma, A., Boesch, B.W., Palsson, B.O., 1993. Stoichiometric interpretation of
Escherichia coli glucose catabolism under various oxygenation rates. Appl.
Environ. Microbiol. 59, 2465–2473.

Vickers, C.E., Klein-Marcuschamer, D., Kromer, J.O., 2012. Examining the feasibility
of bulk commodity production in Escherichia coli. Biotechnol. Lett. 34, 585–596.

Wang, Q., Liu, C., Xian, M., Zhang, Y., Zhao, G., 2012. Biosynthetic pathway for poly
(3-hydroxypropionate) in recombinant Escherichia coli. J. Microbiol. 50,
693–697.

Werpy T., Petersen G., Aden A., Bozell J., Holladay J., White J., Manheim A., Eliot D.,
Lasure L., Jones S. and Top Value Added, Chemicals from Biomass. Volume 1-
Results of Screening for Potential Candidates from Sugars and Synthesis Gas,
No. DOE/GO-102004-1992. Department of Energy Washington DC, 2004.

Wyman, C.E., Decker, S.R., Himmel, M.E., Brady, J.W., Skopec, C.E., Viikari, L., 2005.
Hydrolysis of cellulose and hemicellulose, Polysaccharides: Structural Diversity
and Functional Versatility, pp. 995–1033.

Yan, Y., Lee, C.C., Liao, J.C., 2009. Enantioselective synthesis of pure (R,R)-2,3-
butanediol in Escherichia coli with stereospecific secondary alcohol dehydro-
genases. Org. Biomol. Chem. 7, 3914–3917.

Yang, F., Hanna, M.A., Sun, R., 2012. Value-added uses for crude glycerol–a
byproduct of biodiesel production. Biotechnol. Biofuels 5, 13.

Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J.,
Trawick, J.D., Osterhout, R.E., Stephen, R., Estadilla, J., Teisan, S., Schreyer, H.B.,

M.A. Campodonico et al. / Metabolic Engineering 25 (2014) 140–158 157

http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref37
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref37
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref37
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref37
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref38
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref38
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref38
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref39
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref39
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref39
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref40
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref40
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref40
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref40
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref41
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref41
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref41
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref42
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref42
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref43
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref43
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref44
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref44
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref44
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref45
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref45
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref45
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref46
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref46
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref47
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref47
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref48
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref48
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref48
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref49
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref49
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref49
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref50
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref50
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref51
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref51
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref51
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref52
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref52
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref52
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref53
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref53
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref53
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref54
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref54
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref54
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref55
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref55
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref56
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref56
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref56
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref56
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref57
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref57
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref57
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref58
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref58
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref59
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref59
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref59
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref60
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref60
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref60
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref61
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref61
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref61
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref62
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref62
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref63
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref63
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref64
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref64
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref65
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref65
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref65
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref66
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref66
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref66
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref67
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref67
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref67
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref68
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref68
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref69
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref69
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref69
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref70
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref70
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref70
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref71
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref71
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref71
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref71
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref72
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref72
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref72
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref73
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref73
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref73
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref74
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref74
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref75
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref75
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref76
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref76
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref77
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref77
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref77
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref78
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref78
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref78
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref79
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref79
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref79
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref80
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref80
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref80
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref81
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref81
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref81
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref82
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref82
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref82
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref83
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref83
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref84
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref84
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref84
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref86
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref86
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref86
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref87
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref87
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref87
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref88
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref88
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref89
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref89


Andrae, G.Q., Yang, T.H., Lee, S.Y., Burk, M.J., Van Dien, S., 2011. Metabolic
engineering of Escherichia coli for direct production of 1,4-butanediol. Nat.
Chem. Biol. 7, 445–452.

Zeng, A.P., Sabra, W., 2011. Microbial production of diols as platform chemicals:
recent progresses. Curr. Opin. Biotechnol. 22, 749–757.

Zhou, X.Y., Yuan, X.X., Shi, Z.Y., Meng, D.C., Jiang, W.J., Wu, L.P., Chen, J.C., Chen, G.Q.,
2012. Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombi-
nant Escherichia coli. Microb. Cell Fact. 11, 54.

M.A. Campodonico et al. / Metabolic Engineering 25 (2014) 140–158158

http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref89
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref89
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref89
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref90
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref90
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref91
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref91
http://refhub.elsevier.com/S1096-7176(14)00100-1/sbref91

	Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm,...
	Introduction
	Methods
	Model and flux balance analysis
	GEM-Path algorithm: chemoinformatics tools and techniques
	GEM-Path algorithm: databases
	GEM-Path algorithm: thermodynamic analysis
	GEM-Path algorithm: promiscuity analysis
	Theoretical analysis of the production potential in E. coli
	Strain design computations

	Results
	Synthetic pathway prediction algorithm development
	Biochemical Reaction Operators (BROs) formulation
	Pathway predictor (GEM-Path) algorithm

	Description of substrate and product selection
	Predicted pathways and reaction specifications
	GEM-Path validation
	Theoretical yield analysis of the production potential in E. coli
	Strain design
	GEM-Path output example
	Case I: production of 1,3-propanediol
	Case-study II: production of isopropanol


	Discussion
	Acknowledgments
	Supporting information
	References




