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Abstract This paper analyzes feeding strategies in a

sequential batch reactor (SBR) with the objective of

reaching a given (low) substrate level as quickly as pos-

sible for a given volume of water. Inside the SBR, several

species compete for a single substrate, which leads to a

minimal time control problem in which the control variable

is the feeding rate. Following Gajardo et al. (2008) SIAM J

Control Optim 47(6):2827–2856, we allow the control

variable to be a bounded measurable function of time

combined with possible impulses associated with instan-

taneous dilutions. For this problem, the extremal trajecto-

ries of the singular arc type are characterized as the

strategies used to maintain the substrate at a constant level.

Since this optimization problem is difficult to solve, this

characterization provides a valuable tool for investigating

the optimality of various feeding strategies. Our aim is thus

to illustrate the use of this tool by proposing potential

optimal feeding strategies, which may then be compared

with other more intuitive strategies. This aim was accom-

plished via several numerical experiments in which two

specific strategies are compared.

Keywords Sequential batch reactors � Minimal

time problem � Singular arc strategies

Introduction

Sequential batch reactors (SBRs) typically consist of a tank

filled with biological micro-organisms that are capable of

degrading an undesirable substrate. These devices are often

used in biotechnological applications, most notably in

wastewater treatments (see [10, 14, 18, 22] for details about

the fundamental role of SBRs in bioengineering). For this

purpose, we use the typical sequence of cycles, which is

composed of three phases:

• Phase 1: fill the reactor with water to be treated

• Phase 2: wait for the concentration of the undesirable

substrate to decrease to a given (low) concentration

• Phase 3: remove the clean water from the reactor,

leaving the sludge inside.

In this paper, we focus on a SBR in which several

species compete for a single substrate and on the corre-

sponding optimal control problem of feeding to minimize

the time in which the SBR reaches a desired (low) con-

centration of the substrate (i.e., Phases 1 and 2 described

above). This optimal control problem is the same as that

presented in [10, 11], which corresponds to an extension of

the one-species model introduced in [18]. This problem has

been solved for certain cases; for instance, explicit optimal

feeding strategies are given in [18], in which the SBR

contains only one species. Feeding strategies are also given

in [10], in which the SBR contains two species with non-

decreasing growth functions. See also [2, 20] for other

related feeding problems involving SBRs. Nonetheless,
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bioprocesses generally involve a significant amount of

biodiversity, particularly in wastewater treatment. Micro-

bial communities can contain thousands of species [9].

Thus, it is relevant to study optimal feeding strategies in

the presence of several species.

This multi-species setting leads to an optimization

problem that is difficult to solve. However, Gajardo

et al.[11] presented a method for characterization when a

singular arc is presented in an optimal feeding strategy.

Indeed, this characterization establishes that an extremal

curve (eventually optimal) is an singular arc if and only if

the substrate level remains constant during that period of

time. Because the existence of singular arcs can lead to

complex solutions that are not easily tractable from a

mathematical point of view, this characterization is very

valuable for verifying the optimality of various feeding

strategies. We, thus, provide explicit conditions for which

the above-mentioned characterization holds. These condi-

tions depend on the growth functions of the species

involved in the depollution process. When the appropriate

conditions are fulfilled, we can propose potential optimal

feeding strategies, based on the existence of a singular arc,

and can compare them with other more intuitive strategies

via numerical simulations.

Mathematical model and Pontryagin’s principle

In this section, we define the optimal control problem

studied in this article. This problem was introduced by

Gajardo et al. [10], as an extension of the minimal time

problem presented by Moreno in [18]. We finish this sec-

tion by exhibiting some basic results concerning Pontrya-

gin’s principle, which permits us, in the next section, to

understand the meaning of a singular arc strategy in this

problem.

The dynamics of a SBR with several species can be

described as follows (see [22]):

_xi ¼ liðsÞxi � F
v

xi; xiðt0Þ ¼ xi0 ði ¼ 1. . .nÞ;

_s ¼ �
Pn

j¼1

ljðsÞxj þ F
v
ðsin � sÞ; sðt0Þ ¼ s0;

_v ¼ F; vðt0Þ ¼ v0;

8
>><

>>:
ð1Þ

where xi, s and v represent the concentration of the ith

species, the concentration of the substrate and the current

volume of water in the tank, respectively. The parameter

sin [ 0 is a constant that represents the substrate concen-

tration in the input flow. The growth functions lið�Þ are

non-negative smooth functions such that li(0) = 0, and the

input flow F is a non-negative control variable.

The aim is to treat the maximum quantity of water in the

SBR as quickly as possible. From a mathematical point of

view, this means that, given a (desirable) substrate

concentration sout [ ]0,sin[ and the volume of the reactor

vmax, we want to solve the following minimal time

problem:

inf
Fð�Þ

t � t0jst0; n;FðtÞ� sout; vt0; n;FðtÞ ¼ vmax

� �
; ð2Þ

where st0; n;Fð�Þ; vt0; n;Fð�Þ denote solutions of (1) with the

initial condition n = (x10, …, xn0, s0, v0) at time t0 and

when a particular control strategy Fð�Þ is used. It is worth

emphasizing that our theoretical results are valid provided

that the initial condition n is in the domain

D ¼ ðIRn
þ n f0gÞ��0; sin���0; vmax½.

Here, F(�) is allowed to be a non-negative measurable

function combined with possible positive impulses; that is,

dF(t) = u(t)dt ? dr, where u(�) is a measurable non-neg-

ative control that we impose to be bounded from above by

some positive value umax because it corresponds to the use

of a pump device, and at time t, the non-negative impulse

dr corresponds to an instantaneous addition of volume.

The latter is useful for modeling practical situations in

which large amounts of polluted water are added to the

SBR in a short time (e.g., [5, 7]).

From [10], we know that a time parameterization s C t0
such that dt = r(s)ds with

rðsÞ ¼ 1; when the pump device is used

0; when an impulse is used;

�

allows us to replace the dynamics (1) by the system

dxi

ds ¼ rliðsÞxi � u
v
xi ði ¼ 1. . .nÞ;

ds
ds ¼ �r

Pn

j¼1

ljðsÞxj þ u
v
ðsin � sÞ;

dv
ds ¼ u;

8
>><

>>:
ð3Þ

where the controls u(�) and r(�) are sought among

measurable functions with respect to s, taking values in

[0, umax] and {0, 1}, respectively. In this formulation, u(�)
acts as an ordinary control when r = 1 and controls the

amplitude of the impulse when r = 0, with the same single

constraint u [ [0,umax]. Consequently, control r(�) indicates

the presence of an instantaneous dilution. This conclusion

can also be interpreted from system (3) by noting that

r = 0 causes all of the terms related to biological

interactions to vanish. Indeed, from a process point of

view, one considers impulses when the time needed to add

a given volume of water is sufficiently small, such that

growth can be neglected during this time. This assumption

also allows us to neglect this time in the total time of the

process. Thus, we obtain the following value function for

the reformulated dynamics (3)

VðnÞ ¼ inf
ðu; rÞð�Þ

Z s

t0

rðhÞdh such that

st0; n; u; rðsÞ� sout; vt0; n; u; rðsÞ ¼ vmax;

ð4Þ
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where st0; n; u; rð�Þ; vt0; n; u; rð�Þ denote solutions of (3) with

the initial condition n 2 D at time t0 and with controls u(�)
and r(�).

Remark 1 As one can always take r = 0 and u = 0 for an

arbitrarily large s-interval without modifying the total time,

the minimal time problem has no unique solution. Hence,

we will be only interested in controls satisfying r(s) = 0 or

u(s) = 0 for all time s.

Now, set z ¼ ðx1; � � � ; xn; s; vÞ>; u1 ¼ r and u2 ¼ u.

In [11], the Pontryaguin principle (cf. [19]) applied to

problem (4) can be stated as follows:

If u� ¼ ðu1�; u2�Þ is an optimal control and z* is its

corresponding trajectory on R
nþ2, then there exists a con-

stant k0 C 0 and an absolutely continuous function

s 7!kðsÞ ¼ k1ðsÞ; . . .; knþ2ðsÞð Þ such that for almost every

s; ðk; k0Þ never vanish and satisfy

_z ¼ oH
ok
ðz; k; u�Þ; _k ¼ � oH

oz
ðz; k; u�Þ; ð5Þ

where the Hamiltonian H is given by

Hðz; k; u1; u2Þ ¼ u1/u1
ðz; kÞ þ u2/u2

ðz; kÞ: ð6Þ

Here, we define the following functions

/u1
ðz; kÞ :¼ k0 þ

Pn

i¼1

liðsÞxiðki � knþ1Þ;

/u2
ðz; kÞ :¼ �

Pn

i¼1

xi

v
ki þ ðsin�sÞ

v
knþ1 þ knþ2:

8
>><

>>:
ð7Þ

Furthermore, the optimal control u� minimizes the

Hamiltonian over the control admissible set, through the

curve ðkðsÞ; zðsÞÞ.
For the sake of simplicity, we will simply use /ui

ðsÞ
instead of /ui

ðzðsÞ; kðsÞÞ, and we assume that k0 ¼ 1. The

latter condition corresponds to the normal extremals.

Characterization of singular arcs

In our context, a singular arc corresponds to an extremal

curve for which there exists a non-trivial interval ½s1; s2� �
½0; T� where both switching functions /ui

ðsÞ; i ¼ 1; 2, are

identically zero. This can be understood as an extension of

the standard definition of singular arcs when only one

control is considered (e.g., [3, Part III, Ch. 2]).

When a singular arc is presented in the optimal strategy,

minimization of the Hamiltonian H introduced in (6) can

lead to complex feeding strategies. The next result thus

provides important qualitative information about singular

arcs, constraining them only to extremal curves for which the

substrate level s remains constant. This constraint permits us

to limit our study of possible optimal feeding strategies.

Singular strategies have been known to appear in many

control problems of particular interest to chemical engi-

neers and have already been addressed with the help of

optimal control theory [2, 6, 13, 14, 20]. In addition, [8]

and [21] have demonstrated the possible appearance of

singular arcs in the start–up of bioreactors and in a variety

of chemical reactor optimization problems.

The issue of singular arcs is well known in the classical

theory of optimal control; see, for instance, [15]. Currently,

this type of trajectory plays an important role in optimal

control theory. These trajectories are studied in high-order

optimality conditions; see, for instance, [4, 12, 16].

The next characterization of singular arcs was reported

in [11].

Theorem 1 Suppose that the matrix

DðsÞ ¼

lð1Þ1 ðsÞ � � � lð1Þn ðsÞ
lð2Þ1 ðsÞ � � � lð2Þn ðsÞ

..

. . .
. ..

.

lðnÞ1 ðsÞ � � � lðnÞn ðsÞ

0

B
B
B
B
@

1

C
C
C
C
A

ð8Þ

is nonsingular for any s [ (0,sin). Here, li
(j) denotes the j-th

derivative of function li. Then, an extremal curve is a

singular arc on (s1, s2),[0, T] if and only if sð�Þ is constant

on (s1, s2).

Remark 2 The characterization stated above ensures that

any optimal strategy is composed of bang-bang controls

(which, in our case, means either to close the pump or to do

one impulsion) or that the pump is used to maintain a

constant substrate level, where the latter approach corre-

sponds to a singular arc. However, this characterization

does not prevent the presentation of more than one singular

arc. For the sake of simplicity, in the next sections, we only

consider optimal strategies containing at most one singular

arc.

Applications

In this section, we apply Theorem 1 to study singular arcs

for species with particular biological characteristics that

have not been considered in previous articles [10, 18]. This

tool allows us to propose potential optimal feeding strate-

gies, which can then be compared with other more intuitive

strategies.

Arbitrary number of species following Monod growth

functions

Suppose that each of the n species of microorganisms in

competition for a single substrate in the SBR follows a

Monod law growth function [17], that is
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liðsÞ ¼
lmax;is

Ki þ s
; i ¼ 1; . . .; n ð9Þ

where, for the i-species, lmax,i and Ki represent the maxi-

mal growth rate and the half saturation constant or Monod

constant, respectively, and Ki = Kj, for all i = j. In this

case, it is easy to verify that the hypothesis of Theorem 1

holds true (cf. Proposition 3.5 of [11]), and we obtain the

following result:

Proposition 2 Under the hypotheses of this subsection,

an extremal curve is a singular arc on s1; s2ð Þ � ½0; T � if

and only if sð�Þ is constant on s1; s2ð Þ.

Two species with a Haldane and a Monod growth

function

Consider now that one of the two species has a Monod

growth law:

lMðsÞ ¼
lmax;Ms

KM þ s
; ð10Þ

(where, as before, lmax, M is the maximal growth rate and

KM is the half saturation constant or Monod constant) and

the other species follows a Haldane growth law [1], which

is usually used to represent a substrate inhibiting growth at

high values, as given by

lHðsÞ ¼
lmax;Hs

KS þ sþ s2

KI

ð11Þ

where lmax, H is the maximal growth rate, KI is an inhi-

bition constant and KS is the affinity or saturation constant.

In this situation, we can verify the following result:

Proposition 3 The hypothesis of Theorem 1 is fulfilled if

one of the following conditions is satisfied.

(1) KI = KM and 4KS \ KI.

(2) KI [ KM and KIKS ¼ KM KI � KMð Þ.
(3) KI - KM = 2KS and KIKS\KM KI � KMð Þ.
(4) KI�KM

KS
[ max 2; KI

KM

n o
.

Conditions (1)–(4) of Proposition 3 are derived from an

algebraic analysis of the determinant of the matrix DðsÞ
given in (8). Consequently, we obtain

Corollary 4 Under any of the conditions of Proposition

3, an extremal curve is a singular arc on s1; s2ð Þ � ½0; T � if
and only if sð�Þ is constant on s1; s2ð Þ.

Two species with a linear and a Monod growth function

Consider again two species, one following a Monod growth

law, cf. (10), and one following a linear law given by

lLðsÞ ¼ cs ð12Þ

where c is a positive constant. This type of function can

model very large growth functions (for instance, either

Monod or Haldane type) at the beginning of its range.

In this situation, the determinant of DðsÞ, defined in (8),

is given by

2clmax;M

KM þ sð Þ3
:

Therefore, the hypothesis of Theorem 1 is always satisfied.

Proposition 5 Under the hypotheses of this subsection,

an extremal curve is a singular arc on s1; s2ð Þ � ½0; T � if

and only if sð�Þ is constant on s1; s2ð Þ.

Two species with a linear and a Haldane growth

function

Finally, we consider two species, one following a linear

growth law, cf. (12) and one following a Haldane growth

law, cf. (11). Hence, we can verify that the hypothesis of

Theorem 1 is fulfilled, provided that l00HðsÞ 6¼ 0, for all

s 2 ð0; sinÞ. Indeed, the determinant of the matrix DðsÞ is

exactly cl00HðsÞ. Consequently, we find

Corollary 6 For the two-species case considered in this

subsection, suppose that l00HðsÞ 6¼ 0, for all s 2 ð0; sinÞ.
Then, an extremal curve is a singular arc on s1; s2ð Þ �
½0; T� if and only if sð�Þ is constant on s1; s2ð Þ.

Numerical simulations

In this section, we compare two feeding strategies for the

cases stated in Section 4; namely, we compare the imme-

diate one-impulse strategy and the singular arc strategy. As

discussed in previous articles [10, 11, 18], these two types

of strategies naturally arise as feeding strategies in different

bioprocesses.

The immediate one-impulse strategy (denoted IOI for

short) was introduced in [10], and it consists of introduc-

ing, from a given initial state n ¼ ðx10; . . .; xn0; s0; v0Þ at

time t0, the following: (1) An impulse of volume vmax - v0

at t0. This can be achieved by r(s) = 0, u(s) = umax, for

s 2 ½t0; t0 þ ðvmax � v0Þ=umax�, and (2) A null control (no

feeding) until the concentration s(s) reaches sout.

The singular arc strategy has been previously analyzed

[10, 18] and depends on a given value s* for the substrate

(indeed, it is denoted by SA(s*) for short). Roughly

speaking, this strategy consists of reaching, as quickly as

possible, a given level s� in sout; sinð Þ and then maintaining

s constant and equal to s� until v reaches vmax. Finally, we

set u = 0 and r = 1 (which means the pump is closed)

until s reaches sout. In all of our numerical experiments, the
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value of s* is chosen to minimize the cost of this type of

strategy among all possible values of s� in sout; sinð Þ.
Recall that in the case of two species with increasing

growth functions, it was shown in [10] that these two

strategies were unique possible optimal strategies for our

optimal control problem.

As an example, we first consider the following three

Monod growth functions (see Fig. 1):

l1ðsÞ ¼
s

1þ s
; l2ðsÞ ¼

2s

1:5þ s
; l3ðsÞ ¼

4s

2þ s
;

as well as the following parametric values vmax = 10,

sout = 0.1 and sin = 5 and the initial conditions x10 = 1,

x20 = 0.001, s0 = 3 and v0 = 1. In Table 1, we compare,

for different values of the initial condition x30, the times

achieved by the IOI and SAðs�Þ strategies. Thus, the results

reported in Table 1 establish that SAðs�Þ exhibits an

improvement close to 25 % with respect to IOI for some

values of x30. We thus conclude that IOI is not optimal for

this particular setting.

Note that it is already known (see [10]) that when there

are only two Monod growth functions in the bioreactor and

when one of them is clearly more performant than the other

(i.e., its graphical image is always higher), the IOI strategy

is indeed optimal. Thus, the previous results indicate that

considering a third species (even a more performant one)

can lead to a loss of the optimality of IOI. We believe that

this fact can be important in practice.

The case of an arbitrary number of species following

increasing growth functions was analyzed in [11]. Therein,

conditions that ensure the optimality of the IOI strategy

were studied.

For the rest of the cases, we consider two species that

are in competition for a single substrate in the SBR. In

all of these cases, we consider the parametric values

vmax = 10, sout = 0.1 and sin = 5 and the initial conditions

x10 ¼ 1; s0 ¼ 3 and v0 ¼ 1. We then compare, for different

values of x20, the times achieved by the IOI and SAðs�Þ
strategies.

In Table 2, we illustrate the case in which one species

follows a Haldane growth law and the other follows a

Monod growth law. These growth functions fall into some

of the cases of Proposition 3 (see Fig. 2).

In Table 3, we illustrate a situation in which one of the

species follows a Monod growth law and the other species

follows a linear growth law, given by (see Fig. 3a)

lMðsÞ ¼
4s

3þ s
; and lLðsÞ ¼ 2s:

In Table 4, we illustrate a situation in which one of the

species follows a Haldane growth law and the other species

follows a linear growth law, given by (see Fig. 3b)

Fig. 1 Graphs of the three growth functions considered in the

example

Table 1 Comparision between SA and IOI strategies. Three species

case

x30 T (IOI) s� TðSAðs�ÞÞ TðIOIÞ�TðSAÞð Þ
TðIOIÞ (%)

10-4 5.416174 4.226000 5.402767 0.2

10-3 5.389022 3.540000 4.978126 7.6

10-2 5.172141 3.442000 4.170769 19.4

0.05 4.669824 3.344000 3.548414 24.0

0.1 4.350146 3.246000 3.274169 24.7

0.5 3.458854 3.050000 2.620281 24.2

Table 2 Comparision between SA and IOI strategies. Monod-

Haldane case

x20 T(IOI) s� TðSAðs�ÞÞ TðIOIÞ�TðSAÞð Þ
TðIOIÞ (%)

KI ¼ KM; 4KS\KI : lHðsÞ ¼ 2s

1þsþs2

6

; and lMðsÞ ¼ 4s
6þs

10-4 3.914240 2.462000 3.716620 5.0487

10-3 3.909991 2.462000 3.715882 4.9644

10-2 3.870175 2.462000 3.708550 4.1762

0.05 3.733370 2.658000 3.673870 1.5937

0.1 3.612956 4.716000 3.613056 -0.0028

0.5 3.162882 4.716000 3.163642 -0.0240

KI�KM

KS
[ max 2; KI

KM

n o
: lHðsÞ ¼ 2s

6
5
þsþs2

6

; lMðsÞ ¼ 4s
2þs

10-4 4.038229 2.756000 3.912040 3.1249

10-3 3.832359 4.716000 3.832356 0.0001

10-2 3.272825 4.716000 3.274040 -0.0371

0.05 2.761514 4.716000 2.762851 -0.0484

0.1 2.529374 4.716000 2.530603 -0.0486

0.5 1.975955 4.716000 1.976672 -0.0363
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Fig. 2 Two species with Haldane and Monod law growth functions: a KI = KM, 4KS \ KI, b KI�KM

KS
[ max 2; KI

KM

n o

Table 3 Comparision between SA and IOI strategies. Monod-linear

case

x20 T(IOI) s� TðSAðs�ÞÞ TðIOIÞ�TðSAÞð Þ
TðIOIÞ (%)

10-4 1.894604 4.716000 1.897233 -0.1388

10-3 1.600381 4.716000 1.603105 -0.1702

10-2 1.317108 4.716000 1.319561 -0.1862

0.05 1.130736 4.716000 1.132728 -0.1762

0.1 1.052256 4.716000 1.053935 -0.1596

0.5 0.870140 4.716000 0.870980 -0.0965

Fig. 3 Two species with growth functions: a Linear- Monod b Linear-Haldane

Table 4 Comparision between SA and IOI strategies. Haldane-linear

case

x20 T(IOI) s� TðSAðs�ÞÞ TðIOIÞ�TðSAÞð Þ
TðIOIÞ (%)

10-4 1.435443 4.226000 1.434500 0.0657

10-3 1.429464 4.618000 1.429450 0.0010

10-2 1.384587 4.716000 1.385042 -0.0329

0.05 1.289891 4.716000 1.290788 -0.0695

0.1 1.231523 4.716000 1.232486 -0.0782

0.5 1.064653 4.716000 1.065375 -0.0678
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lHðsÞ ¼
6s

2þ sþ s2

9

; and lLðsÞ ¼ 1:5s:

Conclusions

In this paper, we have studied the optimal control problem

consisting of feeding in a SBR in which several species

compete for a single substrate, with the objective being to

reach a given (low) substrate level in a minimal time. Our

mathematical model allows for instantaneous dilution of

the polluted water as well as continuous feeding from a

pump.

For this multi-species setting, the existence of singular

arcs is known to be fully characterized as the intervals of

time in which the substrate concentration remains con-

stant. This characterization permits us to conclude that

optimal feeding strategies are composed of only three

types of feeding phases: dilutions, manipulations of the

pump to maintain a constant substrate concentration and

closing of the pump (which involves waiting for the

concentration of the substrate to decrease to a given

level). Of course, these three phases can be combined in

an infinite number of ways. Our numerical simulations

were conducted with the aim of comparing only two

feeding strategies: the IOI strategy, in which the tank is

filled with a single dilution followed by waiting, and the

singular arc strategy, in which, a given substrate con-

centration is reached as quickly as posible and the pump

is then used to keep this concentration constant until the

tank of the reactor is completely filled, at which point the

pump is then closed.

In this note, we have performed simulations for several

cases in which our theoretical characterization of singular

arcs is fulfilled. We have observed that it is not easy to

determine which of the studied two strategies is optimal,

even in cases when one could suppose that filling the

reactor as quickly as possible is the best feeding strategy

(for instance, in the case of Fig. 1). Indeed, in many cases,

this decision also depends on the initial conditions of the

bioreactor. Thus, these numerical experiments can guide

practitioners in choosing strategies for particular SBR

settings.

It is worth noting that explicit optimal strategies cannot

be directly obtained from our approach in the multi-species

case. This result is a consequence of the lack of informa-

tion about the number of commutations that can be

employed between the above-mentioned phases (making

dilutions, maintaining a constant substrate concentration

and closing the pump) in an optimal strategy. This limit is

the main line of research that we expect to address in future

works.
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idad de Chile), CONICYT Anillo ACT1106, project BIONATURE of

CIRIC, INRIA–Chile, and UFAM-INCTMat Avanço Global e In-
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