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Abstract Using a single line model, it has been shown recently that the presence of a

stringent financial constraint induces a less than optimal bus frequency and larger than

optimal bus size. This occurs because the constraint induces a reduction of the importance

of users’ costs (their time); in the extreme, users’ costs disappear from the design problem.

In this paper we show that such a constraint also has an impact on the spatial structure of

transit lines. This is done departing from the single line model using an illustrative urban

network that could be served either with direct services (no transfers) or with corridors

(transfers are needed). First, the optimal structure of lines is investigated along with

frequencies and vehicle sizes when the full costs for users and operators are minimized

(unconstrained case); the optimal lines structure is shown to depend upon the patronage

level, the values of time and the cost of providing bus capacity. Then the same problem is

solved for the extreme case of a stringent financial constraint, in which case users’ costs

have relatively little or no effect in determining the solution; in this case the preferred

outcome would be direct services under all circumstances, with lower frequencies and

larger bus sizes. The impact of the financial constraint on the spatial structure of transit

lines is shown to be caused by the reduction in cycle time under direct services; the

introduction of users’ costs in the objective function makes waiting times reverse this result

under some circumstances.

Keywords Public transport � Lines structure � Design � Financial constraint

Introduction

There is an emerging discussion regarding the financial aspects, property and contracts in

the provision of public transport services. By the early 80s it had been shown that the

optimal operation of a public transport system is linked to an optimal price that falls below

average cost, which induces an optimal subsidy (Jansson, 1979, 1984). This has received
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recent criticism; for example, van Reeven (2008) develops a model aimed at showing that a

profit-maximizing operator allowed to take into account the demand effects of its pricing

would offer a frequency at least as high as a welfare-maximizing one with no welfare

losses; later on, Basso and Jara-Dı́az (2010) showed that this result depends crucially on

demand inelasticity. By the same period Parry and Small (2009) concluded that in most of

the real cases they analyze, increasing transit subsidies would increase welfare

although subsidies already cover a large proportion of operators’ cost. Presently, the

financial aspects of public transport seem to dominate over optimal pricing and welfare,

which makes Jansson’s (2005) question relevant: ‘‘Why is optimal bus transport pricing

applied in hardly any urban area of the world?’’ To this we add that the link between the

financial aspects and the design of the public transport system has been absent from the

debate.

What has been observed in transit systems is that fares and subsidies are usually

determined outside the technical domain, not always accounting for the impact on the main

design variables: frequency of services, vehicle sizes and spatial coverage. This translates

into a financial constraint on the design of a public transport service, which has been

analyzed by Jara-Dı́az and Gschwender (2009) by means of a microeconomic analysis of a

single transit line. They showed that imposing such a constraint leads to a decrease in the

relative weight of users’ time in the cost function through the hidden reduction in the

weight given to their time values in the associated optimization problem. Analytically

those time values get divided by one plus the multiplier of the constraint, which makes

users’ cost weigh less relative to operators’, causing lower frequencies and larger buses in

comparison to the optimal values in the absence of a financial constraint. This was offered

as a theoretical explanation for the resulting fleet reduction and use of larger vehicles in the

redesign of the bus services in Santiago, Chile, where a self-financial constraint was

imposed while keeping the previous average fare; this had a very negative impact on

service quality and users’ costs. In this paper we want to examine the theoretical effect of a

stringent financial constraint on a third most important component from a strategic

viewpoint: the spatial structure of transit lines.

This spatial aspect of the design cannot be studied using a single line model and requires

extension to a network. In real (urban) cases, the transit network design problem has been

based mostly on heuristics (Kepaptsoglou and Karlaftis, 2009), such that a generic design

of routes is usually adapted incrementally following reasonable procedures. Here we will

deal with the generic design at a strategic level for policy analysis; from this viewpoint, the

spatial dimension has been sometimes introduced as a continuous design variable—subject

to optimization—in the form of some measure of the (regular) spacing between consec-

utive lines, as done by Chang and Shonfeld (1991), who considered the distance on a

rectangular grid, or Tirachini et al. (2010), who considered the angle on a circular city.

Analyzing lines structure, though, requires a departure from these continuous approaches

where each line operates similarly. There are two meaningful alternative spatial designs

that can be used to represent real generic structures. In the first structure users are served

mostly with direct lines that follow closely the spatial flow pattern, which makes transfers

on the main OD pairs unnecessary but present route overlapping along the main corridors;

this structure has been present in many capital cities in South America. An alternative

option is to design a set of bus lines such that users can make the necessary transfers to

reach the corresponding destinations; this type of bus lines structures relying on transfers

and avoiding overlapping are typically observed in European metropolitan areas. However,

it is not evident which one is better.
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Departing from Mohring’s (1972) and Jansson’s (1984) single line transit cost analyses,

Jara-Dı́az and Gschwender (2003b) considered several lines in a network, introducing the

choice between direct services—without transfers—and corridors where transshipments are

necessary. They studied these alternative structures aimed at minimizing total costs (users and

operators), showing that the outcome might depend on patronage.1 When patronage is relatively

low, the ‘‘full coverage’’ of direct lines may be neither in the interest of the bus company nor in

that of the passengers because of the low frequencies that would very probably result. However,

if patronage is large enough it may well happen that direct services can operate with sufficiently

high frequencies and avoiding transfer time.

As explained earlier, we want to study the effect of a stringent financial constraint on the

spatial structure of services. This will be done by comparing the total cost function, i.e. the

minimization of users’ plus operators’ costs for exogenously given patronage levels

(optimal design benchmark), against the minimum of operators’ costs only, which has been

shown to be equivalent to the extreme case caused by a stringent financial constraint. The

question, then, is how sensitive the optimal spatial structure of lines is—along with fre-

quency and bus size—to the consideration of users’ costs (time). To answer this we analyze

a spatial flow structure on a simple but representative network, searching not only for

frequencies but also for the lines structure and vehicle sizes that minimize a) total cost

(users and operators) and b) operators’ cost only. Results are comparatively presented,

including service structures, fleet sizes needed, in-vehicle travel times and waiting times. It

is shown that the best structure differs depending on the inclusion of users’ costs in the

objective and varies with the patronage level.2

In the next section, Background: financial constraint in the one line case, we explain the

essence of how a financial constraint operates diminishing the importance of users’ costs in

a single line case. Then in Design of lines structures on a network: methodology and

application to a case without financial constraint we add the spatial aspect of design in a

representative network where the alternative lines structures are two corridor lines with

transfers or four direct lines without transfers. As the (optimal) unconstrained case is a

benchmark, it is developed there in order to show the general results. The case with the

financial constraint is presented and discussed in Does a stringent financial constraint affect

the selection of lines structure? in order to emphasize that there is an effect on lines

structures (also on frequency and bus size). In Conclusions the main results are

summarized.

1 A cost analysis is aimed at finding the best combination of resources (inputs) for a given output
(patronage). In the case of public transport the challenge is to find the best combination of vehicles and
routes for a given flow pattern. At a later stage this supply analysis should be combined with a demand
model where the flow pattern is sensitive to the resulting service levels. This is similar to the usual supply–
demand analysis, but going beyond prices to include users’ time as well.
2 The issue of service structure has also been analyzed by Jara-Dı́az and Basso (2003) in a three nodes
network in relation with economies of spatial scope, showing that for the case of equal flows between each
of the six origin–destination pairs and equal distances, direct services are less costly for an operator than a
hub-and-spoke structure. This type of discussion resembles that in air transport regarding the use of hubs
(inducing transfers) versus fully connected networks (direct services; no transfers needed) for profit max-
imizing and socially optimal airlines. For example, Hendricks et al. (1995) show that an unregulated airline
might choose either structure depending on various elements including demand level. Using a simple
network structure Brueckner (2004) shows that a monopolistic airline would be biased in favor of the hub-
and-spoke structure and would choose lower than optimal frequencies and aircraft size. Pels et al. (2000)
conclude that ‘‘a fully connected network will be more profitable if the level of demand is relatively high,
fixed costs are low and economies of density are low’’.
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Background: financial constraint in the one line case

Following Jansson (1980, 1984), Jara-Dı́az and Gschwender (2009) analyzed total cost

minimization (i.e. users’ plus operators’ costs) for a public transport corridor used by a

total of Y passengers per hour homogeneously distributed along the corridor, all of them

traveling a fraction b of the corridor’s length. Vehicles operate at a frequency f. Defining

T as the time in motion of the vehicle in a cycle3 and t as the time that a passenger needs to

board or alight, cycle time tc is given by tc ¼ T þ 2tðY=f Þ. As fleet size (B) is given by f

times tc then B = fT ? 2tY. Following Jansson (1984) the cost per vehicle-hour for the

operator is given by c = c0 ? c1K, where c0 and c1 are constants and K is vehicle size

(passenger capacity). The users’ values of in-vehicle and waiting times are Pv and Pw

respectively. A financial constraint is imposed that restrains the operators’ cost to a

maximum of A, exogenously given because of, say, budgetary reasons or general policy

(e.g. an exogenously imposed fare and no subsidies). As the total value of the resources

consumed VRC increases with K (the derivative of VRC with respect to K is positive), K is

equal to the resulting load size, which depends on the optimisation variable f, i.e.

K ¼ k fð Þ ¼ Y

f
b: ð1Þ

Then the restricted social optimisation problem is (Jara-Dı́az and Gschwender, 2009)

Min
f

VRC ¼ fT þ 2tYð Þ c0 þ c1

Y

f
b

� �
þ Pw

1

2f
Y þ Pv T þ 2t

Y

f

� �
bY

subject to fT þ 2tYð Þ c0 þ c1

Y

f
b

� �
� A� 0

ð2Þ

As the service is assumed to have predetermined bus stops location, access time cannot

be optimized and is not included in Eq. (2).

If l is the multiplier of the financial constraint, then the frequency ~f and bus size ~K
resulting from problem (2) obtained by Jara-Dı́az and Gschwender (2009) are

~f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

Tc0

1

2

Pw

1þ lð Þ þ 2tYb
Pv

1þ lð Þ þ c1

� �� �s
; ð3Þ

~K ¼ l

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc0Y

�
1

2

Pw

1þ lð Þ þ 2tYb
Pv

1þ lð Þ þ c1

� �� �s
: ð4Þ

As shown in Jara-Dı́az and Gschwender (2009), the multiplier l increases as A diminishes.

This means that the tighter the budget, the larger isl, diminishing the role of time values on both

frequency and bus size. Two extreme cases can be identified. First, when the financial constraint

is not active (l = 0) the unconstraint optimal frequency f* and optimal vehicle size K* are

obtained. Second, for l ? ? (which occurs when A is set exactly at the minimum operators’

cost for each Y level), the frequency and bus size obtained corresponds to the minimization of

operators cost only because all terms with values of time disappear. Figure 1 shows the fre-

quency and bus size for both extreme cases. An intuitive interpretation is that ‘‘any given

passenger volume can be served with different combinations of frequency and vehicle size, but

users’ costs would be lower for high frequency-small vehicles combinations while operators’

3 Time in motion T includes time for acceleration/deceleration, time to open and close the doors and any
other component of the cycle time different from the time at stop for boarding and alighting purposes.
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costs are favoured by low frequency-large vehicles combinations, up to a limit’’ (Jara-Dı́az and

Gschwender, 2009, p. 69).

In summary, imposing a financial constraint acts on the optimal design diminishing

frequency and increasing bus size for all levels of patronage. This happens because the

constraint operates in such a way that it is equivalent to reduce the importance of users’

time in the design problem. Does a financial constraint also affect the spatial structure of

transit lines? In order to study this, we will analyze the convenience of different lines

structures to serve a given flow pattern on a network for the two extreme cases presented

above. First, we will find the best lines structure for a total cost minimization objective as

an extreme case in which there is no financial restriction at all and l = 0; second, we will

obtain the lines structure that minimizes operators cost only as the case in which the

financial constraint is extreme such that l ? ? and users cost are ignored.

Design of lines structures on a network: methodology and application
to a case without financial constraint

The spatial structure of transit lines will be analyzed solving the design problem for two

basic lines structures on the simple but representative network presented in Fig. 2. Fol-

lowing Jara-Dı́az and Gschwender (2003b), we will consider the direct lines structure,

which links every OD pair such that users need no transfers, and the corridor lines

structure, which tries to minimize the total length of the lines, forcing transfers in some OD

pairs. Both line structures cover the same network and therefore do not affect access time,

which is then irrelevant in the optimization. Unlike Jara-Dı́az and Gschwender (2003b),

operators’ cost will depend linearly on vehicle sizes, which becomes a design variable that

adds to frequencies and lines structure.

Let us begin with the unconstrained case of total cost minimization (users and opera-

tors); the case of operators’ cost only will be presented in the next section. The procedure is

as follows: first we search for the optimal fleets and vehicle sizes for each and every line

conditional on a lines structure; second, we compare the minimum conditional costs,

obtaining the overall optimal lines structure. To do this, we consider that:

• The total number of passengers using the system per hour is Y, distributed equally

among the OD pairs, i.e. Y/8 passengers on each pair.

• Cycle and in-vehicle times are affected by passengers boarding and alighting times.

• Boarding and alighting occurs sequentially at all available doors.
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Fig. 1 Frequency and vehicle size as a function of the number of passengers (Y), for both extreme cases of
the financial constraint (from Jara-Dı́az and Gschwender, 2009)
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• Operators’ cost depends linearly on vehicle size.

• Every line uses only one type of vehicles (equal vehicle size within each line).

• Waiting time is a proportion e of the headway (e = 0.5 if buses and passengers arrive

regularly, which is assumed in the numerical simulations of the appendixes).

Let T0/2 be the vehicle travel time between two consecutive nodes of the network in one

direction without boarding and alighting times, and let t be the time that a user needs to

board or alight. The cycle time tc for each line has two components: time in motion—given

by 2T0—and the time at the stops where users board and alight—given by 2t times the

number of users that board (and alight) a vehicle in a cycle. The number of users that board

is composed by two groups: those that board at the origin and those that board in transfers.

In the system, the number of transfers is given by the combination of the demand structure

and the lines structure, which is 0 for direct lines and Y/4 for corridors, as only two OD

pairs need a transfer (pairs ac and ed). Therefore the total number of passengers boarding is

Y(1 ? s), where s is the average number of transfers per trip in each structure (0 and � for

direct and corridors, respectively). As the problem is symmetric regarding both the flow

pattern and the lines structure, the frequency of service of each line, fi (and the fleet sizes

Bi), will be the same for all lines within a structure (but different among structures) and

passengers boarding are equally distributed for each structure among lines. Then the

number of passengers that board and alight on each vehicle cycle is Y(1 ? s)/fiN, where N

is the number of lines for each structure (2 for corridor, 4 for direct).

Therefore, cycle time for each line i is

tci ¼ 2T0 þ 2t � Y 1þ sð Þ
fiN

ð5Þ

Frequency of line i is the ratio between the fleet of the line and its cycle time:

fi ¼
Bi

2T0 þ 2t � Y 1þsð Þ
fiN

; ð6Þ

which yields

fi ¼
1

2T0N
NBi � 2tY 1þ sð Þ½ � and Bi ¼ 2T0fi þ 2t � Y 1þ sð Þ

N
: ð7Þ

B ¼ NBi ¼ 2T0Nfi þ 2tY 1þ sð Þ: ð8Þ
The total value of the resources consumed is the sum of operators and users costs.

Operators’ cost is (c0 ? c1K) times the total fleet size from Eq. (8). Note that K is the ratio

between the maximum load on a line (3Y/8)/(N/2) and fi. Therefore
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Fig. 2 Direct and corridor lines structures
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VRC ¼ c0 þ c1

3Y

4Nfi

� �
2T0Nfi þ 2tY 1þ sð Þ½ � þ Pwtw þ Pvtv: ð9Þ

Let us obtain users’ costs. Waiting time has two components: waiting at the origins and

waiting at transfers. From the origins Y/2 passengers move two nodes and Y/2 move one

node; long distance passengers wait e/fi in either lines structure, but short distance pas-

sengers can use N/2 lines to move one arc such that their waiting time is e/(N/2)fi. Pas-

sengers that transfer are sY and each waits e/(N/2)fi at the transfer point. Then total waiting

time tw is

tw ¼
Y

2

e
fi|{z}

at origins;
long distance

þ Y

2

e
ðN=2Þfi|fflfflfflfflffl{zfflfflfflfflffl}

at origins;
short distance

þ sY
e

ðN=2Þfi|fflfflfflfflfflffl{zfflfflfflfflfflffl}
at transfer points

¼ Ye
fi

1

2
þ 1

N
þ 2s

N

� �
: ð10Þ

In-vehicle time for a passenger has three components: time in motion, time in the

vehicle due to boarding and alighting of other passengers and time alighting. The first one

is always T0 for Y/2 (long distance) passengers and T0/2 for the remaining half, irrespective

of the lines structure; this makes a total of (3/4)T0Y.

Regarding time alighting we have two cases; the six OD flows that end at c or d and the

remaining two OD flows that end at b. Each of the (3/4)Y passengers that end their trip at c

or d have to alight as part of a group of (3/8)Y/(N/2) fi passengers per vehicle, because

(3/8)Y passengers arrive and alight at either c or d using N/2 lines that operate at a frequency

fi. As the first passenger alights immediately and the last has to wait t(3/8)Y/(N/2) fi, the

average alighting time is half this total. Therefore, the total alighting time at c and d is

tAc�d ¼
t

2

3Y

4

3Y

8
=ðN=2Þfi ¼

9

32

tY2

Nfi

; ð11Þ

Passengers alighting at b are of two types: those that end the trip there and those that

transfer, such that the total is (Y/4) ? sY. This total comes from two origins (a and e) using

N/2 lines from each, operating at a frequency fi such that the average alighting time is

(t/2)((Y/8) ? sY/2)/(N/2) fi. Then the total alighting time at b is

tAb ¼
Y

4
þ sY

� �
t

2

Y

8
þ sY

2

� �
=

N

2

� �
fi ¼

tY2ð1=4þ sÞ2

2Nfi

: ð12Þ

The final component of in-vehicle time is the time at stops due to the boarding and

alighting of other passengers. Note first that this delay is experienced neither by the Y/2

short-distance travelers nor by the sY that have to transfer, and this two groups are the ones

that actually cause the delay on the remaining Y - (Y/2)-sY (all of them long distance)

travelers.

The best way to understand this type of delays is to look at a flow like a–d in both structures.

In the direct lines structure, these passengers use line I and suffer the alighting of the short

distance travelers a–b that split into the N/2 lines that serve that link (I and II), which makes

(Y/8)/(N/2). The same number of passengers board at b in line I to go to d. Therefore, a total of

(Y/2 N)/fi board and alight each vehicle of line I at b, causing a total delay t(Y/2 N)/fi. This same

analysis holds for the other three long-distance OD flows in the direct lines structure. In the

corridors lines structure short distance passengers do not split (N/2 = 1) and passengers in line I

experience the (additional) alighting of passengers that go from a to c and the boarding of those

traveling from e to d, which adds up to all passengers that make a transfer, sY.
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Therefore, the delay experienced by each of the (Y/2)-sY passengers identified above

can be expressed as t[(Y/2 N) ? sY]/fi for both structures. Then the total delay for pas-

sengers in-vehicle due to other passengers boarding and alighting, tD, is given by

tD ¼
tY2

fi

1

2
� s

� �
1

2N
þ s

� �
: ð13Þ

The total in vehicle time tv is obtained adding time in motion (3/4)T0Y plus the results

(11), (12) and (13), which yields

tv ¼
3

4
T0Y|fflffl{zfflffl}

time in motion

þ tY2

2Nfi

9

16
þ 1

4
þ s

� �2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
time alighting

þ tY2

fi

1

2
� s

� �
1

2N
þ s

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
delays due to other passengers

boarding and alighting

ð14Þ

Note that alighting time is explicitly included in tv, while boarding time is implicitly

included in the waiting time as it is taken as a proportion e of the headway between buses,

and this headway includes time at the bus stop. Nevertheless, as explained above, boarding

time of other users affecting passengers that boarded in a previous stop are considered,

because they do impact on travel time. Finally, note that Eqs. (10) and (14) for tw and tv
respectively are general expressions for waiting and in-vehicle times as functions of any

given frequency (optimal or not), such that we observe both the effect caused by the

parameters that define a line structure (N and s) and the effect of frequency. This will be

shown to be relevant in the discussion on the best line structures.

Now we have all the elements to minimize VRC with respect to fi. Replacing Eqs. (10)

and (14) in (9), first order conditions yield optimal frequency as

f �i ¼
1

2N

ffiffiffiffiffiffiffiffiffi
Y

c0T0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tY 3c1 1þ sð Þ þ Pv

9

8
þ s

2
ð2N � 1Þð1� 2sÞ

� �� �
þ Pwe N þ 2ð1þ 2sÞ½ �

s
:

ð15Þ
Equation (15) is a general expression for the optimal frequency of all lines in either

structure. From this one can see directly that f �i decreases with N and increases with s
within the range analyzed, which unambiguously show that frequency is lower for each of

the four direct lines than each of the two corridor lines, as expected. This property does not

translate into the optimal fleet size or the optimal bus size. The former is obtained by

replacing (15) in (8), which yields

B� ¼ 2tY 1þ sð Þ

þ
ffiffiffiffiffiffiffiffi
T0Y

c0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tY 3c1 1þ sð Þ þ Pv

9

8
þ s

2
ð2N � 1Þð1� 2sÞ

� �� �
þ Pwe N þ 2ð1þ 2sÞ½ �

s

ð16Þ

while the optimal bus size is given by

K�i ¼
3Y

4Nf �i
¼

3
2

ffiffiffiffiffiffiffiffiffiffiffiffi
c0T0Y
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tY 3c1 1þ sð Þ þ Pv

9
8
þ s

2
ð2N � 1Þð1� 2sÞ

	 
� �
þ Pwe N þ 2ð1þ 2sÞ½ �

q :

ð17Þ
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The VRC can be written as a function of fi replacing tw (10) and tv (14) in (9), which

yields

VRC ¼ 2c0tY 1þ sð Þ þ 4fiNc0T0 þ
3T0Y

2
c1 þ

Pv

2

� �
: ð18Þ

Replacing optimal frequency (15) yields the cost function as

C� ¼ 2c0tY 1þ sð Þ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
c0T0Y
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tY 3c1 1þ sð Þ þ Pv

9

8
þ s

2
ð2N � 1Þð1� 2sÞ

� �� �
þ Pwe N þ 2ð1þ 2sÞ½ �

s

þ 3T0Y

2
c1 þ

Pv

2

� �
ð19Þ

From the total generic cost function (19) and the values of s and N, the optimal structure

can be found by comparison. The third term is equal for both direct and corridor lines and

cancels out. As shown numerically in Appendix 1 the first term of Eq. (19) is negligible

with respect to the second term, which allows analytical comparison using only the square

root. This yields that the total cost of direct lines is lower when4:

tY

ePw

c1 þ 0:25Pvð Þ[ 4

3
: ð20Þ

The probability of direct lines being the more convenient structure increases with the

size of tY and with the ratios c1/ePw and Pv/ePw (which is consistent with Jara-Dı́az and

Gschwender, 2003b). The intuition behind this is related with the relative importance of

waiting and in-vehicle times in each structure (including their prices) and with operators’

costs. To discuss this, it is convenient to examine first the lines structure that emerges when

the financial constraint is stringent, i.e. when users’ costs are (implicitly) dismissed, which

we present in the next section. Using this as the point of departure to understand the role of

users’ time will be proved to be particularly useful.

Does a stringent financial constraint affect the selection of lines structure?

As explained above, in order to analyze if a financial constraint has an impact in the

selection of the spatial structure of transit lines, we will consider now the other extreme

case of the constraint multiplier, l ? ?, which brings to zero the contribution of the

values of time, i.e. only operators costs are minimized. Solving the new problem, the

frequency, fleet and vehicle size that minimize operators’ expenses only are

f �i ¼
Y

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c1

c0T0

t 1þ sð Þ
r

ð21Þ

B� ¼ Y 2t 1þ sð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3T0c1

c0

t 1þ sð Þ
r� �

ð22Þ

4 For the numerical example in Appendix 1, the level of Y that makes the total cost of both structures equal
using the approximation behind Eq. (20) is 13.8% larger than the exact value when Eq. (19) is used.
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K�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3c0T0

4c1t 1þ sð Þ

s
ð23Þ

which can be also obtained imposing zero time values (Pw = Pv = 0) in Eqs. (15)–(17).

Then the minimum operators’ expense for each line structure is

C� ¼ Y 2c0t 1þ sð Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c0c1T0t 1þ sð Þ

p
þ 3T0c1

2

� �
ð24Þ

The comparison of expression (24) for both line structures yields that direct lines are

always better than corridors in this extreme case in which users costs are ignored and only

operators’ costs matter. Unlike the no-financial-constraint case, where the sum of users and

operators cost is minimized, now corridor lines are never the best structure. This implies

that a financial constraint does affect the selection of the best spatial structure of transit

lines.

Interestingly, the result of direct lines being always better than corridor lines when only

operators costs are taken into account contradicts the intuition of Jara-Dı́az and Gschw-

ender (2003b, p. 276), who stated: ‘‘What would be the best spatial structure of services if

users’ costs were not taken into account? Clearly, in that case direct services would never

be an undoubtedly superior solution (at most, a tie).’’ Our new analyses correct this

erroneous intuition. What happens is that avoiding transshipments—represented by

s—diminishes not only cycle time but also fleet size. This is clearly shown by expression

(22), where fleet size increases with s, which is nil for direct lines. Moreover, expression

(23) shows that vehicle size decreases with s. For short, direct lines with no transshipments

imply a lower fleet of larger buses, which reinforces the result represented by Fig. 1 for the

single line case and, as discussed earlier, induces a lower cost for every patronage level

because large vehicles are cheaper per place and capacity is adjusted to demand (vehicles

always full). This is what lies behind the lower operators’ cost for direct lines in Eq. (24)

where transshipments play the key role.

What would be the impact on users’ cost—which has been ignored in this design—of

implementing what is best for the operators only? Waiting time and in-vehicle time—

generically shown in Eqs. (10) and (14) respectively—can be now evaluated at the fre-

quency that minimizes operators’ cost in Eq. (21), which yields

t�w ¼ e N þ 2þ 4sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0T0

3c1t 1þ sð Þ

s
ð25Þ

t�v ¼
3

4
T0Y þ Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc0T0

3c1 1þ sð Þ

s
9

8
þ s

2
2N � 1ð Þ 1� 2sð Þ

� �
ð26Þ

Note that total waiting time is, in this case, independent of patronage; this evidently

occurs because waiting time is inversely related with frequency which in turn increases

linearly with Y. Evaluating Eq. (25) yields that, surprisingly, waiting time is always lower

in corridors, which means that the effect of a larger frequency (Eq. 21) dominates over the

effect of transshipments, a very interesting result indeed. These two effects can be seen in

the generic waiting time Eq. (10), where the line structure effect (1/2 ? 1/N ? 2s/N) is

larger for corridors (5/4) than for direct lines (3/4) because of the mandatory transfers, but

the frequency effect reverses the result of the comparison. Analogously, evaluating

Eq. (26) at the corresponding values of s and N we confirm that when only operators’ cost
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are minimized, in-vehicle time is always lower in direct lines, which was expected as tv is

directly linked with cycle time.

So, for synthesis, when only operators0 costs matter because of a financial constraint, the

preferred design corresponds to a direct lines structure with a (relatively) small fleet of

(relatively) large buses, with a negative impact on users’ waiting time. Let us analyze how

this changes when users’ costs enter the picture.

Let us take this case of an extreme financial constraint—where direct lines are always

the best—as the point of departure to understand why introducing users’ cost affects the

best line structure (and the other design variables). As waiting time is lower for the corridor

structure, one might think that when users’ costs are considered corridors could become the

best structure whenever waiting time dominates over in-vehicle time (which is larger in

corridors) plus operators’ costs. So a relevant question is how in-vehicle and waiting times

vary when the design follows total cost minimization. Is waiting time still lower (and in-

vehicle time larger) for corridors under this objective? Let us examine this.

The expressions for the waiting and in-vehicle times are obtained replacing optimal

frequency from Eq. (15) into Eqs. (10) and (14) respectively. Evaluating these expressions

for direct and corridor lines, it can be shown (Appendix 2) that in this case without

financial constraint corridor lines always have the lowest waiting time and the largest in-

vehicle time, just as in the case of the extreme financial constraint and for the same reason:

in spite of the transfers needed in the corridor structure (lines structure effect) total waiting

time is lower than in direct lines because the frequencies that passengers observe are higher

(frequency effect).5 On the other hand, in-vehicle time is larger for corridor lines, because

transfers imply a larger number of passengers boarding and alighting, increasing time at

bus stops and cycle times. This explains the role played by the waiting time value Pw in the

total cost minimizing condition (20) for the best lines structure. Larger Pw values decrease

the probability of direct lines being the best ones, and this happens because, as we have

shown, waiting times are always lower for corridors. Note that the contrary happens with

the size of Pv.

Corridor lines can be superior for low levels of patronage when there is no financial

constraint (total cost is minimized), according to result (20). Why is this? We do know

what happens with waiting time (lower for corridors) and in-vehicle time (lower for direct).

Regarding operators’ costs—obtained by replacing f* in the first term of Eq. (9)—it can be

shown that neither direct nor corridor lines structure are systematically superior. As shown

numerically in Appendix 3, for low values of Y the difference in waiting time dominates

over the differences in the other two components, even in a region where operators’ cost is

lower for direct lines. For short, for low levels of patronage each direct line results in low

frequencies yielding large waiting times, which changes the optimal structure towards

corridor lines when users’ costs are taken into account: the waiting time effect dominates.

For completeness, let us analyze optimal fleet and vehicle size under each lines

structure. The comparison of the fleet sizes using Eq. (16) is similar to the one made in the

comparison of the total cost (19): the first term is much smaller than the second one and

therefore the square root can be used for analytical comparison, yielding the same con-

ditions described in (20): increasing tY, Pv/ePw or c1/ePw increases the probability of direct

lines having the lowest fleet. Regarding vehicle size in Eq. (17) the conclusion is that

increasing tY, Pv/ePw or c1/ePw increases the probability of direct lines having larger

vehicles than corridor lines. Finally, when moving from l ? ? to l = 0 it is evident that

5 It is worth noting that besides the additional waiting time, transfers produce additional walking time and
disruption of the trip. Neither walking time nor transfer penalties are considered in our model.
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operators cost increases and that users costs must decrease by a larger amount. Behind this,

of course, lies the variation of fleet and vehicle size. Numerical simulation with data from

Santiago, Chile, replicates what was shown in Fig. 1 for the one-line case: optimal fleet

more than double the operators’ cost minimizing fleet and optimal vehicle size is less than

half.

Table 1 summarizes the design variables and level of service for both extreme cases of

the financial constraint.

As said earlier, the analysis of a stringent financial constraint on the design of a public

transport system was used by Jara-Dı́az and Gschwender (2009) to explain the fleet

reduction and vehicle size increase that was part of the complete redesign of the bus system

in Santiago, Chile, with dramatic consequences for the users. Looking at the bottom row of

columns 3, 4 and 5 in Table 1, it seems that in Santiago only fleet and vehicle sizes had

been impacted by the self-financial constraint, namely, smaller and larger than optimal fleet

and vehicle size respectively. Regarding the third element, whose analysis was the aim of

this research, the pre-existing direct lines structure was changed towards a mix of feeder

and corridor trunk lines. According to our results, minimizing operators costs only should

have resulted into a system of direct trunk lines; however, corridors were preferred. This

cannot be explained in terms of a financial constraint that was not stringent enough,

because minimizing total cost for a system with large bus patronage as in Santiago would

also yield a direct trunk lines system. We believe that this was due to an important

difference between the design process behind fleet and vehicle sizes—which are the result

of large scale optimization problems—and the design of a lines structure, which is mostly

based on heuristics and intuition. Moreover, the strategic model used to design the public

transport routes, frequencies and vehicle sizes was not sensitive to the effect of boarding

and alighting times on cycle times (that extends to fleet and, eventually, to costs). Nev-

ertheless, it is quite interesting to note that after the evident initial difficulties, the transit

system in Santiago is changing in the three design dimensions analyzed here in the

direction suggested by our results: fleet size has increased by some 30 % with smaller than

average vehicles, and some services have been either extended or complementarily

merged, increasing direct connectivity and inducing some overlapping.

Conclusions

By extending the single line cost model (Jara-Dı́az and Gschwender, 2009) to a repre-

sentative network, we have shown that a financial constraint does not only affect transit

Table 1 Summary of results

Financial
constraint
multiplier

Equivalent
objective

Best structure Fleet size Vehicle size Average
waiting
time

Average
in-
vehicle
time

l = 0 Min
CU ? CO

The probability of
direct increases
with tY, Pv/ePw

or c1/ePw

Lower for
best
structure

The probability of
KD [ KC

increases with tY,
Pv/ePw or c1/ePw

Lower for
corridors

Lower
for
direct

l ? ? Min CO Direct Lower for
direct

Larger for direct
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design in terms of frequency and vehicle sizes, but also in terms of the spatial structure of

lines. If no financial constraint exists, the optimal structure—corridor or direct lines—will

depend on the number of passengers Y and on the values of some key parameters: values of

time and the marginal cost of providing vehicle capacity. But a stringent financial con-

straint—which is shown to reduce the importance of users’ costs—changes the uncon-

strained result because what happens to matter is the reduction of the fleet that can be

induced by diminishing cycle time through the elimination of transfers, making direct lines

with a smaller fleet of larger buses always the best (sub-optimal) option.

The network analyzed includes one central and several peripheral nodes. When users’

and operators’ cost is minimized, we have shown that it becomes more likely that direct

lines are the most convenient as patronage increases or the relative value of waiting time

decreases (everything else constant); this happens mainly because, in spite of the man-

datory transfers, waiting times are lower in the corridors as a result of higher frequencies.

When only operators’ cost is minimized, direct lines are always more convenient because

they avoid transfers, diminishing boarding and alighting time, thus reducing cycle times

and fleet size which, finally, reduces operators’ cost. Nevertheless, when patronage is low,

each direct line (specialized in one OD pair) may result in low frequencies yielding large

waiting times. This is the reason why the inclusion of users’ cost (time) in the optimization

changes the optimal structure towards corridor lines for low levels of patronage. It was

found that for both extreme cases of the financial constraint, corridor lines yield always

lower total waiting times and larger in-vehicle times than the direct lines, but the waiting

time effect dominates. The fact that total in-vehicle time is larger in corridors than in direct

lines is explained by the transfers, which imply higher in-vehicle times for some

passengers.

In summary, for a system with given technical characteristics direct lines are the best

structure for the operators for all levels of patronage.6 Interestingly, direct lines are also the

optimal structure for users and operators when patronage is sufficiently high.7 However,

the fleet size is lower in the first case (with larger vehicles) negatively affecting users

through the waiting time. It is worth noting that the optimal structure is influenced by the

term tY, i.e. patronage acts through the boarding and alighting time of passengers.

Therefore, the patronage effect is reduced when boarding and alighting is made easier for

large groups of passengers, for example using several doors simultaneously (as in metro

systems), favoring the corridors structure. On the other hand, if a transfer penalty and/or

transfer walking time were considered, the probability of direct lines being the best ones

would increase. Nevertheless, no relevant change in the qualitative results would occur.

Note that the network model presented here was built to analyze the choice between

direct and corridor services for the main lines in an urban setting, the so-called trunk lines.

To be able to analyze the convenience of a feeder-trunk system as a whole, our approach

could be extended to consider unbalanced demands and shorter services in the extreme

points of the network. It would be interesting as well to include crowding, expressed as the

ratio between load size k and vehicle size K, which would affect waiting time through the

probability of not being able to board a vehicle and could be used to capture discomfort

making the in-vehicle time value an increasing function of that ratio. This could yield an

6 This coincides with the result obtained by Jara-Dı́az and Basso (2003) for their simplest case (equal
distances, equal flows) in a three nodes network.
7 This resembles the results obtained in the air transport literature for a socially optimal service structure
that depends on demand (Brueckner, 2004), if one associates hub and spoke with corridors (both have
transfers) and fully connected with direct lines (no transfers).
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optimal vehicle size larger than the maximum load, as obtained by Jara-Dı́az and

Gschwender (2003a) for a single line model.

Finally, note that a cost analysis yields the best combination of inputs for a given

patronage. This can be coupled with a demand model where flows are sensitive to service

levels in order to find welfare or profit maximizing optima, such that the actual (optimal)

flows become an outcome of the model simultaneously with the design variables and

prices.
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Appendix 1. Numerical comparison of total cost from Eq. (19)

See Tables 2 and 3

Total cost is equal for direct and corridor structures for Y = 6,536 passengers per hour.

The third term of Eq. (19) is equal for both structures so it cancels out. The first term is

never larger than 3.1 % of the second term for both structures. When only this latter is

used, the difference in cost becomes nil for Y = 7,439 pax/h, 13.8 % larger than the exact

value.

Table 2 Values of the parame-
ters used in the numerical
evaluation

Diesel bus costs parameters
calculated from SECTRA (2004).
Pv taken from MIDEPLAN
(2007); Pw set to three times Pv

Parameter Value Units

c0 10.65 US$/h

c1 0.203 US$/h

t 2.5 s

T0 2.72 h

Pw 4.44 US$/h

Pv 1.48 US$/h

e 0.5

Table 3 Numerical comparison of total cost without and with approximation

Y (pax/h) 4,000 6,536 7,439 10,000

Total Cost (US$/h)

(A) Direct 18,465.8 29,474.9 33,379.5 44,430.3

(B) Corridor 18,400.7 29,474.9 33,407.0 44,543.0

(A)–(B) 65.1 0.0 -27.5 -112.7

First term

(C) Direct 59.2 96.7 110.0 147.9

(D) Corridor 74.0 120.8 137.5 184.9

Second term

(E) Direct 3,016.8 4,231.4 4,648.4 5,807.9

(F) Corridor 2,937.0 4,207.2 4,648.4 5,883.7

(E)–(F) 79.8 24.2 0.0 -75.8
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Appendix 2. Optimal waiting and in-vehicle times

Replacing optimal frequency from Eq. (15) into the expressions for the waiting time (10)

and in-vehicle time (14) yields.

t�w ¼
e N þ 2þ 4sð Þ

ffiffiffiffiffiffiffiffiffi
c0T0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 3c1 1þ sð Þ þ Pv

9
8
þ s

2
ð2N � 1Þð1� 2sÞ

	 
� �
þ Pwe

Y
N þ 2þ 4sð Þ

q ðA2:1Þ
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3

4
T0Y þ

tY 9
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þ s
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2
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� �
þ Pwe

Y
N þ 2þ 4sÞ½ �

q ðA2:2Þ

The waiting times for each structure are obtained replacing (N, s) by (2, 1/4) for

corridors and (4, 0) for direct lines. This yield that total waiting time for corridors is lower

than for direct lines when

75 tc1 þ 28:125 tPv þ 150
Pwe
Y

\135 tc1 þ 47:25 tPv þ 180
Pwe
Y

ðA2:3Þ

which is always true. Analogously, in-vehicle time for corridors is larger than for direct

lines when (A2.4) is valid, which is always true.

147 tc1 þ 55:125 tPv þ 294
Pwe
Y

[ 135 tc1 þ 47:25 tPv þ 180
Pwe
Y

ðA2:4Þ

Appendix 3

See Table 4
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