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S U M M A R Y
When describing the mechanical behaviour of the lithosphere modelled as a thin plate, the most
important parameter corresponds to its flexural rigidity, which is commonly expressed through
the effective elastic thickness, Te. This parameter is a measure of the stiffness of the plate and
defines the maximum magnitude and wavelength of those surface loads that can be supported
without suffering unelastic deformation. Realistic 3-D models of the flexural response of
the lithosphere near the trench are scarce because of the mathematical and computational
complexity. We present a method for determining the flexure of the lithosphere caused by
the combined effect of 3-D seamount loading and bending of the lithosphere near the trench.
Our method consists on solving numerically the flexure equations of the Reissner–Mindlin
thin plate theory, including variable thickness, using the finite element method with mesh
adaptation. The method was applied to study the flexure of the oceanic Nazca lithosphere
beneath the O’Higgins seamount group which lies ∼70 km seaward of the Chile trench. The
results show that an elastic thickness Te of ∼5 km under the seamounts, a Te of ∼15 km far
from the trench and a Te of ∼13 km near the trench can explain both, the down deflection
of the oceanic Moho and bending of the oceanic lithosphere observed in seismic and gravity
profiles. In order to study the impact of high trench curvature on the morphology of the outer
rise, we apply the same methodology to study and model the flexure of the lithosphere in the
Arica Bend region (14◦S–23◦S). Results indicate that the Te values are overestimated if the
3-D trench curvature is not included in the modelling.

Key words: Numerical approximations and analysis; Dynamics of lithosphere and mantle;
Lithospheric flexure; Folds and folding; Mechanics, theory and modelling.

1 I N T RO D U C T I O N

Plate tectonics is based on the assumption that the lithosphere be-
haves as a thin competent (elastic, plastic) plate overlying an inviscid
fluid (asthenosphere) that flexes in response to applied stresses at
geological time (i.e. >106 yr) and space scales. The main evidence
for its rigid behaviour comes from studies of the way that it responds
to surface loads such as ice-sheets, sediments and volcanoes (e.g.
Watts 2001). In the description of its mechanical behaviour, the
parameter that characterizes the stiffness or resistance of the litho-
sphere to deformation is the flexural rigidity D, which is commonly
expressed in terms of the elastic thickness (Te) of the lithosphere.
Te is therefore a proxy of its strength and could be understood as the
thickness of an equivalent elastic plate overlying and inviscid fluid
that would bend in the same way that the real lithosphere would.
The plate strength is controlled at least by three equally important
physical properties, such as plate age and thermal state, composi-

tion and inelastic deformation among others. These are discussed
in detail in Section 4.

The shape of the flexure of the lithosphere has been modelled
by many authors in order to determine some of its mechanical
properties (Walcott 1970; Watts et al. 1975; Bodine & Watts 1979;
Judge & McNutt 1991; Wessel 1996; Braitenberg et al. 2002).

In this work, we study the flexure of the oceanic lithosphere
caused by the combined effect of seamount loading and bending of
the lithosphere near the trench. Currently, realistic 3-D models are
scarce because they are not able to model the flexure caused by the
combined effect of the subduction of a plate with the one that is pro-
duced by a given load (e.g. seamount). This is mainly due to the large
computational consumption and the associated mathematical com-
plexity. An interesting model is the one proposed by Hertz (1884)
and which was later used in the work of Walcott (1970) and Watts
et al. (1975) among others. The model proposed by Hertz (1884)
corresponds to an analytical solution of the flexure equation, which
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682 P. Manrı́quez, E. Contreras-Reyes and A. Osses

Figure 1. Cartoon of the flexure produced by the combined effect of
seamount loading and subduction in the trench. ρw is the water density,
ρL the applied load (seamount) density, ρc the crust’s density and ρm is the
mantle’s density. M0 is the bending moment and V0 is the vertical shear
force.

allows to calculate the deflection produced by a 3-D load away from
a subduction zone. However, the results in terms of amplitude of
the deflection are not as expected since the calculated amplitudes of
displacement are less than half those observed, although the calcu-
lated flexure wavelengths are consistent with observations (Walcott
1970).

On the other hand, there are models that can combine the effects
of plate subduction at the trench with the effects caused by the ex-
istence of a topographic load (Fig. 1). However, these models have
important limitations as they consider a load that is infinite in one
direction, that is a 2-D loading which could be appropriate to linear
geological features such as seamount chains and aseismic ridges.
Furthermore, they consider that the plate subducts perpendicular to
the trench with a constant azimuth (Hanks 1971; Watts & Talwani
1974; Parsons & Molnar 1976; Harris & Chapman 1994; Levitt &
Sandwell 1995; Bry & White 2007) which is an unrealistic approx-
imation for margins where the trench axis has a strong curvature.

In this paper we study two areas. The first one corresponds to the
Nazca oceanic plate beneath the Juan Fernandez ridge located about
70 km west of the Chilean coast at the same latitude of Valparaı́so
as shown in Fig. 2. In this area, we study the deflection caused by
two seamounts: the O’Higgins Guyot and the O’Higgins Seamount,
including the deformation caused by the subduction of the Nazca
Plate beneath the South American continental plate. This will al-
low the determination of the distribution of elastic thickness of the
lithosphere, which we assume variable. For the flexural modelling,
we use gravity data constraining the geometry of the oceanic Moho.
The second study zone is the area known as the Arica Bend, located
in north Chile. The particularities of this area are that the conver-
gence direction is not perpendicular to the trench and the strong
curvature of the trench axis.

We propose a plate deflection forward model that numerically
solves the fundamental flexure equations of the Reissner–Mindlin
(R–M) thin plate theory using the finite element method (FEM)
with variable elastic thickness.

2 F O R M U L AT I O N A N D
I M P L E M E N TAT I O N O F T H E M E T H O D

2.1 The R–M plate model

The R–M model considers a thin elastic plate which elastic thick-
ness is given by Te(x, y) and that there are external forces acting

Figure 2. Bathymetry for both study zones obtained from global free data
sets available at http://topex.ucsd.edu/. The southern zone in the red box
corresponds to our first study area and is part of the Juan Fernández Ridge.
The northern zone in the red box is known as the Arica Bend region. In red
the studied profiles for both regions.

perpendicular to its middle surface (Mindlin 1951). The plate is
defined as � × [− Te(x,y)

2 ,
Te(x,y)

2 ], with � ∈ R
2. Its lateral border is

given by ∂� × [− Te(x,y)
2 ,

Te(x,y)
2 ].

Let �u be the displacement vector. The hypotheses of the R–M
plate theory are (Braess 2007):

H1. Linearity hypothesis. Segments lying on normals to the mid-
surface are linearly deformed and their images are segments on
straight lines again.

H2. The displacement in the z-direction does not depend on the
z-coordinate: u3(x, y, z) = w(x, y).

H3. The points on the mid-surface are deformed only in the
z-direction: u1(x, y, 0) = u2(x, y, 0) = 0.

H4. The normal stress σ 33 vanishes.

The fundamental equations are given by Reissner (1945) and
Mindlin (1951)

−div[T 3
e σ (�θ )] − λ∗Te(∇w − �θ) = 0 (1)

−div[λ∗Te(∇w − �θ )] = g, (2)
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Lithospheric 3-D flexure modelling 683

where λ∗ = k · μ, with k = 5
6−ν

. The parameter k is known as the
Timoshenko shear coefficient, which is an adjustment parameter in
thick plate, beam and shell equations of motion that is included to
compensate for stress distribution in the cross-sectional shape of the
object (Hull 2004). The parameter μ is one of the Lamé coefficients
and ν is the Poisson’s ratio.

The total vertical force that experiments the plate is given by g,
and corresponds, in our problem, to the vertical forces acting down-
wards due to bathymetric loading q(x, y), for example a seamount,
and an hydrostatic restoring force acting upwards proportional to
the vertical displacement of the plate w and the density differ-
ence between the overlying water and the underlying mantle rock
	ρ = ρm − ρw. Then

g(x, y) = q(x, y) − (ρm − ρw)gw = q(x, y) − 	ρ g w. (3)

We call w the transverse displacement or (normal) deflection, and
�θ = (θ1, θ2) the rotation. σ (�θ) is the stress tensor defined as

σ (�θ) = D̄
[
(1 − ν)ε(�θ) + νtr(ε(�θ))I2×2

]
,

where D̄ = E
12(1−ν) , E is the Young’s modulus and ε(�θ ) corresponds

to the ‘strain tensor’

ε(�θ ) = 1

2

[
∇�θ + (∇�θ )T

]
or εi j (θ ) = 1

2

(
∂θi

∂x j
+ ∂θ j

∂xi

)
.

In a more explicit form

σ (�θ) =

D̄

[
(1 − ν)∂xθ1 + ν(∂xθ1 + ∂yθ2) (1−ν)

2 (∂yθ1 + ∂xθ2)

(1−ν)
2 (∂yθ1 + ∂xθ2) (1 − ν)∂yθ2 + ν(∂xθ1 + ∂yθ2)

]
.

We also introduce the flexural rigidity defined as

D(x, y) := T 3
e (x, y) · D̄(x, y).

If a fifth hypothesis, known as the ‘normal hypothesis’ or ‘Kirch-
hoff’s hypothesis’, is added the Kirchhoff–Love equation of motion
for an elastic plate can be derived (see the Appendix).

2.2 Finite element method

The FEM was used for numerically solve the problem given in eqs
(1) and (2) using the FreeFem++ software.

The FEM is one of the most powerful and used methods for
numerically solving boundary and initial value problems character-
ized by partial differential equations and it has had great impact
on engineering and science. The development of the essence of the
method is attributed mainly to the German mathematician Richard
Courant (1888–1972).

2.3 Domain and boundary conditions

Prior to the variational formulation construction, the boundary con-
ditions of the problem must be fixed. For a rectangular domain, let
�1 be the subducting border, �2 one of the lateral free borders, �3 a
fixed border that represents the plate far away from the trench where
there no flexure occurs (hard clamped) and �4 the other lateral free
border (for example, see Fig. 3c).

At the boundary, if n̂ denotes the exterior unit normal vector, the
shear force and bending moment are, respectively, given by

V = λ∗Te

(
∂w

∂n
− �θ · n̂

)
and �M = T 3

e σ (�θ )n̂ (4)

which in both cases, act with a fixed value over the subducting
edge �1. These values, M0 and V0 were determined using the 1-D
approximation shown in Turcotte & Schubert (2002).

M0 = 2A · D0

α2
· ex0/α · cos

( x0

α

)

V0 = −2A · D0

α3
· M x0/α ·

[
cos

( x0

α

)
− sin

( x0

α

)]
,

where (see Fig. 1) D0 = E ·T 3
e1

12·(1−ν2)
, α = [ 4·D0

(ρm−ρw)g ]1/4, x0 = xb − α ·
π

4 and A = wb

√
2 · eπ/4.

The boundary conditions for a rectangular domain are given by

�1 : �M = − �M0 = −M0β̂, V = −V0

�2 : �M = 0, V = 0
�3 : w = 0, �θ = 0
�4 : �M = 0, V = 0,

where β̂ corresponds to the unitary vector in the plate convergence
direction (Fig. 4b).

The total vertical force that experiments the plate g(x, y) corre-
sponds to the sum of the load due to the bathymetry q(x, y) (for
example, a seamount as the O’Higgins Guyot) minus an hydrostatic
restoring force in the opposite direction following eq. (3).

The constants used for the numerical modelling are shown in
Table 1.

2.4 Variational formulation for the R–M plate model

The variational formulation of the problem in eqs (1) and (2) is
given by (see the Appendix for more detail).

Find (�θ, w, �γ , d) such that
∫

�

T 3
e D̄(1 − ν)ε(�θ) : ε( �ψ)

+
∫

�

T 3
e D̄νdiv(�θ )div( �ψ) +

∫
�

�γ · (∇v − �ψ)

+
∫

�

Teλ
∗(∇w − �θ ) · �η −

∫
�

�γ · �η +
∫

�

T 3
e D̄νdiv(�θ )e

−
∫

�

T 3
e D̄ν d e +

∫
�

	ρg w v

=
∫

�

qv −
∫

�1

V0v −
∫

�1

M0β̂ · �ψ for all ( �ψ, v, �η, e), (5)

where (�θ, w) and ( �ψ, v) (test functions for �θ and w, respectively) are
prescribed to be zero on the same boundaries, as indicated in Sec-
tion 2.3. Note that the term β̂ · �ψ should be written in an intrinsic ref-
erence system to the boundary. If β̂ = (cos β, sin β), n̂ = (nx , ny)
and τ̂ = (−ny, nx ) (Fig. 4b), then

β̂ · �ψ =
[

(nx cos β + ny sin β)(nxψ1 + nyψ2)
(nx sin β − ny cos β)(nxψ2 − nyψ1)

]
, (6)

where β is the subduction angle with respect to the horizontal
reference.

The previous formulation (5) of the original problem (1)–(2) was
programmed in the variational framework of the FreeFem++ soft-
ware. In order to approximate w, v, �θ = (θ1, θ2) and �ψ = (ψ1, ψ2)
triangular finite elements of type ‘P2’ were used. To approximate
�γ = (γ1, γ2), �η = (η1, η2), d and e we used triangular finite elements
of type P1.

 at U
niversidad de C

hile on O
ctober 7, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


684 P. Manrı́quez, E. Contreras-Reyes and A. Osses

Figure 3. (a) High resolution bathymetry of the first study area and the three studied profiles: P01, P02 and P03 in red. (b) Gravity anomaly plot expressed in
(mGal) (Sandwell & Smith 1997). (c) Starting mesh used for flexure calculation through FEM for the Juan Fernández region. The domain was divided into
three areas in which the elastic thickness was varied. The area closest to the trench (S1) ranges from 0 to 60 km away from the trench (pink), the second area
(S2) from 60 to 150 km (black) and the third (S3) from 150 km to the end of the plate (blue).

Figure 4. (a) Second domain used for the flexure calculation through FEM for the Arica Bend region. (b) Border �1 for the domain used for the second studied
zone, the Arica Bend, shown in red line. The convergence direction is shown in blue, n̂ and τ̂ correspond to the normal and the tangent to the plate border
respectively and φ corresponds to the angle formed by the normal to the plate border and the horizontal.
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Lithospheric 3-D flexure modelling 685

Table 1. Values of parameters and constants used in flexural
modelling.

Name Symbol Value Unit

Young’s modulus E 70 × 109 Pa
Acceleration due to gravity g 9.8 m s−2

Poisson’s ratio ν 0.25
Mantle density ρm 3300 kg m−3

Crust density ρc 2700 kg m−3

Sediment density ρs 2000 kg m−3

Water density ρw 1030 kg m−3

3 A P P L I C AT I O N O F T H E M E T H O D

3.1 Comparison with other approaches

To validate our R–M formulation, we calculated the flexure pro-
duced by some simple loads and compared our results with those
given by already-established and well-tested methods under identi-
cal configurations of loads, elastic thickness structure and boundary
conditions.

First we calculated the flexure produced by a rectangular load
of 5 km high, 40 km wide and 400 km long (1-D load). The mesh
used was a rectangular mesh of 500 km long and 400 km wide. The
elastic thickness was varied along the plate and thus the mesh was
divided into three distinct regions. The first ranges from 0 to 100 km
away from the trench (Te = 10 km), the second from 100 to 200 km
away from the trench (Te = 15 km) and the third from 200 to 500 km
(Te = 20 km). In Fig. 5(a), we show the elastic thickness variation
in green (right-hand axis) and the load used in blue dotted line (left-
hand axis). Both curves are expressed in kilometres. At the bottom
of the figure (Fig. 5b) in light blue the result of the 1-D Kirchhoff–
Love model solved using a variable elastic thickness through the
finite difference method shown in the work of Contreras-Reyes &
Osses (2010). In purple dotted line, the result of the 2-D R–M model
using β = 0

o
. It can be seen that the fit is very good and there are

only minor differences in the part of the bulge ∼50 km away from
the trench.

Then, we calculated the flexure produced by a rectangular load
with a square base of 100 km long, 100 km wide and 5 km high
located at the centre of an elastic plate of constant elastic thickness
(Te = 15 km) of 1200 km × 1200 km. It was imposed that the bend-
ing moment and shear force were equal to zero at �1. The results
were compared with those obtained using the grdfft function of the
Generic Mapping Tools (GMT; Wessel & Smith 1998, Fig. 5c). The
GMT grdfft function takes the 2-D forward fast Fourier transform
of the input data (load), calculates the isostatic response function
in the frequency domain, convolves the transformed data with the
isostatic response function and finally transforms back to the space
domain.

It can be seen that in both cases (1-D load on a subducting plate
and a 2-D load far away from a subduction zone) our method yields
identical results than those produced by other tested and established
methods.

3.2 Application to natural study cases along the Chilean
margin

3.2.1 Juan Fernández seamounts

On the Nazca Plate, off Valparaı́so, lies the JFR, which is almost
perpendicular (N78.4◦E) to the trench (Fig. 2). This mountain range
is ∼900 km long and has 11 mountains (extinct volcanoes) which

extend from the hot spot (97.5◦W/34◦S), west of the island Alexan-
der Selkirk to the O’Higgins seamount (von Huene et al. 1997). The
hypothesis that the JFR formed in the hotspot is held by the linear
increase in age along the ridge as was inferred from magnetic data
(Yáñez et al. 2001).

The JFR forms a barrier for trench turbidites transport coming
from the south. The sedimentary fill of the trench between 34◦S and
45◦S varies between 1.5 and 2.5 km depth, while north of the ridge
sediments reach only about 500 m thick (von Huene et al. 1997).
Near the trench there are two prominent volcanic domes, located
∼70 km west of the trench in front of Valparaı́so city: the O’Higgins
Guyot and the O’Higgins seamount. Their base are located about
4 km deep under the sea level and rise above the ocean floor to
a height of 3.5 km in the case of O’Higgins Guyot and 2.9 km
the O’Higgins seamount. The difference in size is best appreciated
when we compare their respective volumes: the O’Higgins Guyot
(base diameter of ∼27 km) has a volume of 668 km3 ± 10 per cent,
while O’Higgins seamount (base diameter of ∼15 km) has a volume
estimated at 177 km3 ± 10 per cent above the ocean floor (Kopp
et al. 2004).

The O’Higgins seamount formed about 9 Ma which has been
inferred from its magnetic signal (Yáñez et al. 2001). To the east
of the trench there is a prominent magnetic anomaly located at
72.6◦W/32.7◦S which would indicate the location of the Papudo
seamount which already subducted under the continental plate
(Yáñez et al. 2001).

Within this context we calculated the flexure under the O’Higgins
Guyot and the O’Higgins seamount, for which we used a mesh as
the one shown in Fig. 3(c). The area closest to the trench (S1) ranges
from 0 to 60 km away from the trench, the second area (S2) from
60 to 150 km and the third from 150 km to the end of the plate (S3).

The boundary conditions used for the Juan Fernández seamounts
domain (Fig. 3c) were

�1 : �M = − �M0 = −M0β̂, V = −V0

�2 : �M = 0, V = 0
�3 : w = 0, �θ = 0
�4 : �M = 0, V = 0,

where β̂ corresponds to the unitary vector in the plate convergence
direction (Fig. 4b).

A Monte Carlo method was used in order to find those values
that minimize the difference between the calculated Moho and a
gravimetric or reference one. For obtaining the latter, we constructed
a velocity model and calculated its gravimetric effect, which was
compared with the free-air gravity anomaly observed obtained from
free global data sets (Sandwell & Smith 1997, Fig. 3b). The 2-D
gravity calculation is based on Parker’s spectral method (Parker
1973) (for details see Korenaga et al. 2001). The model is modified
to minimize the misfit or rms error between observed and calculated
gravity.

A mantle’s density of 3300 kg m−3 was assumed. Initially a ve-
locity model (V) was proposed (Sepúlveda 2012), as shown in Fig. 6,
which then becomes a density model (ρ) using the following rela-
tions (Fig. 7):

Nafe & Drake (1963) relationship for the sedimentary section,
ρ = 1.75 + 0.16V
Carlson & Herrick (1990) relationship for igneous upper crust,
ρ = 3.61′6.0/V
Birch (1961) law for plagioclase, and diabase-gabbro ecoglite

(lower crust),
ρ = 0.375(1 + V)
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686 P. Manrı́quez, E. Contreras-Reyes and A. Osses

Figure 5. Comparison of model results with other methods. (a) A very long load in the perpendicular direction of the figure was applied over an elastic
plate with variable elastic thickness. The load is shown in blue dashed line (left-hand axis) and the elastic thickness variation in green (right-hand axis). (b)
Comparison of the flexure calculated using two different numerical models and methods near a subduction zone. In light blue we show the flexure calculated
using the finite difference method used in Contreras-Reyes & Osses (2010) and in purple dashed line the Reissner–Mindlin model using the finite element
method with β = 0◦. For all calculations the same bending moment and boundary conditions were used. (c) Comparison of the flexure produced by a rectangular
load of 100 km width, 100 km length and 5 km height calculated using a constant elastic thickness of 15 km far away from a subduction zone. In orange the
GMT result and in black dashed line the result given by the finite element method for the Reissner–Mindlin thin plate model.

The rms error was calculated as follows:

rms =
√√√√ 1

N

N∑
i=0

(
gobs

i − gcalc
i

)2
,

where N is the number of points along the profile, gobs the observed
gravity (data) and gcalc the gravity calculated using the proposed
density model.

With the previous model we obtain the best Moho along the three
studied profiles (P01, P02 and P03) shown in Fig. 3(a). The obtained
Moho for profile P01 is then compared with our flexure calculations
results.

For calculating the flexure for the Juan Fernández region, we
performed another Monte Carlo approach, where the maximum
outer-rise height wb (Fig. 1) was varied between 0.2 and 0.7 km in

steps of 0.1 km, its position xb between 70 and 100 km in steps of
10 km, the elastic thickness in the sector S1 between 10 and 20 km,
in sector S2 between 2 and 10 km and in S3 between 10 and 20 km
in steps of 1 km. We chose a different range below the seamounts
after performing some tests using our 3-D model and a 2-D model
as the one shown in Contreras-Reyes & Osses (2010). We found that
high elastic thickness were not able to adjust the observed Moho.
The values of the Monte Carlo parameters determine the value of
the bending moment and the shear force. The rest of the parameters
used correspond to those shown in Table 1.

To quantify the associated error we calculated the rms error in
metres as follows:

rms = 1000

√√√√ 1

N

N∑
i=0

(
Mohoreal

i − Mohocalc
i

)2
,
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Figure 6. Proposed velocity model for profile P01. This will be used for calculating the gravity anomaly, which subsequently will be compared with the
observed data. The proposed Moho is based on the work of Contreras-Reyes & Sepúlveda (2011).

Figure 7. Top panel: in black line he observed Bouguer anomaly along the bathymetric profile P01 shown in Fig. 3(a), and Bouguer anomaly calculated from
the density model shown below in grey line. The rms error is ∼7.6 (mGal). Bottom panel: density model for profile P01.
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Figure 8. (a) Final mesh used for calculating the flexure using the FEM
under the O’Higgins seamounts. The initial mesh (Fig. 3c) was refined
under the seamounts for more precision under the most important features.
(b) 3-D view of the flexure of the Moho under the seamounts using the
R–M model with variable elastic thickness. (c) In grey the various possible
solutions for profile P01, whose rms error did not exceed 150 m. In black the
reference gravimetric Moho. The solutions were extracted from the different
calculated surfaces as the one in Fig. 8(b). It can be seen that the fit is quite
reasonable. The average value of elastic thickness for the area closest to the
trench was ∼12.8 km, for the area just below the seamounts of ∼5 km and
for the area farthest of ∼15.2 km.

where N is the number of points, Mohoreal the vertical coordinate
(in km) of the reference gravimetric Moho and Mohocalc the vertical
coordinate of the calculated Moho using finite elements.

In this study region the Nazca Plate converges in a direction
N78.4◦E so it was decided to set the angle β at 11.6◦. The mesh
used for calculating the flexure was refined under the seamounts in
order to achieve more precision under the most important features
(Fig. 8a). As an example, Fig. 8(b) shows one of the resulting
surfaces obtained. Once the surface is calculated we proceed to
extract data for profile P01 to compare with the gravimetric Moho.
The results in which rms error, in metres, was less than 150 m
are shown in Fig. 8(c). The minimum value found for the elastic
thickness in the S1 was 10 km, while the maximum was 18 km. For
sector S2 the minimum Te was 4 km and the maximum of 6 km. For
S3, the further sector from the trench, the minimum was 10 km and
the maximum of 20 km. The average values obtained for the elastic
thickness, whose rms did not exceed 150 m were: T 1

e ≈ 13 km
[standard deviation (SD) = 2.05 km], T 2

e ≈ 5 km (SD = 0.28 km)
and T 3

e ≈ 15 km (SD = 3.03 km). The trend is that the elastic
thickness reaches its minimum value just below the seamounts and
its maximum value in the zone farthest from the trench. Results for
the Juan Fernández region are summarized in Table 2.

Table 2. The table shows the elastic thickness results (in km) found for
the Juan Fernanández region from the FEM flexural modelling. These
results have an rms error that does not exceed 150 m.

Distance from Minimum Te Maximum Te Average Te SD
the trench (km)

0–60 10 18 13 2.05
60–150 4 6 5 0.28
150–end 10 20 15 3.03

3.2.2 Arica Bend

The second study area is part of what is known as the Arica Bend
(Fig. 4a). This area is of great interest because the margin around
18◦S changes its orientation from a NNE at the south to a NW to the
north. This implies that the convergence direction goes from being
almost perpendicular to the trench to an oblique direction. This
feature requires a flexural model that can consider a 3-D geometry.
Also in this area the age of the Nazca Plate increases from 30 Ma
at the north to 45 Ma at the south along the trench.

Numerous palaeomagnetic studies indicate that the Arica Bend
formed due to rotations of the plate (Prezzi & Vilas 1998; Kley
1999; Arriagada et al. 2008), however, there is no agreement on
the magnitude of these because the estimates of crustal shortening
produced by a turnover margin are not consistent with the obser-
vations. Other authors attribute the formation of the Arica Bend to
the existence of a period of flat subduction between 37 and 25 Ma
which generated compression and crustal shortening (O’Driscoll
et al. 2012). The formation of flat subduction is attributed to a
combined effect between the subduction of a buoyant piece of the
Manihiki Plateau during the late Eocene and the suction effect due
to the pressure generated by the flow of the mantle as the plate
subducts under the Amazonian craton (O’Driscoll et al. 2012).

The unique geometry of the Arica Bend region is characterized
by the variable convergence direction change, which makes the
bending moment also vary. We chose a very large area to study the
flexure caused only by the subduction process, and thus ignoring
the small ridges on the plate. For the flexure calculation the domain
was divided into four distinct regions (Fig. 9a) in order to vary
the elastic thickness in each of them using a Monte Carlo method.
The first region, the closest to the trench (red) has a width of 30 km
approximately. The second region, coloured yellow, also has a width
of about 30 km. The third region, shown in green, has a width of
60 km; and finally the fourth region is that shown in blue covering
most of the plate.

The boundary conditions used for the domain shown in Fig. 4(a)
were

�1 : �M = − �M0 = −M0β̂, V = −V0

�2 : w = 0, �θ = 0
�3 : �M = 0, V = 0.

In the Monte Carlo analysis we varied wb from 0.1 to 1.5 km
in steps of 0.1 km, xb from 70 to 100 km in steps of 10 km and the

Figure 9. (a) Mesh used by the FEM for calculating the flexure for the
Arica Bend region using the R–M model. The domain was divided into four
distinct regions in which the elastic thickness was varied using a Monte Carlo
method. The first region, the closest to the trench (red) has a thickness of
30 km approximately. The yellow region also has a thickness of about 30 km.
The green region has a thickness of 60 km and finally the fourth region is
the one shown in blue which covers most of the plate. (b) Example of flexure
calculated using R–M model with variable elastic thickness through the
FreeFem++ software. (c) Loaded filtered bathymetry of the Arica Bend
used for calculating the rms error.
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elastic thicknesses of each of the regions from 14 to 36 km in steps of
1 km and from 36 to 40 km in steps of 2 km. These values determine
the value of the bending moment. The rest of the parameters used
correspond to those shown in Table 1.

To calculate the rms error associated with the result, it was de-
cided to filter the bathymetry, in order to remove defects that were
not produced by the flexure. The rms error (in metres) was calcu-
lated as follows:

rms = 1000

√∫
(err)dxdy

Area
,

where err corresponds to the square modulus of the difference be-
tween the calculated geometry in FreeFem++ (Fig. 9b) and the
filtered bathymetry (Fig. 9c) and Area is the area considered in the
study zone. Given the boundary conditions, especially the one that
states that there is no deflection at border �2, we decided to calcu-
late the rms error in an area smaller than the total area of the zone,
so we can neglect the error associated to that boundary, especially
in the far north, where there are also bathymetric heights unrelated
to the bending and that were not possible to filter completely. The
smaller area considered covers well profiles P04, P05, P06 and P07
(Fig. 4a).

Finally, the best results were chosen, those whose rms error did
not exceed 140 m and profiles P04, P05, P06 and P07 were extracted.
Fig. 10 shows the 16 best results for each of the profiles in grey,
the real bathymetry in black doted line and the filtered bathymetry
in solid blue line. The red dashed line corresponds to the solution
given by the finite differences method presented in Contreras-Reyes
& Osses (2010) for a 1-D Kirchhoff–Love Plate model using the
average values found for the best results shown in grey. The vertical
lines show the divisions of the plate were elastic thickness was
varied. In profile P06 it can be seen that the filter could not effectively
remove the large bathymetric high.

The minimum value among the 16 best fits of the elastic thickness
of the first region (closest to the trench) was 20 km, the maximum
of 28 km while the average was ∼23 km with a SD of 2.7 km. For
the second region (yellow in Fig. 9a) the minimum was 15 km, a

Figure 10. The dotted curve shows the real bathymetry for profiles P04,
P05, P06 and P07 located at the Arica Bend region (Fig. 4). The blue curve
shows the filtered bathymetry and the grey lines show the 16 best fit with an
rms error less than 140 m. The red dashed curves shows the result given by
the finite difference method for a 1-D Kirchhoff–Love model.

Table 3. The table shows the elastic thickness results (in km) found for
the Arica Bend region from the FEM flexural modelling. These results
have an rms error that does not exceed 140 m.

Distance from Minimum T Maximum Te Average Te SD
the trench (km)

0–30 20 28 23 2.7
30–60 15 20 18 1.4
60–120 14 18 16 1.3
120–end 14 40 25 5

maximum of 20 km and the average ∼18 km with a SD of 1.4 km.
For the third area (green in Fig. 9a) the minimum was 14 km, the
maximum of 18 km and the average of ∼16 km with a SD of 1.3 km.
Finally, for the region furthest from the trench (blue in Fig. 9a) the
minimum was 14 km, the maximum of 40 km and the average of
∼25 km with a SD of 5 km, from which we can conclude that this
method cannot determine the elastic thickness of the portion furthest
from the trench, were very little flexure can be appreciated. The 3-D
model represented by the grey curves show a better fit than the 1-D
model (red dashed curve) in the region nearest to the trench. Results
for the Arica Bend region are summarized in Table 3.

4 D I S C U S S I O N A N D C O N C LU S I O N S

4.1 Model scope

Although in nature all structures are 3-D, the exact analysis of the
stresses and strains presents important difficulties. However, such
precision is rarely necessary, and therefore justified, since usually
the magnitude and distribution of the load, as well as strength and
stiffness of the material studied, are not known with precision. There
is an agreement that thin plate theory is a successful approach (Watts
et al. 1975; Comer 1983; Wolf 1985; Braitenberg et al. 2002, among
others).

The 2-D Kirchhoff–Love model corresponds to a simplification
of the R–M model, and as discussed above, considers a fifth hy-
pothesis that ultimately results in a dependence of the bending mo-
ment and the resulting deflection, only on the vertical deformations.
Nevertheless, the most widely used models include one more sim-
plification considering a 1-D model (Hanks 1971; McAdoo et al.
1978; Bodine et al. 1981; Judge & McNutt 1991; Bry & White
2007; Contreras-Reyes & Osses 2010), that is, a model in which
the three-dimensionality of the problem is lost and can not work
with localized loads or margins with complex geometries such as
the Arica Bend.

The combination of plate bending and viscoelasticity (Morra
& Regenauer-Lieb 2006) is out of our model’s scope. The model
presented in this paper is a simple model based on the thin shell
approach using few simplifications, able to calculate the flexure of a
plate produced by the combined effect of 3-D loads and bending as-
sociated with subduction. It also allows working with margins with
complex geometries and variable elastic thickness along the plate
which allows the identification of weaker areas of the lithosphere
that can result from thermal alterations, brittle deformation or even
rheological changes as discussed below.

4.2 Elastic thickness

The magnitude of the elastic thickness can be controlled by several
physical mechanisms, some of them presented in the next subsec-
tions.
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4.2.1 Plate age and thermal state

Previous work (e.g. Parsons & Molnar 1976) suggest that the esti-
mates of oceanic lithosphere elastic thickness more or less follows
the depth of the isotherm of 600 ◦C and that as the plate cools with
time it becomes stronger and thus the elastic thickness increases
(Caldwell et al. 1976). It is widely accepted that significant devia-
tions of observed Te from the predicted values are associated with
thermal anomalies (McNutt & Menard 1982; Burov & Diament
1995), as might be the action of a hot spot. When a load is placed
on a plate, it responds almost instantaneously (Bodine et al. 1981),
so that the value of elastic thickness inferred for the area of Juan
Fernandez would be a lower bound, that is, corresponds to the value
of Te at the time of the appearance of the seamount. This is because
as time goes on, the plate gets older, cooler and becomes more rigid
(Billen & Gurnis 2005).

This dependence of the elastic thickness on age has not been
exempt of discussions and inconsistencies (Bry & White 2007).
Using a simple plate cooling model (Caldwell & Turcotte 1979),
we would expect that the elastic thickness for the area of Juan
Fernández was about ∼20 km and for the Arica Bend area of about
∼40 km. The values found in this work for Te are much lower than
those predicted by a thermal model, which suggests that the age of
the plate is not the main factor determining the elastic thickness.

4.2.2 Geometry

Margin geometry in the Arica Bend region makes the three-
dimensionality of the problem to increase the maximum amplitude
of outer rise (wb ∼ 650 m). The assumption of a unidimensional
model would overestimate the value of flexural rigidity (Watts et al.
1975; Contreras-Reyes & Osses 2010).

4.2.3 Inelastic deformation and hydrofracturing

Purely elastic plate models considering a constant elastic thickness
are self-inconsistent because they usually predict intra-plate stresses
large enough [in some cases close to 500 MPa (McAdoo et al. 1978;
Capitanio et al. 2009)] to produce inelastic deformation (brittle or
ductile). That is why models that combine elastic with plastic defor-
mation have been able to explain more satisfactorily the amplitude
and wavelength of the outer rise (McAdoo et al. 1978), however
tend to overestimate the elastic thickness (Bodine & Watts 1979).

The strategy followed in this work was to use an elastic model
with a variable elastic thickness (as in the work of Judge & McNutt
1991; Contreras-Reyes & Osses 2010) because inelastic behaviour
reduces the local resistance of the plate (Billen & Gurnis 2005)
and as a result it deflects as if the effective elastic thickness had
decreased in some areas (Bodine & Watts 1979; Bodine et al. 1981;
Burov & Diament 1995).

Results obtained for the elastic thickness under the Juan
Fernández seamounts are consistent because the interaction between
the hot spot and the lithosphere may have weakened the plate, and
because the fact that we find a greater curvature may indicate the
plate may have undergone inelastic deformation which could justify
a reduction of the elastic thickness.

At the top of the outer rise, extensional faults associated with the
deflection of the plate were observed and evidenced by horst and
graben structures (Ranero et al. 2005) and seismicity (Christensen &
Ruff 1983). These extensional faults allow fluid percolation within
the crust and upper mantle, which may result in serpentinization of
the latter. Pore pressure increment and fractures are mechanisms that
significantly reduce the rock’s strength (Brace & Kohlstedt 1980).

Given the above, it seems reasonable to find a lower elastic thick-
ness at the outer rise in both zones: Juan Fernández and the Arica
Bend. Our results are in agreement with a previous spectral iso-
static study were significant weakening of the oceanic Nazca Plate
approaching the trench was inferred (Tassara et al. 2007). They
further speculated that along-strike variation in the strength of sub-
ducting plate could be related to variations in the degree of hydration
and serpentinization of the oceanic upper mantle.

4.2.4 Horizontal forces

In areas where there are active spreading centres or where there is
compression, the strength of the lithosphere could be reduced by
horizontal forces. For example, in most elastic models, including the
one proposed in this paper, the tectonic horizontal force is ignored
because various studies have shown that does not greatly affect the
deflection of the elastic plate unless stresses reach higher values than
10 kbar (Caldwell et al. 1976). However, if a plate’s behaviour is not
purely elastic, the horizontal force can produce surface faulting and
reduce the value of elastic thickness decreasing the flexural rigidity
of the plate (Caldwell et al. 1976; Bodine et al. 1981; Burov &
Diament 1995). Currently it is not possible to determine the values
of the involved horizontal forces through bathymetry analysis so
additional data would be required, such as focal mechanisms of
earthquakes with hypocentres near the trench, as was proposed by
Hanks (1971). Other authors have proposed that the value of the
horizontal force can vary considerably depending on the model used
(Bodine & Watts 1979), so that its determination is still debated.
Note that horizontal forces are easily included in our model by
adding a term −F∇w in eq. (1), where F represents the horizontal
force. This term does not modify boundary conditions (4).

4.3 Conclusions

The above results show that for the Juan Fernández area the elastic
plate thickness decreases significantly under the seamounts, that is,
in the area of greatest curvature. These results are consistent with
previous work (Burov & Diament 1995; Bry & White 2007).

In the case of the Arica Bend area, the results show that the elastic
thickness tends to decrease in the portion of the outer rise, which
can be interpreted as a result of plate weakening due to bending,
fluid percolation or rheological changes.

The results do not support a simple relationship between age
and elastic thickness of the plate. The resistance of the plate to de-
formation is probably strongly dominated by the involved stresses,
which could produce inelastic deformation and thus reduce the ef-
fective elastic thickness, by changes on the lithosphere thickness,
by thermal anomalies or compositional changes.

Unlike this model, previous studies usually consider simple ge-
ometries and 1-D loading, so that the model presented in this paper
is a more general model that allows to work with complex margins
and 3-D loads. However, this method has two main limitations. The
first one is related to the large number of parameters to be fitted,
which may lead to the non uniqueness of the solutions. At this
point, further geodynamic interpretation of the results should be
made cautiously. The second important limitation is that it is not
able to determine the elastic parameters for the plate portion that
has undergone little or no deformation. Despite the fact that our
model is not accurate it gives an improved possibility to model the
flexure caused by complex 3-D loading and could be a starting point
for future numerical innovations.

 at U
niversidad de C

hile on O
ctober 7, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Lithospheric 3-D flexure modelling 691

A C K N OW L E D G E M E N T S

The authors thank the useful comments and suggestions from the
Editor Stephane Labrosse and the two reviewers, Gabriele Morra
and Andrés Tassara. PM was supported by FONDECYT grant No.
11090009 through a Masters scholarship. AO also acknowledges
FONDECYT 1110290 and CONICYT ACT1106 grants.

R E F E R E N C E S

Angermann, D., Klotz, J. & Reigber, C., 1999. Space-geodetic estimation of
the Nazca-South America Euler vector, Earth planet. Sci. Lett., 171(3),
329–334.

Arriagada, C., Roperch, P., Mpodozis, C. & Cobbold, P.R., 2008. Pa-
leogene building of the Bolivian Orocline: Tectonic restoration of
the central Andes in 2-D map view, Tectonics, 27(6), TC6014,
doi:10.1029/2008TC002269.

Billen, M.I. & Gurnis, M., 2005. Constraints on subducting plate strength
within the Kermadec trench, J. geophys. Res., 110(B5), B05407,
doi:10.1029/2004JB003308.

Birch, F., 1961. The velocity of compressional waves in rocks to 10 kilobars.
Part 2, J. geophys. Res., 66(7), 2199–2224.

Bodine, J.H. & Watts, A.B., 1979. On lithospheric flexure seaward of
the Bonin and Mariana trenches, Earth planet. Sci. Lett., 43(1), 132–
148.

Bodine, J.H., Steckler, M.S. & Watts, A.B., 1981. Observations of flexure
and the rheology of the oceanic lithosphere, J. geophys. Res., 86(B5),
3695–3707.

Brace, W.F. & Kohlstedt, D.L., 1980. Limits on lithospheric stress imposed
by laboratory experiments, J. geophys. Res., 85(B11), 6248–6252.

Braess, D., 2007. Finite Elements: Theory, Fast Solvers, and Applications
in Elasticity Theory, 3rd edn, Cambridge Univ. Press.

Braitenberg, C., Ebbing, J. & Gotze, H., 2002. Inverse modelling of elastic
thickness by convolution method—the eastern Alps as a case example,
Earth planet. Sci. Lett., 202(2), 387–404.

Bry, M. & White, N., 2007. Reappraising elastic thickness
variation at oceanic trenches, J. geophys. Res., 112(B08414),
doi:10.1029/2005JB004190.

Burov, E.B. & Diament, M., 1995. The effective elastic thickness (Te) of con-
tinental lithosphere: what does it really mean? J. geophys. Res., 100(B3),
3905–3927.

Caldwell, J.G. & Turcotte, D.L., 1979. Dependence of the thickness of
the elastic oceanic lithosphere on age, J. geophys. Res., 84(B13), 7572–
7576.

Caldwell, J.G., Haxby, W.F., Karig, D.E. & Turcotte, D.L., 1976. On the
applicability of a universal elastic trench profile, Earth planet. Sci. Lett.,
31(2), 239–246.

Capitanio, F.A., Morra, G. & Goes, S., 2009. Dynamics of plate bending at
the trench and slab-plate coupling, Geochem. Geophys. Geosyst., 10(4),
Q04002, doi:10.1029/2008GC002348.

Carlson, R.L. & Herrick, C.N., 1990. Densities and porosities in the oceanic
crust and their variations with depth and age, J. geophys. Res., 95(B6),
9153–9170.

Christensen, D.H. & Ruff, L.J., 1983. Outer-rise earthquakes and seismic
coupling, Geophys. Res. Lett., 10(8), 697–700.

Comer, R.P., 1983. Thick plate flexure, Geophys. J. R. astr. Soc., 72(1),
101–113.

Contreras-Reyes, E. & Osses, A., 2010. Lithospheric flexure modelling
seaward of the Chile trench: implications for oceanic plate weakening in
the Trench Outer Rise region, Geophys. J. Int., 182(1), 97–112.
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A P P E N D I X A

A1 The Kirchhoff–Love plate model

It can be easily seen that if we add a fifth hypothesis, known as the
‘normal hypothesis’ or ‘Kirchhoff’s hypothesis’, we can derive the
Kirchhoff–Love equation of motion for an elastic plate. The fifth
hypothesis says:

H5. Normal hypothesis. The deformations of normal vectors to
the middle surface are again orthogonal to the (deformed) middle
surface.

The normal hypothesis implies that the rotations are no longer
independent of the deflections:

θi (x, y) = ∂

∂xi
w(x, y),

ui (x, y, z) = −z ∂w

∂xi
(x, y),

⎫⎬
⎭ i = 1, 2. (A1)

If we take –div(1)+(2) we will get

div
[
div

(
T 3

e σ (�θ )
)]

= g.

Now we apply the condition imposed by H5 given in (A1) ob-
taining

T 3
e σ (�θ) = D

[
∂xxw + ν∂yyw (1 − ν)∂xyw

(1 − ν)∂xyw ν∂xxw + ∂yyw

]
.

Using that the divergence of a second order tensor corresponds to
a vector which components are given by div(Ai j ) = Vj = ∑

i
∂i Ai j

we will get the flexure differential equation for a variable elastic
thickness under the Kirchhoff-Love model:

∂xx

[
D(∂xxw + ν∂yy)

] + 2∂xy

[
D(1 − ν)∂xyw

]
+∂yy [D(ν∂xxw +∂yy)

] = g. (A2)

If additionally we suppose that the elastic thickness remains constant
along the plate, and therefore the flexural rigidity also remains
constant, the previous equation simplifies to:

D∇4 w = g.

By replacing the value of the net vertical force we finally arrive
to the well known flexure equation

D∇4 w + (ρm − ρw)gw = q. (A3)

A2 Variational formulation for the R–M plate model

We started from the R–M equations given in (1) and (2). We will
multiply (1) by �ψ (which we suppose zero on the same boundary
where θ is zero) and integrate by parts over the whole domain � we
obtain:∫

�

T 3
e σ (�θ ) : ε( �ψ) −

∫
∂�

T 3
e σ (�θ)n̂ · �ψ −

∫
�

λ∗Te(∇w − �θ ) · �ψ = 0,

where A : B = ∑
i, j ai j bi j stands for the tensor product between

matrices. If we impose the boundary conditions of Section 2.3, we
obtain∫

�

T 3
e D̄(1 − ν)ε(�θ ) : ε( �ψ) +

∫
�

T 3
e D̄νdiv(�θ)div( �ψ)

−
∫

�

λ∗Te(∇w − �θ ) · �ψ +
∫

�1

M0β̂ · �ψ = 0. (A4)

Now we multiply (2) by v (which we suppose zero on the same
boundary where w is zero) and integrate by parts over �, then∫

�

λ∗Te(∇w − �θ ) · ∇v −
∫

∂�

λ∗Te(∇w − �θ ) · n̂v +
∫

�

	ρg w v

=
∫

�

qv

then, using the boundary conditions of Section 2.3 we obtain∫
�

λ∗Te(∇w − �θ ) · ∇v +
∫

�

	ρg w v −
∫

�

qv +
∫

�1

V0v = 0.

(A5)

The variational formulation shown above corresponds to a problem
that is badly conditioned, which can lead to shear locking (Braess
2007), in order to avoid this, it is suggested a mixed problem by
introducing the normed shear term:

�γ := Te λ∗(∇w − �θ ).

If we multiply by a test function �η and integrate in � we will have
a third integral that will conform our system:∫

�

Teλ
∗(∇w − �θ ) · �η −

∫
�

�γ · �η = 0. (A6)

Finally, we add a fourth equation which will let us compute the
bending moment easier:

d := div(�θ ).

If we multiply by the test function e and by T 3
e D̄ν and integrate

in � we will get∫
�

T 3
e D̄νdiv(�θ)e −

∫
�

T 3
e D̄ν d e = 0. (A7)

The sum of eqs (A4)–(A7) makes the variational formulation. In
summary, the variational formulation is the following:
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Find (�θ, w, �γ , d) such that
∫

�

T 3
e D̄(1 − ν)ε(�θ ) : ε( �ψ)

+
∫

�

T 3
e D̄νdiv(�θ )div( �ψ) +

∫
�

�γ · (∇v − �ψ)

+
∫

�

Teλ
∗(∇w − �θ ) · �η −

∫
�

�γ · �η +
∫

�

T 3
e D̄νdiv(�θ)e

−
∫

�

T 3
e D̄ν d e +

∫
�

	ρg w v

=
∫

�

qv −
∫

�1

V0v −
∫

�1

M0β̂ · �ψ for all ( �ψ, v, �η, e),

where (�θ, w) and ( �ψ, v) are prescribed to be zero on the same
boundaries, as indicated in Section 2.3. Notice that the term β̂ · �ψ
should be written in an intrinsic reference system to the boundary, if
β̂ = (cos β, sin β) and n̂ = (nx , ny) and τ = (− ny, nx) (see Fig. 9),
then

β̂ · �ψ =
[

(nx cos β + ny sin β)(nxψ1 + nyψ2)

(nx sin β − ny cos β)(nxψ2 − nyψ1)

]
, (A8)

where β is the subduction angle with respect to the horizontal
reference.

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Figure 11. (top) Observed Bouguer anomaly along the bathymetric
profile P02 shown in Fig. 2(b) in black line, and Bouguer anomaly,
in grey line, calculated from the density model shown below. The
rms error is ∼5.9 (mGal). (bottom) Density model for profile
P02.
Figure 12. Top panel: Observed Bouguer anomaly along the bathy-
metric profile P03 shown in Fig. 2(b) in black line, and Bouguer
anomaly, in grey line, calculated from the density model shown be-
low. The rms error is ∼5 (mGal). Bottom panel: density model for
profile P03.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggt464
/-/DC1)

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the article.
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