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A new lemma for the Caputo fractional derivatives, when 0 < a < 1, is proposed in this
paper. This result has proved to be useful in order to apply the fractional-order extension
of Lyapunov direct method, to demonstrate the stability of many fractional order systems,
which can be nonlinear and time varying.
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1. Introduction

Fractional calculus relates with the calculus of integrals and derivatives of orders that may be real or complex, and has
become very popular in recent years due to its demonstrated applications in many fields of science and engineering [1].

The nature of many systems makes that they can be more precisely modeled using fractional differential equations. For
instance it can be mentioned the diffusion process, such as those founded in batteries [2], some heat transfer process [3], the
effect of the frequency in induction machines [4], amongst others. In that sense, the stability of these systems have to be
proved using techniques developed for fractional order systems. More over, those models are often used inside classic con-
trol schemes, and for that reason the whole controlled system results in a fractional order one. In these cases, the stability of
the whole controlled system have to be analyzed using the fractional order techniques as well.

Besides, sometimes fractional order controllers are used to control integer order systems, such as Fractional Order PID
controllers [5]; high gain output feedback control schemes, where the feedback gain is estimated using a fractional differ-
ential equation [6,7]; Fractional Order Model Reference Adaptive Controllers (FOMRAC), where the adaptive law is given
by a fractional differential equation [8–11], or where the adaptive law and the reference model are described by fractional
differential equations [12–14]. In all these cases, the stability of the whole controlled system have to be analyzed using the
fractional order techniques as well.

The stability of Fractional Order Linear Time Invariant systems (FOLTI) can be easily proved using the method proposed
by Matignon [15]. However, for fractional order nonlinear time varying systems, this method can not be used. Diethelm [16]
proved the stability of a fractional order nonlinear time varying system, under certain conditions, but this result is valid only
for scalar fractional order systems.

So, in order to prove the stability of fractional order nonlinear and time varying systems in the vector case, some other
techniques must be applied. One of these techniques is the fractional-order extension of Lyapunov direct method, proposed
920; fax:
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by Li et al. [17]. Using this technique, however, is often a really hard task, since finding a Lyapunov candidate function is
more complex in the fractional order case.

Some authors have proposed Lyapunov functionals to prove the stability of fractional order systems. The two prominent
works [18,19] can be cited, however the relation between the Lyapunov function and the fractional differential equation is
not elementary nor simple. [20] proposes some other Lyapunov functionals, where the relation between them and the frac-
tional differential system is more elementary, but these functionals are neither simple, and they are valid for fractional sys-
tems with specific characteristics.

Some Lyapunov functions have been proposed in works related to fractional sliding mode control [21–23]. Those Lyapu-
nov functions have been used to prove the stability of the resulting fractional order system. However, the analysis have been
possible using the classic Lyapunov direct method [24] and due to the possibility to define the sliding surface in a way which
makes the corresponding derivative of the Lyapunov function negative definite.

This paper presents a new property for Caputo fractional derivatives when 0 < a < 1, which allows finding a simple
Lyapunov candidate function for many fractional order systems, and the consequently stability proof for them, using the
fractional-order extension of the Lyapunov direct method [17].

The paper is organized as follows: Section 2 presents some basic concepts about fractional calculus and the stability of
fractional order systems, facilitating the understanding of the ideas presented in this work. Section 3 introduces the new
lemma for Caputo fractional derivatives. Section 4 presents the usefulness of this property for the stability proof of some
fractional order systems, through some examples. Finally, Section 5 presents the conclusions of the work.

2. Preliminaries

In this section, some basic definitions related to fractional calculus are presented. Some concepts and techniques related
to the stability of fractional order systems are presented as well.

2.1. Fractional calculus

In fractional calculus, the traditional definitions of the integral and derivative of a function are generalized from integer
orders to real orders. In the time domain, the fractional order derivative and fractional order integral operators are defined by
a convolution operation.

Several definitions exist regarding the fractional derivative of order a P 0, but the Caputo definition in (1) is used the
most in engineering applications, since this definition incorporates initial conditions for f �ð Þ and its integer order derivatives,
i.e., initial conditions that are physically appealing in the traditional way.

Definition 1 (Caputo fractional derivative [1]). The Caputo fractional derivative of order a 2 Rþ on the half axis Rþ is
defined as follows
C
a Da

t f tð Þ ¼ 1
C n� að Þ

Z t

a

f nð Þ sð Þ
t � sð Þa�nþ1 ds; t > a ð1Þ
with n ¼ min k 2 N=k > af g; a > 0.
One special property of the fractional derivatives is the generalization of the Leibniz rule, which is stated in the following

property.

Property 1 (Leibniz rule for fractional differentiation [25]). If f tð Þ and g tð Þ along with all its derivatives are continuous in a; t½ �,
then the Leibiniz rule for fractional differentiation takes the form
C
a Da

t f tð Þg tð Þð Þ ¼
X1
k¼0

a
k

� �
f kð Þ tð ÞCa Da�k

t g tð Þ ð2Þ
2.2. Stability of fractional order systems

Using the Caputo derivative, a fractional order system (FOS) can be defined by
C
t0

Da
t x tð Þ ¼ f x; tð Þ ð3Þ
where a 2 0;1ð Þ and t represents the time.
For stability analysis of fractional order nonlinear time-varying systems like (3), a fractional-order extension of Lyapunov

direct method has been proposed [17], which is stated in Theorem 1.

Definition 2. A continuous function c : 0; t½ Þ ! 0;1½ Þ is said to belong to class-K if it is strictly increasing and c 0ð Þ ¼ 0 ([17]).
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Theorem 1 (Fractional-order extension of Lyapunov direct method [17]). Let x ¼ 0 be an equilibrium point for the non auton-
omous fractional-order system (3). Assume that there exists a Lyapunov function V t; x tð Þð Þ and class-K functions ci i ¼ 1;2;3ð Þ
satisfying
c1 kxkð Þ 6 V t; x tð Þð Þ 6 c2 kxkð Þ ð4Þ

C
t0

Db
t V t; x tð Þð Þ 6 �c3 kxkð Þ ð5Þ
where b 2 0;1ð Þ. Then the system (3) is asymptotically stable.
3. A new lemma for the Caputo fractional derivative

This section presents a new lemma, which allows to find Lyapunov candidate functions for demonstrating the stability of
many fractional order systems, using the fractional-order extension of the Lyapunov direct method.

Lemma 1. Let x tð Þ 2 R be a continuous and derivable function. Then, for any time instant t P t0
1
2

C
t0

Da
t x2 tð Þ 6 x tð ÞCt0

Da
t x tð Þ; 8a 2 0;1ð Þ ð6Þ
Proof. Proving that expression (6) is true, is equivalent to prove that
x tð ÞCt0
Da

t x tð Þ � 1
2

C
t0

Da
t x2 tð ÞP 0; 8a 2 0;1ð Þ ð7Þ
Using Definition 1, it can be written that
C
t0

Da
t x tð Þ ¼ 1

C 1� að Þ

Z t

t0

_x sð Þ
t � sð Þa

ds ð8Þ
And in the same way
1
2

C
t0

Da
t x2 tð Þ ¼ 1

C 1� að Þ

Z t

t0

x sð Þ _x sð Þ
t � sð Þa

ds ð9Þ
So, Expression (7) can be written as
1
C 1� að Þ

Z t

t0

x tð Þ � x sð Þ½ � _x sð Þ
t � sð Þa

ds P 0 ð10Þ
Let us define the auxiliar variable y sð Þ ¼ x tð Þ � x sð Þ, which implies that y0 sð Þ ¼ dy sð Þ
ds ¼ �

dx sð Þ
ds . In this way, Expression (10) can

be written as
1
C 1� að Þ

Z t

t0

y sð Þy0 sð Þ
t � sð Þa

ds 6 0 ð11Þ
Let us integrate by parts Expression (11), defining
du ¼ y sð Þy0 sð Þds u ¼ 1
2

y2

v ¼ 1
C 1� að Þ t � sð Þ�a dv ¼ a

C 1� að Þ t � sð Þ�a�1
In that way, Expression (11) can be wrriten as
� y2 sð Þ
2C 1� að Þ t � sð Þa
� �����

s¼t

þ y2
0

2C 1� að Þ t � t0ð Þa
� �

þ a
2C 1� að Þ

Z t

t0

y2 sð Þ
t � sð Þaþ1 ds P 0 ð12Þ
Let us check the first term of expression (12), which has an indetermination at s ¼ t, so let us analyze the corresponding
limit.
lim
s!t

y2 sð Þ
2C 1� að Þ t � sð Þa

¼ 1
2C 1� að Þ lims!t

x tð Þ � x sð Þ½ �2

t � sð Þa
¼ 1

2C 1� að Þ lims!t

x2 tð Þ � 2x tð Þx sð Þ þ x2 sð Þ
� �

t � sð Þa
ð13Þ
Given that the function is derivable, L’Hopital rule can be applied (because it results 0
0). Then
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1
2C 1� að Þ lims!t

x2 tð Þ � 2x tð Þx sð Þ þ x2 sð Þ
� �

t � sð Þa
¼ 1

2C 1� að Þ lims!t

�2x tð Þ _x sð Þ þ 2x sð Þ _x sð Þ½ �
�a t � sð Þa�1

¼ 1
2C 1� að Þ lims!t

2x tð Þ _x sð Þ � 2x sð Þ _x sð Þ½ � t � sð Þ1�a

a
¼ 0 ð14Þ
So, Expression (12) is reduced to
y2
0

2C 1� að Þ t � t0ð Þa
þ a

2C 1� að Þ

Z t

t0

y2 sð Þ
t � sð Þaþ1 ds P 0 ð15Þ
Expression (15) is clearly true, and this concludes the proof. h
Remark 1. In the case when x tð Þ 2 Rn, Lemma 1 is still valid. That is, 8a 2 0;1ð Þ and 8t P t0
1
2

C
t0

Da
t xT tð Þx tð Þ 6 xT tð ÞCt0

Da
t x tð Þ ð16Þ
The proof is straightforward, decomposing the expression (16) into a sum of scalar products and applying Lemma 1.
Remark 2. One can expect an equality in (6) when function x tð Þ is a constant or when a ¼ 1.
The case when a ¼ 1 corresponds to the product rule for the integer order derivatives, which states that 1

2
dx2 tð Þ

dt ¼ x tð Þ dx tð Þ
dt ,

so it can be considered as a particular case of the Lemma 1.
Corollary 1. For the fractional order system
C
t0

Da
t x tð Þ ¼ f x tð Þð Þ ð17Þ
where a 2 0;1ð Þ; x ¼ 0 is the equilibrium point and x tð Þ 2 R , if the following condition is satisfied
x tð Þf x tð Þð Þ 6 0; 8x ð18Þ
then the origin of the system (17) is stable. And if
x tð Þf x tð Þð Þ < 0; 8x – 0 ð19Þ
then the origin of the system (17) is asymptotically stable.
Proof. Let us propose the following Lyapunov candidate function, which is positive definite
V x tð Þð Þ ¼ 1
2

x2 tð Þ ð20Þ
Using Lemma 1 results
C
t0

Da
t V x tð Þð Þ 6 x tð ÞCt0

Da
t x tð Þ ð21Þ
If x tð Þf x tð Þð Þ 6 0, then x tð ÞCt0
Da

t x tð Þ 6 0, and the fractional derivative (21) of the Lyapunov function results negative semi-
definite. This implies, using the comparison principle [17] that V x tð Þð Þ 6 V x 0ð Þð Þ; 8x.

According to the definition of the function V x tð Þð Þ, this implies that
1
2

x2 tð Þ 6 1
2

x2 0ð Þ; 8x ð22Þ
According to the definition of stability in the sense of Lyapunov [24], expression (22) allows concluding that the origin of
the system (17) is stable in the sense of Lyapunov.

If x tð Þf x tð Þð Þ < 0; 8x – 0, then x tð ÞCt0
Da

t x tð Þ < 0, and the fractional derivative (21) of the Lyapunov function results negative
definite. Given the relation between positive definite functions and class-K functions in [26], using Theorem 1 it can be
concluded that the origin of the system (17) is asymptotically stable. h
Remark 3. In the case when system (17) is vectorial, that is x tð Þ 2 Rn, Corollary 1 is still valid. The proof is straightforward,
using a Lyapunov candidate function given by V x tð Þð Þ ¼ 1

2 xT tð Þx tð Þ and applying Lemma 1.
Remark 4. The applicability of the lemma to the use of general quadratic Lyapunov functions xT tð ÞPx tð Þ, with P being a posi-
tive definite matrix is currently under investigation.
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4. Usefulness of the lemma in the stability proof of fractional order systems

One of the most used Lyapunov candidate function to prove the stability of integer systems is the quadratic function.
However, in the fractional case, it is no straightforward the use of those functions. Let us state the following example.

Example 1. Let us consider the following fractional order linear time-varying system, where 0 < a < 1
C
0Da

t x1 tð Þ ¼ � sin2 tð Þx1 tð Þ � sin tð Þ cos tð Þx2 tð Þ
C
0Da

t x2 tð Þ ¼ � sin tð Þ cos tð Þx1 tð Þ � cos2 tð Þx2 tð Þ
ð23Þ
To prove the stability of system (23), let us use the classic Laypunov direct method ([24]), proposing the quadratic func-
tion as a Lyapunov candidate, which is positive definite
V x1 tð Þ; x2 tð Þð Þ ¼ 1
2

x2
1 tð Þ þ 1

2
x2

2 tð Þ ð24Þ
Using the property of fractional derivatives in [1], which states that _x tð Þ ¼ C
0D1�a

t
C
0Da

t x tð Þ, it can be found that
_x1 tð Þ ¼ �C
0D1�a

t x1 tð Þ sin2 tð Þ þ x2 tð Þ sin tð Þ cos tð Þ
h i

_x2 tð Þ ¼ �C
0D1�a

t x1 tð Þ sin tð Þ cos tð Þ þ x2 tð Þ cos2 tð Þ
� � ð25Þ
And then
dV x1 tð Þ; x2 tð Þð Þ
dt

¼ x1 tð Þ _x1 tð Þ þ x1 tð Þ _x2 tð Þ

¼ �x1 tð ÞC0D1�a
t x1 tð Þ sin2 tð Þ
h i

� x1 tð ÞC0D1�a
t x2 tð Þ sin tð Þ cos tð Þ½ � � x2 tð ÞC0D1�a

t x2 tð Þ cos2 tð Þ
� �

� x2 tð ÞC0D1�a
t x1 tð Þ sin tð Þ cos tð Þ½ � ð26Þ
As can be seen from Eq. (26), it is difficult to establish a definite sign for the first derivative of the Lyapunov function, and
consequently to establish conclusions about stability.

If the fractional-order extension of the Lyapunov direct method is used instead, proposing the Lyapunov candidate
function (24), and using the Property 1, it can be obtained that
C
0Da

t V x1 tð Þx2 tð Þð Þ ¼ 1
2

X1
k¼0

a
k

� �
x kð Þ

1 tð ÞC0Da�k
t x1 tð Þ þ 1

2

X1
k¼0

a
k

� �
x kð Þ

2 tð ÞC0Da�k
t x2 tð Þ ð27Þ
As can be seen from Eq. (27), evaluating the fractional derivative of the Lyapunov function implies evaluating an infinite
sum, which includes higher order integer and fractional derivatives of the states of the system (23). It is evident that this is
not an easy task.

However, if the Lemma 1 is used, using the Lyapunov candidate function (24), it is straightforward obtained that
C
0Da

t V x1 tð Þ; x2 tð Þð Þ ¼ 1
2

C
0Da

t x2
1 tð Þ þ 1

2
C
0Da

t x2
2 tð Þ 6 x1 tð ÞC0Da

t x1 tð Þ þ x2 tð ÞC0Da
t x2 tð Þ ¼ � x1 tð Þ sin tð Þ þ x2 tð Þ cos tð Þ½ �2 6 0 ð28Þ
Eq. (28) shows that the fractional derivative of the Lyapunov function is negative semidefinite, so it can be concluded that
the origin of the system (23) is stable.

Fig. 1 shows the evolution of the states of the system (23), using a ¼ 0:8. As expected from the analytical analysis already
presented, which is valid for any bounded initial conditions, for this case when x1 0ð Þ ¼ 3 and x2 0ð Þ ¼ 6 the origin of the sys-
tem is stable.

Example 2. Let us consider the following fractional order nonlinear system, with 0 < a < 1
C
0Da

t x1 tð Þ ¼ �x1 tð Þ þ x3
2 tð Þ

C
0Da

t x2 tð Þ ¼ �x1 tð Þ � x2 tð Þ
ð29Þ
Let us consider the following Lyapunov candidate function, which is positive definite.
V x1 tð Þ; x2 tð Þð Þ ¼ 1
2

x2
1 tð Þ þ 1

4
x4

2 tð Þ ð30Þ
Now, applying Lemma 1, it can be found that
C
0Da

t V x1 tð Þ; x2 tð Þð Þ ¼ 1
2

C
0Da

t x2
1 tð Þ þ 1

4
C
0Da

t x4
2 tð Þ 6 x1 tð ÞC0Da

t x1 tð Þ þ 1
2

x2
2 tð ÞC0Da

t x2
2 tð Þ 6 x1 tð ÞC0Da

t x1 tð Þ þ x3
2 tð ÞC0Da

t x2 tð Þ

¼ �x2
1 tð Þ � x4

2 tð Þ < 0 ð31Þ
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Fig. 1. Evolution of the state x1 tð Þ (left) and x2 tð Þ (right) of the system (23), using a ¼ 0:8.
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Fig. 2. Evolution of the state x1 tð Þ (left) and x2 tð Þ (right) of the system (29), using a ¼ 0:8.
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As can be seen from Eq. (31), the fractional derivative of the Lyapunov function is negative definite, so it can be concluded
from Corollary 1 that the origin of the system (29) is asymptotically stable.

Fig. 2 shows the evolution of the states of the system (29), using a ¼ 0:8. As expected from the analytical analysis already
presented, which is valid for any bounded initial conditions, for this case when x1 0ð Þ ¼ 2 and x2 0ð Þ ¼ �1, the origin of the
system is asymptotically stable.
5. Conclusions

A new lemma related to the Caputo fractional derivative has been proposed in this paper. The result presented is valid for
0 < a < 1. The usefulness of this lemma for finding Lyapunov functions, and consequently proving the stability of many frac-
tional order systems, using the fractional-order extension of the Lyapunov direct method, has been showed trough some
examples.
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