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Seismic refraction velocity-versus depthmodels can complement our understanding of natural soils beneath flood
protection levees at locations between geotechnical sites. Levee failures in NewOrleans in 2005 are attributable in
part to poor understanding of sediments between geotechnical sites. To a first order, subsurface fluvial–deltaic
facies in the lower Mississippi delta plain correlate with general geotechnical properties of water content and
cohesive strength, but are too laterally variable to be easily predicted from geotechnical sites spaced 100 m apart.
An artificial earthen levee, suitable for seismic investigation, lies ~15 km S of the city of New Orleans, Louisiana.
Values of shear-wave velocity (VSH) versus depth (0–20 m) are derived by forward-ray-trace models of seismic
refraction arrivals which match key boundaries identified at (geotechnical) cone-penetration testing sites,
spaced at 300 m apart. In particular, a 100-m section along the levee crest shows continuous cracks which are
as much as 10 cm wide, and 30 cm deep at their northern end. Cracking may relate to high strain, induced by
variable near-surface subsidence of organic-rich sediments. Topographic cross-sections across the levee show
variable differential subsidence of 1–2 m. Based on effective medium theory, VP- and VSH-versus-depth profiles
indicate unexpectedly greater saturation and lower shear moduli on the unprotected levee side adjacent to the
cracks.
Integration of geophysical, sedimentary and topographic data, even if only at a few locations can help locate anom-
alous zones in sub-levee soil between geotechnical boring sites. Future preventive monitoring of flood-protection
barriers stands to benefit greatly from integrated data sets “ground truthed” to geotechnical data.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Despite an understanding of the processes leading to levee failures,
insufficient characterization of natural sub-levee soil conditions
continues to influence levee construction and impact their longer-
term integrity. Evenly spaced geotechnical sampling provides precise
measurements of properties (e.g., soil behavior types, water content)
but only at specific sites. For example, cone penetration testing (CPT)
is a common geotechnical practice (e.g., Fellenius and Eslami, 2000)
used to infer soil behavior types from the stress at the head of the tip
of the tool (qc) and friction along its sides (fs) as it is pushed through
soil at a constant rate. However, Rogers et al.'s (2008) analysis of multi-
ple levee failures in NewOrleans in 2005, after hurricane Katrina, shows
that linear interpolation of geotechnical properties between existing
borehole data over distances of ~600 m are insufficient to characterize
the diverse/laterally variable set of sedimentary units present in
this lower delta (Figure 1). Independent studies by experts suggest
that maintenance and monitoring of these structures require a novel
approach (Andersen et al., 2007).
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For levee evaluation and long-term monitoring, continuous seismic
profiles can be used tofill the gaps in subsurface geotechnical properties
between borehole sites. Seismic profiles have the potential to highlight
anomalous zones and direct more localized geotechnical sampling in a
more focus efficient manner (Niederleithinger et al., 2012). Seismic
properties (e.g., shear (VS) and compressional-wave (VP) velocities)
can be correlated at borehole tie-points; to meaningful geotechnical
properties (Na et al., 2005), such as soil behavior types which are
associated with equivalent grain size behaviors (Robertson, 1990) and
engineering shear strength estimates (Lane et al., 2008). Shear-wave
velocity within the levee fill can be derived from the analysis of
surface-waves along the levee center (Dunbar et al., 2007) or from
more traditional refracted SH waves. Although more sophisticated
well-known geostatistical methods exist that better take into account
the lateral heterogeneity of soil properties (e.g., kriging) these remain
underused in the geotechnical field (Hammah and Curran, 2006).

Ground truthing is essential to maintain the accuracy of borehole-
to-seismic correlations in a levee system. In some cases seismic anoma-
lies may correspond to normal construction conditions. Fill within an
artificial levee is usually locally derived, and can be made heteroge-
neous through the process of repeated building episodes. Inherent
uncertainties in the engineering analyses (Seed et al., 2006) and
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Fig. 1. Regional location and sedimentary setting. Study area (white box) along northern Gulf of Mexico Coast, USA, lies south of the city of NewOrleans (left insets). Mapped surface sed-
imentary facies (Saucier, 1994) are expected to represent near-surface (0–20 m) sediments. Traces of buried faults (thinwhite lines hachured in thedirection of fault block drop) (Wallace,
1957) and salt domes (dashed white lines) surround but do not cross study area.
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unexpected variability in the foundation soils can be checked indepen-
dently through these geophysical methods. Correlations at common
locations between low-strain seismic shear modulus and geotechnical
data (e.g., Hegazy and Mayne, 1995) should be conducted as regularly
as possible.

Near-surface (0–20 m) hydrogeologic processes in the natural soils
beneath artificial levees (levees, dikes)may contribute to their structur-
al failure. Specifically, differential rates of compactionwithin the natural
soil or embankment fill (Akpokodje, 1989) can help create zones of high
strain or local cracking. Floodplain and lower delta deposits rich in high-
ly porous, organic-rich soils are most susceptible to natural compaction
(Nyman et al., 1990) especially in the protected areas behind levees.
Exposure to additional oxygen accelerates decomposition (Galloway
et al., 1999) and can lower the protected land surface no longer
replenished by new sediments from the unprotected side of the levees,
at rates of 10−3–10−2 m/yr (Turner, 2004). Organic soils tend to confer
lower shear strength (e.g., Ulusay et al., 2010) so shear failure of slopes
is not uncommon in floodplains (Mesri and Ajlouni, 2007) such as the
Sacramento-San Joaquin delta area where over 100 levee failures
have taken place since the early 1890s (Galloway et al., 1999). As well,
below the surface, shallow seepage through cracked soils may also
facilitate failure though eventual slip and erosion (Dyer, 2005). Deep
seepage between the protected side and flood side of the embankment
can build up excessive hydrostatic pressure thus facilitating slip above
relatively impervious layers (Julien, 2002), or even initiate fluid flow
leading to blowouts (Cobos-Roa and Bea, 2008) and sand boils
(Dunbar et al., 1999).

Purely hydrological mechanisms can also induce bank failure of the
engineered fill that overlies natural sub-levee soils. Levee undercutting
(Dunbar et al., 1999) occurs naturally on the outer bends of river
meanders where the cross-sectional stream velocity is fastest (Turnbull
et al., 1966; Gagliano and van Beek, 1970; Reading, 1998; Miall, 2000).
Overtopping, accompanied by sufficient erosion of bank soils (Lee et al.,
2009), especially those weakened by poor compaction, may also lead
to breaching (Link and Jaeger, 2009).

Herein we examine near-surface (0–20 m) seismic data collected
between known geotechnical boring sites, and compare derived seismic
velocities against interpreted (from cone-penetrating testing) soil
behavior types, collected along a lower delta floodplain levee (artificial)
in the Greater New Orleans (U.S.A.) area. Unexpected cracks along the
levee crest exist which provide an opportunity to investigate possible
causes of the distress.

Based on previous work on New Orleans levees (Lane et al., 2008),
seismic data collection along the levee crest is susceptible to the effects
of the levee geometry. Along the crest, seismic wavelengths (10's of
meters or less) can be comparable to the width of the levee bodies
which can act as flexural waveguides and superimpose dispersive
wave noise on conventional Rayleigh wave arrivals (Miller and Ivanov,
2005; Karl et al., 2011). As well, if the levee fill is overall weaker than
the underlying natural foundation, high-velocity refractions and mode
conversions between compressional (P) and shear (SH) waves can
make arrival identification in seismic records more difficult. Seismic
data acquisition on the flatter levee flanks, where the fill is normally
thinner, should improve data quality and allow for simpler seismic
interpretations. In order to minimize interpretational ambiguities in
near-surface levee studies (Inazaki and Tadahiko, 2005), we employ
multiple geophysical and geotechnical data types, including historical
maps, geomorphic facies maps, detailed land and airborne topography
(Figure 2), and body-wave seismic data.

While electromagneticmethods have been in common use formany
years (e.g. Zhody et al., 1974; Neill, 1990) and are considered essential
in groundwater investigations (Santamarina et al., 2005), in their ab-
sence, concomitant changes in VP and VS values can be used as indicators
of proximity to the water table (e.g., Grelle and Guadagno, 2009). In
semi-arid fluvial sediments, especially after prolonged drought
conditions, VP–VS ratios have also been used to highlight anomalously
weak areas (Dunbar et al., 2007). Although in the New Orleans area,
rainfall is high (N1600 mm/yr; NOAA, 2011), and sub-levee soils lie
below sea-level, under these conditions, anomalous VP/VS values can
still indicate under-compactedmaterials and/or organic-rich sediments,
both of which are structurally weak and prone to failure (Rogers et al.,
2008).

2. Geological and geotechnical setting of study area

A suitable levee system for evaluation of the seismic method lies
~15 km south of the city of New Orleans, Louisiana (Figure 1), within
an area that contains geotechnical boring sites (Figure 2). We chose to
investigate a segment ~1000 m long that follows the eastern branch
of a V-shaped historical property boundary (U.S. Geol. Surv., 1947)



Fig. 2. Study area. Seismic and geotechnical data shown in this paper were collected along
the south-eastern side of “V-shaped” artificial levee (dashed lines). We use data from
seven (7) geotechnical wells (numbered boxes) that include cone penetrometer testing
(solid-white) and laboratory physical properties (solid-black box; Figure 4; FFEB, 2007).
Based on LiDAR elevation data (USACE, 2003), the point bar deposits (lighter gray areas;
also in Figure 1) lie above sea-level. The darker-shaded area between the point bar and
protected by the levee lies below sea-level. (A narrow, water-filled borrow pit lies be-
tween the low-land area and the levee.) Aerial photo interpretations (U. S. Navy, 1952)
confirm that existence of brackish/fresh water marsh areas and wooded regions over
swamp/point bar/natural levee deposits.
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(Figure 2). Along this segment, the subsurface soil structure appears
simpler than to the north, an area built over an infilled oil-field canal
(pers. com., Spohrer, 2008). However, since its original construction in
1991, crest-parallel surface cracks have appeared within our study
area (Figures 2, 3). These cracks persist despite the fact that the artificial
levee was upgraded three times in subsequent years (pers. com.,
Merritt, 2007). Along the levee top we trace a ~100 m-long, continuous
Fig. 3. Levee cracks. Views along “V-line” levee, looking south, display surface cracks along the
survey marker.
crack (GPS +/−1 m) that is relatively straight to the south but which
became curvilinear to the north (Figure 3). The crack is most noticeable
at the northern end where it is as wide as 10 cm and up to 30 cm deep
and where the greatest vertical surface displacement across the crack is
~10 cm down toward the flood-protected side (W). The curvilinear
crack near the levee crest is a common precursor to slope failure in
the case of a cohesive soil such as clay (Bromhead, 1986).

Near-surface sedimentary facies (Figures 1, 2) (Kolb and Van Lopik,
1958; Saucier, 1994; Dunbar and Britsch, 2008) most likely share geo-
technical characteristics with the upper 20 m of Holocene sediments
(Figure 4). Vegetative distribution, pre-dating levee construction and
noted in aerial photographs (U. S. Navy, 1952), corresponds well to
the mapped surface sedimentary facies (Figure 2).

Since ~7 kyr bp, when rates of global sea level rise decelerated
(Tornqvist et al., 2004; Peltier and Fairbanks, 2006), 6 major
progradational delta lobes built the coastline seaward (Frazier, 1967). In
our project area, the most recent Plaquemines–Balize lobe (1.3–0 kyr) is
responsible for the first ~4–5 m of sediment consisting of swamp and
marsh deposits. Immediately below this, lies the reworked sand-rich
top of the St. Bernard Delta Lobe, active in the Holocene between ~4 ky
and 2 ky bp (McFarlan, 1961; Frazier, 1967), and underlain by prodelta
clays.

In the Mississippi lower delta area, we anticipate that organic-rich
marsh deposits will be mechanically weak (Kolb and Van Lopik, 1958;
Saucier, 1994) with a high water content (N60%) as found in other
deltas globally (Wehling et al., 2003, San Joaquin delta; Akpokodje,
1989, Niger delta). Freshwater marsh soils can have N80% of their
volume constituted by water and gases including hydrogen sulfide
(Nyman et al., 1990). Formation of weak, under-consolidated, delta
soils (Boutwell, 2007) is assisted by high sedimentation rates,
60–100 m over the last 18 ky bp (Blum and Roberts, 2009), and a rela-
tively slow dewatering history.
crest (top, uninterpreted). Water-filled borrow pit lies NW of levee. Point W630 indicates
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Fig. 4. Physical properties: (A) Relate percent water content (ratio of water content to dry
weight), wet bulk density and cohesive strength to dominant lower-delta sedimentary fa-
cies (adapted from Saucier, 1994). Large dot marks mode in data distribution. (B) Well
68UFT data (Figures 2, 5, 11; FFEB, 2007) is referenced to the top of a sand-rich unit
interpreted for CPT data (Figure 11). Water-saturated porosity is calculated assuming a
grain density of 2300 kg/m3.

Table 1
Equipment, their accuracy, and seismic algorithms used to collect and display the seismic
data.

Seismic acquisition

Geophone separation
source–receiver offset

1 m
1–168 m (site A′), 1–72 m others

Geophones Mark Products L-28D 30 Hz 410 Ohm coil for
horizontal- and OYO GS-100Hz, 600 Ω, for
vertical-component sensors.

Seismograph 24-Channel, 24-bit resolution, R24 Geometrics
Strataview.

Sample rate, record length 2000 S/s, 2 s.
Seismic sources: For vertical blows: ~15.25 cm × ~15.25 cm ×

~2.5 (6 × 6 × 1 in.) aluminum plate;
using ~4.5 kg (10-lb) sledge hammer.
For horizontal blows: ~8.4 kg (9-lb) sledge-hammer;
Small I beam ~3.2 mm (1/8 ″-steel), kg each head of
the “I” is ~15.25 cm (6″) wide by ~28 cm (11″) long
and separated by 16.5 cm (6.5″); using ~4.5 kg (10-lb)
sledge hammer.

Radio-controlled start of
recording

Ario Labs seismic radio-trigger 423 MHz.

Topographic surveying

GPS CMT-V, single-band, +/−1 m one std. deviation with
post-acquisition, differential analysis; Garmin eTrex,
+/−10 m in horizontal directions.

Total station theodolite Sokkia SET 6 F (b +/− 5 cm in X and Z directions).
Processing software Seismic Unix (Stockwell, 1999), seg2segy (Sioseis,

2011).
Processing flow for
semblance velocity
analysis

(1) Ormsby band-passfilteredwith corner frequencies
at 0, 3, 100, and 250 (Hz), (2) automatically gained
(normalized by the RMS of an advance window of
0.1 s), (3) slope-filtered in f–k domain for noise, with
reject slopes between −250, −175, −30, and 0
(samples/trace) and (4) semblance analysis.

Gray-scale seismic displays Interpolated and re-balanced by division of RMS
amplitude.
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3. Field methods and data analysis

3.1. Seismic acquisition

Between September 2007 and February 2008, we collect cross-line-
component (for horizontal shear- or SH-wave) and vertical-component
(for nominal compressional- or P-wave and vertical-shear or SV waves)
seismic data (Table 1, Figure 5). Because we conduct separate P-SV and
SH experiments, we can distinguish when seismic arrivals are more
probably direct-arrival shear waves rather than mode-converted shear
waves (e.g., Figure 7, e.g., P-to-SV), which might contaminate poorly
placed geophones that are off-axis. In so doing we minimize the poten-
tial for deriving poor VP–VS ratios (Miller and Ivanov, 2005). Generally
speaking, failure to separate the different body wave modes can lead
to erroneous results (Park et al., 1998).

For the same frequency, slower S-waves may provide more resolu-
tion than P-waves in water-saturated, unconsolidated sediments
(Stümpel et al., 1984; Harris, 2009). Love waves, SH-reflected and
SH-refracted waves, can overlap and show similar apparent velocities
in source-to-receiver-distance–traveltime (x–t) data plots and can be
difficult to separate out (Miller et al., 2001). In this case, P-wave refrac-
tion data can provide a useful reference velocity-depth model, because
Rayleigh wave phase velocities are usually distinctly lower than
velocities for refracted P waves in the same setting.
At each of four areas along the levee, our field data acquisition geom-
etry uses a fixed array of 24 geophones (horizontal- or vertical-
component) with equally spaced seismic sources all in a straight line
(Evans, 1997; Vincent et al., 2005), or pseudowalkaway geometry
(Figure 6). The separation between sources equals the geophone array
length and is chosen to provide laterally continuous, seismic returns
while expediting data acquisition. In later analysis the data are
rearranged as a function of the distance between the source and receiv-
er locations under the assumption that along the line the geology is fair-
ly homogeneous. Lateral subsurface heterogeneities can create small
vertical time shifts (Figure 7), but these prove manageable for our data.

In order to determine whether seismic data can be used to detect
changes in natural and artificial soils, both along and across the length
of the levee axis, we chose four sites for seismic tests: three at the toe
of the flood-protected, western levee flank (sites “N”, “S” and A) and
one on the flood-unprotected side, eastern levee flank (site A′). Two of
these sites (Figure 5) lie 281 m (+/−30 m; site “N”) north and
1104 m (+/−30 m; site “S”) south, respectively, of the central
sites where there is a visible surface crack. In order to examine possible
3-dimensional changes in subsurface geology, we also select a
pseudowalkaway test site parallel to, and ~15 m (Figure 5) east of the
levee crest at site A′. Sites A and A′ are located nearest where the
crack width is greatest. These three sites on the flood-protected side
are located ~30 m west of the levee crest so as to minimize the poten-
tially strong flexural-mode effects along the levee crest (Miller and
Ivanov, 2005) where the engineering fill is thickest. For each SH test
we generate two data sets of opposite polarities by hitting a small,
embedded I-beam (Table 1) on opposite sides. Differencing the data
sets attempts to double the amplitude of true SH arrivals while attenuat-
ing converted P-wave modes (Helbig, 1986).

image of Fig.�4


Fig. 5. Location of seismic experiments. Black lines denote largest extent of four seismic re-
ceiver–source arrays (sites “N”, A, A (east and west of levee crest respectively) and “S”).
Conepenetration test sites (solid-blackboxes) followaxisof artificial levee crest (Figure2).
The wavy thin line marks location of crack, within a 2–3 m of the levee crest; accurate to
+/−1 m, 1 std. dev. Small crosses locate (+/−10 m) local surveymarkers:W610,W630
(Figure 3) andW640, from south to north. Three topographic profiles (top)were taken on
transects marked by small dotted lines (Roman numerals I–III) that run nearly at right an-
gles to the levee crest. Profiles are shown with a vertical exaggeration of ~29 but relative
surface-slope dips are indicated in degrees.
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3.2. Seismic data analyses

Seismic data sets showP- and S-refracted aswell as reflected arrivals
(Figure 7).We attempt tomap variations in the subsurface velocity field
in order to detect changes in subsurface conditions (shear modulus) at
four sites along the levee reach.We also evaluate the internal consisten-
cy of these perceived changes by cross-checking the velocity-vs.-depth
estimates using two different methods. Forward modeling by ray
tracing (Cerveny, 2001) best-matches the principal reflected and
Fig. 6. Pseduowalkaway acquisition geometry. (A) Seismic data acquisition geometry
in the field uses a pseudowalkaway layout which fixes geophones (solid triangles) but
moves the source locations (three single crosses; SP 1–3). Two rays per source are
shown. (B) Prior to velocity analysis, field data are rearranged as a function of the absolute
distance between the seismic sources and the geophones (Figure 7). In this paper, the
same geometry is scaled up to 24 geophones (Table 1).
refracted seismic arrivals and obtains a simple, one-dimensional
velocity-depth model that uses constant velocity and gradient velocity
layers (Figures 8, 9). In order to highlight possible asymmetries in the
subsurface between the eastern and western (protected) levee flanks
adjacent to the cracks along the crest, we also construct contoured ve-
locity profiles that differ only in that their central velocity-depth
model comes from analysis of data taken either on the flood-protected
side (site A) or flood-unprotected side (site A′). For each pair of
contoured profiles, the velocity-depth models used at the northern
and southern ends remain the same (Figures 9, 10).

Although our P-wave data sets lack clear, shallow seismic reflection
arrivals, the SH data sets do provide good reflections which we can use
in a standard semblance-velocity analysis (Taner and Koehler, 1969;
Stockwell, 1999) to analyze reflection arrivals (Figure 10). Shear wave
data appear more sensitive to lithological contrasts that produce reflec-
tions (Stümpel et al., 1984). Reflection arrivals become apparent at later,
two-way traveltimes (TWTT) (Figures 7) where they do not interfere
with surface wave arrivals. Semblance velocity analysis performs a
weighted correlation among traces in our pseudowalkaway gather to
determine the best SHmove-out velocity. The resultant average velocity
(Vrms)-depth models show velocity values which are averaged from
the surface to the reflection arrival under consideration and should be
lower than the corresponding ‘local’, refraction-derived velocities. For
this analysiswe isolate reflection arrivals by prior removal of all possible
Love-wave arrivals in a standard processing flow (Table 1).

3.3. Topographic profiles and cone penetration test (CPT) Analyses

A comparison of three topographic cross-sections that cross the
levee crest and seismic acquisition lines (Figures 2, 5) reveals significant
differences in the shape of their flood-protected (W) flank slopes (max.
~8o). Crest-to-berm elevation difference can vary ~1–2 m along strike.
In levee design plans (FFEB, 2007) the flood-protected, western slopes
were projected to be almost identical in shape to each other, but since
then, apparently, along-strike differences have appeared, which indi-
cate that some differential subsidence may have occurred along this
segment most notably in the central portion adjacent to the observed
crest-line cracks.

Cone penetration testing (CPT) is a reliable method for distinguishing
between sand and silt (Fellenius and Eslami, 2000), as in our shallow sed-
iments (0–15 m) butmay havemore limited value in the presence of stiff
clay (Chen, 2000), possibly at greater depths. CPT well sites are spaced
every ~300 m (Figures 2, and 11) along the levee crest and toe (FFEB,
2007). Tip resistance (qc) and sleeve friction (fs) data are collected down
to at least 20 m below the surface. From tables of qc versus the friction
ratio (Rf = fs/qc), in software we predict soil type/grain size (Mayne,
2007) or soil behavior types (SBT). For example, fine sands and silts
are less cohesive than the organic-rich layers but have greater shear
strength. As reference, we employ a commonly used interpretation
chart (Robertson, 1990), which does not require pore-pressure data.
The reference interpretation chart is modified in three ways. Because
the behavior of the original eight (8) grain-size divisions in the clay-to-
sand are similar, we simplify these ranges into clay, silt, and sand. Clay
and organic material divisions are linearly extrapolated to higher values
so as to include all calculated values of Rf. In order to differentiate between
clay and peat, another division, organic clay, is added. The organic content
of clay beneath the levee is of great significance, because it can reduce
shear strength by increasing moisture retention and reducing density.

4. Results from seismic and CPT analyses

Forward, ray-trace-derivedmodels of refracted and reflected seismic
arrivals (VS and VP vs. depth) at all seismic sites show a common, notice-
able increase in velocity at depths of 4–6 m (Figures 8, 9, 11, 12), either
in the form of a discrete step (VS) or high VP gradient (~500 m/s in 5 m).
These changes correspond to the top of a sand lobe (Figures 4, 12) seen
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Fig. 7. Seismic data. (A) Pseudowalkaway shot gather from the northern site (“N”) comprises 3 horizontal-component gathers with small static shifts every 24 m (geophone spacing = 1 m)
caused by small lateral changes in velocity soil structure. Multiple SH arrivals include guided or Lovewaves, refracted, and convex-shaped reflected arrivals, which are geometrically discordant
with Love wave arrivals. Best-matched, ray-traced, time-based arrival picks (white dashes) are used to develop velocity-depth models (Figure 8). (B) Vertical-component, pseudowalkaway
shot-gather data set from southern site (“S”) with identical acquisition geometry. Intermediate velocity arrivals (~400 m/s) are interpreted as guided P/SV guided arrivals. Rayleigh wave
arrivals show the lowest overall apparent velocity. Interpreted P-SV converted modes show velocity similar to SH arrivals (A) and may emanate from the top of a shallow (5 m below levee
flank depth) sand layer (Figure 3). Best-matched, ray-traced seismic arrivals are shown as white dashes.
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in the interpreted CPT profile (Figure 11) at similar depths (+/−1 m),
and that probably also corresponds to a sand unit from the former Saint
Bernard delta (Frazier, 1967). Differences (+/−1 m) in the depth to the
sand body may be the result of subsidence since the CPT data were
collected.

Depths are similar to the top of the interpreted sand unit among the
different seismic models (Figure 8). However, overall VS values show
their greatest overall change across the damaged crest, between sites
A (protected) and A′ (unprotected). The smallest overall VS values are
found on the protected side of the levee. Barring unrealistic changes in
bulk density, lower values for VS at site A may indicate a lower shear
modulus (low-strain) on the protected side. In contrast, and in the
0–10 m depth range, corresponding VP-depth profiles are relatively
Fig. 8. Ray-traced velocity-depth models. An overplot of all velocity-depth models for P
and SH waves derived from forward ray tracing of seismic pseudowalkaway seismic pro-
files (e.g., Figure 7). Models are derived for data from the flood-protected levee flank at
the northernmost (“N”) and southernmost (“S”) sites; sites A and A′ lie respectively on
the flood-protected and unprotected flanks in the vicinity of crestal cracks (Figures 3, 5,
11). Depths are referenced to protected toe-of-levee elevation.
higher on the same side andmay indicate a greater saturation for similar
depths than under site A′ (unprotected). VS-depth profiles derived by
semblance analysis (VRMS; Figure 10) also show that overall, these
values are lower at site A (protected side) than at site A′ (unprotected
side), in the deeper subsurface (N4 m and N0.3 s TWTT).

Vp–Vs ratios provide a convenient single value, useful for detecting
unusual changes in elastic material properties (Dunbar et al., 2007).
Larger VP/VS values help highlight the greater increase of VP with
depth than VS with depth. From contoured velocity profiles (Figure 9)
at relatively shallow depths of 3–5 m, VP–VS ratios appear relatively
high (8 or 9) at site A (protected side), whereas these ratios are only
4–5 at equivalent depths at site A′ (unprotected side).

5. Discussion

In our study area subsurface, fluvial–deltaic sediments (Saucier and
Snowden, 1995) and their geotechnical properties may vary, laterally
(Allen and Allen, 2005). Seismic acquisition tools are a cheaper comple-
mentary toolwhichmay be used to locate anomalous zones andhelp tar-
get additional geotechnical sites. As an example of the value of this
approach, we examine a crack along the crest of a levee that is located,
coincidentally, between available CPT-geotechnical sites (Figure 2). In
the interpreted CPT-profile, nearby soil types and their distribution
(Figure 11) are similar to those found elsewherewhere no cracks appear.
Although our seismic sites do not provide a continuous sampling of the
sub-levee materials, velocity-depth trends are consistent between SH
and P-wave data sets, two types of velocity analyses and with a major
clay–sand boundary interpreted in a CPT-profile. Interpretations of the
seismic velocity analyses suggest that the largest physical property
anomalies occur across the distressed levee area and should therefore
be a future site of interest for additional geotechnical investigations.

In this sedimentary environment better reflector arrivals appear in
the SH than in the P-wave data (Figure 7), so that laterally continuous
SH reflection profiles should be obtainable in the future. Continuous

image of Fig.�7
image of Fig.�8


Fig. 9. Contour plot of VP–VS ratios (Figure 8). Velocity-depth contours (via cubic-spline interpolation) are constructed using only three 1-D velocity-depth (V–z) profiles (maximum
source–receiver offset ranges of 72 to 168 m), centered at locations marked using vertical arrow heads. Cross-sections on left use V–z models from experiments on the flood-protected
west side of the levee. Cross-sections on the right share the same V–z model along their edges but are different because they have a central V–z model collected on the flood-
unprotected side. The results of the site taken higher on the unprotected levee flank are adjusted by the ~2-m +/− .2 height difference above the other three sites on the protected
side. Depths are referenced to protected toe-of-levee elevation.
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profiles can correlate VS values against CPT values where the seismic
lines cross the geotechnical site (Hegazy and Mayne, 1995; Stuedlein,
2010). These empirical correlations improve if the sediment type is
also identifiable. We can use the CPT data from a geotechnical boring
site near the crack along the crest to compare CPT-derived VS and
seismically-derived VS values (Figure 12) created using the following
empirical statistical relations from Hegazy and Mayne (1995).

Vs ¼ 12:02q0:319c f−0:0466
s ; ð1Þ

predicts higher VS values in sand and hence better explains the
seismically-derived VS values at depths below approximately 5-6 m
whereas

Vs ¼ 10:1 Log qc−11:4ð Þ1:67 f s
qc

� 100
� �0:3

; ð2Þ

which is derived for mixtures of clay and sand soils, is more appropriate
for matching the shallower VS values of the site. There is additional
potential to derive shear strength from degradation curves (Davich
et al., 2004), cross-plots of the in-lab and field seismic data values (Na
et al., 2005), or through intermediate CPT strength and seismic velocity
relations. Interpolation between known geotechnical well sites can also
be achieved by common, geostatistical, deterministic methods like
Fig. 10. Semblance-derived velocity-depth models. Contours (100 m/s interval) of VS values (
construction details.
kriging, although these lead to the development of smooth property
variations which are often not representative of the complex nature of
fluvial–deltaic geology. Other techniques that are stochastic-process or
random-process based may allow more variability (Kalla, 2008) but
can improve by integrating seismic properties.

The cone penetration test is most accurate when the measured tip
resistance (qc — kPa) is corrected for pore pressure and overburden.
Positive pore pressure reduces the normal stress lower tip resistance
and effectively weakens the sediment. Corrections can reveal silt that
appeared to be sand, clay that appeared to be silt, and organic material
that appeared to be clay. Negative pore pressures, especially in sandier
soils (e.g., Elsworth et al., 2006) can have the opposite effect. Although
we do not have access to pore-pressure measurements, our results
would not change substantially. Our interpretation of themajor appear-
ance of sand agrees with geological estimates and other physical
property results (Figure 4) and since shallow levee building material
(0–~3 m) is ideally clay-rich, we did not expect it to deviate toward
coarser grain sizes. CPT interpretations using the standard Robertson
(1990) chart indicate a high concentration of organic-rich materials
within the earthen levee but not particularly concentrated under the
zone that shows cracks along the crest.

We can use theoretical considerations to interpret possible water
saturation changes between site A (protected side) and site A′ (unpro-
tected side). If we assume that the natural sediment types are similar
between closely-spaced sites, then the larger VP values on the protected
Vrms). Depths are referenced to protected toe-of-levee elevation. See Fig. 9 for additional
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Fig. 11. Integrated CPT and seismic results. Cone-penetrometer test (FFEB, 2007) data-
derived cross-section, showing six different interpreted soil behavior types. Four areas
enclosed by rectangles show the lateral extent of subsurface sampled by pseudowalkaway
profiles projected on to the line, from up to 30 m away, from the east (site A′) or west
(sites “S”, A, “N”). The largest enclosed rectangle corresponds to the pseudowalkaway pro-
file taken on the flood-unprotected side of the levee crest (east). Reference toe-of-levee
lies ~2.5 m below the crest. Tests along the center of the artificial levee crest are located
at regular intervals, referenced by numbers. Samples for laboratory testing (Figure 4) are
taken atwell (68UFT), markedwith a continuous vertical line. VS-depthmodels (Figure 8)
are superimposed. Several features shown in Fig. 2 are cross-referenced along the top axis,
such as (1) the map shape of the levee crack. (2) Vertical dashed lines locate where
topographic profiles cross the levee axis. (3) Crosses locate local levee survey markers
(W 610—southernmost, W640—northernmost) along the protected levee flank. (4) Roman
numerals locate levee topographic profiles (Figure 5). Depths are referenced to crest of
levee elevation, but long horizontal line marks the toe-of-levee elevation.

Fig. 12. Applied statistical correlation equations. Two common empirical relations be-
tween VS and CPT data (Hegazy andMayne, 1995) are applied to tip resistance and sleeve
friction values from CPT site 63 (Figures 2, 5, 11). One relation is derived for mixtures of
clay and sand (smallest dashes) and another for dominantly, sand (continuous line).
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side for the same depth indicate a greater degree of saturation. Effective
medium theory can be used to predict seismic velocities (Bachrach and
Nur, 1998) in sand-rich sediments, aswell as in clay-rich shales (Avseth
et al., 2005). We expect that for granular soils, only where near-full
saturation is approached (N99%), does VP increase to order 103 m/s. At
conditions just below full saturation (b99%) VP can be much smaller,
of order 102 m/s. If saturation is greater on the protected side then full
saturation is probably not achieved until depths of 5–10 m, coincident
with reworked delta sand (Figures 2, 11). Perhaps because of the lesser
organic content in the sand there is also a decrease in the amount of any
in-situ biogenic gas. Even in marine settings, where high-porosity sedi-
ments (~60%) are nominally saturated, small amounts of gas (~1% of
overall porosity) can keep VP in the same low range (Anderson and
Hampton, 1980). Shear waves are assumed to remain relatively
unaffected (Domenico and Danbom, 1986) by pore fluid composition
in partially saturated- to fully saturated soils, except by way of the
increased overall density, which can slightly reducemeasured velocities
(Velea et al., 2000).

VP–VS ratios canhelp highlight the transition to areaswhere saturation
is complete. High (5–6) values of VP/VS (dynamic Poisson's ratio slightly
less than0.5) derived fromseismic data (Figure 9) arenot unusual in shal-
low unconsolidated sediments. Similar values have been detected in soft
sediments from both field seismic experiments (Jongmans et al., 1996)
and laboratory seismic experiments (Zimmer et al., 2002), and are also
a useful indicator of proximity to the water table (Liu et al., 1997; Guy,
2006). For our types of sedimentary environments that comprise shallow
(0–15 m) organic-rich soils, Vs values are naturally extremely low
(Campanella et al., 1994), and increase the VP–VS ratio further. The
lower VS values at site A (protected side) than at A′ (unprotected side)
are such a case. Commonly, in earthquake site characterization studies,
spectral ratios of the seismic horizontal and vertical ground motion
(e.g., Nakamura, 1989) are used to detect the resonance thickness of shal-
low soft layers. This empirical technique is sensitive to large VS velocity
contrasts with depth (Figure 8) assuming that VP/VS does not change. In
cases where VP/VS does change with depth crustal studies show that a
joint inversion (Lin et al., 2012) of the Rayleigh surface wave dispersion
curves and horizontal/vertical ratios remains promising.

Differential surface subsidence (Figure 5) may reflect a heteroge-
neous distribution of sub-levee materials along, and could be a likely
cause for observed levee cracks (Figure 13). We can reasonably assume
that these changes occur over distances smaller than the spacing be-
tween geotechnical sites (~300 m) but of comparable size to the crack
length (~100 m), and in all directions, although our interpretations
concentrate on changes along the length of the levee flanks. Marked
differences in VP values between sites A (protected side) and A′
(unprotected side) over even smaller distances of 30–40 m may
be the result of marked changes in the sediment types. However, at
present, surface sediment type distribution maps (Figures 1, 2) and
the interpreted CPT-profile (Figure 11) support larger scale changes
and this interpretation appears less valid. In future, parallel, continuous,
seismic profiles on either side of the levee crest may be needed to
examine the significant changes over distances as small as the levee
width itself, b~100 m.

Although the influence of soil shrinkage by desiccation is not
completely excluded, the more curved map-view shape along the
northern half of the levee cracks suggests at least possible slumping
down-to-the-west. Simple models (Fredlund and Rahardjo, 1993; Eqs.
11–12) suggest thatwider desiccation cracks could indicate substantial-
ly deeperwater table toward the northern range of the crack. At present
we have not verified this prediction directly but we note the much
shallower depth to higher VP values on the western protected levee
side that would imply the opposite: a shallower water table depth.
From October 2007 through February 2008, the period of time during
which seismic data were collected, no significant changes appeared in
the size and shape of the cracks, which presumably remained stable
over this time.
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Fig. 13. Conceptual interpretation distressed levee (not to scale). Compaction, primarily in
underlying organic-rich soils on the protected side, creates surface subsidence and accom-
panying cracks. Arrows hypothesize hydrological flow paths. Only the right side of the
schematic cross-section is surveyed (Figure 5).

67J.M. Lorenzo et al. / Engineering Geology 168 (2014) 59–68
In the fresh-water swamp and marsh sedimentary environments of
our study area, we expect that materials with the least cohesive
strength and lowest shear strength (Figure 4) and VS values (Figure 8)
will correspond to sediments that are more organic-rich, less consoli-
dated. Point bar and levee deposits consist of fine sands and silts and
represent the stronger end of the spectrum. Sands can liquefy and the
organic-rich silts can act as a good lubricant with very little or no
residual strength after movement is initiated (Rogers et al., 2008).

If some degree of slope failure were responsible for the curvilinear
cracks along the crest, we did not note a topographic toe-of-slope
bulge or other cracks to thewest that could be associatedwith displace-
ment of sediment at depth. These predicted disruptions are absent ei-
ther because slope displacement is insignificant, or surface damage
lies farther to the west and outside the surveyed area within the
levee-fill borrow pit (Figure 2). In all cases, slight topographic changes
on the levee slope may be overwhelmed by differential settling effects
(Figure 5). Any hidden degree of slope failure can remold soils, reduce
their shear strength (Rogers et al., 2008) and act to increase permeabil-
ity (Figure 13). If sediments have undergone somedeformation thenwe
may expect lower VS values as observed at site A (protected side) adja-
cent to the cracks along the crest. Local faults (Figure 1) mapped below
surface (Wallace, 1957) are not suitable candidates to induce levee
damage because they are either too distant and at too high an angle to
the orientation of levee cracks to be likely causes of the observed cracks.
More recent maps of surface faults in nearby New Orleans (Dokka,
2011) indicate that vertical motion is more readily interpreted as the
indirect result of local subsurface water extraction.

6. Conclusions

Traditional geotechnical estimates of sub-levee soils may be en-
hanced by seismic field sampling between sites. Even where subsurface
geotechnical data exist, they are, normally, only collected at widely
spaced intervals, often N60–100 m apart, unable to detect variable sed-
imentary types. In the field study area, south of New Orleans, seismic
velocity-versus depth models increase markedly across a sediment
change between organic-rich and sand units, based on interpreted
cone penetration testing data. Also, the largest VP–VS ratios (8–9)
occur near this depth. VP values remain low (order 102 m/s) above
this depth (despite being 5 m below sea-level) because of the possible
presence of small amounts of gas in the organic-rich sediments. The sur-
face seismic data sets reconfirm that in the organic-rich sedimentary
environment of the study area only SH seismic data displays reflection
arrivals although useful refractions in both the P and SH data. In addition
to velocity-versus-depth models derived from the refracted arrivals, VS
reflector arrivals lend themselves to traditional velocity semblance
analysis and can be used to reconfirm refraction-derived models.
Several possible causes for the appearance of cracks along the levee
crest may be related to unexpected organic-rich materials used during
the construction and large lateral changes in subsurface materials that
may lead to variable differential compaction.

Future preventive monitoring of flood-protection barriers stands to
benefit from integration of existing civil engineering, geological and topo-
graphic information correlated to data from geophysical profiles, which
can then be used to extrapolate between sites and locate anomalies in
physical properties althoughmultiple non-invasive geophysical electrical
methods which are sensitive to fluids should also be considered.
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