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Abstract. We consider an exchange economy where the consumers face lin-
ear inequality constraints on consumption. We parametrize the economy with
the initial endowments and constraints. We exhibit sufficient conditions on the
constraints implying that the demand is locally Lipschitzian and continuously
differentiable on an open dense subset of full Lebesgue measure. Using this
property, we show that the equilibrium manifold is lipeomorphic to an open,
connected subset of an Euclidean space and that the lipeomorphism is almost
everywhere continuously differentiable. We prove that regular economies are
generic and that they have a finite odd number of equilibrium prices and local
differentiable selections of the equilibrium prices.
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1. Introduction

This paper deals with economic equilibrium sensitivity analysis, which is
closely related to the study of the equilibrium manifold, the graph of the equi-
librium correspondence. The global analysis of the economic equilibrium rests
mainly upon a differentiable approach, which requires the differentiability of the
demand functions (see Refs. 1–4 and references therein). This differentiability
is derived often from well-known assumptions on the utility functions, particu-
larly on its boundary behavior: the indifference curves are supposed not to cross
the boundary of the consumption set. Our main objective is to provide a global
analysis in the presence of constraints on consumptions (see Refs. 3, 5, 6). Thus,
although the demand may be nondifferentiable, we can overcome this setback of
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differentiability to get the usual results, namely, the index formula, the existence of
equilibria, the finite number of equilibria and the local selections of the equilibrium
prices for regular economies, and the genericity of regular economies.

The existence of exogenous restrictions on consumption has been recognized
in economics for a long time as Debreu points out in Ref. 7. We can find a detailed
discussion on the relevance of restrictions on the consumption in economy in the
book of Deaton and Muellbauer (Ref. 5, Chapter 1).

In our framework, the demand depends on the price and income but also
on the level of the constraints. We show that it is not differentiable if the strict
complementary slackness condition does not hold at this point. We prove that the
demand is locally Lipschitz continuous under reasonable conditions. For example,
our hypothesis hold true if, for each consumer, there is no constraint on at least
one commodity.

Then, we prove a fundamental property: the demand is continuously differen-
tiable on an open dense subset of full Lebesgue measure. In the second part of the
paper, this property is the key fact to study the properties of the equilibrium man-
ifold, which is then a differentiable manifold almost everywhere. Furthermore, it
gives us the existence of differentiable selections of the prices around a regular
economy.

Following the traditional approach in economy, we study also the properties
of the demand when the level of constraints is fixed. We obtain the same result
at the cost of a stronger assumption on the constraints. Indeed, this is not a
trivial consequence of the first result, since the genericity in the product space
of endowments and constraint levels does not necessarily imply the genericity
when one parameter is fixed. The proof of the demand properties relies on the
result of Cornet and Vial (Ref. 8) on the Lipschitz behavior of the solution of a
mathematical programming problem, but we need also to decompose the demand
on several auxiliary functions to get the result. We prove that the demand is
continuously differentiable around any point where it is differentiable by showing
that differentiability is equivalent to the strict complementary slackness conditions
on the first-order conditions. Then, we use a result from Fiacco and McCormick
(Ref. 9).

There are a lot of contributions to the optimization literature on the continuity
properties of solutions of a mathematical programming problem or more generally
of variational inequalities. Nevertheless, we point out two things. First, we deal
with the Lipschitz behavior of the demand, which is a stronger property than the
upper-Lipschitz behavior as Rockafellar and Wets noticed in Ref. 10, page 420.
So, we cannot derive our result from recent contributions like the ones of Klatte
(Ref. 11), Levy (Ref. 12), or Shapiro (Ref. 12). Second, we prove actually that the
demand is continuously differentiable on an open set of full Lebesgue measure.
This property is much stronger than almost everywhere differentiability, which is
a direct consequence of the Lipschitz behavior. As far as we know, this almost



everywhere smooth behavior of the demand is not studied in the optimization
literature nor in the economic literature.

At this point, we have to mention several previous contributions to the eco-
nomic literature. In Rader (Ref. 14) and Shannon (Ref. 15), the authors are mainly
concerned with the finiteness of the number of equilibria as in the seminal paper
of Debreu (Ref. 2). Then, the almost everywhere differentiability of the demand,
together with a property on the image of a null set are enough. In Rader (Ref. 14),
sufficient conditions on the preferences are given to ensure this result whereas in
Shannon (Ref. 15), this is an assumption. In Villanacci (Ref. 6), only fixed positiv-
ity constraints are considered and his analysis requires an additional assumption
on the existence of a strictly positive Pareto optimal allocation, which is not stated
by using only the basic description of an economy. We do not need this assumption
to obtain our result.

In Section 2, we present the model, the assumptions, and we study the demand.
Section 3 is devoted to the equilibrium manifold and the regular economies with
respect to constraints and initial endowments. In Section 4, the case of fixed
constraints is studied. Finally, Section 5 is the Appendix where some technical
proofs are given.

2. Properties of the Demand Functions

Let us consider an economy with positive integers � of commodities and m of
consumers. Let L ≡ {1, . . . , �} and M ≡ {1, . . . , m}4 . Given an agent i ∈ M , we
assume that her/his preferences are represented by a utility function ui : R�

++ →
R, which satisfies the following assumption.

Assumption A1. For each i ∈ M,ui is a C2 mapping. For each x ∈
R�

++,∇ui(x) ∈ R�
++,D2ui(x) is negative definite on ∇ui(x)⊥, the orthogonal

complement of the vector ∇ui(x). For all x ∈ R�
++, {x ′ ∈ R�

++ | ui(x) ≤ ui(x ′)} is
a closed set of R�.

The consumption may be limited also by additional physical constraints.
Formally, for each consumer i ∈ M , one has a ki × � matrix Ai . For a given
parameter bi ∈ Rki , the possible consumptions are given by

Xi(bi) = {
x ∈ R�

++|Aix ≤ bi

}
.

In the following, aik ∈ R� denotes the kth row of Ai and, if K is a subset
of {1, . . . , ki}, AiK is the submatrix of Ai obtained by keeping only the rows

4 We use the following notation: if x = (xi ), y = (yi ) ∈ Rn, x ≤ (	) y means xi ≤ (<) yi for each
i = 1, . . . , n. x · y = ∑m

i=1 xiyi denotes the inner product of x and y.



aik, k ∈ K . A∗
iK is the transpose of AiK . If b ∈ Rki , bK is the restriction of b to the

components in K . Let

Ci = {ξ ∈ R�
+\{0}|Aiξ ≤ 0},

CiK = {ξ ∈ R�
+\{0}|AiKξ | ≤ 0}.

Assumption A2.

(a) For each i ∈ M,Ci = {ξ ∈ R�
+\{0}|Aiξ ≤ 0} is nonempty. For all

nonempty subset K of {1, . . . , ki} such that the cardinality of K is less
than or equal to � − 1 and (aik)k∈K are linearly independent,

{µ ∈ RK |µ · AiKξ < 0,∀ξ ∈ CiK} ⊂ RK
+ .

(b) ∪i∈MCi = R�
+\{0}.

(c) For each i ∈ M , for all K ⊂ {1, . . . , ki} such that (aik)k∈K ) are positively
linearly independent,5 then they are linearly independent.

Part (a) implies that the consumption set Xi(bi) is not bounded. Part (b)
means that, for each nonnegative direction, at least one consumer can increase
her/his consumption along this direction. So, each commodity is always desirable.
Part (c) is devoted to the case of fixed constraint levels.

Now, we give some simple cases under which Assumption A2 is satisfied. In
the following, 1h is the hth vector of the canonical basis of R�. The proof is given
in Section 5 (Appendix).

Lemma 2.1.

(i) Assumption A2(a) holds true under any one of the following conditions:
(a) There exists ξ ∈ R�

+\{0} such that Aiξ = 0.
(b) Each row of Ai is either equal to the transpose of 1h or of −1h for

some commodity h, all rows are different; for some commodity h0,
the transpose of 1h0 is not a row of Ai .

(c) The rows of Ai does not belongs to R�
+ and the sets Lk = {h ∈

L|aikh �= 0}, k = 1, . . . , ki , are pairwise disjoint.
(ii) Assumption A2(c) holds true under condition (b) or (c) or if the matrix

Ai has full row rank.

Finally, we assume that each consumer has an initial endowment of com-
modities denoted ei ∈ R�

++. We define an economy as a point ((ei), (bi))i∈M in the
set of economies E defined by

E =
{

((ei), (bi))i∈M ∈ (RL
++)M ×

∏

i∈M
Rki |∀i ∈ M,Aiei 	 bi

}
.

5 This means that, for all (tk) ∈ RK+ , if
∑

k∈K tkaik = 0, then tk = 0 for all k ∈ K .



From the monotony of the utility functions and Assumption A2, it appears
that the equilibrium prices are always positive. Since they are also defined only
up to multiplication by a positive real number, we consider only the normalized
price in

S =
{

p ∈ R�
++

∣∣∣∣∣

∑

h∈L

ph = 1

}

.

For a given level of constraint bi ∈ Rki , a given price p ∈ S and a wealth
ri ∈ R++, the demand fi(p, ri, bi) of the ith consumer is the solution, if it exists,
of the following optimization problem:6

max ui(x), s.t. p · x ≤ ri, x ∈ Xi(bi).

Let �i be the open subset of S × R × Rki defined by

�i ≡ {(p, r, bi) ∈ S × R × Rki | ∃x ∈ R�
++, p · x < ri, Aix 	 bi}.

On �i , the set Xi(bi) has a nonempty interior and the income ri is not the minimal
one with respect to p. The main goal of this section is to prove the following
proposition.

Proposition 2.1. Under Assumptions A1 and A2(a), (b), for each (p, ri ,
bi) ∈ �i, fi(p, ri, bi) is a singleton and the demand function fi : �i → R�

++ is
locally Lipschitz continuous. Furthermore, there exists an open subset �◦

i of �i

such that �i\�◦
i is a null set with respect to the Lebesgue measure and fi is

continuously differentiable on �◦
i .

Proof. We omit the subscript i in the proof to simplify the notation. The
continuity, the strict quasiconcavity, the local nonsatiation, the boundary behav-
ior of u given by Assumption A1 together with the maximum theorem of Berge
imply that f (p, r, b) is a singleton and f is a continuous mapping. Indeed, for
all (p, r, b) ∈ �, there exists x ∈ R�

++ such that p · x < r and Ax 	 b. Thus,
the interior of the budget set is never empty; hence, the budget set is lower
and upper semicontinuous with respect to (p, r, b). Note also that it is also
bounded since p is strictly positive. The remainder of the proof is divided in three
steps.

Step 1. Let x = f (p, r, b). The first-order necessary conditions of optimality im-
plies that there exist λ ≥ 0 and µ ∈ Rk

+ such that

∇u(x) = λp + A∗µ, µ · (Ax − b) = 0, λ(p · x − r) = 0.

6 If a solution exists, it is unique from the convexity of the admissible set and the strict quasiconcavity
of ui .



Let

K(x) = {κ ∈ {1, . . . , k}|Aκ · x = bκ}
be the set of binding constraints at x. We recall that the strict complemen-
tarity slackness condition holds if the vectors ((aκ )κ∈K(x), p) are linearly
independent, λ > 0 and µK(x) � 0.

Assumption A2(a) implies that

A∗Rk
+ ∩ R�

++ = ∅.

Indeed,

C = {ξ ∈ R�
+\{0} | Aξ ≤ 0}

is nonempty; hence, there exists w ∈ R�
+\{0} such that Aw ≤ 0. Then, if

there exists β ∈ Rk
+ such that A∗β ∈ R�

++, one has

0 < w · A∗β = Aw · β ≤ 0,

which leads to a contradiction.
Since

A∗Rk
+ ∩ R�

++ = ∅,

from the Caratheodory theorem, there exists a (possibly empty) subset
K of K(x), λ′ > 0, and µ′ ∈ RK

++ such that the family ((aκ )κ∈K, p) is
linearly independent and7

∇u(x) = λ′p + A∗
Kµ′, AKx − bK = 0, p · x = r.

Hence, either x = f∅(p, r, b), where f∅(p, r, b) is the solution of the
maximization of u on the set {ξ ∈ R�

++|p · ξ ≤ r} or x = fK (p, r, b),
where fK (p, r, b) is the solution of the maximization of u on the set
{ξ ∈ R�

++|p · ξ ≤ r, AKξ ≤ bK}.
Step 2. We already know (see for example Refs. 1, 3) that f∅ is continuously

differentiable on �. Now, we prove that, for all K ⊂ {1, . . . , k}, such
that the cardinality of K is less or equal to � − 1 and the vectors (aκ )κ∈K

are linearly independent, the mapping fK is locally Lipschitz continuous
on �. If (p, r, b) ∈ �, then there exists ξ ∈ R�

++ such that p · ξ < r and
Aξ 	 b, which implies AKx 	 bK . Consequently, the argument given in
the first step applies to show that fK is a continuous mapping.

Let x ′ = fK (p′, r ′, b′). Then, the binding constraints at x ′ are the bud-
get constraint (since A∗Rk

+ ∩ R�
++ = ∅) and the constraints AK ′x ≤ bK ′

for a (possibly empty) subset K ′ of K . From Cornet and Vial (Ref. 8), fK

7 This implies that that the cardinality of K is less or equal to � − 1. We recall that, if K is empty, one
simply has ∇u(x) = λ′p and p · x = r .



is locally Lipschitz at (p′, r ′, b′) if ((aκ )κ∈K ′ , p′) is a linearly independent
family. If K ′ is empty, the result is obvious since p′ �= 0. If not, since the
vectors (aκ )κ∈K are linearly independent, there exists ν ∈ RK ′ \{0} such
that p′ = A∗

K ′ν. If we complete ν by zero coordinates for κ ∈ K\K ′,
one obtains a vector ν̃ such that p′ = A∗

Kν̃. For all ξ ∈ CK, 0 < p′ · ξ =
A∗

Kν̃ · ξ = ν̃ · AKξ . From Assumption A2(a), ν̃ ∈ −RK
+ , and, from the

construction of ν̃, one deduces that ν ∈ −RK ′
+ \{0}.

Let ξ ∈ R�
++ such that p′ · ξ < r ′ and AKξ 	 b′

K . Due to AK ′ξ 	
b′

K ′ , one has

p′ · ξ = A∗
K ′ν · ξ = ν · AK ′ξ > ν · bK ′ .

But since AK ′x ′ = b′
K ′ , one has p′ · ξ ≥ p′ · x ′ = r ′, which contradicts

p′ · ξ < r ′. Hence, the vectors ((aκ )κ∈K ′ , p′) are linearly independent and
fK is locally Lipschitz continuous.

We now apply the following result (Mas-Colell, Ref. 3, Chapter 1):
if (gj )j∈J is a finite collection of locally Lipschitz continuous mappings
from an open subset � to R� and if g is a continuous mapping from � to R�

such that, for all ω ∈ �, g(ω) ∈ {gj (ω)|j ∈ J }, then g is locally Lipschitz
continuous. We conclude finally that f is locally Lipschitz continuous on
�.

Step 3. The Rademacher’s theorem implies that f is almost everywhere differen-
tiable. Let �◦ be the subset of � on which f is differentiable. If the strict
complementarity slackness condition holds true at f (p, r, b), Assump-
tion A1 implies that f is continuously differentiable on a neighborhood
of (p, r, b); see Fiacco and McCormick (Ref. 9). Thus, the proposition is
a consequence of the following result: if the demand function is differ-
entiable at (p, r, b), then the strict complementarity slackness condition
holds true at x̄ = f (p, r, b).

Let (p, r, b) ∈ � such that f is differentiable at this point. First,
we prove that the vectors ((aκ )κ∈K(x̄), p) are linearly independent. If it is
false, there exist K ⊂ K(x̄),K �= K(x̄), λ′ > 0, and µ′ ∈ RK

++ such that
the vectors ((aκ )κ∈K, p) are linearly independent and

∇u(x) = λ′p + A∗
Kµ′, AKx − bK = 0, p · x = r.

Let κ̄ ∈ K(x̄)\K . Let b′ be such that bκ = b′
κ if κ �= κ̄ . From the above

first-order necessary and sufficient condition, we have that f (p, r, b′) =
f (p, r, b) = x̄ if b′

κ̄ > bκ̄ . Hence, aκ̄ · f (p, r, b′) = aκ̄ · x̄ = bκ̄ . For b′

such that b′
κ̄ < bκ̄ , one has aκ̄ · f (p, r, b′) ≤ b′

κ̄ . Then the mapping aκ̄ ·
f (p, r, b′) is not differentiable with respect to b′

κ̄ and thus f (p, r, b′) is
not differentiable at b.



To end the proof, we show that the multipliers are positive if f is differ-
entiable. Since A∗

KRK
+ ∩ R�

++ = ∅, λ is positive. Let us assume that µκ̄ = 0 for
some κ̄ ∈ K(x̄). Since the vectors (aκ )κ∈K(x̄) are linearly independent, there exists
a vector ξ ∈ R� such that aκ · ξ = 0 for κ �= κ̄ and aκ̄ · f = 1.

For t ∈ R, close to 0, let

x(t) = x̄ + tξ,

p(t) = (1/λ)
(∇u(x(t)) − A∗

K(x̄)µK(x̄)
)
,

r(t) = p(t) · x(t).

For t < 0, f (p(t), r(t), b) = x(t), since aκ̄ · x(t) = bκ̄ + t < bκ̄ and the first order
necessary conditions are satisfied with the multipliers λ and µK(x̄). For t > 0, one
has aκ · f (p(t), r(t), b) ≤ bκ̄ . Consequently, the function aκ̄ · f (p(t), r(t), b) is
not differentiable at t = 0, which implies that f (p(t), r(t), b) is not differentiable
at 0, hence f is not differentiable with respect to (p, r), thus with respect to
(p, r, b). �

We now come to a more precise result under Assumption A2(c) when the
constraint levels bi are fixed. Let

�
bi

i ≡ {(p, ri) ∈ S × R|(p, ri, bi) ∈ �i}.
In the following statement, �◦

i is the subset of �i given by Proposition 2.1.

Proposition 2.2. Under Assumptions A1 and A2, for each bi ∈ Rki ,�
◦bi

i =
{(p, ri) ∈ �

bi

i |(p, ri, bi) ∈ �◦
i } is open and �

bi

i \�◦bi

i is a null set.

Proof. Again, we omit in the proof the subscript i. From the proof of the
previous proposition, f (., ., b) is not differentiable if the vectors (aκ )κ∈K(x̄) are
linearly independent and the multipliers µK(x̄) are not all positive for the binding
constraints. Now, since �◦ is an open subset, its trace �◦b is open. Furthermore,
for each fixed b ∈ Rk, f (., ., b) is locally Lipschitz continuous on �b, when it
is nonempty. The proof is then a consequence of Rademacher’s theorem if one
shows that f (., ., b) differentiable at (p, r) implies that (p, r) ∈ �◦b.

Let (p, r) ∈ �b such that f (., ., b) is differentiable at (p, r). Let x =
f (p, r, b) and let K(x) be the set of binding constraints at x. We start by show-
ing that (aκ )κ∈K(x) are positively linearly independent. Indeed, since (p, r, b) ∈ �,
there exists ξ ∈ R�

++ such that Aξ 	 b and p · ξ < r . If there exists µ ∈ R
K(x)
+ \{0}

such that A∗
K(x)µ = 0, one has

0 = A∗
K(x)µ · ξ = µ · AK(x)ξ < µ · bK(x) = µ · AK(x)x = A∗

K(x)µ · x = 0.

Thus, we get a contradiction. From Assumption A2(c), the vectors (aκ )κ∈K(x)

are linearly independent. Using the same argument as at the end of the proof of the



last proposition, one shows that f (., ., b) is not differentiable at (p, r) if there exist
nonpositive multipliers. In particular, this is the case if the vectors ((aκ )κ∈K(x), p)
are linearly dependent. Consequently, one can conclude that f (., ., b) is differen-
tiable at (p, r) implies that the strict complementarity slackness condition holds
true and thus, f is differentiable at (p, r, b), which means that (p, r, b) ∈ �◦ or
equivalently (p, r) ∈ �◦b. �

3. Equilibrium Manifold

In this section, we study the equilibrium price vectors associated with an
economy ((ei), (bi)) from a global point of view as in Balasko (Ref. 1) or Mas-
Colell (Ref. 3). We assume that Assumptions A1 and A2 (a) and (b) hold true. A
price vector p ∈ S is an equilibrium price for the economy ((ei), (bi)) ∈ E if the
total demand at p ∈ S is equal to the supply, that is,

∑

i∈M

fi(p, p · ei, bi) =
∑

i∈M

ei.

In that case, we shall say that (p, (ei), (bi)) ∈ S × E is an equilibrium point
and the equilibrium manifold Eeq ⊆ S × E is defined as the set of equilibrium
points in S × E.

In the following, 1 is the vector of R� with every coordinate equal to 1, 1 ⊥

is the orthogonal space to 1, and proj is the orthogonal projection on it.
Let U be the open subset of S × Rm × (1⊥)m−1 × ∏

i∈M Rki defined as
follows: (p, (ri), (ηi)

m−1
i=1 , (bi)) ∈ U if, for each i ∈ M,Aiei 	 bi and 0 	

ei , with ei = ηi + (ri − p · ηi)1 for i ≤ m − 1 and em = fm(p, rm, bm) +∑m−1
i=1 (fi(p, ri, bi) − ei). In other words, the initial endowments ei defined by

the above formula are in the interior of the consumption sets for the parameters
bi and the global demand

∑m
i=1 fi(p, ri, bi) is equal to the total initial endow-

ment
∑m

i=1 ei . Note that (p, (ri), (ηi)
m−1
i=1 , (bi)) ∈ U implies (p, ri, bi) ∈ �i since

p · ei = ri for all i ∈ M . Thus, fi(p, ri, bi) is well defined.
The sketch of the proof of Proposition 3.1 is given in the Appendix.8

Proposition 3.1. U is an open connected subset of S × Rm × (1⊥)m−1 ×

i∈MRki .

Let us now define the mappings θ : U → Eeq and φ : Eeq → U as

θ (p, (ri), (ηi)
m−1
i=1 , (bi)) ≡ (p, (ei), (bi)),

8 For the complete proof, the reader is referred to the working paper (Ref. 16).



with

ei = ηi + (ri − p · ηi)1, for i ≤ m − 1,

em = fm(p, rm, bm) +
m−1∑

i=1

(fi(p, ri, bi) − ei),

φ(p, (ei), (bi)) ≡ (
p, (p · ei)

m
i=1, (proj ei)

m−1
i=1 , (bi)

)
.

The definition of θ : U → Eeq and φ : Eeq → U are borrowed from Balasko
(Ref. 1) and extended to take into account the parameters (bi).

Let V the subset of U defined by: (p, (ri), (ηi)
m−1
i=1 , (bi)) belongs to V if, for

each i ∈ M, (p, ri, bi) belongs to �◦
i . The next proposition is a direct consequence

of Proposition 2.1 and previous definitions.

Proposition 3.2.

(i) θ and φ are one-to-one and onto; moreover, θ−1 = φ.
(ii) θ and φ are locally Lipschitz continuous mappings.
(iii) U\V is a closed null set.
(iv) θ is continuously differentiable on V .
(v) Eeq is lipeomorphic to U .

The extended projection 
 from U to E is defined as 
 ≡ π ◦ θ , where π is
the ordinary projection from Eeq ⊂ S × E to E; that is,



(
p, (ri), (ηi)

m−1
i=1 (bi)

)

= (
(ηi + (ri − p · ηi))1

)m−1
i=1 , fm(p, rm, bm)

+
m−1∑

i=1

(fi(p, ri, bi) − ηi − (ri − p · ηi)1), (bi)).

The proof of the following proposition is also given in the Appendix
(Section 5).

Proposition 3.3. The extended projection 
 : U → E is a proper, locally
Lipschitz continuous mapping and is continuously differentiable on V. 
(U\V)
is a closed null set.

Definition 3.1. An economy ((ei), (bi)) ∈ E will be called regular if it does
not belong to 
(U\V) and if it is not the image of a critical point of 
|V . An
economy is singular if it is not regular. We denote the set of singular [resp. regular]
economies by Es [resp. Er ].9

9 Similar notions of regular [resp. singular] values are used in the literature dealing with nonsmooth
mappings (see Refs. 14–15).



Since V and E have the same dimension, the Sard theorem and the properness
of 
 imply the following result.

Proposition 3.4. Es is a closed null subset of E.

From standard results of differential topology, we have the following result.

Theorem 3.1.

(i) For all ((ei), (bi)) ∈ Er , there exists a finite number of equilibrium
prices.

(ii) Let ((ei), (bi)) ∈ Er and let p ∈ S be an equilibrium price for this econ-
omy. Then, there exists a neighborhoodN of ((ei), (bi)), a neighborhood
N ′ of p ∈ S, and a differentiable mapping q : N → N ′ such that
(a) q((ei), (bi)) = p,

(b) for all ((e′
i), (b′

i)) ∈ N , q((e′
i), (b′

i)) is the unique equilibrium price
of ((e′

i), (b′
i)) in N ′.

We end this section by computing the degree10 of 
.

Theorem 3.2.

(i) 
 is of degree 1 and then onto.
(ii) For all ((ei), (bi)) ∈ E, there exists an equilibrium.
(iii) For all ((ei), (bi)) ∈ Er , there exists a finite odd number of equilibrium

prices.

Proof. Due to the connectedness of U and the properness of 
, it is suffi-
cient to compute the degree for one value, that is, for one economy ((ei), (bi)). We
define the reference economy as follows: let fi∅ be the unconstrained demand as-
sociated to the utility function ui , let (ri) ∈ RM

++, and let p ∈ S. For each consumer,
let ei = fi∅(p, ri) and let bi large enough such that Aiei 	 bi . This economy, with
or without constraint, has a unique equilibrium (p, (ei)); see Balasko (Ref. 1).

For the prices in a neighborhood of p, no constraints are binding at the demand
thanks to the continuity of the demand functions. So, the demand fi coincides lo-
cally with fi∅. Consequently, the demand does not depend on the constraint levels.
Thus, the determinant of the Jacobian matrix of 
 at a point (p, (ri), (ηi)

m−1
i=1 , (bi)),

with ri = p · ei and ηi = proj ei , is the same as the determinant of the mapping

̃ defined by


̃
(
p, (ri), (ηi)

m−1
i=1

)

= ((ηi + (ri − p · ηi)1)m−1
i=1 , fm∅(p, rm)

+
m−1∑

i=1

(fi∅(f, ri) − ηi − (ri − p · ηi)1)).

10 We consider the degree for a continuous mapping as defined in Deimling (Ref. 17).



Note that 
̃ is exactly the natural projection studied in Balasko (Ref. 1) composed
by the local diffeomorphism θ . Thus, this mapping is a local diffeomorphism;
thanks to the uniqueness of the equilibrium price, one gets that the degree of 
 is
equal to 1. �

4. Fixed Constraints

In this section, we use the previous analysis to study the case where the
consumption constraints are fixed, that is, when the parameters (bi) are fixed. Let
b̃ = (̃bi) and let Assumptions A1 and A2 hold true. Then, the economy depends
on only the initial endowments which lie on the set

Eb̃ = {(ei) ∈ (R�
++)m | ∀i ∈ M,Aiei 	 b̃i)}.

The set Eb̃ may be empty for some value of b̃. That is why we define

B =
{

b̃ ∈
∏

i∈M

Rki |Eb̃ �= ∅
}

.

We can then define the sets Eb̃
eq, E

b̃r ,U b̃,V b̃ and the mappings θ b̃, φb̃, and 
b̃

by merely considering the parameter b̃ as fixed. Note that Proposition 2.2 implies
that (p, (ri), (ηi)

m−1
i=1 , (̃bi)) belongs to V if (p, (ri), (ηi)

m−1
i=1 ) belongs to V b̃. All the

results given in Proposition 3.1 to Theorem 3.1 still hold except the connectedness
of U b̃.

The argument used to compute the degree of 
 does not work, since we
consider an initial endowment that is Pareto optimal without constraint. For this,
we choose the constraint levels large enough. Since they are now fixed, we cannot
use the same method.

Proposition 4.1. For each b̃ = (̃bi) ∈ B,
b̃ is of degree 1 (and then onto);
for all (ei) ∈ Eb̃r , there exists a finite odd number of equilibrium prices.

Proof. Given (̃bi) ∈ B and (ei) ∈ Eb̃r , let P (ei) be the finite set of equilib-
rium price vectors in S associated to (ei), which is also the finite set of equilibrium
price vectors in S associated to ((ei), (̃bi)). For all p ∈ P (ei), let

µ = (
p, (ri), (ηi)

m−1
i=1

) = φb̃(p, (ei)) ∈ U b̃.

Note that

(µ, (b̃i)) ∈ φ(p, (ei), (̃bi)).



From the definition of a regular economy, µ ∈ V b̃ for each p ∈ P (ei); hence,
from Proposition 2.2, (µ, (̃bi)) belongs to V . This implies that 
 is differentiable
in a neighborhood of (µ, (̃bi)).

From the definition of 
 and 
b̃, the Jacobian matrix of 
 at (µ, b̃i) is a
(m� + ∑

i∈I ki) square matrix, which has the following structure:

D
(µ) =
[
A B

0 I

]

,

where A is the Jacobian matrix of 
b̃ at µ and I is the
∑

i∈I ki identity matrix.
Now, since (ei) is a regular economy in Eb̃ and since

det[A] = det[D
(µ)],

we can deduce that ((ei), (̃bi)) is a regular economy in E and
∑

µ∈(
b̃)−1(ei )

sign(det[D
b̃(µ)]) =
∑

µ∈
−1((ei ),(̃bi ))

sign(det[D
(µ)]),

which implies that

deg(
b̃) = deg(
) = 1. �

5. Appendix: Proofs

Proof of Lemma 2.1.

(a) One easily checks that ξ ∈ Ci, ξ ∈ CiK for all K and AiKξ = 0. Thus,
{µ ∈ RK |µ · AiKξ < 0,∀ξ ∈ CiK} = ∅, hence the conclusion holds.

(b) Note first that 1h0 ∈ Ci . Let K be a subset of {1, . . . , ki} such that the
cardinality of K is less than or equal to � − 1. Then, there exists h ∈ L

such that aik �= 1h and aik �= −1h for all k ∈ K . Consequently, AiK1h =
0, hence 1h0 ∈ CiK . Thus,

{µ ∈ RK |µ · AiKξ < 0,∀ξ ∈ CiK} = ∅,

which leads to the result.
(c) For each k ∈ {1, . . . , ki}, there exists h(k) ∈ Lk such that the h(k)

component of the row aik , denoted aikh(k), is negative. Then, since
the subsets (Lk)ki

k=1 are disjoint, for all k, 1h(k) ∈ Ci . For all k ∈ K ⊂
{1, . . . , ki}, 1h(k) ∈ CiK and µ · AiK1h(k) = µkaikh(k). Since aikh(k) < 0,
if µ satisfies µ · AiK1h(k) < 0, then µk > 0, hence µ ∈ RK

+ . �

Proof of Proposition 3.1. The openness is a direct consequence of the defi-
nition and the continuity of the demand mappings fi . Now, we give a sketch of the



proof of the connectedness of U . Let µ∗ = (p∗, (r∗
i ), (η∗

i )m−1
i=1 , (b∗

i )) be an element
of U . Let (e∗

i ) be such that θ (µ∗) = (p∗, (e∗
i ), (b∗

i )). Since µ∗ ∈ U , for all i ∈ M ,
one has 0 	 e∗

i and Aie
∗
i 	 b∗

i . Since, for all i ∈ M , the set {x ∈ R�
+|p∗ · x ≤ r∗

i }
is compact, there exists b̄i such that b∗

i 	 b̄i and Aiξ 	 b̄i for all ξ ≥ 0 satisfying
p∗ · ξ ≤ r∗

i .
The first step shows that µ∗ is connected to µ̄ = (p∗, (r∗

i ), (η̄i)
m−1
i=1 , (b̄i)), with

η̄i = proj fi(p∗, r∗
i , b̄i) for all i ∈ M . Let (ēi) such that θ (µ̄) = (p∗, (ēi), (b̄i)). One

checks easily that, for all i, ēi = fi(p∗, r∗
i , b̄i) and Aiēi 	 b̄i . This implies that

fi(p∗, r∗
i , b̄i) is the standard (without constraint) demand at (p∗, r∗

i ) for the utility
function ui . The second step shows that there exists a continuous path inU between
µ̄ and µ′ for all µ′ = (p′, r ′, (η′

i)
m−1
i=1 , b′) ∈ U such that η′

i = projfi(p′, r ′
i , b

′
i) and

Aifi(p′, r ′
i , b

′
i) 	 b′

i for all i ∈ M . �

Proof of Proposition 3.3. Except for the properness, the properties of 


are direct consequences of the properties of θ and φ. From the definition of 
,
it suffices to show that π is proper, since θ is an homeomorphism. Let E be a
compact subset of E and let (pν, (eν

i ), (bν
i ))ν≤1 be a sequence of π−1(E) ⊂ Eeq .

Let (xν
i ) be the sequence defined by xν

i = fi(pν, pν · eν
i , b

ν
i ). Since (xν

i ) is an
attainable allocation, it follows that the sequence (pν, (eν

i ), (bν
i ), (xν

i )) remains in
a compact set. Thus, it has a converging subsequence and we denote its limit by
(p, (ei), (bi), (xi)). Note that the closedness of E implies that ((ei), (bi)) belongs
to E .

We show that (p, (xi)) is an equilibrium of the economy ((ei), (bi)), which im-
plies that (p, (ei), (bi)) ∈ π−1(E). Since ((ei), (bi)) ∈ E ⊂ E, for all i ∈ M, ei ∈
R�

++ and Aiei 	 bi . Consequently, p · ei > infp · Xi(bi). Now, we prove that, for
all i ∈ M,xi is a solution of

max ui(x), s.t. p · x ≤ p · ei, x ∈ Xi(bi).

If this is not true, then there exists x ′
i ∈ Xi(bi) such that p · x ′

i ≤ p · ei and
ui(x ′

i) > ui(xi). Since ((ei), (bi)) ∈ E, there exists ξi ∈ R�
++ such that Aiξi 	 bi

and p · ξi, < p · ei . Thus, from the continuity of ui , moving slightly x ′
i to-

ward ξi , there exists x ′′
i such that x ′′

i ∈ R�
++, Aix

′′
i 	 bi, p · x ′′

i < p.ei , and
ui(x ′′

i ) > ui(xi). Then, for ν large enough, x ′′
i ∈ Xi(bν

i ), pν · x ′′
i ≤ pν · eν

i , and
ui(x ′′

i ) > ui(xν
i ), which contradicts xν

i = fi(pν, pν · eν
i , b

ν
i ).

We end the proof by showing that p ∈ S. From Assumption A2(b), for
all ξ ∈ R�

+\{0}, there exists i ∈ M such that Aiξ ≤ 0. Consequently, for t > 0
small enough, xi + tξ ∈ Xi(bi). From the strict monotonicity of ui, ui(xi + tξ ) >

ui(xi). Hence, since xi is a solution of the above problem, one deduces that
xi + tξ does not satisfy the budget constraint, which implies p · ξ > 0. Since
this inequality holds true for all ξ ∈ Rl

+\{0}, one gets p ∈ S. Since 
 is locally
Lipschitz continuous, 
(U\V) is a null set (see Ref. 18). Since 
 is proper,

(U\V) is closed. �
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