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h i g h l i g h t s

• We improve geometrical results on longest-edge refinement algorithms.
• We provide new results on the refinement propagation of the Lepp-bisection algorithm.
• The iterative application of the algorithm improves the quality of the triangulation.
• We perform an empirical study of the algorithm and the behavior of the propagation.
• We also review mathematical properties of the iterative longest-edge bisection.
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a b s t r a c t

Longest-edge refinement algorithms were designed to iteratively refine the mesh for finite-element
applications by maintaining mesh quality (assuring a bound on the smallest angle). In this paper we
improve geometrical results on longest-edge refinement algorithms and provide precise bounds on the
refinement propagation. We prove that the iterative application of the algorithm gradually reduces the
average extent of the propagation per target triangle, tending to affect only two triangles.We also include
empirical results which are in complete agreement with the theory.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mesh generation and refinement techniques are widely used
in applications that require a decomposition of geometric objects
for processing. The domain is typically discretized into a mesh
composed of triangles. For most applications, the time required to
process a geometric object depends on the size and quality of the
decomposition. Thus, provably good mesh generation algorithms
are desirable.

We consider a conforming 2-dimensional triangulation τ ,
where pairs of neighbor triangles have either a common vertex or a
common edge. We also assume a quality triangulation in the sense
that the minimum angle is greater than or equal to an angle pa-
rameter θ . For a triangle set S ⊂ τ , the triangle-set refinement
problem needs to produce a conforming refined triangulation τ ′ of
quality analogous to τ , andwhere every triangle t ∈ S has been re-
fined. Note that for finite element applications, triangle-set S corre-
sponds to the triangles in τ with unacceptable finite element error.

Longest-edge refinement algorithms were designed to deal
with the iterative triangle-set refinement problem. These algo-
rithms perform local refinement based on the bisection of triangles
by their longest edge, and produce conforming triangulations that
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maintain the quality of the input mesh. The local refinement im-
plies the refinement of the triangles in the current triangle set and
some of their neighbor triangles due to refinement propagation.

In this paper we focus on the study of refinement propagation.
We show that the iterative application of the algorithm asymp-
totically reduces the propagation to a constant value (less than
three triangles in practice). We prove that the overall quality of
the triangulation improves, increasing the area covered by quasi-
equilateral triangles and isolating the triangles with the smallest
angles.

2. Previous results on longest-edge bisection of triangles

Given a triangle t(ABC) of vertices A, B, C , and edges AB ≥ BC ≥

CA (Fig. 1(a)), the longest-edge bisection of t is performed by join-
ing the midpointM of AB with the opposite vertex.

We call any triangle t that behaves like an equilateral trian-
gle with respect to its iterative longest-edge bisection (Fig. 2), a
quasi-equilateral triangle. For quasi-equilateral triangle t(ABC), the
longest-edge bisection of its descendants, triangles AMC andMNC ,
is respectively performed by the edges AC andMC . Note that these
bisections only produce edges parallel to the edges of initial trian-
gle ABC . This implies that at most four similarly distinct triangles
are produced:ABC ,MBC ,AMC andMNC . Therefore, further longest-
edge bisections of t and its descendants will only produce triangles
similar to one of these four triangles.
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Fig. 1. (a) Longest-edge bisection of triangle t(ABC), with the partition of t by
longest edge AB. (b) Repetitive longest-edge bisection of some descendants of t .

Fig. 2. Quasi-equilateral triangle t(ABC) and its first descendants.

Fig. 3. (a) Regions defining the classification of triangles t(ABC). Virtual vertex C
lies in one of the regions defining a triangle t with AB ≥ BC ≥ CA. (b) Directed
graph showing the transition of the new triangles generated by recursive longest-
edge bisection.

The mathematical properties of the iterative longest-edge bi-
section of triangles were studied by Rosenberg and Stenger [1],
Stynes [2], and Adler [3]. These can be summarized as follows: (a)
for any triangle t of smallest angle α, the iterative longest-edge bi-
section of t and its descendants produce triangles t ′ whose smallest
interior angles are always greater than or equal to α/2 (Fig. 1(b));
(b) every triangle generated is similar to one of a finite number of
associated non-similar triangles; (c) the global iterative bisection
(the bisection of all the triangles in the preceding level) covers, in a
monotonically increasing form, the area of t with quasi-equilateral
triangles.

More recently, Gutierrez et al. [4] studied the complexity of the
iterative bisection of a triangle, introducing a taxonomy of trian-
gles based both on the evolution and the number of non-similar
triangles produced. They defined six classes of triangles, consider-
ing the geometric position where vertex C of a triangle t(ABC) lies,
considering that AB ≥ BC ≥ CA (Fig. 3(a)). Note that the half-circle
of center M and radius AM correspond to right-angled triangles.
Triangles fromRegions I and VI correspond to quasi-equilateral tri-
angles. In [4] it was proved that the generation of new triangles
stopswhen a quasi-equilateral triangle is obtained, which happens
in O

 1
α


steps, with α the smallest angle of t . This behavior is sum-

marized in Fig. 3(b). The graph shows the path between regions in
the generation of new non-similar triangles by longest-edge bisec-
tion, as well as the convergence to quasi-equilateral triangles.

The following lemmas summarize these results.

Lemma 2.1. The iterative bisection of a triangle t(ABC) generates a
finite number of non-similar triangles that move throughout the six
regions of Fig. 3 (a). Furthermore, Region I or VI triangles generate at
most four non-similar triangles.
Fig. 4. (a) AB is an interior terminal edge shared by terminal triangles {t2, t3}
of Lepp(t0) = {t0, t1, t2, t3}. (b) Vertex 1 is added by the bisection of terminal
triangles {t2, t3}. (c) Vertex 2 is added by the bisection of terminal triangles {t1, t2a}.
(d) Final triangulation.

Lemma 2.2. The iterative bisection of triangles from Regions II to V
produce a sequence of new non-similar triangles until triangles of
Region I or VI are obtained.

3. The Lepp-bisection refinement algorithm

Longest-edge refinement algorithms [5,6] were designed to
deal with the local iterative refinement of triangulations as needed
for finite element method applications. In order to refine a set
of triangles S of a triangulation τ , these algorithms perform the
longest-edge bisection of the triangles in S (and some of their
neighbors and descendants) to produce a conforming triangulation,
where pairs of neighbor triangles have either a common vertex or
a common edge. Fig. 4 shows the use of the algorithm to refine the
triangle t(ABC) and how the refinement is propagated in order to
obtain a valid (conforming) triangulation.

Longest-edge bisection refinement algorithms inherit the prop-
erties discussed in Section 2. In particular it is guaranteed that ev-
ery refined triangulation has smallest angle ≥ θ/2, where θ is the
smallest angle in the initial triangulation.

The Lepp-bisection algorithm [6,7] is an efficient formulation
of pure longest-edge bisection algorithms [5], that maintains a
conforming triangulation throughout the refinement process. This
algorithm is based on the concepts of terminal edges and longest
edge propagating path.

An edge E is called a terminal edge in triangulation τ if it is the
longest edge of every triangle that shares E. The triangles sharing
E are called terminal triangles (edge AB in Fig. 4(a)). If E is shared by
two terminal triangles then E is an interior edge; if E is shared by
a single terminal triangle then E is a boundary edge.

For any triangle t0 in τ , the longest edge propagating path of t0,
Lepp(t0), is the ordered sequence {tj}N+1

0 , where tj is the neighbor
triangle on the longest edge of tj−1, and longest_edge(tj) >
longest_edge(tj−1), for j = 1, . . . ,N . The process ends by
finding a terminal edge.

To refine a triangle t0, the Lepp-bisection algorithm proceeds
as follows: (1) finds Lepp(t0) and a pair of terminal triangles tN
and tN+1 which share terminal edge E; (2) performs the longest
edge bisection of tN and tN+1 by the midpoint of E. This process
is repeated until initial triangle t0 is refined. Algorithm 1 presents
a generalization of the algorithm for the triangle set refinement
problem.
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Algorithm 1 Lepp-bisection algorithm
Input: A quality triangulation τ and a set Sref of triangles to be
refined
Output: A quality triangulation τ ′ such that each t ∈ Sref has been
refined

for each t in Sref do
while t remains in τ do

Find Lepp(t), terminal triangles t1, t2 and terminal
edge l. Triangle t2 can be null for boundary l
Select point P , midpoint of edge l
Perform bisection by P of triangles t1, t2
Update Sref

end while
end for

Fig. 5. Extended geometric classification of triangles t(ABC) for the analysis of the
behavior of longest-edge bisection algorithms.

Fig. 4 illustrates the refinement of triangle t0. The first step
computes Lepp(t0) and terminal triangles, t2 and t3, which are
then bisected by their longest edge (Fig. 4(b)). Next, Lepp(t0) is
recomputed with terminal triangles t1 and t2a (a sub-triangle of
t2) as shown in Fig. 4(c). Then, a last computation of Lepp(t0)
occurs, with terminal triangles t0 and t1a (a sub-triangle of t1),
whose bisection refines target triangle t0 and stops the process
(Fig. 4(d)).

4. Study of the refinement propagation

As stated and illustrated in the preceding section, for refining
an individual triangle t0, the algorithm locally propagates the re-
finement to a set of largest triangles related with Lepp(t0) in order
to produce a conforming triangulation. Thus two new triangles are
added by refining the target triangle t0, and Nprop new triangles are
introduced by refinement propagation. For an illustration see the
example of Fig. 4, where Nprop = 8.

Note that Nprop depends on: (a) the Lepp size; and (b) the
number of bisections performed inside each propagating triangle
t∗, which in turn depends on the shape of t∗.

4.1. Number of bisections inside propagating triangles

Firstly, note that independent of the triangle shape, a fixed
number of bisections is needed to eliminate non-conforming mid-
points situated over either the longest edge, or the second longest
edge of t∗ as shown in Fig. 6. In exchange, for non-conformingmid-
points situated over the smallest edge of t∗, some additional points
in the interior and/or over the edges of t∗ are introduced, depend-
ing on the geometric triangle class of t∗.

Bedregal and Rivara [8] showed that working with acceptable
quality triangulations the Lepp-bisection algorithm performs a
constant number of bisections per triangle. They extended the clas-
sification of Gutierrez et al. [4] to eliminate non-conforming points.
(See Fig. 5.) They proved that any triangle in regions I, V and VI re-
quires at most two bisections to be successfully refined; region II
triangles require at most four bisections, while region IV.a trian-
gles require only three. Theworst case scenario occurs for triangles
in regions III and IV.b, where the number of bisections is bounded
by O(log2 1

α
), with α the triangle’s smallest angle. Since these poor

quality triangles tend to insert multiple non-conforming points
over their edges (which then propagate to neighboring triangles),
they generalize this bound to O(log2 1

αmin
) for triangulations with

arbitrary smallest angleαmin. Lemma 4.1 summarizes these results.

Lemma 4.1. The average number of longest-edge bisections per-
formed by the Lepp-bisection algorithm to maintain a triangle con-
forming is constant. Furthermore, this constant is less than 5 for
triangles from regions I, II, IV.a,V and VI; for region III and IV.b
triangles, it is bounded by O(log2 1

α
).

4.2. Bounding the refinement propagation

Here we analyze the evolution of Lepp(t) throughout the re-
finement process. Consider that, (1)whenever a triangle is bisected
by themidpoint of its longest edge, a propagated refinement occurs
to maintain the mesh valid, and (2) the propagation is finite since
the refinement always propagates to bigger triangles.

To refine an individual triangle, the size of the propagation de-
pends on the distribution of terminal triangles in the triangulation
since they represent the end of a Lepp. Therefore, the more fre-
quent the terminal triangles are, the shorter the average propaga-
tion of the refinement is. In the rest of this sectionwe are interested
in measuring the proportion of terminal triangles in a triangula-
tion.

Also, the size of the propagation is directly affected by the pres-
ence of terminal triangles in the triangulation since they represent
the end of a Lepp. Therefore, the more frequent the terminal trian-
gles are, the shorter the average propagation of the refinement is.
We are interested in measuring the proportion of terminal trian-
gles in a triangulation.

In what follows, we show that the percentage of terminal
triangles increases as the refinement proceeds. To this end we will
take advantage of a result on the 4-Triangles refinement algorithm
(a special longest-edge algorithm [9]) by Suarez et al. [10]. They
showed that the iterative application of the 4-Triangles refinement
algorithm on a triangulation τ increases the proportion B(τ ) =
T (τ )

N(τ )
, where T (τ ) is the number of pairs of terminal triangles in

the mesh τ , and N(τ ) is the total number of triangles; tending to
cover τ with terminal triangles, and reducing the average length of
propagation to five triangles.

Note that one 4-Triangles partition of a triangle is equivalent to
two steps of longest-edge bisections of a quasi-equilateral triangle.
This, alongwith Lemma 2.2, allows us to extend these results to the
longest-edge bisection algorithm.
Fig. 6. Cases of longest-edge bisections to solve non-conformingmidpoints. (a) The longest edge requires one bisection. (b) The second longest edge requires two bisections.
(c) For the shortest, edge the number of bisections required is defined by the triangle’s region.
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Proposition 4.2. For any triangulation τ , the global iterative use
of the Lepp-bisection of triangles generates triangulation covered by
terminal triangles.

Proof. The iterative longest-edge bisection of triangles generates
triangles from Regions I and VI (Lemma 2.2). Furthermore, the
iterative longest-edge bisection of these triangles presents the
same bisection pattern as the 4-Triangles partition. Therefore, the
theoretical results on the propagation problem for the 4-Triangles
algorithm hold for the Lepp-bisection algorithm. �

Theorem 4.3. The global iterative application of the Lepp-bisection
algorithm increases the proportion of Region I and VI triangles in the
mesh, approaching 1 as the number of iterations increases.

Proof. Given a triangle t with smallest angle α and largest angle
γ , function Fi models the number of triangles from Regions I and
VI after the i-th nested bisection of the triangles in t . The following
recurrence relations represent the growth of function Fi for each
similarity region:
(i) Fi = 2Fi−1, and F0 = 1; for Regions I and VI triangles (See

Fig. 7(a))
(ii) Fi = 2Fi−1 + 2Fi−2, and F0 = 0, F1 = 1; for Region II triangles

(See Fig. 7(b))
(iii) Region III triangles will behave like Region II for i > 1.7

log


π
6α


, the number of bisections needed to obtain a Region I

or II triangle. (See Fig. 7(c))
(iv) Region IV: will behave like Region I, II or III triangles for i >

δ −
π
2


/α, the number of bisections to obtain a Region I or II

triangle.
(v) Region V: will not behave worse than Region III.

Function Fi only considers the nested bisection of a triangle. It
does not consider the internal propagation that the algorithm per-
forms in order to maintain the conforming mesh (if it did, that
would translate into a faster appearance of quasi-equilateral tri-
angles during a single refinement step). Therefore, Fi represents a
lower bound on the algorithm’s generation of Regions I and VI tri-
angles. For Region III, IV and V triangles, Lemmas 2.1 and 2.2 ensure
the convergence of the generation of Region I and VI triangles.

As the number of i iterations tends to infinity, Fi
N(τi)

tends to 1,
with N(τi) the number of triangles of triangulation τ at iteration i.
N(τi) is represented by the recurrence relation Ni = 2Ni−1 since
every triangle is bisected at each iteration, doubling the number of
triangles. �

Fig. 7 shows the transition among regions during the iterative
longest-edge bisection of triangles until obtaining quasi-equilateral
triangles. Fig. 7(a) shows how quasi-equilateral triangles only
generate other quasi-equilateral triangles. Fig. 7(b) shows the tran-
sition tree of Region II, IV.a and V triangles (the green triangle rep-
resents the refinement tree of a Region I triangle tree). Fig. 7(c)
shows the transition behavior of Region III, IV.b andV triangles (the
white triangle represents the refinement tree of a Region I, II or III
triangle). The generation of new subtrees in Fig. 7(c) halts within a
finite number of steps with the appearance of a Region I or II trian-
gle (Lemma 2.1).

Corollary 4.4. The iterative application of the Lepp-bisection algo-
rithmgradually reduces the average extent of the propagation, tending
to 2 triangles.

Proof. The proof follows from the direct application of Theo-
rem 4.3 and Proposition 4.2.

Note that Region I and VI triangles are regarded as good quality
triangles, mostly having a smallest angle α ≥

π
6 . Therefore, the

Lepp-bisection algorithm not only reduces the work of refinement
in repetitive applications, but improves the overall quality of the
triangulation.
Fig. 7. Refinement trees for triangles of: (a) Region I and VI triangles. (b) Region
II (IV.a and V) triangles. (c) Region III (IV.b and V) triangles. Upward gray arrows
represent the appearance of a triangle similar to an ancestor. Triangles represent
a subtree. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Lake Superior geometry. (a) Initial triangulation Superior-bad (528
triangles). (b) Refined triangulation Superior-bad after one iteration of global
refinement. (c) Initial triangulation Superior-good (1875 triangles). (d) Refined
triangulation Superior-good after one iteration of global refinement.

5. Experimental results

Here we study the evolution of the quality of the triangulation
throughout the iterative application of the Lepp-bisection algo-
rithm. We compute the Lepp-size and the percentage of terminal
triangles and quasi-equilateral triangles in the refined triangula-
tions.

We tested the performance of the algorithm using two De-
launay triangulations of the Lake Superior geometry: Superior-
good, a good quality triangulation with smallest angle αmin ≥ 30◦

(Fig. 8(c)); and Superior-bad, a poor quality triangulation with
smallest angle αmin ≥ 1.6◦ (Fig. 8(a)). Although longest-edge bi-
section algorithms are used in practice over triangulations of ac-
ceptable quality, in order to provide a stronger empirical validation
of Corollary 4.4, we also tested the algorithm’s behavior over De-
launay triangulations of randomly generated points over a quadri-
lateral region. We generated 10 meshes of 1000, 5000 and 10,000
points (D1k, D5k and D10k respectively).

Table 1 shows the initial statistics of all the evaluated meshes.
The second column refers to the number of triangles in the
triangulation. The third column refers to the average smallest angle
α of the triangles. The fourth column, Avg. Lepp-set(), refers to
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Fig. 9. Evolution of the refined triangulations for iterative global refinement.
(a) Percentage of terminal triangles. (b) Percentage of quasi-equilateral triangles.
(c) Average smallest angle. (d) Average number of triangles affected by propagation.

the average number of triangles locally refined due to propagation.
The fifth column refers to the proportion of terminal triangles in
themesh, while the sixth column refers to the proportion of quasi-
equilateral triangles (regions I and VI).

It must be noted that evenwhen the averageα shown in Table 1
is good for the triangulations of randomly generated points, these
triangulations contain a small number of initial triangles with
minimum angle α close to 0◦. The triangulation of Superior-bad
also contains some initial poor quality triangles (withα close to 2◦).

5.1. Iterative global refinement

Starting with input triangulations of Table 1, we iteratively
and globally applied the algorithm to refine every triangle of
the preceding triangulation, until obtaining one million triangles.
Fig. 9 shows the evolution of four statistics over the refined
triangulations during this process. Since all the meshes of random
points show analogous behavior we only include triangulation
nD1k.

Fig. 9(a) and (b) show that both the percentage of terminal
triangles and the percentage of quasi-equilateral triangles in the
meshmonotonically increases as the refinement proceeds, even for
those regarded as bad quality initial triangulations.

Fig. 9(c) shows that the average smallest angle approaches
about 40◦. In this sense the triangulation is populated by good-
quality triangles that are also easy to process even if they are
affected by the propagation (recall Lemma 4.1). The results shown
in Fig. 9(d) validate the reduction of the propagation length during
iterative refinement since the Lepp-size quickly converges to an
average of two triangles (pairs of terminal triangles).

5.2. Iterative random refinement

Here, at each step we iteratively applied the algorithm to re-
fine one random triangle of the current triangulation for the tri-
angulations of Table 1. Since the randomly selected triangle could
have been previously refined, we randomly refine a number of tri-
angles equal to the size of the initial triangulation to increase the
probability of refining every initial triangle at least once. Table 2
presents the same statistics as Table 1 for the final refined triangu-
lations. The initial comparison of both tables shows the increasing
of good quality and terminal triangles, as well as the reduction of
the Lepp-size to an average of three triangles. Note that for quality-
acceptable triangulations, even when local refinement is applied,
the overall quality of the refined (also quality-acceptable triangu-
lations) is still improved: the average α increases to around 40◦.

6. Conclusions

In this paper we presented a complete study on refinement
propagation for the Lepp-bisection algorithm, proving that size-
optimal meshes are obtained. Our experiments show that both the
number of triangles generated inside propagating triangles, and
the size of the propagation remain constant. The Lepp-bisection
algorithm produces more quasi-equilateral triangles in each iter-
ation. Thus, better quality triangles tend to cover the propagation
path, so future iterations are processed faster with shorter longest-
edge propagating paths, while the triangles with the smallest an-
gles are isolated. In practice, longest edge algorithms are efficient
techniques for fast and robust refinement of good quality triangu-
lations.
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Table 1
Initial statistics of the triangulations evaluated.

Triangulation Size Avg. α (in deg.) Avg.
Lepp-set()

Terminal triang. (%) Reg. I, VI triang. (%)

Superior-bad 528 15.28 9.02 0.12 0.11
Superior-good 1,875 42.76 3.41 39.89 93.92
D1k 1,981 29.53 3.66 28.82 44.67
D5k 9,969 30.36 3.71 29.38 46.37
D10k 19,976 30.19 3.68 29.45 45.71
Table 2
Statistics of the output triangulations after the iterative refinement of random triangles.

Triangulation Size Avg. α (in deg.) Avg.
Lepp-set()

Terminal triang. (%) Reg. I, VI triang. (%)

Superior-bad 1,923 22.51 2.99 48.52 32.37
Superior-good 5,078 39.93 2.91 41.78 97.49
D1k 5,670 33.85 3.10 41.64 71.13
D5k 28,479 34.23 3.13 41.11 72.38
D10k 56,885 34.62 3.15 40.57 73.39
References

[1] Rosenberg IG, Stenger F. A lower bound on the angles of triangles constructed
by bisecting the longest side. Math Comp 1975;29:390.

[2] StynesM. On faster convergence of the bisectionmethod for all triangles.Math
Comp 1980;35:1195.

[3] Adler A. On the bisection method for triangles. Math Comp 1983;40:571.
[4] Gutierrez C, Gutierrez F, Rivara M-C. Complexity of the bisection method.

Theoret Comput Sci 2007;382(2):131–8.
[5] Rivara M-C. Algorithms for refining triangular grids suitable for adaptive and

multigrid techniques. Internat J Numer Methods Engrg 1984;20(4):745–56.
[6] Rivara M-C. New longest-edge algorithms for the refinement and/or
improvement of unstructured triangulations. Internat J NumerMethods Engrg
1997;40(18):3313–24.

[7] Rivara M-C. Lepp-bisection algorithms, applications and mathematical
properties. Appl Numer Math 2009;59(9):2218–35.

[8] Bedregal C, Rivara M-C. A study on size-optimal longest edge refinement
algorithms. In: Jiao X, Weill J-C, editors. Proc. of the 21st int. meshing
roundtable. Berlin, Heidelberg: Springer; 2013. p. 121–36.

[9] Rivara M-C, Iribarren G. The 4-triangles longest-side partition of triangles and
linear refinement algorithms. Math Comp 1996;65(216):1485–502.

[10] Suárez JP, Plaza A, Carey GF. The propagation problem in longest-edge
refinement. Finite Elem Anal Des 2005;42(2):130–51.

http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref1
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref2
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref3
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref4
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref5
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref6
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref7
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref8
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref9
http://refhub.elsevier.com/S0010-4485(13)00180-2/sbref10

	Longest-edge algorithms for size-optimal refinement of triangulations
	Introduction
	Previous results on longest-edge bisection of triangles
	The Lepp-bisection refinement algorithm
	Study of the refinement propagation
	Number of bisections inside propagating triangles
	Bounding the refinement propagation

	Experimental results
	Iterative global refinement
	Iterative random refinement

	Conclusions
	Acknowledgment
	References


