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Abstract

Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of
action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very
susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the
parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in
trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key
pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the
host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo.
Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target
because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi
infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T.
cruzi are enumerated and their likely modes of action are briefly discussed.
© 2006 Elsevier Inc. All rights reserved.
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In 1909 Carlos Chagas, a Brazilian scientist, discovered a
parasitic flagellate that he named Trypanosoma cruzi and which
is the causative agent of American trypanosomiasis, now known
as Chagas'disease. Chagas' disease affects 24 million people
from Southern California to Argentina and Chile (Chagas,
1909; WHO Expert Committee on the Control of Chagas
Disease, 2002). The most important mode of transmission of the
disease is associated with the feces of several species of
triatomine bugs that are strictly hematophagous. Blood
transfusion also plays a role in Chagas' disease transmission,
since serological tests in blood banks of areas where the disease
is endemic give 10–50% positivity, and of that percentage
around 10% of the blood contains infective parasites. This
disease has been present in the American continent for more
than 9000 years (Aufderheide et al., 2004).

1. The life cycle of T. cruzi

The parasite's biological cycle includes three fundamental
forms characterized by the relative positions of the flagellum,
kinetoplast, and nucleus (Prata, 2001): (1) Trypomastigotes:
20 μm long, fusiform, subterminal kinetoplast, constitute the
infecting form, and are found in mammalian blood and the
hindgut of triatomine bugs; they do not multiply. In mammals
they are the disseminators of blood-borne infection (Prata,
2001). (2) Epimastigotes: Also 20 μm long, kinetoplast anterior
to the nucleus, fusiform. They represent the parasite's
multiplicative form in the triatomid's intestine, and are the
predominant form in culture. For this reason it is the form most
commonly used in biochemical studies (Prata, 2001). (3)
Amastigotes: Approximately 2 μm in diameter, round, without
an emergent flagellum. They multiply by means of binary
fission inside mammalian host cells, producing their rupture,
and liberating trypomastigotes into the bloodstream that can
once again invade any nucleated cell (Prata, 2001). They can be
grown in culture in muscle cells, fibroblasts, and macrophages
among others (Faúndez et al., 2005; Morello, 1988).

2. Epidemiology

American trypanosomiasis or Chagas' disease is a major
public health concern in Latin America. It takes second place
after malaria in prevalence and mortality due to vector-
associated diseases (WHO Expert Committee on the Control
of Chagas Disease, 2002). At least 25 million people are
considered to be at risk of exposure to infection, with a total
estimate of 8 million infected cases, with Chile contributing to
this number with 150,000 presumably infected cases (WHO
Expert Committee on the Control of Chagas Disease, 2002).
Furthermore, according to World Health Organization reports,
mortality rates vary from 8% to 12% depending on the country
studied, age, patients' health conditions, and treatment received
(WHO Expert Committee on the Control of Chagas Disease,
2002). This report also states that recent studies have shown
approximately 200,000 new cases per year and 21,000 deaths
per year associated with Chagas' disease (WHO Expert
Committee on the Control of Chagas Disease, 2002).

Chagas' disease is controlled at present through the
elimination of the vectors with insecticides; better housing
and educational campaigns are also fruitful approaches.
Chagas' disease, as well as other parasitic diseases, is associated
with poverty and low educational levels. The development of
vaccines has thus far been unsuccessful. The chemotherapy of
Chagas' disease is inadequate since the treatment of patients
with the drugs nifurtimox and benznidazole presents serious
toxic side effects; there are also doubts as to whether these drugs
are capable of achieving parasitological cure. Gentian violet
(Hiratake et al., 2002) is used to treat transfusion blood, its main
disadvantage being the purple colouring of the blood and the
staining of the patients' tissues. Hundreds of T. cruzi “strains”
have been isolated from different countries and geographical
zones. Important differences in resistance or susceptibility to
drugs in use, in laboratory experimentation, or in clinical
studies, have been described among different strains of the
parasite. This situation makes the development of new antic-
hagasic drugs even more difficult (Morello et al., 1994).

Currently, most antiparasitic drugs are considered orphan
drugs with the main exception of antimalarials. Economic
considerations of the pharmaceutical industry outweigh all
others, because of the very low return of the developmental
costs. Therefore, it is necessary to find alternative and cheaper
ways to approach the treatment of Chagas' disease. This could
be achieved by increasing the activity of the antichagasic drugs
presently used or by modifying the host's immune response,
which would render current therapies more effective.

3. Treatment of Chagas' disease

3.1. Clinical approach

The drugs currently used to treat Chagas' disease are nifur-
timox (4[(5-nitrofurfurylidene)amino]-3-methylthiomorpholine-
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1,1-dioxide), derived from nitrofuran, and benznidazole (N-
benzyl-2-nitroimidazole-1-acetamide), a nitroimidazole deriva-
tive. The recommended dose in the acute phase is 8–10 mg/kg/
day for nifurtimox and 5 mg/kg/day for 90 days for benznidazole.
The average duration of treatment is about 60 days, but when
chronic disease is reactivated, such as in immunocompromised
patients, treatment can last 5months or longer. Only in cases of
accidental and presumed infections, by means of a vector, blood
transfusion, or contamination in a laboratory, is the duration of
prophylactic treatment limited to 10 days.

Nifurtimox and benznidazole are trypanocidal to all forms of
the parasite (Rodriques Coura and de Castro, 2002). However,
they can cause systemic toxicity and adverse effects that include
anorexia, nausea, vomiting, headache, central nervous system
depression or maniacal symptoms, seizures, vertigo, paresthe-
sias, peripheral polyneuropathies, and dermatitis (Kirchhoff,
2000). In addition, there are reports of mutagenesis and DNA
damage (Zahoor et al., 1987). In large series of patients treated
with these drugs, no major problems have been found related to
the latter point (Apt, 1999), and therefore the risk seems to be
more theoretical than clinical. An additional element that
complicates the pharmacological management of this disease,
and a cause of treatment failure, is the different susceptibility of
different parasite strains to these drugs (Filardi and Brener,
1987).

4. Mechanism of action of nifurtimox and benznidazole

Nifurtimox and benznidazole act through the formation of
free radicals and/or electrophilic metabolites (Fig. 1). The nitro
group of both drugs is reduced to an amino group by the action
of nitroreductases, with the formation of various free radical
intermediates and electrophilic metabolites. This process begins
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Fig. 1. Role of glutathione and trypanothione in the action and metabolism of the antic
drugs is reduced to free radicals or electrophilic metabolites by T. cruzi cytochrome
redox cycling with oxygen and it is produced H2O2 by the further action of superoxid
metabolites bind to intracellular macromolecules damaging them. In the parasite,
benznidazole derived metabolites by conjugation producing drug-thiol conjugates tha
are neutralized by oxidation of reduced GSH or T(SH)2. Trypanothione reductase (E
with a reaction catalyzed by NADPH-cytochrome P-450
reductase, that acts on the nitro group of R-NO2-type molecules,
producing an intermediary nitro anion radical (R-NO2

−)
(Moreno et al., 1982). This radical undergoes redox recycling
with molecular oxygen, which partially reduces it and
regenerates the drug (Mason and Holtzman, 1975). As seen in
Fig. 1, the superoxide anion (O2

U−) undergoes superoxide
dismutase-catalyzed dismutation to afford O2 and H2O2

(Temperton et al., 1998). The superoxide anion (O2
U−) and

hydrogen peroxide (H2O2), in the presence of Fe3+, form the
hydroxyl free radical (Haber-Weiss reaction). These free
radicals, mainly OHU, bind to lipids, proteins, and DNA,
damaging them (Díaz de Toranzo et al., 1988).

When nifurtimox is added to T. cruzi infected cells, a
characteristic ESR spectrum corresponding to the nitro anion
appears (Docampo et al., 1981; Docampo and Moreno, 1984).
Furthermore, the nifurtimox concentration (10–20 μM) at
which epimastigote culture is inhibited is similar to that required
for maximum production of superoxide anion, and for the exit
of hydrogen peroxide from the cell to begin (Docampo and
Moreno, 1984; Docampo and Stoppani, 1979). These and other
experiments (Docampo and Stoppani, 1980) suggest that the
intracellular reduction of nifurtimox, generating the nitro
radical, followed by redox cycling, and production of O2

− and
H2O2, is the main mechanism of action of nifurtimox against
T. cruzi.

The trypanocidal effect of benznidazole does not depend on
oxygen radicals, as does that of nifurtimox. The generation of
O2
− and H2O2 at concentrations inhibiting epimastigote growth

has not been observed. In addition, T. cruzi homogenates
generate a weak ESR signal corresponding to the nitro anion
(Docampo and Moreno, 1984; Moreno et al., 1982). It is likely
that the reduced metabolites of benznidazole are involved in its
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trypanocidal effects by covalent bonding to macromolecules,
(Fig. 1) (Díaz de Toranzo et al., 1988; Maya et al., 2004). It has
also been shown that benznidazole improves phagocytosis,
increases trypanosomal death through IFN-γ (Romanha et al.,
2002), and inhibits T. cruzi NADH-fumarate reductase (Turrens
et al., 1996).

Several imidazole and nitrofuran analogues (Pozas et al.,
2005) have been tested against T. cruzi, showing similar activity
against the epimastigote and the trypomastigote forms. Mega-
zol, a 5-nitroimidazole derivative, has been used for the therapy
of T. brucei infection (Darsaud et al., 2004), and at least one
study points to its utility in T. cruzi (Maya et al., 2003), although
its usefulness is doubtful because of reports on chromosomal
alterations and DNA damage with its use (Enanga et al., 2003;
Nesslany et al., 2004).

5. Thiol metabolism and defense against free radicals

Mammalian cells defend themselves efficiently against free
radicals in diverse ways (Gutteridge and Halliwell, 2000).
Enzymatic defense mechanisms include the use of superoxide
dismutase, catalase, glutathione peroxidase, and glutathione-S-
transferases. Non-enzymatic mechanisms include the use of
reductive compounds such as α-tocopherol, ascorbate, β-
carotene, and reduced glutathione (GSH). Metallothioneins
can also participate in the metabolism of free radicals or
electrophilic agents, due to their elevated content of –SH
groups (Viarengo et al., 2000). In contrast, the parasite's
defense mechanisms against oxidative stress are defective
(Krauth-Siegel et al., 2003; Turrens, 2004). No catalase or
glutathione peroxidase activity has been detected in T. cruzi
(Turrens, 2004; Wilkinson and Kelly, 2003), and superoxide
dismutase activity is very much diminished (Turrens, 2004).
In addition, there is no published evidence of the existence of
β-carotene or α-tocopherol in the parasite. However, activity
of ascorbate reductase and dehydroascorbate reductase has
been described in T. cruzi, suggesting the presence of an
ascorbic acid redox cycle in these parasites (Wilkinson et al.,
2002). Therefore, T. cruzi's principal mechanisms of defense
against free radicals are reduced glutathione and a glutathi-
one–spermidine conjugate called trypanothione, characteristic
of all trypanosomatids, and indispensable for glutathione
reduction (Ariyanayagam and Fairlamb, 2001; Turrens, 2004).
GSH is the most abundant low molecular weight thiol in
mammalian cells participating, among other things, in
protection from the toxic effects produced by highly
electrophilic compounds such as certain xenobiotics and
their metabolites, and is an effective non-enzymatic trapper
of hydrogen peroxide and reactive free radicals (Jones et al.,
2003a,b). It is also a substrate for reactions catalyzed by
glutathione-S-transferase that conjugate GSH with electrophil-
ic xenobiotics such as heavy metals, herbicides, and
insecticides (Pastore et al., 2003; Valko et al., 2005). In
addition, it plays an important role in DNA protection (Mazur,
2000), and in protection of the lipid membrane against
damage produced by free radicals (Hayes and McLellan,
1999; Kuhn and Borchert, 2002).
In mammals, oxidized GSH (GSSG) is reduced by
glutathione reductase, the enzyme responsible for maintaining
a high GSH:GSSG ratio. In fact, this enzyme can catalyze the
reduction of mixed disulfides composed of GSH and other
compounds, such as GSH and γ-glutamyl cysteine or GSH and
coenzyme A (Fernandes and Holmgren, 2004). The enzyme
GSSG reductase has not been found in T. cruzi, but reduction of
GSSG by trypanothione has been demonstrated (Krauth-Siegel
et al., 2003).

GSH is synthesized by the successive action of the
enzymes γ-glutamyl-cysteinyl synthetase (GGCS) and GSH
synthetase. Both enzymes require ATP. Reduced GSH inhibits
GGCS in a non-allosteric fashion through negative feedback.
GSH degradation is carried out by the action of the enzymes
γ-glutamyl transpeptidase, γ-glutamyl cyclotransferase, and
5-oxo-prolinase. All these enzymes make up the so-called γ-
glutamyl cycle (Griffith and Mulcahy, 1999) (Fig. 2). GGCS,
the limiting enzyme in GSH synthesis, can be inhibited by L-
buthionine[S,R] sulfoximine (BSO; Anderson and Reynolds,
2002), a glutamate analog, with high selectivity for the
enzyme without affecting other metabolic functions (Ander-
son, 1998). BSO or its ATP phosphorylated derivative
strongly bonds, although not covalently, to the active site of
GGCS, thus inhibiting it. In various strains of T. cruzi it has
been seen that when they are treated with BSO, the GSH
concentration falls by 50%, and both nifurtimox and
benznidazole toxicity is elevated (Faúndez et al., 2005)
(Fig. 2).

Trypanothione (N1,N8-bis(glutathionyl)spermidine, (T
(SH)2) is a low molecular weight thiol synthesized by the
conjugation of two reduced molecules of GSH and spermidine,
in a reaction characteristic of trypanosomatids. The reaction is
ATP-dependent and catalyzed by trypanothione synthetase
(Fairlamb and Cerami, 1992; Krauth-Siegel et al., 2003; Oza
et al., 2002) (Fig. 2). Trypanothione requires two electrons in
order to be reduced. At physiologic pH it has a +1 charge and its
redox potential is slightly more electronegative than that of
GSH, which gives it important reducing power (Fairlamb and
Cerami, 1992).

T(SH)2 is the molecule in trypanosomatids that reduces
GSSG to GSH, and it also has a role equivalent to that of GSH
in mammals, that is to say it acts as an intracellular protector
against endogenous and exogenous oxidative agents (Steen-
kamp, 2002). Other functions of T(SH)2 include ascorbate
homeostasis (Krauth-Siegel and Ludemann, 1996), reduction
of hydroperoxides (Thomson et al., 2003; Wilkinson et al.,
2000), synthesis of deoxyribonucleotides (Dormeyer et al.,
2001), and conjugation with metals and drugs (Maya et al.,
1997).

In summary, defense mechanisms against oxidative
stress in T. cruzi are deficient compared to those of
mammals. T. cruzi only presents low superoxide dismutase
activity, lack of glutathione peroxidase and catalase, and
absence of α-tocopherol and β-carotene (Aldunate and
Morello, 1993). Defense against oxidative stress is carried
out by GSH and T(SH)2, the latter compound being
exclusive to trypanosomatids.
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The different thiol content in T. cruzi and the host is an
important biochemical difference. For this reason, conjugation
of electrophilic metabolites of nifurtimox and benznidazole
with thiols reduces the thiol content in the parasite even further,
worsening the parasite's already precarious defense against
oxidative stress and electrophilic metabolites (Ariyanayagam et
al., 2003; Maya et al., 1997). In mammals, GSH synthesis can
be inhibited by 80–90% without apparent toxicity, due to the
existence of α-tocopherol, β-carotene, and ascorbate among
others as defense mechanisms against oxidative stress and
electrophilic agents. In fact, when 20 mmol BSO/kg p.o. is
administered to mice, it inhibits glutathione synthesis in all
tissues examined (Watanabe et al., 2003).

γ-Glutamylcysteine synthetase has been isolated from
different species, from bacteria to humans, and the Ki of
BSO for this enzyme can vary greatly from one species to
another (Hiratake et al., 2002). Although it has been reported
that BSO is a potent inhibitor compared to other sulfoximine
analogs in Escherichia coli, this enzyme can also be inhibited
by other compounds such as alkyl derivatives (Griffith and
Mulcahy, 1999; Kelly et al., 2002). This suggests that the
selective inhibition of the synthesis of GSH is possible and
has therapeutic potential, since mice infected with T. brucei
brucei have been cured by the sole administration of 2–
4 mmol/kg BSO (Arrick et al., 1981). A similar approach has
been attempted in trypanosomatid protozoans where depen-
dence on GSH and trypanothione is essential to survival
(Huynh et al., 2003). Apparently, the same strategy has also
worked partially with Leishmania, at least in vitro (Kapoor et
al., 2000).

All the above indicates structural differences in GGCS that
could be exploited in Chagas' disease chemotherapy. Even
more so, phase I and phase II clinical studies have shown that
BSO can be used to revert resistance to or stimulate the effect of
antineoplastic agents such as doxorubicin (Vanhoefer et al.,
1996), melphalan (Anderson et al., 2001; Anderson and
Reynolds, 2002; Bailey et al., 1994, 1997; Calvert et al.,
1998; O'Dwyer et al., 1996), and cyclophosphamide and its
derivatives (Sipos et al., 2001), which is in agreement with
observations made in our laboratory, where BSO accentuated
the effects of nifurtimox and benznidazole in in vitro models
against T. cruzi. Nevertheless, BSO can also elevate the
production of proinflammatory cytokines, due to the fact that
the mechanism of the redox signal depends on glutathione
content (Haddad, 2002). This last point is important because in
acute T. cruzi infection an anti-inflammatory state exists that
facilitates parasite evasion.

Apart from thiol metabolism and its association with the
action of nifurtimox and benznidazole, T. cruzi has a number of
different metabolic pathways that differ from those of the hosts
and could therefore be potentially exploited as therapeutic
targets. Indeed, purine and ergosterol biosynthesis have been
explored clinically as trypanocidal targets (Apt et al., 2003).
Other targets are under active research.

6. Purine metabolism

Trypanosomal nucleic acid metabolism is unusual in several
ways. First, trypanosomatids incorporate a large proportion of
the DNA produced into a unique organelle known as the
kinetoplast. This disc-like structure located within the matrix of
a single trypanosomal mitochondrion contains a mass of
circular DNA which represents up to 25% of the cellular
DNA (Opperdoes, 1985). Second, they lack the ability to
synthesize purines de novo. However, they have efficient
salvage pathways for preformed purine bases and nucleosides.

In contrast to purines, pyrimidine nucleotides can be
synthesized by trypanosomes de novo. Several of the enzymes
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involved in this synthesis are located in glycosomes, whereas
the analogous mammalian counterparts are in the cytosol
(Hammond et al., 1981).

Differences in the metabolism of purines between T. cruzi
and the host have been utilized for the development of a rational
approach to the chemotherapy of Chagas' disease (Berens et al.,
1981; Marr et al., 1978). Although T. cruzi does not synthesize
purines de novo as humans do, the parasite is able to concentrate
pyrazolopyrimidines within the cell and metabolize them as
purines through the salvage pathway ultimately incorporating
them into nucleic acids (Gutteridge and Davies, 1981). This
does not occur in mammals. The pyrazolopyrimidine base
allopurinol (4-hydroxypyrazolo[3,4-a]pyrimidine, HPP, a struc-
tural analog of hypoxanthine, is activated by phosphoribosyl
transferase to the ribonucleotide-5′ monophosphate (HPPR-
MP). HPPR-MP is aminated to 4-aminopyrazolopyrimidine
ribonucleotide (APPR-MP) and subsequently phosphorylated to
the triphosphate form and probably incorporated into RNA. The
conversion of IMP to AMP is mediated by the enzymes
succino-AMP synthetase and succino-AMP lyase. In 1982 the
kinetic properties of both enzymes in T. cruzi were described
(Spector et al., 1982). The substrate specificity and Km of
succino-AMP synthetase are clearly distinguishable from those
of the mammalian enzyme. HPPR-MP, an analog of IMP, is
converted by the T. cruzi enzyme to succino-APPR-MP; this
reaction does not occur with the mammalian enzyme. The
succino-AMP lyase from T. cruzi has the same broad substrate
specificity (Spector et al., 1982) of the enzymes characterized in
other organisms.

The growth of T. cruzi epimastigotes is inhibited by
allopurinol (Avila and Avila, 1981; Marr et al., 1978) and T.
cruzi-infected mice treated with this drug showed significant
increases in survival times when compared with controls
(Avila and Avila, 1981). However, some T. cruzi strains are
not responsive to this type of compound, which suggests
metabolic differences present in these strains (Avila et al.,
1984; Avila and Avila, 1981; Marr et al., 1978). This raises
doubts as to the efficacy of these drugs to treat Chagas'
disease in man. Allopurinol ribonucleoside and another
inosine analogue, formycin B have been tested against
Leishmania with some success (Nelson et al., 1982).
Allopurinol is a relatively nontoxic drug which has been
used in humans for many years as a treatment for gout. In
mammals, it acts by inhibiting the enzyme xanthine oxidase,
thereby inhibiting the production of uric acid. In man, about
60% is converted to oxipurinol and 30% of it is excreted in the
urine (Elion et al., 1968; Nelson et al., 1973). No effects of
allopurinol on purine synthesis in man have been noted (Elion
and Nelson, 1974).

Allopurinol and purine analogs 3′-desoxyinosine and 3′-
desoxyadenosine inhibited amastigote proliferation in HeLa
cells (Nakajima-Shimada et al., 1996). Other purine analogs
were shown to interact with the enzyme hypoxanthine-guanine
phosphoribosyl transferase, and some of them were effective
against the intracellular forms of T. cruzi (Eakin et al., 1997;
Freymann et al., 2000). In studies with chronic patients (Apt et
al., 1998, 2003), allopurinol was administered during 60 days
and parasitological cure was achieved in 44% of treated
patients.

7. Inhibition of ergosterol synthesis

T. cruzi shares with fungi the requirement of ergosterol for cell
viability and proliferation. Inhibition of ergosterol biosynthesis
has been proved to be effective against this parasite. Triazoles,
clinically used as antifungal agents, act through cytochrome P-
450-dependent C14α sterol demethylase inhibition. This leads to
14-α-methylsterol accumulation which is toxic for many
membrane-bound enzyme systems including the electron
transport system (Bennett, 2001). This may explain why these
groups of drugs are trypanocidal. The first triazoles available,
ketoconazole and itraconazole, were partially effective against T.
cruzi infection: they reduced parasitemia but serology remained
positive (Apt et al., 2003). Newer and probably more effective
trypanocidal triazoles are under study, such as posaconazole and
ravuconazole (Molina et al., 2000; Urbina et al., 2003), and
different strategies that also affect ergosterol biosynthesis such as
oxidosqualene cyclase (lanosterol synthase) or squalene synthase
inhibition (Urbina et al., 2004) could be useful.

8. The respiratory chain

The respiratory chain of T. cruzi was intensively investigated
(Stoppani and de Boiso, 1973), and important differences were
identified between the respiratory chains of the parasite and its
mammalian hosts that could be exploited as chemotherapeutic
targets.

BHA (t-butyl-4-hydroxyanisole) inhibited the growth of T.
cruzi epimastigotes (Aldunate et al., 1986; Ferreira et al., 1988).
BHA is a known and safe antioxidant food additive (Branen,
1975). This compound inhibited oxygen consumption of
epimastigotes by 70%. The redox level of NAD(P) was shifted
to a more reduced state and conversely the redox level of
cytochrome b changed to a more oxidized state (Aldunate et al.,
1986). This hydroxyanisole is thus a new electron transport
chain inhibitor. Accordingly, BHT is capable of sterilizing
human blood contaminated with trypomastigotes of T. cruzi
(Letelier et al., 1990).

Other chemicals, such as pyrimidine derivatives, have been
found to inhibit T. cruzi growth and parasite respiration (Maya
et al., 2000, 2001). These derivatives are in clinical use for other
diseases such as hypertension; however, the therapeutic doses
needed to treat these conditions are lower than those required to
achieve the trypanocidal effect.

9. Miltefosine and phospholipid analogues

Phospholipid analogues are promising. This class of
compounds was originally developed as anticancer drugs, as
such substances can suppress tumor growth. Later, their
inhibitory activity against Leishmania was tested. They
probably act through the inhibition of phosphatidylcholine
biosynthesis and sphingomyelin biosynthesis, which in turn
trigger apoptosis. Other potential targets are signal transduction
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cascades and/or plasma membranes of the parasites. Currently
miltefosine is approved for Leishmania in India. However, it is
necessary to assess its clinical efficacy in Chagas' disease,
especially because congenital transmission is a real problem in
this disease and miltefosine is teratogenic.

10. Other drug targets

Trypanothione reductase is present only in trypanosomatids
and is responsible for the reduction of oxidized trypanothione
and glutathione in the parasite. Diverse nitrofuran, naphthoqui-
none and phenothiazine derivatives are able to inhibit this
enzyme (Augustyns et al., 2001; Fairlamb and Cerami, 1992;
Paulino et al., 2005).

Cruzipain belongs to the cysteine protease family and shares
homology with cathepsins S and C (Cazzulo et al., 2001). These
proteases are important in the host/parasite relationship;
inhibitors of cruzipain kill the parasite and cure infected mice.
There are also other proteinases involved in Ca2+ signalling
during mammalian cell invasion. Enzymes of this type are very
promising targets for the development of new drugs against
Chagas' disease (Cazzulo, 2002).

The enzymes involved in nucleotide synthesis, dihydrofolate
reductase (Machado and Ayala, 2002) and thymidylate synthe-
tase are well known therapeutic targets for cancer, malaria and
bacterial infections. These two widespread enzymes have also
been characterized in trypanosomatids (Machado and Ayala,
2002). Several synthetic inhibitors have been developed
(Chowdhury et al., 2002; Khabnadideh et al., 2005; Pez et al.,
2003), including some methotrexate derivatives (Zuccotto et al.,
1999). However, the mammalian host might also be susceptible
to these drugs. Pteridine reductase also reduces folate to
dihydrofolate as well as unconjugated pterins. There is a second
class of pteridine reductases that only reduces dihydropterin, but
not folate, and is only known to be expressed in T. cruzi
(Senkovich et al., 2003), and hence this could be a more suitable
target. Intracellular amastigotes obtain their energy from
glycolysis. One enzyme, glyceraldehyde-3-phosphate dehydro-
genase, from the T. cruzi glycolytic pathway, has structural
dissimilarities when comparedwith its host counterpart (Ladame
et al., 2003). There are potential antitrypanosomal inhibitors for
this enzyme (de Marchi et al., 2004; Ladame et al., 2005).

Pamidronate, a nitrogen-containing bisphosphonate, inhibits
the farnesylpyrophosphate synthase involved in the synthesis of
a variety of sterols and polyisoprenoids in pathogenic protozoa,
including T. cruzi (Szajnman et al., 2003). One of its most
remarkable characteristics is its accumulation in the acidocal-
ciosomes of T. cruzi (Montalvetti et al., 2004). This compound
has been tested in an animal model (Montalvetti et al., 2001).

None of the above-mentioned strategies has been proved
more efficacious than nifurtimox and benznidazole, especially
against the intracellular amastigotes.

11. Natural compounds with potential antichagasic activity

Plant metabolites active against T. cruzi were extensively
reviewed almost a decade ago (Sepúlveda-Boza and Cassels,
1996). A more recent update, without chemical structures or
details regarding potencies, is that of Rodriques Coura and de
Castro (2002), while Paulino et al. (2005) only mention a small
number of natural products with antitrypanosomal activity. We
will concentrate here on progress in this field since 2001, when
the Coura and de Castro review was written. Unfortunately,
little has been published regarding the mechanisms of action of
these compounds and clinical–or even in vivo–studies are
almost completely lacking. In addition, most of the natural
products mentioned in the more recent literature have rather low
potency. Large variations in the susceptibility of T. cruzi strains
are well documented, and the different life stages differ in their
sensitivity to drugs. Furthermore, reported potencies depend on
the duration of exposure of the parasite. However, considering
that the standard therapeutic entities benznidazole and nifurti-
mox exhibit IC50 values of about 10 μM (less than 3 μg/mL) in
the usual preliminary epimastigote assays (Cuéllar et al., 2003),
for practical reasons we will limit our discussion to natural
products active at concentrations of 100 μg/mL or less.

The potent antioxidative flavanols catechin, epicatechin,
gallocatechin, epigallocatechin, and some of their gallates were
tested against T. cruzi trypomastigote and amastigote forms.
Gallocatechin 3,3′-digallate (1) and epigallocatechin 3-gallate
caused trypomastigote lysis with a minimal lytic concentration
(MBC50) below 1 pM, while the corresponding values for
gallocatechin and epigallocatechin were 10.5 and 13 pM,
respectively, and the values for catechin gallate, epicatechin
gallate, catechin and epicatechin rose from 48 to 85 pM.
However, to achieve 50% lysis of amastigotes, 100 nM
concentrations of gallocatechin digallate or epigallocatechin
gallate were necessary. These compounds were also tested as
inhibitors of the parasite's arginine kinase, a key enzyme in its
energy metabolism, but only catechin gallate and gallocatechin
gallate inhibited the enzyme by about 50% at 1 nM concentra-
tions (Paveto et al., 2004). The β-oxygenated chalcones
praecansone B and demethylpraecansone A (2) inhibited
trypomastigotes with IC50=7.6 and 6.0 μg/mL (20.7 and
17.0 μM), respectively (Tarus et al., 2002). A chalcone-flavone
dimer named cissampeloflavone (3) inhibited T. cruzi amasti-
gotes in peritoneal exudate macrophages with ED50=2.09 μg/
mL (3.42 μM) (Ramírez et al., 2003). Although no direct
evidence is available, the activity of these phenolic compounds
may well be related to their free radical-scavenging behavior, as
found for other synthetic and natural antioxidants (Letelier et
al., 1990; Morello et al., 1994).

In this regard, it is intriguing that other fairly potent natural
antioxidants such as the ellagitannin punicalagin only inhibited
amastigotes growing in peritoneal exudate macrophages by
50% at 30 μg/mL (27.6 μM) (Asres et al., 2001), and the
flavone isosakuranetin showed only weak inhibition of T. cruzi
with IC50 (trypomastigote)=248 μM (da Silva Filho et al.,
2004). Heptadecyl-5-methoxyphenol and embelin (3,6-dihy-
droxy-2-undecylbenzophenone) also seemed to have rather low
potency, causing 100% trypomastigote lysis at 50 and 100 μg/
mL (138 and 340 μM), respectively. These two compounds are
constituents ofOxalis erythrorhiza, a plant used traditionally for
the treatment of “heart complaints” that are a common



Table 1
Xanthones tested against epimastigotes (epi) and trypomastigotes (tryp) of
T. cruzi (Minimal Inhibitory Concentration (MIC) values are shown in μM)

Xanthones MIC (μM)

garciniaxanthone B (4) a 66 (epi); 8 (tryp)
garciniaxanthone A a 158 (epi); 16 (tryp)
subelliptenone H a 190 (epi); 114 (tryp)
subelliptenone B a 51 (epi); 25 (tryp)
subelliptenone A a 162 (epi); 54 (tryp)
4-hydroxybrasilixanthone B a 196 (epi); 147 (tryp)
isogarciniaxanthone E a 172 (epi); 54 (tryp)
1,4,5-trihydroxy-2-(1,1-dimethyl-2-propenyl)xanthone a 128 (epi); 48 (tryp)
8-desoxygartanin a 118 (epi); 131 (tryp)
jacareubin b 153 (epi); 46 (tryp)
6-deoxyjacareubin b 161 (epi); 645 (tryp)
1,3,5,6-tetrahydroxy-2-(3-methyl-2-butenyl)xanthone b 213 (epi); 122 (tryp)

a Abe et al. (2003).
b Abe et al. (2004).
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symptomatology related to Chagas' disease in the area where
the plant is used (Feresin et al., 2003).

Xanthones, dibenzofuranones and anthraquinones have
practically flat molecules and can be presumed to act as DNA
intercalators, although little direct evidence is available for most
representatives of these classes. Minimal immobilizing con-
centrations (MIC100) were determined for T. cruzi treated with a
fairly extensive series of xanthones. The recorded values for
epimastigotes and trypomastigotes are shown in Table 1 (Abe et
al., 2003, 2004). In the latter paper the activities (MIC100) of
guttiferone A, a related benzophenone derivative, were also
determined as 100 and 83 μM (60 and 50 μg/mL) for
epimastigotes and trypomastigotes, respectively. The phenylan-
thraquinones knipholone (5), 4′-O-demethylknipholone-4′-O-
β-D-glucopyranoside, and gaboroquinones A and B, were
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active against amastigotes in L-6 rat myoblasts with IC50=7.6,
6.8, 33.1, and >90 μg/mL (17.25, 11.8, 72.5, >200 μM),
respectively (Abegaz et al., 2002). The widespread lichen
metabolite usnic acid, a dibenzofurandione, inhibited the
growth of T. cruzi epimastigotes by more than 50% after 48h
or longer incubations at 10 μg/mL (29 μM), and 100%
trypomastigote death was observed at 24 h with 40 μg/mL
(120 μM), at 48 h with 20 μg/mL (60 μM), and at 72 h with
10 μg/mL (29 μM). Incubation of infected peritoneal macro-
phages for 24 h with 40 or 80 μg/mL usnic acid (6) also caused
marked changes in the ultrastructure of the parasites (De
Carvalho et al., 2005). Another possible mechanism of action of
these electrophilic and redox-active molecules is the inhibition
of trypanothione reductase (Paulino et al., 2005), but none of
them seem to have been tested directly against the enzyme.
Some representative structures are shown in Scheme 1.

In a similar vein, the icetexane diterpenes cyclocoulterone
and komaroviquinone (7), and the 20-norabietane diterpene
dracocephalone A, were tested against epimastigotes of T. cruzi,
showing minimum lethal concentrations (MLC) in the broad
range of 20, 0.2, and 200 μM, respectively (Uchiyama et al.,
2003). The high potency of komaroviquinone (7) is unusual and
warrants more extensive study. The core skeleton of this
compound has been synthesized quite recently by Padwa et al.
(2005). Three aporphine alkaloids, actinodaphnine, cassythine,
and dicentrine, exhibited moderate in vitro activity at lower
concentrations than bulbocapnine, glaucine, isocorydine or
boldine (Hoet et al., 2004). The authors suggest that the
antitrypanosomal activity of the more potent alkaloids may be
related to their ability to inhibit topoisomerases. This seems to
be more clearly the case of the benzo-δ-carboline alkaloids
quindoline and cryptolepine (8), which were tested against
epimastigotes, amastigotes (growing in L-6 rat myoblasts) and
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trypomastigotes: the IC50 values reported for quindoline are 8.7
and 14.2 μM for epimastigotes and amastigotes, respectively,
while 50 μM had no effect on trypomastigote motility. For
cryptolepine, the respective values are 3.9, 4.7 and 25 μM
(Arzel et al., 2001). The isomeric benzo-α-carboline neocryp-
tolepine exhibited IC50=4.0 μM against intracellular amasti-
gotes (Jonckers et al., 2002).

Conjugated exomethylene sesquiterpene lactones have a
long history of bioactivities related to conjugate addition of a
variety of cellular nucleophiles. Helenalin (9) exhibited an IC50

value of 0.695 μM against T. cruzi (Schmidt et al., 2002). The
minimal lethal concentrations against epimastigotes of dehy-
drocostus lactone (10) and zaluzanin D, and of 10α-hydro-
peroxy-guaia-1,11-diene (11), 1α-hydroperoxy-guaia-10
(15),11-diene, and 15α-hydroperoxy-guaia-1(10),11-diene,
were shown to be 6.3, 2.5, 0.84, 1.7, and 1.7 μM, respectively
(Uchiyama et al., 2002; Kiuchi et al., 2004b). Dehydrocostus
lactone also inhibited the infection of HeLa cells by
trypomastigotes by 74 % at 1 μg/mL (4.3 μM) (Uchiyama et
al., 2002). The sesquiterpene lactone cynaropicrin was weakly
active (IC50=93.4 μg/mL or 680 μM) in a trypomastigote lysis
assay (Schinor et al., 2004). The germacranolides neurolenin B
(12), C and D (the two latter as a mixture) had potent
trypanocidal activity against epimastigotes (IC90=6.3 and
11.7 μM, respectively) and trypomastigotes (IC90=4.9 and
6.1 μM, respectively) (Berger et al., 2001). Another group of
sesquiterpenoids for which recent data are available are the
furoheliangolides, but of several compounds of this type tested,
only goyazensolide showed almost complete lysis of trypomas-
tigotes at 100 μg/mL (IC50=56.9 μM) (Grael et al., 2005).

Withanolides are steroid derivatives that are commonly
cytotoxic, presumably because of their α,β-unsaturated car-
bonyl groups, as in the above sesquiterpenoids. Some with-
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hydroperoxides, withanolides, and pentacyclic triterpenes.
anolides show activity against T. cruzi. 18-Acetoxywithanolide
D decreased epimastigote concentration in culture by 50% at
50 μg/mL (94.5 μM), while 18-acetoxy-5,6-deoxy-5-with-
anolide D achieved total lysis of the parasites at 25 μg/mL
(48.7μM) (Bravo et al., 2001). Minimal immobilizing concen-
trations (MC100) were determined for several other with-
anolides, with both epimastigotes and trypomastigotes. Six of
these compounds: physagulin A, physagulin B, physagulin C
(13), physagulin H (4-deoxyphysagulin C), the chlorinated
physagulin I, and withangulatin A, showed minimal immobiliz-
ing concentration (MC100) values against epimastigotes in the
38–91 μM range, which are very close to their cytotoxicities as
determined toward HeLa cells. Their MC100 values for
trypomastigotes, however, are considerably lower, between 2
and 5 μM, suggesting that in vivo work may be warranted
(Nagafuji et al., 2004).

The tetracyclic triterpene baccharis oxide inhibited the Y
strain of T. cruzi trypomastigotes with IC50=250 μM (da Silva
Filho et al., 2004). The oleanane glycosides arjunglucoside (4-
epi-sericoside) and sericoside, with a pentacyclic triterpene
skeleton, inhibited amastigote growth in peritoneal exudate
macrophages by only 31.8 and 25.4% at 30 μg/mL (45 and
61 μM) (Asres et al., 2001), and the related aglycone oleanolic
acid immobilized epimastigotes with the rather high MC100 of
about 250 μg/mL (>500 μM) (Abe et al., 2002b). However, the
isomeric ursolic acid (14) exhibited an MC100 of 40 μg/mL
(88 μM). Betulinic acid, another closely related compound, was
practically inactive The latter report is in disturbing contrast
with a more recent one, according to which ursolic acid,
oleanolic acid, and colosolic acid all immobilized epimastigotes
with minimal lethal concentrations (MLC) of 6.2 μM, in a very
similar assay (Saeidnia et al., 2004). The pentacyclic triterpenes
are well-known inhibitors of protein kinase C, and this property
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Table 3
Lignans tested against epimastigotes (epi), trypomastigotes (tryp) and
amastigotes (amast) of T. cruzi (IC50 values are shown in μM)

Lignans IC50 (μM)

austrobailignan-7 a 219 (epi)
fragransin E a 149 (epi)
grandisin b 20.2 (tryp)
rel-(7R,8R,7′R,8′R)-3′,4′-methylenedioxy-3,4,5,5′-
tetramethoxy-7,7′-epoxylignan b

42.3 (tryp)

rel-(7R,8R,7′R,8′R)-3,4,3′,4′-dimethylenedioxy-5,5′-
dimethoxy-7,7′-epoxylignan b

8.7 (tryp)

machilin G (19) c 2.2 (tryp)
galgravin c 4.4 (tryp)
nectandrin B c 47.3 (tryp)
calopiptin c 12.6 (tryp)
aristolignin c 34.8 (tryp)
ganschisandrine c 12.2 (tryp)
nectandrin A c Inactive (tryp)
(−)-hinokinin (20) d 0.7 (amast)
justicidin B e 7.1 (epi)
piscatorin e Inactive (epi)
a Abe et al. (2002a,b).
b Martins et al. (2003).
c da Silva Filho et al. (2004).
d de Souza et al. (2005).
e Gertsch et al. (2003).
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may be related to their antiparasitic activity. A number of
structures representative of the compounds discussed in these
paragraphs are shown in Scheme 2.

A fairly large number of novel naphthylisoquinoline
alkaloids have been isolated for the first time and tested against
intracellular amastigotes in L-6 rat myoblasts. Some of them
approach benzimidazole and nifurtimox in potency (Bringmann
et al., 2002a,b, 2003a,b,c, 2004a,b, 2005). The results obtained
with these compounds are collated in Table 2 and compared
with earlier data from the same group (Bringmann et al., 2000).

The tetrahydrofuran lignans austrobailignan-7 and fragransin
E completely immobilized epimastigotes at 75 and 50 μg/mL
(219 and 149 μM), respectively, after incubating for 48 h (Abe
et al., 2002a,b). The previously assayed grandisin was
reexamined against trypomastigotes, together with the new
rel-(7R,8R,7′R,8′R)-3′,4′-methylenedioxy-3,4,5,5′-tetra-
methoxy-7,7′-epoxylignan and rel-(7R,8R,7′R,8′R)-3,4,3′,4′-
dimethylenedioxy-5,5′-dimethoxy-7,7′-epoxylignan. The
reported IC50 values for these and related compounds (Martins
et al., 2003; da Silva Filho et al., 2004; de Souza et al., 2005;
Gertsch et al., 2003) are shown in Table 3. The neolignans
eupomatenoid-7 and licarin A immobilized epimastigotes
completely at 25 and 40 μg/mL (77 and 123 μM), respectively,
after incubating for 48 h, while the related eupomatenoid-1 and
Table 2
Novel naphthylisoquinoline alkaloids tested against T. cruzi intracellular
amastigotes in L-6 rat myoblasts (IC50 values are shown in μM)

Naphthylisoquinoline alkaloids IC50 amastigotes (μM)

ancistrocongoline A a 101
ancistrocongoline B a 41.3
ancistrocongoline C a >200
ancistrocongoline D a 71.4
korupensamine a 36.8
dioncophylline E b 40.7
habropetaline A c inactive
ancistrolikokine D d 32.4
ancistrotanzanine A (15) e 4.2.
ancistrotanzanine B (16) e 3.6
ancistrotectoriline A e 42.2
ancistrocladinine f 57.7
ancistrotectorine (17) f 10.2
ancistrotanzanine C f 34.3
O-methylancistrocladinine f 144
O,N-dimethylancistrocladine f 150
ancistrobenomine Ag 11.5
6-O-demethylancistrobenomine A g 57.5
5′-O-demethylancistrocline g 89.3
ent-dioncophylleine A h 144
5′-O-demethyl-ent-dioncophylleine A h 60.6
dioncophylleine D h 65
ancistroealaine A (18) i 5.6
ancistroealaine B i 43.2
a Bringmann et al. (2002a).
b Bringmann et al. (2002b).
c Bringmann et al. (2003a).
d Bringmann et al. (2003b).
e Bringmann et al. (2003c).
f Bringmann et al. (2004a).
g Bringmann et al. (2004b).
h Bringmann et al. (2005).
i Bringmann et al. (2000).
licarin B were inactive (Abe et al., 2002a). An unusual study
showed that the structurally different neolignan burchellin,
when fed to T. cruzi-infected Triatoma infestans larvae,
significantly reduced the population density of the parasite in
the insects' rectum, decreasing the number of both epimasti-
gotes and trypomastigotes at 147 μM (Cabral et al., 2001). It is
difficult to suggest a mechanism of action for lignoids, but in
some cases it seems possible that they can interfere with mitosis
in a similar way to epi-podophyllotoxin and its semisynthetic
derivatives.

A number of low molecular weight natural products with
widely different structures exhibited varying degrees of
antitrypanosomal activity that cannot be ascribed to any
particular mode of action at this time. Thus, the stilbenoid
isonotholaenic acid inhibited epimastigotes with IC50=50 μg/
mL or 166 μM, but was practically inactive against trypomas-
tigotes (del Olmo et al., 2001). The dioxa-dispiroketal aculeatin
D (21) showed potent activity against T. cruzi amastigotes in L-6
rat skeletal myoblasts: IC50=0.49 μg/mL (1.17 μM) (Heilmann
et al., 2001). In contrast with an early report of the potent
antitrypanosomal activity of quinine, cited in Sepúlveda-Boza
and Cassels (1996), a very recent publication indicates that the
ED50 of this alkaloid inhibiting epimastigote growth is about
50 μg/mL (154 μM), while the related cupreine, cinchonine and
acetylcupreine are practically inactive (Ruiz-Mesía et al., 2005).
The 5,11-methanomorphanthridine Amaryllidaceous alkaloids
pancracine and (new) nangustine have IC50 values of 7.1 and
54.6 μg/mL (24.5 and 189 μM), respectively, against amasti-
gotes in L-6 rat skeletal myoblasts (Labraña et al., 2002). 3-O-
acetylsanguinine (22) was active in the same test with
IC50=2.3 μg/mL (7.3 μM), but the related sanguinine, 1,2-di-
O-acetyllycorine, hippadine, kirkine, amabiline and noraugus-
tamine were inactive (Machocho et al., 2004). Representative
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Scheme 3. The most potent inhibitor of T. cruzi in each series is shown as an example for naphthylisoquinolines (four isomeric series), lignans (two different types), a
dispiroketal, and amaryllidaceous alkaloids.

Table 4
Cassane, labdane and clerodane diterpenes tested against T. cruzi epimastigotes
(epi) and amastigotes (amast) cultured in human foreskin fibroblasts (IC50, MLC
and MIC values are shown in μM)

Diterpenes IC50, MLC or MIC (μM)

18-hydroxycassan-13,15-diene (25) a IC50 49 (epi); 17 (amast)
6β−18-dihydroxycassan-13,15-diene a IC50 56 (epi); 17 (amast)
6β−hydroxy-18-acetoxycassan-13,15-diene a IC50 12 (epi); 26 (amast)
18-acetoxy-13,15-diene-19-cassanoic acid a IC50 104 (epi)
6β,13β−dihydroxy-18-acetoxycassan-
14(17),15-diene a

IC50 17 (epi); 36 (amast)

9,13-epoxy-16-norlabd-13(E)-en-15-al b MLC 11 (epi)
6-acetoxy-9,13-epoxy-16-norlabd-13(E)-en-15-al b MLC 36 (epi)
vitexifolin E b MLC 34 (epi)
vitexifolin F b MLC 34 (epi)
vitexilactone b MLC 66 (epi)
6-acetoxy-9-hydroxy-13(14)-labden-16,15-olide b MLC 66 (epi)
rel-(2S,5R,6R,8S,9S,10R,18S,19R)-19-acetoxy-
18,19-epoxy-6-hydroxy-18-butanoyloxy-2-
(2-methylbutanoyloxy)cleroda-3,13(16),
14-triene (26)Espindola et al. (2004).

MIC 1.08 (epi)

a Mendoza et al. (2003).
b Kiuchi et al. (2004a).
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structures of naphthylisoquinolines, lignans, and aculeatin (21)
and 3-O-acetylsanguinine (22) are shown in Scheme 3. The
black pepper alkaloid piperine (23) inhibited epimastigotes and
amastigotes (in Y-strain macrophages) with IC50=7.36 and
4.91 μM, respectively (Ribeiro et al., 2004).

The simple monoterpenoid aldehydes limonen-10-al,
geranial and neral immobilized epimastigotes with minimal
lethal concentrations (MLC) of 3.1 μM (Saeidnia et al.,
2004). The monoterpene endoperoxide ascaridole and the
related (−)-(2S,4S)- and (−)-(2R,4S)-p-mentha-1(7),8-dien-2-
hydroperoxide and (−)-(1R,4S)- and (−)-(1S,4S)-p-mentha-
2,8-dien-1-hydroperoxide (24) and (−)-(1R,4S)-hydroperoxy-
p-menth-2-en-8-ol acetate were tested against epimastigotes,
immobilizing the parasites with MLC of 23, 1.2, 1.6, 3.1, 0.8,
and 1.4 μM, respectively. At 1 μg/mL, (−)-(1S,4S)-p-mentha-
2,8-dien-1-hydroperoxide and (−)-(1R,4S)-hydroperoxy-p-
menth-2-en-8-ol acetate almost completely inhibited the
infection of HeLa cells by trypomastigotes, while the inhibition
by (−)-(2R,4S)-p-mentha-1(7),8-dien-2-hydroperoxide and (−)-
(1R,4S)-p-mentha-2,8-dien-1-hydroperoxide at this concentra-
tion was 63% and 88%, respectively, and the effect of ascaridole
was not significant. None of the compounds inhibited the
proliferation of amastigotes in infected cells (Kiuchi et al.,
2002; Uchiyama et al., 2002). The seco-iridoids 7-methoxydi-
derroside, 6′-O-acetyldiderroside, secoxyloganin and diderro-
side were weakly active against trypomastigotes with IC50

values of 59.0, 90.2, 74.7, and 84.9 μg/mL (123, 178, 184 and
177 μM), respectively (Cardona Zuleta et al., 2003).

A series of new cassane diterpenes: 18-hydroxycassan-13,
15-diene (25), 6β-18-dihydroxycassan-13,15-diene, 6β-hy-
droxy-18-acetoxycassan-13,15-diene, 18-acetoxy-13,15-diene-
19-cassanoic acid, and 6β,13β-dihydroxy-18-acetoxycassan-14
(17),15-diene, were tested against epimastigotes and amasti-
gotes (in human foreskin fibroblasts). The test results for these
compounds (Mendoza et al., 2003) and others (Kiuchi et al.,
2004a; Espindola et al., 2004) are shown in Table 4. Five
diterpenoids with unusual skeletons characteristic of the genera
Azorella and Mulinum (Apiaceae): were tested against three
different strains of T. cruzi epimastigotes, trypomastigotes and
amastigotes (in VeRo cells). Only azorellanol (27) and mulin-
11,13-dien-20-oic acid displayed strong activity at 10 μM
against all stages and strains tested (Araya et al., 2003). Some
representative structures are shown in Scheme 4.
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Scheme 4. The most potent inhibitor of T. cruzi in each series is shown as an example for pepper alkaloids, cyclic monoterpene hydroperoxides, cassane, labdane and
azorellane diterpenes.
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Several amphiphilic, basic peptides with molecular
masses ranging from 1.7 to 2.9 kDa, isolated from the
skin of frogs belonging to the Phyllomedusa genus, were
shown to clear trypomastigotes from blood at low
micromolar concentrations that do not produce hemolysis
(Brand et al., 2002; Leite et al., 2005). Cyclosporin A,
which exacerbates parasitic infections due to its immuno-
suppressive action, was used as a template for the synthesis
of several nonimmunosuppressive analogs. In spite of its
deleterious effect on antichagasic chemotherapy, cyclosporin
A inhibited epimastigote growth with IC50=5.39 μM and
lysed trypomastigotes with IC50=7.19 μM (Bua et al.,
2004). A protein with 164 amino acid residues, isolated
from Bauhinia bauhinioides seeds, was found to inhibit the
T. cruzi cysteine proteinase cruzipain with a low dissoci-
ation constant (Ki =1.2 nM). This protein also inhibits the
highly homologous cathepsin L and cruzain, but not
cathepsin B, papain, bromelain or ficin (de Oliveira et al.,
2001).

An unusual positive development in this period was the
experimental treatment of chronic T. cruzi infection in mice
with the previously identified 2-n-propylquinoline. Parasito-
logical cure was achieved in a smaller fraction of the animals
than with benznidazole (at the same daily oral dose of 25 mg/
kg for 30 days, beginning 60 days after infection).
Nevertheless, 35 days after beginning the treatment, a
serological ELISA test indicated significantly less circulating
parasite antigen in the 2-n-propylquinoline-treated animals
than in the positive (benznidazole) controls, a difference
which intriguingly disappeared by the 85th day (Nakayama et
al., 2001). However, as with most of the natural products
discussed above, there is no information allowing a
mechanism of action to be identified.
12. Pharmacological modulation of the host's immune
response against T. cruzi infection

T. cruzi infection can induce apoptosis in T lymphocytes and
neutrophils (De Souza et al., 2003). Phagocytosis of these cells
induces the production of TGF-β, which is an anti-inflamma-
tory response that promotes permissiveness to T. cruzi infection
(Waghabi et al., 2005) (Fig. 3). In the same fashion, TGF-β
blocks the production of IFN-γ induced NO, responsible for the
trypanocidal effect of macrophages (Ramos-Ligonio et al.,
2004; Waghabi et al., 2005). Production of prostaglandin E2 is
also elevated, and consequently there is an elevation of arginase
and ornithine decarboxylase (ODC), which together with the
reduction in NO production leads to elevation in the production
of polyamines (Freire-de-Lima et al., 2000) that can be captured
by T. cruzi in order to elevate, among others, the production of
nucleic acids and T(SH)2 (Fig. 3). Inhibition of cyclooxygenase
(Fong et al., 2000) in macrophages reduces the production of
ornithine decarboxylase and, in T. cruzi-infected mice, lowers
parasitemia in a dose-dependent fashion (Freire-de-Lima et al.,
2000).

13. Mechanism of acute phase response to T. cruzi infection
in the host

Once trypomastigotes enter the dermis or conjunctival
membrane, they invade a great number of host cells. Initially,
they invade macrophages, where they transform into amasti-
gotes. In T. cruzi, the host–parasite interaction rests mainly on
the presence of glycosylphosphatidylinositol molecules (GPIs)
that belong to the group of molecular patterns associated to the
pathogen (PAMPs). The exact role of these molecules in T. cruzi
pathogenesis and molecular biology is still unknown, but what
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these events is evasion of the antiparasitc activity of macrophages and proliferation of the parasite (Freire-de-Lima et al., 2000). Buthionine sulfoximine (BSO) inhibits
trypanothione synthesis even in the presence of increased polyamine synthesis in non-stimulated macrophages.
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is known is that this glycolipid produces different responses in
lymphocytes and macrophages, facilitating a permissive cellular
response for the parasite (Previato et al., 2004).

In the first place, parasite adhesion to the macrophage's
surface induces activation of, among others, the signals
necessary to proceed with parasite invasion of cells. The
mechanism of invasion used by trypomastigotes involves two
strategies. The first involves induction of the cascade of
calcium signals induced by phosphatidylinositol 3 (IP3),
recruitment and fusion of lysosomes in the area of the plasma
membrane where invasion is occurring, and the formation of
a vacuole with lysosomal properties (Andrade and Andrews,
2004). A second mechanism of entry has been suggested that
also involves recruitment and fusion of lysosomes, but
mediated by the activation of phosphatidylinositol-3 kinase
(Woolsey et al., 2003). Fusion of lysosomes is crucial for the
retention and subsequent replication of the parasite (Andrade
and Andrews, 2004). After the trypomastigote enters the host
cell, the parasitic vacuole ruptures due to the action of a lytic
protein dependent on acid pH, and the parasite escapes into
the cytosol where it transforms into an amastigote (Andrade
and Andrews, 2004; Vieira et al., 2002). This process requires
actin (Rosestolato et al., 2002), especially in the case of
macrophages (Caler et al., 2000), but also in non-phagocytic
cells.
In addition to signals related with phosphorylation of
tyrosine, IP3, and MAPK, parasite adhesion to host cells can
also trigger other signals such as (a) the phospholipase C
pathway (PLC-C), (b) elevation of intracellular calcium,
essential for the process of phagocytosis, (c) elevation of cyclic
3′,5′-AMP, closely related to the elevation of calcium levels
induced by parasite adhesion to the cell membrane, (d) signaling
mediated by nuclear factor kappa beta (Nf-κβ) (Burleigh and
Woolsey, 2002; Campos et al., 2001; DosReis et al., 2002;
Ropert et al., 2001), and by transforming growth factor beta
(TGF-β) (Waghabi et al., 2005) that is involved in the
mechanisms of evasion of the immune response. In general,
interaction between T. cruzi and the host results in a variety of
consequences that range from control of infection by the host
cells to immune response evasion, depending on the route
activated in the macrophage (Peluffo et al., 2004).

In the same fashion, the interaction of T. cruzi GPIs with
specific receptors on macrophage membranes triggers diverse
intracellular signals via Toll-2 (TLR2)-type receptors (Ropert
and Gazzinelli, 2004). These receptors belong to the family of
receptors that recognize PAMPs. Activation of TLR2s induces
macrophage activation and elevates macrophage anti-parasitic
activity. During this process various signaling systems are
activated that finally lead to activation of the synthesis of nitric
oxide (NO) and proinflammatory cytokines (Magez et al.,
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1998), through the activation of MAP kinase-dependent
pathways (Ropert et al., 2001). Among the most important
biochemical changes resulting from macrophage activation is
the capacity to secrete hydrogen peroxide (H2O2), NO, and
production of pro-inflammatory cytokines such as interleukins
(ILs) 1, 6, 8, 12, and TNF-α. These last two interleukins induce
synthesis of interferon-gamma (INF-γ) in NK cells (Une et al.,
2003). Circulating monocytes and splenic macrophages in T.
cruzi-infected animals show an important rise in oxygen uptake,
and consequently, in H2O2 production (Melo et al., 2003). This
respiratory “burst” is an important mechanism of macrophage
trypanocidal activity. However, this is not the only mechanism
and NO plays a central role in this activity.

14. Role of NO in T. cruzi infection

When trypomastigotes escape into the cytosol from
macrophage phagosomes, they transform into amastigotes and
proliferate. Under these circumstances, the infection triggers a
modest production of inducible nitric oxide synthetase (iNOS),
independent of interferon, and capable of favoring parasite
proliferation. Moreover, it has been described that NO-donating
drugs facilitate the proliferation of amastigotes (Rottenberg et
al., 1996), reason for which low intracellular levels of NO in the
host or parasite are beneficial for T. cruzi. Once the parasitic
infection has been established, and T helper-derived cytokine
activation has occurred through IL-12 and IFN-γ, iNOS is
induced along with the consequent elevation of NO production,
with the effect of controlling parasite invasion (Rodrigues et al.,
2000; Fabrino et al., 2004; Michailowsky et al., 2001). Solid
evidence supports the idea that NO is the mechanism through
which IFN-γ controls T. cruzi infection. In fact, it has been
proven that NO blocks the T. cruzi life cycle both in vivo and in
vitro (Ramos-Ligonio et al., 2004), due to the fact that T. cruzi
directly, or through parasite-derived glucoconjugates, induces
IFN-γ production in first place, and subsequently the induction
of iNOS that generates millimolar concentrations of NO. The
proposed antiparasitic mechanism for NO implies the formation
of peroxynitrite ion (ONOO−) through the oxidative “burst”,
which supplies the superoxide anion necessary for the
formation of ONOO−(Alvarez et al., 2002). This point is still
controversial because of recent reports where iNOS-deficient
mice were shown to be resistant to T. cruzi infection
(Cummings and Tarleton, 2004; Fabrino et al., 2004),
demonstrating the active participation of other components of
the immune system.

Nevertheless, it has been observed that NO produced during
T. cruzi infection also plays an important role in at least two of
the processes that facilitate parasite evasion from the cellular
immune response during the acute phase of disease: (i)
Proapoptotic activity has been demonstrated with trypomasti-
gote-derived ceramide-glycolipids; these glycolipids act syner-
gistically with IFN-γ, via Toll-type receptors. In consequence,
NO production increases which on the one hand promotes
macrophage apoptosis (Brodskyn et al., 2002), and on the other,
intracellular parasite proliferation (De Souza et al., 2003);
during this process some parasites also undergo apoptosis. (ii)
During acute T. cruzi infection, marked immunosuppression of
the host is observed that is induced by different mechanisms.
One of these mechanisms implies the inhibition of IL-2
synthesis and reduction in IL-2R expression in blood cells
mediated by prostaglandins (Kierszenbaum et al., 2002). In
addition, through modulation of iNOS activity (Ramos-Ligonio
et al., 2004), either through immature myeloid cells that
suppress the high levels of IFN-γ stimulated NO production
(Goñi et al., 2002), or by the modulation of activity of anti-
inflammatory cytokines such as transforming growth factor beta
(TGF-β). TGF-β is found as a latent complex that is activated
by specific proteases, integrins, or thrombospondins. T. cruzi is
capable of elevating TGF-β activation through proteases
secreted by the parasite (Waghabi et al., 2005). In addition to
the previous process, macrophage infection with T. cruzi
induces TNF-α production, which in turn induces apoptosis
of cells such as T lymphocytes. At the same time, phagocytosis
of these apoptotic bodies induces TGF-β production that
consequently lowers NO macrophage content (Freire-de-Lima
et al., 2000; Lopes and DosReis, 2000) (Fig. 3). Other
components of this complex process include cytokines such
as IL-10, IL-12, and prostaglandins. In fact, prostaglandins
synthesized by activated macrophages inhibit cellular prolifer-
ation and regulate cytokine synthesis (Brandonisio et al., 2001;
Pinge-Filho et al., 1999), which in turn can reduce iNOS
function (Plum et al., 2002). In vitro observations have shown
that cyclooxygenase inhibition induces cellular proliferation (de
Barros-Mazon et al., 2004), reduces IFN-γwithout affecting IL-
4 and IL-5 production (Une et al., 2003), and can in addition
modify synthesis of IL-1, TNF-α, and IL-12 in macrophages
while elevating the production of IL-10 (Shinomiya et al.,
2001). On the other hand, prostaglandin E2 (PGE2) is capable of
inducing TGF-β production in macrophages exposed to
apoptotic cells (Fadok et al., 1998). In the same way, TGF-β
is capable of inducing PGE2 production in non-phagocytic
inflammatory cells (Fong et al., 2000). In any case, exposure of
T. cruzi-infected macrophages to apoptotic cells elevates the
production of both cytokines, and the inhibition of COX with
aspirin is capable not only of blocking PGE2, but also TGF-β
(Freire-de-Lima et al., 2000), and of elevating TNF-α
production (Kim and Hahn, 2000), thus facilitating the
antiparasitic activity of macrophages.

In synthesis, contact of specific T. cruzi surface glycopho-
spholipids with host cells via Toll-type receptors triggers IP3
and IP3-kinase-type intracellular signals producing aggregation
of lysosomal vesicles on the plasma membrane, thus favoring
entrance of the parasite into the cell. Simultaneously, proin-
flammatory signals are produced through IFN-γ, IL-12, and
TNF-α secretion that consequently elevate intracellular NO,
essential for macrophage anti-parasitic activity. On the other
hand, the parasite produces an inflammatory response leading to
evasion of the immune response of the host. Among the
mechanisms used to evade the immune response of the host is
the induction of apoptosis in diverse cells and host immuno-
suppression. In both cases, NO production is compromised,
because levels of proinflammatory cytokines like TGF-β and
PGE2 are elevated.



615J.D. Maya et al. / Comparative Biochemistry and Physiology, Part A 146 (2007) 601–620
In conclusion, at present curative treatments for Chagas'
disease do not exist. Nifurtimox and benznidazole are the only
antichagasic drugs with high clinical efficacy, but they are far
from optimal, because of adverse events. The knowledge of
the parasite's biology has led to the identification of potential
useful drug targets that could be exploited for the treatment of
Chagas' disease. However, increasing the trypanocidal activity
of nifurtimox and benznidazole through glutathione biosyn-
thesis inhibition is a rational approach. It also seems logical to
modify the host's response to T. cruzi infection with the goal
of further increasing the activities of nifurtimox and
benznidazole.
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