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ABSTRACT

This work sheds light on the possibility of using control strategies to set the parameters of electric stimulation, a commonly
used technique in severe human central nervous system diseases. Currently, parameters of electric stimulation are set through a
trial and error process, with a lot of undesirable side effects. Accordingly, and based on the problem of having a population of sick
neurons embedded in a population of normal neurons, this work explores the possibility of using a control system based on the
behavior of healthy neurons to set current parameters able to modify the electric behavior of sick neurons. Specifically, we posit
a knowledge-based expert control system that modifies the firing mode of a thalamic neuron by applying a control stimulation
current, with the aim of making it fire in the same mode as a reference thalamic neuron. The controller parameters are tuned based
on some characteristics of neurons that have to be determined through experiments before their application, but this controller
does not require a detailed mathematical model of each neuron. Simulation results indicate that the proposed system satisfies the
control objectives.
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I. INTRODUCTION

Currently three main therapies are used to stimulate the
human nervous system. These are deep brain stimulation
(DBS), vagus nerve stimulation, and transcranial magnetic
stimulation. Even though they are successful therapies for
many diseases, tough questions remain concerning their
action mechanism at the cellular level, as well as ethical
challenges [1, 2].

Examples of central nervous system diseases—mainly
movement disorders and neuropsychiatric diseases such as
Parkinson’s disease, essential tremor, dystonia, obsessive-
compulsive disorder, depression, Tourette’s syndrome, epi-
lepsy, minimally conscious state, and headaches—can be
relieved by DBS therapies [4, 5]. Deep brain stimulation
therapy delivers a current through electrodes inserted in the
brain with an apparatus similar to a cardiac pacemaker, with
the main target subcortical structures such as the cerebellum,
thalamic nuclei, and basal ganglia system [3]. The electrode
performs extracellular stimulation of surrounding brain
tissues, diminishing the symptoms of movement disorders

[6]. Currently more than 75,000 patients worldwide have a
stimulator device implanted [1, 4].

The surgical procedure to implant DBS electrodes
includes testing the stimulation during surgery with an awake
patient in order to have spoken feedback of any undesired
side-effects [7–11]. In DBS a wide volume of neurons is
stimulated, which in many cases is greater than the area of
interest [12, 13], and stimulation is delivered constantly
without any feedback of actual changes in brain activity [1,
4]. These limitations pose the necessity of developing intel-
ligent closed-loop DBS devices, as stated by Shah et al. [1].

This work presents the possibility of using a control
strategy to set the parameters of electric stimulation including
a feedback stage. To do this we simulated a system of two
thalamic neurons; one is the reference neuron, whose pattern
of electrical activity we want to reproduce in the other neuron,
called the sick neuron, that is, the neuron whose behavior we
want to modify assuming it has diseased behavior. Both were
simulated through an integrate-and-fire-or-burst (IFB) model,
which reproduced the behavior of a neuron from the thalamic
lateral geniculate nucleus. The proposed control system
designs the control current delivered to the sick neuron based
on the identification of the firing pattern of both neurons.
The simulated system was developed based on three main
assumptions that will be discussed further in the conclusions.
The assumptions are: (i) only membrane potential would be
available for measurement on each neuron; (ii) the control
action would be applied only to the sick neuron; and (iii) there
would still be normal neurons in the brain that could perform
the role of the reference neuron.
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This article is divided into five sections. Besides the
introductory Section I, Section II deals with the model IFB
used to describe the neurons. In Section III the proposed
control scheme is presented in detail. Section IV is devoted to
the study of the proposed control system, presenting some
simulations. Finally, some conclusions are drawn in the fifth
section.

II. IFB MODEL

The integrate-and-fire-or-burst (IFB) system is based
on Labique’s classic model, integrate-and-fire [14]. The IFB
model was proposed in 2000 by Smith et al. [15] and was
tuned to reproduce the firing mode of neurons from the tha-
lamic lateral geniculate nuclei of young cats. The parameters
used in the model were established to reproduce the main

features of these thalamic neurons [16], such as tonic firing
(see Fig. 1a), and rebound burst mode (see Fig. 1b). This
model depends on two different thresholds, Vh, responsible
for the activation of the burst spiking mode, and Vq, respon-
sible for the activation of tonic firing. These thresholds were
measured intracellularly by Smith et al. for young cats (See
Table I). The model describes the dynamic of membrane
voltage Vm through three equations, (1.1)–(1.3). At time t, and
based on the Vm value at time t –, previous to t, as follows:

If V t V C
dV t

dt
I I Im

m
IN L T( )

( )− < ⇒ = − −θ (1.1)

If V t V V t Vm m spike( ) ( )− = ⇒ =θ (1.2)

If V t V V t Vm spike m reset( ) ( )− = ⇒ = (1.3)

Fig. 1. Examples of IFB model membrane voltage due to simulated synaptic current. Left: Burst firing, mean value IIN = 152.0 (nA).
Right: Tonic firing, mean value IIN = 738.4 (nA).
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Vm : Neuron membrane voltage or membrane potential.
Vq : Threshold voltage over which an action potential is

triggered.
Vreset : Maximum voltage reached by an action potential.
Vreset : Rest voltage reached after an action potential.
IIN : Total current that stimulates the neuron (i.e. synaptic

current).
C : Membrane capacitance

The differential equation (1.1) is solved every time
membrane voltage Vm is lower than threshold voltage Vq.
Equation (1.2) sets membrane voltage Vm to Vspike, immedi-
ately after threshold voltage Vq is reached. On the other side,
Equation (1.3) sets membrane voltage Vm to Vreset immediately
after an action potential occurs. The dynamic of Vm (t) at each
instant depends on membrane voltage at the time immediately
before, called Vm (t –). Table I shows the parameter values
used for the model in all simulations done in this study, which
correspond with the thalamic lateral geniculate nuclei of
young cats [15]. The currents of leak conductance due to
movement of low-threshold Ca++ ions, IL and IT, are given by:

I g V t VL L m L= −( ( ) ) (2)

I g m h V t VT T m T= −∞ ( ( ) ) (3)

Low-threshold Ca++ current depends also on the char-
acterization of its activation denoted as m•, given by (4), and
of its inactivation denoted as h, given by (5).
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Vh is the threshold voltage under which a rebound burst
is triggered. The parameter th

+ represents the duration of the
burst, and th

- indicates the duration of the hyperpolarization
necessary to recruit a maximal post-inhibitory rebound
response.

The input current IIN applied to neurons was produced
based on a model of synaptic current which represents the
afferent current (also called stimulus current) due to synaptic
interaction with other neurons in the same neural circuit. It
was modeled as a sum of exponential functions that follow
independent Poisson processes [17, 18]. Because of the sto-
chastic nature of this model of synaptic currents, it is not
possible to find two identical processes. These currents drive
neurons to fire in tonic mode (TM) or burst mode (BM), both
at irregular frequencies just like what happens in a real
neuron. (See Fig. 1).

III. CONTROL STRATEGY

As stated in the previous section, the idea of the control
system is to change or to maintain the firing mode of the sick
neuron in order to make it fire in reference neuron mode,
through the application of a suitable control current, Ic. This
control current is designed based only on knowledge of the
membrane voltage, Vm of the neurons (see Fig. 2).

As seen in Fig. 2, the controller receives as inputs Vm of
both neurons, at least 500 ms of membrane voltage data Vm

from each neuron, and from these values determines the firing
mode of each neuron, estimates input current for each neuron,
and then computes the control action. In this way, the control
system developed here is a closed-loop knowledge-based ref-
erence control. An expert system was chosen instead of a
classical control system for one main reason; in real applica-
tions it is difficult to develop an accurate mathematical model
of each neuron to be controlled, which is why the control
system developed here is based only on: (i) Vm measurement;
and (ii) the knowledge of Vq and Vh and the parameters of (6)
and (7), all of which can be determined through laboratory
experiments [19, 20].

The control current is defined as I I Ic RN SN= −� � , where
the currents �IRN and �ISN are estimations of afferent current to
the reference and sick neuron, respectively. In order to calcu-
late Ic and for the sake of clarity, the control system was
divided into three blocks, as seen in Fig. 2. The first block,
called Classification Rules, identifies the firing mode (burst or
tonic) of both neurons. The second block, called the Current
Estimator, estimates the input current at the entry of each
neuron. The third block, called Control Action, computes the
control current Ic.

3.1 Classification rules

In order to classify the firing mode of a neuron, enough
information must be available to ensure good performance of
the control system, which is why this block classifies the
firing mode of a neuron only after 500 milliseconds of simu-
lation. From these 500-length voltage vectors the classifier
identifies the firing mode of each neuron. This is done

Table I. IFB Model Parameters [13].

Parameter Value Unit Parameter Value Unit

Vq -50 mV gL 0.035 mS/cm2

Vh -70 mV gT 0.8 mS/cm2

Vreset -60 mV th
+ 100 ms

Vspike 30 mV th
- 20 ms

VL -75 mV C 2 mF/cm2

VT 120 mV
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verifying that each component of voltage vector Vm (i) is
within one of these constraints:

1. If at least one component Vm(i) � Vh, then the neuron is
classified as firing in BM.

2. If at least one component Vm(i) � Vq, and all compo-
nents are Vm(i) > Vh, then the neuron is firing in TM.

3. If all vector components satisfy Vh < Vm(i) < Vq then the
neuron is at rest, also called the passive mode, where no
spike occurs.

3.2 Current estimator

The relationship between neuron firing frequency,
measured from membrane voltage signal Vm, and the neuron
stimulus amplitude IIN, was studied from the IFB model. The
stimulus applied was a square wave signal of fixed width and
variable amplitude in the range –2 mA to 2 mA. There were
differences in mean frequency of membrane voltage between
TM and BM. In burst firing, the mean frequency was over
3 KHz, whereas in tonic firing, frequency was never over
0.3 KHz. Based on this data, two different estimators were
developed, one for the BM, and the other for the TM.

For the TM a quadratic relationship, equation (6),
between the stimulus amplitude IIN and the spike frequency of
membrane voltage signal Vm was determined from linear
regressions of discharge data collected through simulations.
(See Fig. 3). This equation allows us to estimate the current of
stimulus �ITM from the mean frequency of membrane voltage
signal fm measured over Vm.

�I f fTM m m= + +40 2 16 85 0 672. . . (6)

For BM it was not possible to define a current estimator
based on Vm spike frequency. Even though the relationship
between �IBM and fm was linear, the slope was small in mag-
nitude generating important numerical errors; and the litera-
ture lacks a consensus on deciding if a neuron is firing in BM
or TM from a single spike. Considering these reasons and the
fact that thalamic neurons show rebound burst that comes
only after hyperpolarization of membrane voltage Vm below
threshold voltage Vh, the current estimator for burst firing was
built based on the derivative of membrane voltage vector �Vm .
A linear relationship was found between the hyperpolariza-
tion voltage slope generated and the maximum amplitude of
the applied stimulus, as seen in Fig. 4.

Fig. 2. Diagram of the control scheme and neuron inputs and outputs.

Fig. 3. Stimulus amplitude versus spike frequency of membrane
voltage for the tonic mode.
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In Fig. 5 the relationship between the derivative �Vm near
–0.25 mV/s, and the stimulus amplitude is shown. Equation
(7), obtained from linear regressions of discharge data
collected through simulations, was used to estimate IBM

(see Fig. 5).

� �I VBM m= +2 0 6. (7)

IV. SIMULATION RESULTS

The control system proposed in the previous section
was applied in two different cases. First, when input current
to neurons was a square pulse, and second when it was a
Poisson process. As a first test the reference neuron was in
BM, stimulated with square pulse from 0.3 mA to 0.1 mA
which is the hyperpolarized stage. This current was esti-
mated as having �I ARN = 0 0949. ( )μ . The sick neuron was

stimulated with a constant 0.9 mA, which was estimated as
�I ASN =1 0467. ( )μ . Fig. 6 shows the control applied to the sick
neuron firing initially in TM, then when applying the control
current at t =500 ms, it starts to respond in BM, like the
reference neuron.

Fig. 7 presents the case in which the reference neuron is
firing in TM, and the sick neuron is initially responding
in BM. When the control current is applied at 500 ms, the
sick neuron starts responding in TM. In this case the cur-
rent of the reference neuron was 1.1 mA, estimated as
�I ARN =1 1049. ( )μ , and had a square pulse between 0.3 mA
and –0.1 mA, the last value responsible for hyperpolari-
zation of the sick neuron. The input current was estimated as
�I ASN = 0 1879. ( )μ . The average discharge of the sick neuron
was fm = 20 Hz, compared with 24 Hz for the reference
neuron.

Figs 8 and 9 show the results of applying the control
system when a Poisson process generating stimulus current is
used. Fig. 9 shows the case when the sick neuron is respond-
ing in TM, but once the current control is applied at
t = 500 ms, starts responding in BM. The mean component
of the Sick Neuron stimulus current was 1.0382 mA and
0.1206 mA for the reference neuron. These values were
estimated as �I ASN =1 1790. ( )μ , and �I ARN = −0 6441. ( )μ ,
respectively.

Fig. 9 shows the successful control of a burst type
discharge. For the sick neuron the stimulus has a con-
stant mean value of 0.0812 mA, which was estimated as
�I ASN = 0 0340. ( )μ . For the reference neuron, the mean of
the applied current was 1.0395 mA and was estimated as
�I ARN =1 0212. ( )μ . These estimation errors in turn produce
differences in the frequency discharge of each neuron, with
the reference neuron discharging at 21 Hz, and the sick
neuron discharging at 16 Hz.

Fig. 4. (a) Rebound burst for different stimulus amplitudes. (b)
Zoom of voltage slope before rebound between 0 and
500 ms.

Fig. 5. Relationship between �Vm and stimulus amplitude in BM.
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Fig. 6. TM control using noiseless stimulus current. Upper: Stimulus applied to each neuron. Center: Membrane voltage of the
reference neuron in BM. Lower: Membrane voltage of the sick neuron, in TM until 500 ms when Ic was applied.

Fig. 7. Burst mode control using noiseless current. Upper: Stimulus applied to each neuron. Center: Membrane voltage of the reference
neuron in TM. Lower: Membrane voltage of the sick neuron, in BM until 500 ms.
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Fig. 8. Tonic Mode Control using SSC. Upper: Stimulus applied to each neuron. Center: Membrane voltage of the reference neuron in
BM. Lower: Membrane voltage of the sick neuron in TM until 500 ms.

Fig. 9. BM control. Upper: Stimulus applied to each neuron. Center: Membrane voltage of the reference neuron in TM. Lower:
Membrane voltage of the sick neuron, in BM until 500 ms.
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Based on these results, it can be seen that the control
objective was reached in all cases since the response mode
of the sick neuron was modified in order to achieve the
mode imposed by the reference neuron. The current estima-
tion errors vary according to whether the estimation is done
in TM or BM. Table II shows the percentage of error
obtained in the four cases presented above. The estimation
error was computed as the quotient between the estimated
and true values of the current applied, expressed as a per-
centage as shown in (8).

e
I

I
= − ⋅

�
1 100 (8)

The cases shown in Figs 6 and 7 are instances in
which the stimulus currents are noiseless and take constant
values. The average estimation error in TM is 1.95%,
whereas in BM it was 4.25%. In the cases shown in Figs 8
and 9, when the stimuli are generated by means of a Poisson
process, the average estimation error was 3.7% in TM and
136.13% in BM. Therefore, it can be concluded that the
estimation block is robust for TM, and less accurate for BM
especially when a Poisson process is used as input current.
This problem is mainly due to the fact that the estimator
block in TM uses the mean value of the discharge frequency
of the vector voltage, which makes it more immune to noise
than in BM where the estimation is based on only one point
of the vector voltage, and then is highly dependent on the
noise present at that chosen point.

Robustness of the control system is considered in
our study as we have analyzed the cases of deterministic
and stochastic input currents. Furthermore, in general, the
dynamic responses of neurons within the physiological
ranges are restricted. So we do not expect major changes in
the dynamics studied here when parameters variations
occur. This has been observed in several simulations
performed by us, but not reported here for the sake of
space.

V. CONCLUSIONS

A firing-mode control system based only on neuron
membrane voltage was designed and applied. Using its
knowledge of some neuron characteristics, the control system
is able to identify the neuron-firing mode and to determine the
control current necessary to apply so that the firing mode of
the sick /neuron is changed to that of the reference neuron.

By applying this control scheme to neurons stimulated
by square wave current signals and Poisson stimulus current,
it was verified that the estimation block is more accurate in
TM than in BM since it is based on an average value, being
less sensitive to noise on the membrane voltage signals. This
problem could be solved by reformulating the estimation
block in BM considering the variance of the information
rather than using only one point. Work is currently underway
to improve this aspect of the controller.

The proposed control system assumes that intracellular
voltage is available (to be measured), as well as the possibility
of stimulating only one neuron. These assumptions were quite
unrealistic some time ago, but may become possible in the
near future using nanolectrodes [21]. Yu et al. [22] have been
able to measure and stimulate the membrane voltage in the
same neuron, which opens the possibility that control strate-
gies, such as the one proposed here, could be implemented in
vivo, stimulating specific neurons and avoiding affecting
healthy tissue in the neighboring areas, as occurs with DBS at
present.

Finally, as pointed out by one reviewer, the proposed
control contains a closed-loop stage and in that sense, stabil-
ity issues associated to this problem should be addressed as
future work.
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