
Web Semantics: Science, Services and Agents on the World Wide Web 26 (2014) 29–35
Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

The swget portal: Navigating and acting on the web of linked data
Valeria Fionda a, Claudio Gutierrez b, Giuseppe Pirrò c,∗

a Department of Mathematics, University of Calabria, Italy
b Computer Science Department, Universidad de Chile, Chile
c Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

a r t i c l e i n f o

Article history:
Received 29 April 2013
Received in revised form
3 April 2014
Accepted 17 April 2014
Available online 28 April 2014

Keywords:
Semantic navigation
Scripts
Linked open data

a b s t r a c t

This paper presents the swget portal. By using the portal, users can instruct software modules to (virtu-
ally)move fromoneplace (data source) to another on theWebofData, interpret knowledge and trigger ac-
tionsmuch in the same spirit of intelligent agents. Instructions are specified via navigational expressions in
theNautiLOD language. Such expressions are included into swget scripts that is, RDF documents that can
be shared, modified, and reused. We discuss examples with real data in different scenarios showing the
usefulness and potentialities of the portal.We also provide an evaluation of the performance of the portal.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The increasing availability of structured data is evolving the
current Web, based on hypertext documents and syntactic links
among them, into a Web of Data. Here, Uniform Resource Identi-
fiers (URIs) are used not only to identify Web documents and dig-
ital content, but also new kinds of resources such as real world
(e.g., people) and abstract (e.g., sport) concepts. The Linked Open
Data (LOD) project [1] is one of the driving forces in this direction.
It leverages well-established Web technologies like URIs to iden-
tify resources, and the HTTP protocol to retrieve their representa-
tions available as triples in the Resource Description Framework
(RDF) [2] format. RDF data on the Web of Linked Data (WLOD) are
commonly accessed via SPARQL endpoints, that is, network loca-
tions that can be queried upon by using the SPARQL query lan-
guage [3]. This approach, however, cannot cope with the highly
distributed nature of interconnected RDF data sources. In particu-
lar, it does not providemechanisms to dynamically discover/select
(relevant) data sources. TheWLOD can bemodeled as a distributed
(semantic) graph with thousands of RDF data sources (its nodes)
and semantic links between them (its edges). An essential feature
to retrieve data in graphs is navigation. Despite the large number
of graph languages and tools today available (see [4] for a survey),
none of them focuses on navigation in the WLOD. ‘‘Consuming’’

∗ Corresponding author. Tel.: +39 0471016122.
E-mail addresses: fionda@mat.unical.it (V. Fionda), cgutierr@uchile.cl

(C. Gutierrez), pirro@inf.unibz.it, giuseppe.pirro@unibz.it (G. Pirrò).

http://dx.doi.org/10.1016/j.websem.2014.04.003
1570-8268/© 2014 Elsevier B.V. All rights reserved.
data in this graph is challenging due to the intrinsically decentral-
ized data creation/management, the lack of superimposed schema
and the unknown topology of data sources and their links. In the
WLOD, which is not known in its entirety, navigation amounts at
going from one data source to another (unknown) data source
guided by some navigational chart (i.e., a navigational expression).
For instance, from the node R. Johnson in DBpedia (the known)
it is possible to navigate toward the nodes of artists he influ-
enced (the unknown) by traversing edges labeled as influenced
(the navigational chart). A desirable feature of (navigational) lan-
guages for theWLOD is the possibility to command actions (e.g., re-
trieval/update of data, sending of notification messages, etc.). To
the best of our knowledge, current languages lack such a feature.

Contributions. This paper describes the swget portal that allows
users to instruct software modules to (virtually) move across data
sources, interpret knowledge, take decisions and trigger actions
much in the same spirit of the intelligent agents envisioned in the
early days of the Semantic Web [5]. Instructions are given via the
navigational languageNautiLOD [6].Wedescribe the swgetportal,
present exampleswith real data in different scenarios and evaluate
its performance.

2. Related work

Navigation and specification languages of nodes in a graph have
a long tradition. Nevertheless, most of the existing approaches
assume that data is stored in a central repository (e.g., graph query
languages [4], XPath, navigational versions of SPARQL [7,8]). They
gave inspiration for the navigational core of NautiLOD.

http://dx.doi.org/10.1016/j.websem.2014.04.003
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2014.04.003&domain=pdf
mailto:fionda@mat.unical.it
mailto:cgutierr@uchile.cl
mailto:pirro@inf.unibz.it
mailto:giuseppe.pirro@unibz.it
http://dx.doi.org/10.1016/j.websem.2014.04.003

30 V. Fionda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 26 (2014) 29–35
Specification (and retrieval) of collections of sites was early
addressed by tools like wget.1 Besides being non-declarative, it is
restricted to almost purely syntactic features. There is a solid body
of work on query processing and navigation on the WLOD. Three
main lines of research can be identified:

(1) Load the desired data into a single RDF store (by crawling
the WLOD [9] or some sub-portions) and process queries in a
centralized way. There have been also developments in indexing
techniques for semantic data (e.g., Sindice [10],Watson [11], Harth
et al. [12]).

(2) Federated query processing like DARQ [13]. SPARQL 1.1 [14],
with the SERVICE operator, extends the scope of SPARQL to
federated queries.

swget has a different departure point: it focuses on navigational
functionalities, thus departing from querying as in (2); emphasizes
the declarative specification of autonomous distributed sources, as
opposed to (1). We now provide a more in depth comparison with
approaches that extend SPARQL to the WLOD.
Comparison with link-traversal query approaches. Several ap-
proaches (e.g., [15]) have been proposed to discover on the fly data
sources relevant for answering SPARQL queries on the WLOD. At
their core, there is the possibility to navigate toward other data
sources while executing a query; SQUIN2 is an implementation of
such a mechanism. We discuss the differences w.r.t swget both in
terms of scope and expressiveness.

First, we want to point out that SQUIN and swget have two
different departure points. SQUIN uses ‘‘implicit’’ (not-controlled)
navigation to collect information from theWLOD to perform query
answering (i.e., obtain a set of variable mappings). Hence, navi-
gation is a ‘‘means’’ to retrieve such information. Indeed, SQUIN
is not a navigational language and does not have the features
of a navigational language (e.g., closure). swget leverages Nau-
tiLOD, which is a pure navigational language that uses (boolean
ASK SPARQL) queries to select data sources. Hence, navigation
(not querying) is the main actor. While NautiLOD uses queries to
enhance/control the navigation, SQUIN proceeds in the reverse
direction. Moreover, the Link-Traversal Based Query Execution
mechanism based on non-blocking iterators implemented by
SQUIN [15] cannot guarantee that all reachable URIs that may con-
tribute to the final results are discovered. This is because the build-
ing blocks of a SQUIN query (i.e., SPARQL basic graph patterns) are
evaluated in a fixed order; when an iterator obtains an intermedi-
ate solution from the previous iterator, it replaces the previously
obtained intermediate solution. Hence, the (replaced) intermedi-
ate solution cannot be combinedwith any data that arrives later. As
for SPARQL 1.1’s, its navigational core (i.e., property paths) ismeant
to deal with paths that link RDF triples available in a local graph.
NautiLOD (and swget) deals with the WLOD graph where paths
exist between distributed (and a priori unknown) data sources.
We want to point out that NautiLOD incorporates actions that in
some sense generalize procedures implicit in the evaluation over
the Web (e.g., ‘‘get data’’ in crawlers and ‘‘return data’’ in query
languages).

3. Instructing intelligent applications with swget

We start with an overview of NautiLOD, which is at the core
of swget scripts. NautiLOD [6] is a language that enables to write
declarative specifications of navigational charts for the WLOD
graph. More specifically, NautiLOD provides a mechanism to
declaratively: (i) define navigational expressions; (ii) allow semantic
control over the navigation via test queries; (iii) perform actions as

1 www.gnu.org/software/wget.
2 http://squin.org.
Table 1
Syntax of NautiLOD.

path::= pred | action | path/path | path ⟨l − h⟩
| (path)? | (path)∗ | (path|path) | path[test]

pred::= < RDFpredicate > | < _ >
test::= ASK-SPARQL query
action::= ACT[Select-SPARQL query::procedure]

side-effects along the navigational path. The syntax ofNautiLOD is
reported in Table 1.

The navigational core of the language is based on regular path
expressions, pretty much like Web query languages and XPath.
A path includes RDF predicates (composed with all the features
of regular languages); moreover, path⟨l − h⟩ denotes repetitions
between l and h. A path can be followed by a test; an ASK-
SPARQL query that allows to redirect the navigation based on the
information present at each node (data source) in the naviga-
tional path.3 Finally, actions are procedural routines that can
be triggered during the navigation according to decisions based
on the original specification and information found in the visited
data sources. Actions do not interfere with the navigation. A Nau-
tiLOD expression is evaluated in the WLOD starting from a seed
node and returns a set of nodes connected to the seed node via
pathsmatching the expression. An example of evaluation of aNau-
tiLOD expression is provided in Section 4.

3.1. From set of nodes to subgraphs

Current graph navigational languages (e.g., nSPARQL [8]) enable
to retrieve sets of nodes connected by a sequence of edges that
match an expression. However, they do not provide information
about the structure of the fragment of the graph where these
nodes have been found. Such pieces of information are crucial
in some contexts like citation networks where one wants to see
not only nodes (i.e., papers) but also their connections. Hence,
there is the need to augment current navigational languages with
capabilities to extract fragments (i.e., subgraphs) of the graph being
navigated, besides sets of nodes. Solving this problem brings some
challenges since: (i) only relevant paths should be kept in the
fragment (i.e., paths spelling strings belonging to the language
defined by the navigational expression) and (ii) there can be an
exponential number of paths connecting the seed node with each
node in the results. In the Web setting, the problem becomes
even more challenging since the graph structure is discovered
during the navigation. The swget system described in Section 4
implements an extension of NautiLOD, which returns not only
the expression endpoints but also the (relevant) portion of the
WLOD visited during the evaluation of an expression [16]. The
idea is to leverage the product between the automaton associated
to a NautiLOD expression and the data graph; then, navigate the
product backward from the results to the seed node.

3.2. swget scripts syntax

An swget script is an RDF document suitable to be shared/
exchanged/reused. swget scripts arewritten according to an ontol-
ogy that supports their semantic specification. The following defi-
nition describes the structure of a script.

Definition 1 (swget Script).An swget scriptS is a tuple ⟨n,G, s, e⟩,
where n is the URI that identifies the script, G is an RDF graph, s is
the seed URI where the navigation starts and e is a NautiLOD ex-
pression.

3 The result of the test depends on how triples are associated to the URI
identifying the data source on which the test is performed.

http://www.gnu.org/software/wget
http://squin.org

V. Fionda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 26 (2014) 29–35 31
a b

Fig. 1. An excerpt of the WLOD with real data and an swget script.
Example. Joe is a fan of Eric Clapton and wants to discover
artists (and their aliases) (in)directly associated with Clapton up
to distance 3. In particular, he is interested in chains of artists who
are still alive and wants to receive via email their Wiki pages.

In order to fulfill this request Joe writes the swget script shown
in Fig. 1(b). The first thing to do is to create a script and name
it (i.e., clapton.rdf). Then, a graph G can be defined with
triples stating, for instance, the topic of the script (i.e., Music), a
comment in natural language to facilitate its reuse, etc. Besides,
some parameters to bound the portion of WLOD visited can be
also defined; here it is stated (predicate: trusted_domains)
that only information from dbpedia.org and freebase.org
should be trusted and further processed. Also a timeout has been
set (predicate: timeout). The complete list of options is available
at the swgetwebsite (http://swget.wordpress.com). The next step
consists in specifying (predicate: seed_uri) the seed URI where
the navigation starts. In the example the navigation starts from
the URI associated to Eric Clapton in DBpedia. The last step is
to define (predicate: nav_expr) the NautiLOD expression. To
profitably use swget and NautiLOD, the user has to have some
familiarity with the underlying ontologies. A quick exploration of
DBpedia suggests that the predicatedbponto:associatedActs
connects an artist to associated artists (see Fig. 1(a)).

As Joe is only interested in chains including artists who are
still alive, some filtering is necessary. This is done by means of an
ASK SPARQL query over the predicate dbpo:deathDate. Joe also
specifies an action that triggers the sending of an email containing
the Wiki pages of such artists (for which the predicate foaf:
isPrimaryTopicOf can be used). Finally, the owl:sameAs
predicate is used to combine information about artists from
multiple sources. Note that besides owl:sameAs one could also
use other predicates expressing likeness. A template like (owl:
sameAs | skos:related | rdf:seeAlso) captures different
likeness predicates defined in different vocabularies.

By executing this script Joe obtains the URIs {dbpedia:
B.B.King, freebase:B.B.King}. Note that from the URI of B.B.
King it is also possible to reach the data source associated to the
rock musician Pappo (also in DBpedia). However, since Pappo did
not pass the test defined in the ASK query (he is not alive) this
navigational branch ended. The execution of the script also triggers
the sending of an email with the Wiki page of B.B. King.

4. The swget web portal

The main objective of the swget portal is to enable users
to write scripts containing navigational expressions to be eval-
uated over the WLOD. swget implements all the features of
Fig. 2. The swget portal architecture.

NautiLOD and adds a set of additional features to control the
navigation from a network point of view (e.g., limiting the amount
of data transferred) and a set of actions (e.g., send email messages,
retrieve data). swget is available in three different releases: (i) an
API equippedwith a command line tool; (ii) a standalone GUI4; (iii)
a Web portal.5 The swget portal has been implemented by using
Adobe Flex6 and the Flare data visualization library.7 The portal
builds upon the swget API, which is implemented in Java and uses
technologies such as the HTTP protocol to retrieve data directly
from RDF data sources, JavaCC8 to parse expressions and Jena9 to
deal with RDF data.

The high level architecture of the portal is shown in Fig. 2.
The user submits to the system a swget script; the Interpreter
receives the input, checks the syntax and initializes both the
Execution Manager (with the seed URI) and the Automaton builder,
which generates the Non Deterministic Finite State Automaton
(NFA) associated to the NautiLOD expression. At this point, the
evaluation of the expression consists in a cyclic information
exchange between Execution Manager, Network Manager, RDF
Manager and Link Extractor. To better clarify how the components

4 http://swget.wordpress.com.
5 http://swget.inf.unibz.it.
6 http://www.adobe.com/products/flex.html.
7 http://flare.prefuse.org.
8 http://javacc.java.net.
9 http://jena.apache.org.

http://swget.wordpress.com
http://swget.wordpress.com
http://swget.inf.unibz.it
http://www.adobe.com/products/flex.html
http://flare.prefuse.org
http://javacc.java.net
http://jena.apache.org

32 V. Fionda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 26 (2014) 29–35
p

Fig. 3. An example of NautiLOD expression and its automaton.

of the architecture work and interact we discuss an example of
evaluation.

An example of evaluation. NautiLOD expressions are built on
top of regular expressions. If an expression complies with the
NautiLOD syntax, then the NFA that recognizes it is generated by
using the classical Thompson construction. Hence, the evaluation
of expressions is automaton-based. Consider the simple expression
and the automaton in Fig. 3.

When entering the initial state of the automaton (i.e., q0) the
first step consists in dereferencing the seed URI. In order to do so,
the Execution Manager passes this URI to the Network Manager,
which issues an HTTP GET. The associated set of RDF triples is ob-
tained by converting, via the RDF Manager, the stream associated
to the HTTP GET into a Jena model Mseed. The evaluation continues
by looking at transitions originating from q0. These can be tran-
sitions labeled with RDF predicates, actions or tests. In this case
there is the predicate p1. The Link Extractor takes in input the NFA
and the Jena model Mseed and selects a subset of outgoing links Lq1
to be traversed at the next step of the navigation. In this example,
this is done via the SPARQL query SELECT ?X WHERE { {seed p1
?x}UNION {?x p1 seed}} that selects nodes appearing either as a
subject or as an object. The set Lq1 is passed to the Execution Man-
ager, which starts over the cycle. In particular, for each URI ui ∈ Lq1
a Jena model Mui is constructed as described above. At this point,
the only transition originating from q1 is labeled with a test. Re-
call that a test is an ASK SPARQL query. The query corresponding to
the state transition between q1 and qf is executed over eachmodel
Mui . Only those URIs ui ∈ Lq1 for which the evaluation of the ASK
query over Mui is true reach the final state qf .

The evaluation produces: (i) the RDF graph obtained as the
union of all the successful paths that connect the seed node to
nodes in the result built according to the algorithm presented in
Fionda et al. [16]; the graph is constructed by navigating backward
the product automaton (from the final state to the initial) and (ii)
the results of the actions fired during the navigation.

4.1. The user interface

The main window of the swget portal is shown in Fig. 4(a). The
portal is organized in three tabs: (i) Run script, where it is possible
to load existing scripts, create new scripts, lunch swget agents
(associated to swget scripts), check the status of running agents
and retrieve the list of active agents associated to a given email
address; (ii) GraphView, which shows the RDF graph resulting from
the evaluation of a script; (iii) Learn, which provides information
about the NautiLOD language and the portal. The create script
window is openedwhen the user loads a predefined script orwants
to create a new script. When a script is launched, a new agent is
created. Each running agent is assigned an ID, whichwill be used to
track its status and retrieve results. If an email address is provided,
email notifications are sent when the agent starts and terminates.
To check the status of an agent the Check agent status form in the
Run script tab can be used (shown in Fig. 4(b)). When the agent
is in the state Terminated it is possible to download the results or
explore them in the GraphView tab.

There are different visualizations that can be changed by using
the Visualization control. On the top part of the GraphView tab the
automaton associated to the NautiLOD expression in the script
a

b

Fig. 4. The swget GUI. Visit http://swget.inf.unibz.it.

is reported. When the mouse pointer is placed on a state of the
automaton all the nodes reachable in that state are highlighted;
when the mouse pointer is placed on an edge, the predicate (or
test) corresponding to that state transition is visualized.

5. Application scenario

Valerie is a scientific journalist who is writing an article about
the Semantic Web and in particular about the figure of Tim
Berners-Lee (TBL) and his cooperation with other people. She
thinks that it would be nice to investigate the influence of TBL
over other people and also by whom he has been influenced. It
would be ideal to have a graphical visualization of this influence
network and not just a set of ‘‘disconnected’’ nodes. Since Valerie
is particularly interested in the scientific community, she wants to
restrict the network to scientists only. Data to build such network
can be taken from different data sources (e.g., DBpedia, Freebase);
the problem is how to access in a clever and automatic way such
data and present results in an attractive way. Valerie also thinks
‘‘what if tomorrow I am interested in some other person?’’ She realizes
that the automation of the whole process and the adaptability of
the ‘‘command’’ used to solve this task toward another (similar)
task are crucial. Fortunately, Valerie is aware of the swget portal!
She visits the website and has a quick look at the Learn tab where
she becomes familiar with the syntax of NautiLOD. She is ready
to create her first swget script. She retrieves the URI of TBL10 from
DBpedia (fromwhere the navigation starts) and copies it in the seed
URI text field. Then, she writes the following expression:

(dbpprop:influenced <1-6>)
[ASK{?p rdf:type dbpedia:Scientist.}]/
(owl:sameAs)*

This expression considers nodes linked to TBL (by influence
relations) up to distance 6. On each node reached, a check is per-
formed to see if it represents a scientist. The last part of the ex-
pression considers aliases of such scientists in other data sources.

10 http://dbpedia.org/resource/Tim_Berners-Lee.

http://swget.inf.unibz.it
http://dbpedia.org/resource/Tim_Berners-Lee

V. Fionda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 26 (2014) 29–35 33
Fig. 5. The swget online portal graph visualization.

Valerie saves on her computer the script in RDF for future reuse,
launches her agent and is given an agent id. Since she provided
her email address she is notified when the agent terminates or in
case of errors. The results of this script is shown in Fig. 5. Here,
some nodes (scientists) belonging to the influence network of TBL
are highlighted. Note that Bertrand Russel although being in DB-
pedia a philosopher (and not a scientist) is included in the graph
with a different color. This is because he belongs to the influence-
path connecting TBL to Giuseppe Peano (a scientist who belongs to
the results). Clusters of nodes represent the aliases (discovered via
owl:sameAs) of a node in other data sources.
Embedding in HTML pages.Valeriewants tomaintain aWeb (HTML)
page with the pieces of information collected by executing the
previous script. In order to do so, she can use a scripting language
such as JavaScript. Moreover, she can launch the script on a
regular basis and have always up to date information. Valerie
passes the script to her friend Syd, who wants to compute the
influence network of Alan Turing. Syd with a slight modification
(he changes the seedURI) ‘‘centers’’ the information finding around
Alan Turing.

6. Evaluation

We evaluated the portal, and in particular the swget engine at
its core, on the current WLOD. The objective of the evaluation was
to measure: (i) execution time; (ii) number of URIs dereferenced;
(iii) number of results retrieved. In particular, we compared
swget against a new implementation that leverages multi-
threading (referred to as swgetM), SQUIN and SPARQL 1.1’s
property paths (for which we considered the DBpedia SPARQL
endpoint11). Further details about the experimental setting and the
complete query-set are available at http://swget.wordpress.com/
evaluation.

The experiments were performed on a PC with an Intel 2.5 GHz
Core i5 processor and 8 GBs of RAM memory. Running times are
the average of 5 runs; moreover, number of results and number of
dereferenced URIs are rounded to the next integer value. The three
experiments performed are: (exp1) TBL’s influence network (by
considering scientists); (exp2) FOAF network; (exp3) co-director
at distance 6 (i.e., reachable via a chain of 12 director edges)
and influence closure (also with tests). Moreover, exp1 and exp2
consider queries with an increasing distance from 1 to 6; this gives
a total of 12 queries.

The execution times for exp1 are shown in Fig. 6(a). As it can
be observed, there is a major improvement between swget and its
multi-thread version swgetM. As for swgetM, we used a thread

11 http://dbpedia.org/snorql/.
pool of size 5 to avoid many simultaneous connections requests
that may overload servers and generate errors that would result in
the lost of results. The improvement in performance for swgetM is
especially true for long queries; for instance, at dist6, swgetM is
∼3 times faster than swget.

As compared to SQUIN, swgetM reported a higher running time
at dist6. However, by looking at Fig. 6(b) it can be noted that
swgetM performs a much larger number of dereferencing oper-
ations (433 vs. 117). This latter aspect had an impact on the num-
ber of (valid) results shown in Fig. 6(c). Indeed, swgetM retrieved
56 results while SQUIN 18. The reason for these differences stems
from the Link-Traversal Based Query Execution mechanism based
on non-blocking iterators implemented by SQUIN [15]. This ap-
proach cannot guarantee to discover all reachable URIs that may
contribute to the final results [15] (a more detailed comparison is
provided in Section 2). On the other hand, NautiLOD at the core
of swgetM guarantees that all the parts of the WLOD graph that
may contribute to the results are visited.We also want to point out
that with SQUIN it was not possible to consider (owl:sameAs)*
at the end of the TBL’s influence expression. To make it possible
the comparison, we considered an additional expression (not re-
ported here) where up to 3 levels of owl:sameAs are considered.
The running times of swgetM and SQUIN were comparable (∼45 s
at distance 6 with 3 levels of owl:sameAs). However, the number
of results provided by swgetMwas higher.

In exp2,weusedA. Polleres’ FOAFprofile12 and thefoaf:knows
predicate with an increasing distance from 1 to 6. The execution
time for swget (single-thread) varies from ∼15 to ∼500 s. The
number of results varies from 43 to 2.6 K. As for swgetM (multi-
thread), the running time varies from ∼2 to ∼60 s (a significant
reduction of the running time). For this experiment the size of the
thread pool has been increased to 35; this was possible because
FOAF profiles are more evenly distributed over different servers
and then the risk of overloading a single server with many HTTP
requests is lower. As for SQUIN, the running time ranges from ∼4
to∼250 s. Moreover, for the queries from dist2 to dist6 the system
has thrown a concurrent exception although providing partial re-
sults. The running time of swget, swgetM and SQUIN during the
evaluation exp2 has been affected by several I/O exceptions due to
missing FOAF profiles.

In exp3, we compared swgetM with SPARQL 1.1’s property
paths (PPs) and SQUIN. It is crucial to note that PPs are a means
to deal with paths that link RDF triples available in a local graph
while swgetM and SQUIN target the WLOD graph where paths
exist between distributed (and a priori unknown) data sources.
Nevertheless, we compared swgetM against PPs on the DBpe-
dia SPARQL endpoint (DBse). We first consider the expression:
(dbprop:influenced)* by considering theURI of TBL inDBpedia
as a seed node. Note that SQUIN cannot express the above request
since it does not support PPs. And, even if this would be possible,
PPs cannot be evaluated over the WLOD graph.

For the previous query, DBse did not provide any result be-
cause of a memory overflow after ∼2min while swgetM provided
1792 results in ∼172 s. We also compared on another expression
(i.e., co-director of S. Kubrick at dist6) PPs, swgetM and SQUIN.
This expression took ∼50 s on DBse, ∼180 s on swgetM while we
stopped the execution of SQUIN after ∼2 h. It is interesting to ob-
serve that DBse uses a local triplestore while swgetM and SQUIN
work on the Web. Indeed, swgetM performed a total of ∼3400
dereferencing operations. Finally, we also considered the expres-
sion (dbprop:influenced[ASK ?x rdf:type dbpedia:
Scientist])*with TBL as a seed node. Note that this request can-
not be expressed neither by PPs nor by SQUIN. swgetM provided 8
results with 21 dereferencing operations in ∼2.5 s.

12 http://www.polleres.net/foaf.rdf#me.

http://swget.wordpress.com/evaluation
http://swget.wordpress.com/evaluation
http://swget.wordpress.com/evaluation
http://swget.wordpress.com/evaluation
http://swget.wordpress.com/evaluation
http://dbpedia.org/snorql/
http://www.polleres.net/foaf.rdf#me

34 V. Fionda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 26 (2014) 29–35
(a) Execution time(s) — exp1. (b) Number of URI dereferenced — exp1. (c) Number of results — exp1.

Fig. 6. Comparison between swget single thread, swgetmulti-thread (swgetM) and SQUIN.
7. Discussion

User audience. The audience of swget are Web developers who
want to get fresh data directly from the source. The portal Web-
site includes a Learn tabwhere a video is provided, which describes
the step for launching swget agents andwritingNautiLOD expres-
sions.

Writing expressions. To use swget, the user needs some famil-
iarity with the underlying data/schema; similar to other query/
navigational languages (e.g., SPARQL). To assist the user in writing
expressions one could leveragemetadata about datasets (e.g., VoID
descriptions [17]). An increasing level of difficulty is represented
by the fact that NautiLOD expressions can span over multiple data
sources/schemata. To address this issue, users could write Nau-
tiLOD expressions adopting a meta-schema such as schema.org
because there exist mappings with other schemata.13 Hence, Nau-
tiLOD users have only to learn one schema; indeed, expressions
written in schema.org will be dynamically translated into the
schemata of the data sources encountered during the naviga-
tion. NautiLOD could also perform RDFS inference. For instance,
if the user chooses a property p1, NautiLOD could consider its
sub-properties (e.g., p2 rdfs:subPropertyOf p1) by navigating
the schema. Another line of extension could be the interaction of
swget with engines like Sindice [10].

Performance. swget expressions are evaluated over the WLOD
without the need of SPARQL endpoints. We want to point out
that the main idea underlying the portal (with the notification
mechanism via email) is that of freeing the user from the burden
to run scripts (with local resources) and wait for the answer.
Performance (in terms of execution time) depends on different
factors: (i) load of the servers (and polite crawling); (ii) quality of
the Internet connection; (iii) use of cache; (iv) complexity of the
expression. As for point (iii), swget can be configured to use a cache
that keeps Jena models associated to dereferenced URIs. The cache
has the lifetime of the evaluation of an expression. The cache could
bemade also persistent, for instance, via a hashtable-like structure
with keys being dereferenced URIs and values the corresponding
Jena models. This will improve the runtime performance of the
system avoiding tomultiple dereferencing operations for the same
URI. However, the cache introduces problems of data freshness
(e.g., how often the cache has to be updated). This issue can
be addressed either by setting a cache lifetime or by looking at
the HTTP header of HTTP connections when dereferencing a URI
and getting data only if changes are detected w.r.t. data in the
cache. We are also considering the deployment of the portal on a
cloud environment to improve its scalability. As for point (iv), the
availability of statistics about the usage of predicates can help in
determining their selectivity; thiswill help in estimating the cost of
the evaluation ofNautiLOD expressions.Wewant to point out that

13 http://schema.rdfs.org/mappings.html.
the swget engine can be configured (by passing a flag) to stream
results as they are available. Hence, for queries that may take long,
users can stop the execution and still get some results. Finally,
the system also enables to specify a budget in terms of maximum
number of dereferencing operations and stop the execution when
reaching the budget.

8. Concluding remarks

In this paper we introduced the swget portal, an on-line
application that enables to create Web agents. These agents can be
instructedbymeans of theNautiLOD language.NautiLODprovides
a declarative way to express navigational charts into the Web of
Linked Open Data graph. Navigation has been deeply studied into
the context of graphs; however, NautiLOD challenges navigation
in a context (the Web of Data) where the graph is not known in its
entirety. The swget Web portal mimics the process of instructing,
with a semantic specification given in the NautiLOD language,
a personal agent who traverses semantic data sources looking
for relevant information and provides notifications. Although
the ambitious dream of the intelligent agent envisioned in the
Semantic Web proposal is still far from reality, swget gives a hint
on the potentialities of declaratively specifying navigation and
triggering actions at a Web scale.

References

[1] T. Heath, C. Bizer, Linked data: evolving the web into a global data space,
in: Synthesis Lectures on the Semantic Web: Theory and Technology, Morgan
& Claypool Publishers, 2011.

[2] G. Klyne, J. Carrol, B. McBride, Resource description framework (RDF):
concepts and abstract syntax, 2004.

[3] E. Prud’hommeaux, A. Seaborne, SPARQL query language for RDF, W3C
recommendation, 2008.

[4] P.T. Wood, Query languages for graph databases, SIGMOD Rec. 41 (1) (2012)
50–60.

[5] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American,
2001.

[6] V. Fionda, C. Gutierrez, G. Pirrò, Semantic navigation on the web of data:
specification of routes, web fragments and actions, in: Proc. of the 21st World
Wide Web Conference, WWW, 2012, pp. 281–290.

[7] F. Alkhateeb, J.-F. Baget, J. Euzenat, Extending SPARQL with regular expression
patterns (for querying RDF), J. Web Semant. 7 (2) (2009) 57–73.

[8] J. Pérez, M. Arenas, C. Gutierrez, nSPARQL: a navigational language for RDF,
J. Web Semant. 8 (4) (2010) 255–270.

[9] R. Isele, A. Harth, J. Umbrich, C. Bizer, LDspider: an open-source crawling
framework for the Web of Linked Data, in: Proc. of the 9th International
Semantic Web Conference, ISWC, Posters & Demo, 2010.

[10] E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, G. Tummarello,
Sindice.com: a document-oriented lookup index for open linked data, Int. J.
Metadata, Semant. Ontol. 1 (3) (2008) 37–52.

[11] M. d’Aquin, E. Motta, Watson, more than a semantic web search engine,
Semant. Web 1 (2) (2011) 55–63.

[12] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, J. Umbrich, Data
summaries for on-demand queries over linked data, in: Proc. of the 19th
WWW Conference, 2010, pp. 495–544.

[13] B. Quilitz, U. Leser, Querying distributed RDF data sources with SPARQL,
in: Proc. of the 5th European Semantic Web Conference, ESWC, 2008,
pp. 524–538.

http://schema.rdfs.org/mappings.html
http://refhub.elsevier.com/S1570-8268(14)00022-5/sbref1
http://refhub.elsevier.com/S1570-8268(14)00022-5/sbref4
http://refhub.elsevier.com/S1570-8268(14)00022-5/sbref5
http://refhub.elsevier.com/S1570-8268(14)00022-5/sbref7
http://refhub.elsevier.com/S1570-8268(14)00022-5/sbref8
http://refhub.elsevier.com/S1570-8268(14)00022-5/sbref10
http://refhub.elsevier.com/S1570-8268(14)00022-5/sbref11

V. Fionda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 26 (2014) 29–35 35
[14] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, W3C Recommendation,
2013.

[15] O. Hartig, Zero-knowledge query planning for an iterator implementation of
link traversal based query execution, in: Proc. of the 8th European Semantic
Web Conference, 2011, pp. 154–169.
[16] V. Fionda, C. Gutierrez, G. Pirrò, Extracting relevant subgraphs from graph
navigation, in: Proc. of the 11th International SemanticWebConference, ISWC,
Posters & Demos, 2012.

[17] K. Alexander, R. Cyganiak, M. Hausenblas, J. Zhao, Describing linked datasets
with the VoID vocabulary, 2011.

	The swget portal: Navigating and acting on the web of linked data
	Introduction
	Related work
	Instructing intelligent applications with swget
	From set of nodes to subgraphs
	swget scripts syntax

	The swget web portal
	The user interface

	Application scenario
	Evaluation
	Discussion
	Concluding remarks
	References

