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Abstract 

 

m his m paper m analyzes m the m quantitative m relevance m of m additive, m ultiplicative m and m data 

uncertainty in the implementation of Chile’s monetary policy. For the analysis of data 

uncertainty we focus on the uncertainty associated with the estimation of the output gap 

using real-time data and various well-known methods to estimate the output trend. We 

found that the revisions of the output gap are important and persistent and that the 

unobserved components method shows a better performance with real-time data than 

other more usual ones, like the HP filter. In the case of additive and multiplicative 

uncertainties we estimate the equations that govern the behavior of the economy with 

time-varying parameters and with state-dependent variances in the shocks of the model. 

This allows us to analyze the contribution of these two types of uncertainties on the total 

uncertainty. We found that additive uncertainty is the most relevant to explain total 

uncertainty and that shocks to the model are state-dependent. 
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1. Introduction  
It is widely accepted that monetary policy is made in an environment of substantial uncertainty. This 

has increased considerably the interest of academic researchers to formally demonstrate the implications 

of uncertainty, as well as the ways in which central banks can deal with uncertainty. The theoretical 

literature on uncertainty distinguishes between three types of uncertainty: Additive uncertainty, which 

refers to the lack of knowledge of the central banks regarding the future shocks faced by the economy; 

Multiplicative uncertainty, which represents the lack of knowledge, or the erroneous knowledge, of one or 

more parameters of the behavioral model of the economy; and Data uncertainty, which is associated to the 

fact that the information used by the central bank at the time policy decisions are made could either be 

incorrect or could incompletely reflect the actual state of the economy. The objective of this paper is to 

review the quantitative relevance of these three types of uncertainty in the Central Bank of Chile’s 

monetary policy. The paper is divided into two parts: the first covers the problem of data uncertainty and 

focuses on the output gap estimates for the full-fledged inflation targeting period (1999 onward); the 

second centers on additive and multiplicative uncertainty for the period 1990 - 2006 but places a special 

emphasis on the period subsequent to 1999. 

In the analysis of data uncertainty we focus on the output gap given its importance in forecasting 

inflation and given that preliminary figures for real output (real-time data), which are revised several 

times, are available when monetary decisions are made. Also, the estimation of the output trend (part of 

the output gap) depends on statistical filters applied to output series, which contain these preliminary 

figures. For our exercise, we use various well-known univariate filters: the Hodrick-Prescott (HP), the 

Baxter-King (BK), the Christiano-Fitzgerald (CF), the quadratic trend and the Clark method based on the 

unobserved components model. To analyze their reliability and statistical accuracy with real-time data we 

follow the methodology proposed by Orphanides and van Norden (1999). We find that revisions of the 

output gap in the case of Chile are important and persistent, and that correlations between the final data 

output gap and the real-time data output gap are relatively low. Nonetheless, the Clark method produces 

the best results, implying that caution and judgment should be taken when evaluating the business cycle 

with real-time data, and that using popular filters, like HP, could be misleading. 

To evaluate the empirical importance of additive and multiplicative uncertainty we use the 

methodology proposed by Zhang and Semmler (2005). In particular, we estimate behavioral equations for 

the Chilean economy with time-varying parameters and shocks with state-dependent variance (two states), 

which follow a first order Markov process. To estimate behavioral equations we use a slightly modified 

version of the forward-looking specification of Svensson (2000) and Al-Eyd and Karasulu (2006) for the 

equations that govern the behavior of a small open economy – the aggregate demand, the Phillips curve, 



 

 

and the real uncovered interest parity condition. Additionally, we use a technique from Kim (1993) to 

decompose total uncertainty, measured using the conditional variance of the forecast error, into two 

components: that associated to multiplicative uncertainty and that associated to additive uncertainty. We 

find that for all the behavioral equations of the economy, the uncertainty of shocks (additive uncertainty) 

has been the most important in explaining total uncertainty. Moreover, the estimations support the 

hypotheses of state-dependent variances and that these states could be considered as periods of high and 

low volatility in the shocks. Also, total uncertainty of both the output gap and the inflation rate has 

declined over time and the period of greater stability coincides with the establishment of the full-fledge 

inflation targeting framework for the conduct of monetary policy.1  

The paper is organized as follows. In section 2 we present a literature review on the types of 

uncertainty faced by central banks, its implications for the conduct of monetary policy and the way in 

which they have been typically modeled empirically. In section 3 we analyze the quantitative relevance of 

data uncertainty, focusing on the output gap estimates. In section 4 we take on the importance of additive 

and multiplicative uncertainty in the models typically used to study the effect of monetary policy. Finally, 

concluding remarks are presented in section 5. 

 

2. Monetary policy and uncertainty 

In the last few years, there has been a considerable increase in the interest of academic researchers to 

demonstrate formally the ways in which central banks can deal with uncertainty (Schellekens, 2002; 

Feldstein, 2003). Some papers have studied the distinct types of uncertainty faced by central banks, which 

have introduced important challenges in the modeling of monetary policy, and its implications on the 

behavior of the monetary authority. Such is the case of Isard et.al. (1999), Martin and Salmon (1999), 

Svensson (1999), Wieland (2000), Meyer et.al. (2001), Tetlow and von zur Muehlen (2001), Gianoni 

(2002), Orphanides and Williams (2002), and Soderstrom (2002). Other papers have proposed different 

strategies that can be used to deal with uncertainty, namely robust monetary policy rules and learning 

mechanisms, among others. See for example Craine (1979), Holly and Hughes Hallett (1989), Basar and 

Salomon (1990), Bertocchi and Spagat (1993), Balvers and Cosimano (1994), Sargent (1998), Onatski and 

Stock (2000), and Wieland (2000). 

Feldstein (2003) argues that central banks typically face four types of uncertainty: uncertainty about 

the current and future states of the economy, uncertainty about how the economy operates, uncertainty of 

individuals about their personal futures, and uncertainty about the impact of potential future monetary 

                                                           
1 It is important to mention that this period also coincides with the establishment of the structural surplus rule for the 
conduct of fiscal policy and with a generally highly stable international context. 



 

policies. However, the most common classification defines three types of uncertainty: additive 

uncertainty, multiplicative uncertainty and data uncertainty.2 Additive uncertainty represents the 

component of a forecast error associated to the outcome of an exogenous variable in the system (the 

regression model error). This type of uncertainty captures the lack of knowledge of central banks 

regarding the future shocks faced by the economy (Zhang and Semmler, 2005; Grauwe, 2006). 

Multiplicative (or parameter) uncertainty, on the other hand, represents the lack of knowledge, or the 

erroneous knowledge of one or more parameters of the behavioral model of the economy (and its agents). 

Hall et.al. (1999) claims that this type of uncertainty can occur for several reasons: the stochastic nature of 

the parameters, the measurement errors in the data utilized to estimate the model, and structural changes. 

The distinction between additive uncertainty and multiplicative uncertainty is based on the assumption 

that the true behavioral model of the economy is known. The limitation of this assumption is that total 

uncertainty, which could also result from misspecification of the model, is underestimated and, therefore, 

the results of any efforts to quantify this uncertainty using a particular specification of the behavioral 

model of the economy should be taken with caution.3 Finally, data uncertainty is associated to the fact that 

the information used by the central bank at the time policy decisions are made could either be incorrect or 

could incompletely reflect the actual state of the economy (Orphanides and van Norden, 1999). Rudebush 

(2001) says that when these types of uncertainty are combined they weigh heavily on policy decision-

makers. Having no knowledge of the actual state of the economy (be it due to uncertainty in the data or in 

the behavior of the economy) forces policy-makers to base their decisions on expected outcomes, which 

when more than one exists, could generate dilemmas in the adoption of an adequate policy (i.e. a more 

aggressive or passive reaction by the Central Bank). 

Phillips (1954) and Theil (1964) were the first to introduce the idea of additive uncertainty, and their 

contributions have led to the expansion of the literature in this area. Phillips (1954), in studying whether 

stabilization policy recommendations of the simple models based on multipliers are appropriate or not and 

under what conditions this occurs, showed that in a system that is automatically regulated (with flexible 

prices and interest rates), monetary policy could be a suitable instrument to stabilize the economy, or at 

least to maintain the economic system close to its desired values. Monetary policy should also be able to 

deal with shocks, except the most severe ones. Theil (1964), assuming that the policy-makers choose their 

                                                           
2 Another type of uncertainty also considered in the literature, but not analyzed in this paper, is uncertainty about the 
probability distributions over possible events known as Knightian uncertainty. 
3 Even though part of the existing literature defines multiplicative uncertainty as the lack of knowledge of the 
parameters and of the model, the distinction between both is important from a practical point of view. If the 
distinction is not made, it is not possible to separate the concepts of additive and multiplicative uncertainty given 
that any specification error affects both the regression error and the magnitude of the parameters (bias).  
 



 

policy by maximizing a quadratic expected utility, expanded on the idea of Phillips (1954) as he found 

that in a world where there is only uncertainty in shocks, policy-makers could conduct their policy as if 

there were total certainty regarding the possible outcomes of the economy. This result is known as 

certainty-equivalence and has important implications for monetary policy.  

Of course, there was a high degree of confidence in econometric modeling, such that in the estimation 

of structural models any error could be eliminated, except that associated to additive uncertainty. 

However, the principle of certainty-equivalence is valid only under certain conditions, particularly, in a 

linear quadratic world; therefore, policy implications could be different depending on the assumptions 

adopted regarding the behavior of the Central Bank (i.e., its loss function). As a matter of fact, Walsh 

(2003) found that optimal monetary policy rules, derived from a quadratic loss function for the Central 

Bank, are robust under this type of uncertainty and do not require that the monetary authority change its 

rule in the presence of shocks. However, simple Taylor reaction functions can generate important 

increases in the Central Bank’s loss function depending on whether, based on particular situations, they 

require changes in the Central Bank’s behavior. Additionally, Sack (2000), in estimating and simulating a 

VAR model for the US economy under different assumptions, found that if the only source of uncertainty 

is additive, the FED should show a more aggressive behavior than what it really shows in practice and 

argues that there are other types of uncertainty such as multiplicative, which generate greater gradualism 

in its monetary policy. 

In a paper concerning linear decision rules for stabilization and growth, Holt (1962) was the first to 

analyze multiplicative uncertainty (uncertainty in the parameters). In particular, he shows that only when 

policy makers can adequately anticipate the implications of the policies they adopt, they are able to apply 

an active stabilization policy. Otherwise, they would contribute more to the instability of the economic 

system than to its stability. If the way in which the economy reacts is uncertain, that is the parameters of 

the behavioral model of the economy are uncertain, the performance of monetary policy could be 

seriously affected. In this context, the certainty-equivalence principle is not valid and, hence, the central 

bank should consider this type of uncertainty when making policy decisions. Brainard (1967), in his 

classic analysis regarding uncertainty, uses a quadratic utility function for the policy maker, similar to that 

of Theil (1964), to study the effect of uncertainty in shocks and parameters. He finds that if the only 

source of uncertainty is associated to shocks, the certainty-equivalence principle is valid. However, when 

the reaction of the economy to policy actions is unknown (i.e., the model feedback parameters), the 

behavior of the Central Bank is seriously affected and, in particular, makes it optimal to respond more 

cautiously to changes in the economic system.  



 

This result has important practical implications in the conduct of monetary policy, since it indicates 

that it could be optimal for policy makers not to expect to completely eliminate the gap between the 

observed objective variable and its target value, in a particular period. This could be interpreted as a 

justification for a gradual monetary policy. Although Brainard’s (1967) result has been widely discussed 

in the literature (see Blinder, 1998) and is quite intuitive, it cannot be generalized. As a matter of fact, 

even though there are papers (Martin and Salomon, 1999; Sack, 2000)4 that give empirical validity to 

Brainard’s (1967) result, there are studies that show that such result depends on the model specification. 

For example, Soderstrom (2002) shows that in situations where the coefficients of the lagged variables in 

the model are subject to uncertainty, the optimal policy for the central bank could be to react more 

aggressively5.  

The study of data uncertainty is relatively new in the literature on monetary policy. As a matter of 

fact, academics and policy makers only recently have invested resources in this area studying the 

properties of real-time data and its implications on policy decisions (Bernhardsen et.al., 2005). The 

pioneering work of Croushore and Stark (2001) set an early framework for the subject. In particular, they 

were the first to construct a database that provides a snapshot of the macroeconomic data available at any 

given date in the past with the objective of showing the implications of forecasting with revised and real-

time data. In the database, the data of a particular date is known as “vintage” and “real-time data set” is 

the collection of the vintages. This methodology has been used in various empirical applications, which 

have primarily focused on developed countries. Examples of such applications, regarding the implications 

of real-time data for monetary policy, can be found in Orphanides and van Norden (1999) and Orphanides 

(2001).6 This literature highlights that the moment at which the data are obtained, their availability, and 

reliability for empirical evaluation of policy rules, is crucial for monetary policy performance since they 

condition the decisions of the policy makers (Ghlysels, 2002). In this regard, Rudebush (2001) and 

Bernhardsen et.al. (2005) argue that the new information that the central banks obtain from one policy 

meeting to the next does not justify drastic changes in its instrument, which can lead to very slow 

responses to particular economic events.  

One of the variables that summarize the actual state of the economy and that is, therefore, crucial for 

monetary policy decisions, is the output gap. Naturally, if potential output measures are not reliable, 

policy decisions may fail to react to the true economic conditions and may instead reflect measurement 

                                                           
4 Both papers estimate a VAR model, the first for England and the second for the United States. They show that the 
fact of incorporating multiplicative uncertainty in the model could explain the preference for gradualism in the actual 
behavior of the Central Bank.  
5 Other examples in support of the argument that multiplicative uncertainty does not necessarily lead the central bank 
to behave more cautiously can be found in Gianoni (2002) and González and Rodríguez (2003). 
6 For an excellent literature review on the issue for the case of the United States see Kozicki (2004). 



 

error. Along these lines, Orphanides and van Norden (1999) argue that the output gap is associated with 

important components of uncertainty since there are at least three types of problems typically faced by the 

central banks when evaluating the business cycle with real-time data. First, output data are revised 

continuously. Second, methods to estimate potential output provide in general different results. When 

trend output is used as a proxy, different filtering procedures also yield a variety of outcomes;  and this 

problem is particularly critical with the end of sample estimates that are, precisely those relevant for 

policy decisions.7 Third, a future evaluation of output data can indicate that the economy has experienced 

a structural change, which could have not been revealed by real-time data.  

Following Zhang and Semmler (2005) and to provide an example of the concepts previously 

mentioned, we consider the following economic model that is standard in the literature of optimal rules of 

monetary policy: 
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where ρ  is the discount factor bounded  between 0 and 1, ),( tt uxL   is a loss function of an economic 

agent (in this case, the central bank), tx  is the vector of state variables, tu  is the vector of control 

variables (the policy instrument), 
tε  is the vector of shocks and 0E  is the mathematical expectation 

operator based on the initial values of the state variables. This kind of model represents the basic 

framework of monetary policy analysis and control used by Clarida et.al. (1999), Svensson (1997, 1999), 

and Beck and Wieland (2002), where the constraints in equation (2) are the Phillips curve, the IS curve, 

and the interest rate parity condition, (Svensson, 2000).  

Given the state equations in (2), the central bank’s problem consists in deriving a path for its 

instrument (the control variable tu ) that satisfies equation (1). The question that arises, however, is 

whether the state equations can be correctly specified with time series estimates. Given the previous 

discussion, the response to this question is negative, since these equations can be subject to a high degree 

of uncertainty caused by shocks tε , by parameter uncertainty and by data uncertainty used in the 

estimations. This is particularly important since the optimal monetary policy rules are derived from the 

                                                           
7 Kuttner (1994) and St-Amant and van Norden (1998), using final output data and different methods to estimate its 
trend, found that there were substantial differences in the estimations of these trends using final data. 



 

solution of the previous problem8 and, hence, these rules depend on the parameters of the state equations. 

Thus, if the parameters in the model are uncertain, the estimated “optimal” monetary policy rule could be 

unreliable. 

In summary, the brief literature review presented in this section shows that in general the different 

types of uncertainty (additive, multiplicative, and data uncertainty) have important and different 

implications for the conduct of monetary policy. In particular, when the economy is faced with uncertainty 

in the shocks or additive uncertainty the central bank could eventually behave as if it has total certainty 

with respect to the results of its policy (certainty-equivalence principle). This result, however, depends on 

the type of assumptions adopted regarding the behavior of the central bank (its preferences) and the 

structure of the economy since this principle is only valid in a linear-quadratic world and depends on 

whether the monetary authority behaves optimally or not. Regarding multiplicative uncertainty or 

uncertainty in the parameters, the fact that the central bank does not know how the economy reacts to its 

policies would justify, in principle, a preference for more gradualism in the conduct of monetary policy. 

Nonetheless, there is no consensus regarding this result since the literature has shown diverse implications 

that depend on the assumptions that are adopted in a particular model (in some cases, the implications 

point to more aggressiveness in response to policy). Finally, when the data are uncertain, either because 

they are unknown at the moment that policy decisions are made, because they could have measurement 

errors (being that they are revised previously), or simply because they are unobservable, the policy 

decisions are seriously conditioned to the information available. Hence, sudden changes in policy when a 

new set of information is known could not be justified (the actual information could show an erroneous 

notion of the actual state of the economy). Hence, the literature has sought monetary policy rules that are 

“immune” to this type of uncertainty, for example, utilizing output growth rates or unemployment level 

rates (as opposed to the gap with respect to its natural value). 

 

3. Data uncertainty: the output gap 
In analyzing the quantitative relevance of data uncertainty in the case of Chile, we focus on the output 

gap – defined as the difference between actual (measured) GDP and its trend - for the 2000-2006 period. 

This period was chosen for two particular reasons: (1) the availability of historical information of the 

output series publications at each moment in time; and (2) this is the period in which the Central Bank of 

Chile adopted a full-fledged inflation targeting scheme to conduct its monetary policy. We use real-time 

data (i.e., data available to the central bank when making policy decisions) and various well-known 

methods to estimate the output trend. For each method we analyze the behavior of the end-of-sample 

                                                           
8 See, for example, Svensson (1999). 



 

output gap estimates, which are relevant for policy decisions, as well as the revisions of these estimates 

across time. We present the statistical properties of the revisions and verify the reliability of the estimates 

for each method. This section is divided into two subsections: the first describes the methodological issues 

related to the construction of the output gap with real-time data and the detrending methods; and the 

second one presents the results of the estimates and their implications. 

 

3.1 Methodological issues 

Monetary policy decisions are typically based on real-time data, which are classified as preliminary 

data (Bernhardsen et.al., 2005). This is also true, to a lesser degree, for long-past historical data. The 

preliminary nature of the data calls for it to be in constant revision and the reasons for these revisions can 

be, among others, of an informative nature or of a methodological nature. As suggested by the Central 

Bank of Chile in its Monetary Policy Report (IPoM) of September 2004, the revision of data is motivated 

by: the inclusion of new basic information (new sources of information or the improvement of these 

sources); the recalculation of the estimates (revisions attributed to new estimates);9 methodological 

improvements (due to changes in statistical methods, concepts, definitions or classification); and error 

correction, either in the basic sources or in the calculations. One of the variables that encompasses the 

actual state of the economy and which is key for monetary policy decisions is the output gap. Given that at 

the time policy decisions are made this variable is estimated using preliminary output data, it is necessary 

to assess the degree of reliability of these estimates.10 For this assessment, we use real-time data to 

replicate the available information for the policy makers at every point in time. Thus, we simulate the 

actual environment of the monetary policy setting process (Ghlysels, 2002). 

To analyze the reliability and the statistical accuracy of the output gap estimates commonly used in 

the literature we follow the methodology proposed by Orphanides and van Norden (1999). This consists of 

measuring, at each point in time, the degree in which the output gap estimates vary when the data are 

revised using the different output gap estimation methods. This allows us to capture the effects caused by 

data revisions and the misspecification of statistical models used to estimate the output trend. The 

advantage of this methodological approach is that it does not require a priori assumptions on the true 

structure of the economy or on the process that generated the observed output time series. This approach 

also has certain limitations. Data revisions are being analyzed comparing each level of output observed at 

the end of the sample with the “final output”, however, there could still be measurement errors. 

                                                           
9 This refers to the updating of seasonal factors or of the base period used in the constant price estimates.  
10 As a matter of fact, if the output gap measures are not reliable it could be advantageous for the central bank, in 
some situations, to base their monetary policy decisions on information regarding output growth (Orphanides et.al., 
2000;  Bernhardsen et.al., 2005).  



 

In the approach of Orphanides and van Norden (1999) there are two key definitions: the “final” and 

the “real-time” estimates of the output gap. The final estimate of the output gap is simply the difference 

between the last available vintage of output data and its trend (obtained via a detrending method). The 

real-time estimate of the output gap, on the other hand, is a time series consisting of the last observed 

estimate of the output gap constructed as the difference between the observed output for each point in time 

(each vintage) and its trend. The estimation in real-time for each period t contains all the revisions 

available up to that period and represents the estimate that the central bank may have calculated at the 

time when policy decisions were made. Formally, assuming that we have access to the observed output 

series published at each point in time during N  periods we would have a matrix of the form 

( )Nyyy ,...,, 21 , where each iy  (with Ni ,...,1= ) is a column vector that contains the time series of the 

output and each column is an observation (row) shorter than the one that follows it.11 If )(⋅dtf  is a 

function that detrends the time series y , the final estimate of the output gap is given by: 

 

 ))(ln()ln( NdtNfinal yfygap −=m  m           

 

On the other hand, if we define the function )(⋅ℓ  as one that extracts the last real observation of the 

column vector iy  we have the real-time estimate of the output gap: 

 

)))´(()),...,(()),((ln())(),...,(),(ln( 2121 NdtdtdtNtimereal yfyfyfyyygap ℓℓℓℓℓℓ −=−               (4) 

 

The difference between the final output gaps and the real-time output gaps represents the total 

revision of the estimates at each point in time. The statistical properties of these series of revisions will 

assist in evaluating the reliability and accuracy of the output gap estimates. For the estimates drawn from 

equations (3) and (4) it is necessary to define the function )(⋅dtf (the detrending method) given that in 

practice neither the true potential output of the economy nor its data generating process are known. This is 

important since these methods in general provide quite different results. In the case of Chile, Gallego and 

Johnson (2001) find that the set of methods used to estimate the trend component of output provide a wide 

range of estimates. Therefore, besides the revisions in the data, the method chosen also constitutes a 

source of uncertainty. 

                                                           
11 In the matrix ( )Nyyy ,...,, 21  we consider the missing observations as non-real numbers. 



 

A detrending method decomposes real output (measured in logarithms) ty  into two components:  

trend ( T

ty ) and cycle ( C

ty ) such that C

t

T

tt yyy += . We consider five alternative univariate methods that 

have been widely used in the literature:12 (1) the Hodrick-Prescott filter; (2) the Baxter-King filter; (3) the 

Christiano-Fitzgerald filter; (4) the quadratic trend; and (5) Clark’s method based on the unobservable 

components model.13 Table 1 summarizes these methods and the models they are based on. We focus only 

on univariate techniques of detrending, since the use of multivariate techniques requires the compilation of 

information on the data that is not revised (in real-time) for each possible regressor in the model. Hence, 

the conclusions that are derived from the analysis correspond only to the evaluation of the univariate 

filters utilized here and cannot be applied to other alternative methods such as those used by the Central 

Bank of Chile14 and in some other papers for Chile (see for example Gredig, 2007 and Fuentes et al., 

2007).  

 

Table 1: Alternative Methods to Calculate the Output Trend 
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12 See Orphanides and van Norden (1999) for an extensive revision of the detrending methods and its principal 
advantages and disadvantages. 
13 See Gallego and Johnson (2001) for an interesting compilation of the use of these methods in different central 
banks of the world. 
14 The current approach used by the Central Bank of Chile to estimate the output gap is based on the production 
function. 
15 The series of numbers 6 and 32 represent the minimum and maximum of the desired oscillation period, 
respectively, for quarterly data. 
16 The series of numbers 6 and 32 have the same interpretation as in the Baxter-King filter. On the other hand, the 
series of numbers 1,0,0 represent the existence of unit roots, without drift and symmetric filter, respectively.  
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The Hodrick-Prescott filter is perhaps one of the most popular detrending methods and it is based on 

the choice of the trend that minimizes the variance of the cyclical component of the series; it is subject to 

penalization for variations in the second difference of the cyclical growth component (Hodrick and 

Prescott, 1997). Both the Baxter-King filter and the Christiano-Fitzgerald filter are based on the 

smoothing of series using weighted moving averages. The fundamental difference between both, for the 

case of symmetric filters as considered in this paper, lies in the choice of the objective function that 

defines the weights (Baxter and King, 1999; Christiano and Fitzgerald, 2003). Moreover, the Christiano-

Fitzgerald filter imposes the restriction that the filter weights add up to zero when unit roots are 

considered. On the other hand, the quadratic trend is a method of deterministic components that assumes 

that the behavior of the trend series is triggered by a second order polynomial. Hence, this method is 

flexible at the moment of detecting slow trend changes17. Finally, the unobserved components model 

allows us to specify the data generating processes for the output time series and use these to identify the 

trend and cyclical components. In the particular case of the model proposed by Clark (1987), it is assumed 

that the trend component follows a random walk process with drift and the cyclical component follows an 

AR(2) process. The main advantage of this type of model is that it allows a richer short-term dynamic 

specification for the model. 

 

3.2 Results 

The output data observed at each point in time were constructed using data compiled from the 

monthly publications (bulletins) of the Central Bank of Chile. For each new statistical entry in which a 

new output record was published an output series was constructed, which included the revisions of the 

data published before.18 For the quantitative evaluation of uncertainty in the output gap estimates, we 

                                                           
17 Its simplicity has made it quite valuable for empirical applications related to monetary policy (for example, Clarida 
et.al, 1998). However, its use has generated much controversy due to the argument that better modeling of the output 
requires statistical components in the model. 
18 In some cases the revisions were observed for one or two quarters back and in others, such as the periods in which 
there are base changes, the revisions were performed on the complete series. The Central Bank revised the national 
accounts and changed the base year in two separate occasions during our sample period. The first time was in the 



 

consider the period between the first quarter of 2000 and the last quarter of 2006. Nonetheless, the output 

gap estimates were calculated based on information since 1986.19 Hence, the first time series we use 

covers the period between the first quarter of 1986 and the first quarter of 2000. The series that follows 

contains an additional quarter not included in the previous series and this occurs successively up until the 

last series, which is comprised of the complete period, that is, from the first quarter of 1986 to the last 

quarter of 2006. Each output series was seasonally adjusted using the X-12 ARIMA procedure employed 

by the Central Bank of Chile. Hence, the series reflect both the revisions and the re-estimation of seasonal 

factors. Finally, the series published in the last quarter of 2006 is our “final” series of output, although we 

are aware that this series contains data that will be revised in the future. 

The compilation of the information described above produced a total of 28 output series for each point 

in time. We apply the five detrending methods to each of these estimates to calculate the output gap. 

Following the methodology applied by Orphanides and van Norden (1999), our final estimates are the 

output gap for the last available series and our real-time estimates are the series constructed with the last 

observation of each of the output gaps estimated with the 28 series. Figures 1 and 2 illustrate these 

estimates using final and real-time data. 

 

Figure 1: Output Gap Estimates for the Chilean Economy with Final Data 
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fourth quarter of 2001, in which the base year changed from prices of 1986 to prices of 1996, and the second one was 
done in the last quarter of 2006 changing the base year to 2003 (the vertical dotted lines in Figures 1 to 3 show these 
changes). 
19 For a statistical filter to produce reasonable results we need at least a complete cycle in the series, which implies 
that long time series are necessary.  



 

Figure 2: Output Gap Estimates for the Chilean Economy with Real-Time Data 
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From figures 1 and 2 we observe that most of the estimations generated by the different detrending 

methods behave similarly in terms of their trajectories. This is true for both the estimations using final 

data and those using real-time data. The only exception is the estimation of the output gap based on the 

quadratic trend. However, despite the comovements observed in the different series, the magnitude of the 

changes varies considerably from one method to the other. In the same way, the different methods produce 

a wide range of output gap estimates. The average difference between the highest and lowest estimates is 

6% with final data and 12% with real-time data. The order of magnitude of these differences is 

considerable since they are quite superior to the difference between the highest and the lowest points of 

the business cycle within the period considered (approximately 5% for both types of data and for a 

majority of filters). The average dispersion that exists between methods is also important and reaches 

2.3% when using final data and 4.3% in the case of real-time data. Another important feature of the 

estimations using final data is that these tend to be clustered between the fourth quarter of 2004 and the 

third quarter of 2005. In addition, these estimates remain relatively close towards the end of the period of 

analysis with the exception of the output gap based on the quadratic trend. This latter feature is not 

observed with real-time estimates. To have a qualitative idea of the importance of data revision, figure 3 

shows the difference between the estimates with final data and those with real-time data for the five 

detrending methods. This difference represents the total revision in the output gap. 

 

 



 

Figure 3: Total Revisions in the Output Gap for the Chilean Economy 
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As shown by figure 3, the magnitude of the revisions is also important and differs substantially 

between the filters used (the average dispersion of revisions between different measures is 2.8%). The 

most extreme cases are observed in early 2004, where revisions of the HP, CF and quadratic trend 

methods were the most important in the entire sample. This is due to the fact that these filters do not 

adequately capture the turning point of the output gap in that period (see figures 1 and 2) and, therefore, 

suggests that real-time estimates were imprecise. This is not the case for the BK and Clark methods, which 

in the same point in time observe practically null revisions. On the contrary, the most important revisions 

for these last two filters were observed at the beginning of the sample. To better understand the 

differences between the estimates with final data and those with real-time data, we present descriptive 

statistics of the output gap estimates and of the revisions for the five filters in tables 2 and 3, respectively. 

Figure 4 shows the time behavior of all these estimates. 

 

 

 

 

 

 

 

 



 

Table 2: Descriptive Statistics of the Output Gap Measures calculated 

with Final and Real-Time Data 

 

 Mean Abs. Value Std Min Max Corr 

Hodrick-Prescott 
Final Estimates -0.003 0.010 0.011 -0.021 0.018 1.000 
Real-Time Estimates 0.002 0.012 0.014 -0.023 0.030 0.611 

Baxter-King 
Final Estimates 0.002 0.006 0.007 -0.012 0.016 1.000 
Real-Time Estimates -0.005 0.007 0.007 -0.020 0.007 0.561 

Christiano-Fitzgerald 
Final Estimates 0.002 0.007 0.008 -0.013 0.012 1.000 
Real-Time Estimates 0.015 0.015 0.007 0.000 0.029 0.203 

Quadratic-Trend 
Final Estimates -0.012 0.028 0.029 -0.050 0.045 1.000 
Real-Time Estimates 0.001 0.031 0.035 -0.046 0.051 0.841 

Clark 
Final Estimates -0.010 0.019 0.020 -0.041 0.018 1.000 

Real-Time Estimates -0.011 0.020 0.020 -0.039 0.019 0.988 

 

Table 3: Descriptive Statistics of the Total Revisions in the Output Gap 

 

  Mean Abs. Value Std Min Max AR 

Hodrick-Prescott -0.005 0.010 0.011 -0.024 0.018 0.700 
Baxter-King 0.007 0.007 0.007 -0.002 0.019 0.875 
Christiano-Fitzgerald -0.013 0.013 0.009 -0.029 0.001 0.939 
Quadratic-Trend -0.013 0.020 0.019 -0.039 0.032 0.842 

Clark  0.000 0.002 0.003 -0.006 0.006 0.473 

 

Comparing the results in tables 2 and 3 we observe that, on average, total revisions are similar to or 

greater than the output gap estimates for all filters used.20 Something alike occurs with the average gap in 

absolute value. This confirms the previous discussion since the revisions are always significant in 

magnitude regardless whether the economy is in a recession or expanding. With respect to the minimum 

and maximum points of the cycle, the estimations with final and real time data coincide with the minimum 

values of the gap only in the case of Clarks method (see figure 4; panel e), while with the BK filters, 

quadratic trend, and Clark’s method the estimations coincide with the maximum values (see figure 4; 

panels b, d, e). This suggests that most of the methods fail to identify the magnitude of the recessive 

periods. The last column of table 2 shows the correlation coefficients between final data estimates and 

                                                           
20 This result is qualitatively similar to that found in Orphanides and van Norden (1999) for the US economy. 



 

real-time data estimates for each filter. The highest correlations are observed for the Clark and the 

quadratic trend methods (over 0.8), while the CF and BK filters produce the lowest correlations. Another 

important element is the degree of persistence of the revisions since as the revisions persist over time, the 

discrepancies between the final and real-time estimates tend to remain or disappear slowly in time. The 

last column of table 3 reports the estimated first order autocorrelation coefficients for total revisions which 

indicate, with the exception of the Clark filter, that these revisions are highly persistent. 

The question yet to be responded is whether the measures of the output gap constructed with real-time 

data are reliable.21 Since the different methods vary substantially with respect to the size of the cyclical 

component, it is more convenient to compare the reliability of the real-time estimates using independent 

scale measures. Table 4 presents the reliability measures used by Orphanides and van Norden (1999). 

 

Table 4: Descriptive Statistics of the Reliability Measures for Alternative 

Different Filters 

 

  Corr N/S Opsign Xsize 

Hodrick-Prescott 0.611 1.055 0.286 0.500 

Baxter-King 0.560 0.902 0.321 0.536 

Christiano-Fitzgerald 0.203 1.229 0.393 0.750 

Quadratic-Trend 0.841 0.650 0.071 0.214 

Clark 0.988 0.156 0.000 0.036 

 
 

 

 

 

 

 

 

 

 

 

 

                                                           
21 We seek reliability measures as it relates to quantifying the difference between the final estimates and the real-time 
estimates. Hence, it does not indicate anything regarding the reliability of each method as tools for the estimation of 
the “true” output gap (Bernhardsen et.al., 2005). 



 

Figure 4: Estimation of the Output Gap and Total Revisions using Final and Real-Time Data for the 

Five Alternative Filters 
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(c) Christiano-Fitzgerald (d) Quadratic-Trend 
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(e) Clark 
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In the first column of table 4 we present the correlation between final and real-time series for each 

detrending method. The other three indicators in table 4 measure in different ways the relative importance 

of the revisions (the ideal value for these three indicators is zero). The N/S indicator is the ratio of the 

standard deviation of the revision to that of the final estimate of the output gap and approximates the 

noise-to-signal ratio. The OPSING indicator shows the frequency with which the real-time estimates of 

the output gap reveals a different sign when compared to the final estimates. Finally, the XSIZE indicator 

shows the frequency with which the absolute value of the revision exceeds the absolute value of the final 

estimates of the output gap. The Clark and the quadratic trend methods reveal smaller noise levels, smaller 

frequencies in observations with errors in the sign and with significant size in the revision. On the other 

hand, the CF filter shows the poorest performance under these reliability measures. 

Summing up, results above show that, in general, revisions of the output gap seem to be important and 

persistent for the period considered, and that the correlations between the final and real-time estimates of 

the output gap are relatively low. Nonetheless, the Clark method brings the most favorable statistics. The 

analysis also reveals that this later method is the most reliable with real-time data.22 Comparing our results 

with those of Orphanides and van Norden (1999) for the US economy, we find that in general the different 

reliability measures produce similar values. In general, these results imply that caution and judgment 

should be taken when assessing the level of the real-time estimates of the output gap, at least with the 

methodologies utilized here. Additionally, our results should be considered a lower bound to measurement 

errors that could be present in the output gap estimates because comparisons are made with respect to a 

measure of the final output gap that could contain unrevised data. 

 

4. Additive and multiplicative uncertainty 
To focus on the empirical importance of additive and multiplicative uncertainty we resort to data for 

the 1990 to 2006 period but place some emphasis on the sub-sample 1999-2006, the full-fledged inflation 

targeting period. We adopt a slightly modified version of the forward-looking specification of Svensson 

(2000) and Al-Eyd and Karasulu (2006) to estimate the behavioral equations of a small open economy, as 

is the case of Chile (i.e, the aggregate demand, the Phillips curve and the real uncovered interest parity 

condition). Like in Zhang and Semmler (2005), we do not include a monetary policy rule in this 

specification given that the objective of the paper is to analyze the primary sources of uncertainty faced by 

                                                           
22 Additionally, as a robustness test, we calculated the reliability measures in real time utilizing output gap 
estimations with non-seasonally adjusted data and seasonally adjusted data through the seasonal dummy variables. 
Conclusions do not change (for details on the results see appendix A). This exercise was done to verify whether the 
re-estimation of the seasonal factors, which is not present in the non-seasonally adjusted data and is constant when 
we use seasonal dummy variables, substantially influences on results. 



 

the Central Bank, which is associated to the structure and behavior of the economy.23 To capture the 

sources of uncertainty, we estimate the model with time-varying parameters, assuming that shocks have 

state-dependent variances (two states) and that their behavior follows a first order Markov process. This 

strategy allows us to decompose the conditional variance of the forecast error into two components: one 

associated with the parameters (multiplicative uncertainty) and the other attributed to the shocks in the 

model (additive uncertainty). 

 

4.1 Methodological issues 

The existing literature that models additive and multiplicative uncertainty typically use models that 

explicitly consider stochastic volatility potentially present in the errors (heteroscedasticity) and time-

varying parameters (Zhang and Semmler, 2005). Among papers that have explicitly dealt with parameter 

uncertainty we find Cogley and Sargent (2001), who studied the inflation dynamics of the United States in 

the post World War II period using a Bayesian VAR with time-varying parameters; and Semmler et.al. 

(2005), who estimated the Phillips curve and a monetary policy Taylor rule for the Euro Zone also with 

time-varying parameters. Both authors found that there are substantial changes in the model parameters. 

However, even though the evidence encountered when using models with time-varying parameters 

suggests the existence of important degrees of uncertainty, in the modeling process this analysis cannot be 

separated from additive uncertainty. When additive uncertainty is not considered, volatility in the 

parameters could be exaggerated when it is indeed captured (Sims, 2001). An example can be found in 

Sims and Zha (2006), who study regime changes in the US economy dynamics and find, contrary to 

Cogley and Sargent (2001), evidence in favor of stable model dynamics but unstable variance of the 

disturbances. Thus, Cogley and Sargent (2005) modify their original model considering time-varying 

parameters and stochastic volatility and also find the existence of regime changes. More recent examples 

of the estimation of Taylor rules with time-varying parameters and stochastic volatility can be found in 

Kim and Nelson (2006) and Zampolli (2006).  

To incorporate both types of uncertainty, additive and multiplicative, we follow the Zhang and 

Semmler (2005) approach. We use a model with time-varying parameters and shocks that have state-

dependent variance. Contrary to Cogley and Sargent (2005), who assume that the variance of the shocks 

changes each period, we assume that the variance has only two states (high and low) and follows a 

Markov process, as in Sims and Zha (2006).24 This specification, besides having the advantage of dealing 

                                                           
23 Moreover, the optimal monetary policy feedback parameters will depend on the structure and behavior of the 
economy. 
24 These authors assume that the variance of the regression errors follow a Markov process with three states. 



 

with both types of uncertainty in the same model, allows the decomposition of the variance of the forecast 

error into two components: one associated to additive uncertainty and the other linked to multiplicative 

uncertainty (Kim, 1993). 

The specification we use for the behavioral equations of the economy is a slightly modified version of 

the specification of Svensson (2000) and Al-Eyd and Karasulu (2006); it is a neo-Keynesian version for a 

small open economy comprised of the IS curve (aggregate demand), the short-run supply curve (Phillip’s 

curve), and the real uncovered interest parity condition (UIP). As opposed to these authors, we allow 

deviations of the UIP because of imperfections in the capital markets, capital controls, speculative 

bubbles, etc. As it is usual in the modern Dynamic Stochastic General Equilibrium (DSGE) literature, the 

deviations in the UIP are modeled introducing a backward-looking component in the original specification 

of Svensson (2000) and Al-Eyd and Karasulu (2006). Thus, the behavioral equations of the economy can 

be written as: 

 

 1 1 2 1 3 1 4 1[ ] d

t t t t t t t t t t ty y E y r qθ θ θ θ ε− + − −= + + + +  (5) 

 1 1 2 1 3 1 4[ ] s

t t t t t t t t t t tE y qπ ϕ π ϕ π ϕ ϕ ε− + −= + + + +  (6) 

 1 1 2 3 1[ ] ( )f

t t t t t t t t t tq E q r r qγ γ γ υ+ −= + − + +  (7) 

 

where ty  represents the real output gap, tπ  is the inflation rate, tr  is the short-term real interest rate, 

tq  is the real exchange rate and f

rr  is the foreign real interest rate, observed in period t . On the other 

hand, ][ 1+tt yE , ][ 1+ttE π  and ][ 1+tt qE  represent the expectations for period 1+t  of the output gap, the 

inflation rate, and the real exchange rate, respectively, conditional on the information available at period t  

( tE  is the expectations operator). The terms  d

tε , s

tε  and tυ  are whose variances are state-dependent. The 

first two are aggregate demand and supply shocks, respectively, and the third one is associated with the 

exchange market. In  words of Al-Eyd and Karasulu (2006), this last disturbance term could be interpreted 

as a risk premium that captures the effects of the unobservables, such as the exchange market sentiments. 

Finally, itθ  (with 4,3,2,1=i ), itϕ  (with 4,3,2,1=i ) and itγ  (with 1,2,3i = ) are the time-varying 

parameters. 

Two interesting observations can be made to this specification. First, the explicit inclusion of the 

exchange rate in the modeling process is relevant for an economy such as Chile whose Central Bank uses 

inflation targeting as a monetary policy framework. Compared to the closed economy models, an 



 

important additional transmission channel of monetary policy is introduced and the external shock effect 

on the domestic economy is incorporated. Second, the specification incorporates both forward-looking and 

backward-looking terms (hybrid model), for which there is empirical backing at least in the case of the 

Phillips curve (Caputo et.al., 2006, and Céspedes et.al., 2005). Forward-looking terms can be justified by 

appealing to sticky price models of the Calvo (1983) type, whose wage (price) setting mechanism is built-

in in a fraction of Chilean labor contracts.  

However, the inclusion of forward-looking components brings the problem of how they are measured 

or approximated, a choice that can have important implications for estimation properties (consistency). 

The literature has proposed various ways to deal with these variables and the most appropriate estimation 

techniques used in each case. An obvious option is to use ex-post data, that is, approximate the 

expectation variables with their respective observed future values. Even though this option is operationally 

simple, it generates an endogeneity bias in the estimation of the model parameters, which leads to 

inconsistent estimates (Kim and Nelson, 2006).25 26 

Galí and Gertler (1999), Roberts (2001) and Galí et.al (2005) proposed a methodology to deal with the 

endogeneity problem. It is based on using ex-post data for the forward-looking component of the model 

and estimating by the Generalized Moments Method (GMM) to instrumentalize the expectations. The use 

of the GMM techniques to estimate the Phillips curve, as well as the forward-looking Taylor rules is very 

common in the literature27. Along these lines, Kim (2004, 2006) recently proposed the application of 

instrumental variables for the estimation with endogenous regressors using time-varying parameter models 

and regime changes. More specifically, this methodological proposal solves the endogeneity problem 

applying the Kalman filter in a two-stage Heckman (1976) estimation.28 The specification of the 

behavioral equations in (5) to (7) under Kim’s (2004, 2006) methodology can be rewritten in a state-space 

form as follows: 

 

                                                           
25 This is relevant given that one of the objectives of the article is to study precisely parameter uncertainty. 
26 Another straight-forward option (Roberts, 1995), is to use data from expectation surveys to construct a proxy 
variable of expectations. This alternative, however, has two potential problems: the first one is associated to the 
availability of long period time series for the estimation; and the second one is that in general surveys are measured 
with error. 
27 For the case of Chile, there are various examples of papers applying this methodology, among which we find: 
Céspedes et.al. (2005), who estimated a hybrid Phillips curve, and Corbo (2002), who estimated a reaction function 
for the Central Bank. 
28 A recent application of this methodology used to estimate a forward-looking Taylor rule with ex-post data for the 
United States can be found in Kim and Nelson (2006). 
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where tx  represents a vector of state variables ( , ,t t ty qπ  for the aggregate demand, the Phillip’s 

Curve, and the UIP, respectively), tw  is the vector of explanatory variables which are assumed to be 

exogenous or predetermined ( 1 1 1, ,t t ty r q− − −  for the aggregate demand, 1 1, ,t t ty qπ − −  for the Phillip’s Curve 

and 1,f

t t tr r q −−  in the case of the UIP),  tv  is a vector of endogenous explanatory variables, which are 

correlated with the errors of the model 
tε  ( 1 1 1, ,t t ty qπ+ + + , respectively), tZ  is a vector of instrumental 

variables, 1 2( , ) 't t tβ β β=  and tδ  is a vector of time-varying parameters and tη , tξ  and tκ  are Gaussian 

errors with a matrix of variances iQ  with κξη ,,=i , and tS  is an unobservable indicator variable witch 

is equal to 1 in the high volatility state and 0 otherwise. We assume that the variance of errors 
tε  present 

two states with transition probabilities that follow a Markov process and which are expressed as: 

pSS tt === − ]1|1Pr[ 1  and qSS tt === − ]0|0Pr[ 1 . 

Kim (2006) proposes specifying the endogeneity in the model assuming that the correlation between 

the error term tε  and the standardized forecast error associated with the endogenous variables *
tξ  (i.e., the 

prediction error associated with the rational expectations of the agents) is constant and equal to ρ . On the 

other hand, and considering that the variance of the errors is state-dependent, Kim (2004) suggests that 

such correlation will also be state-dependent. Thus, the error of the model can be rewritten as 

tSSSSStt ttttt
ωσρρσρξε εε ,,

* '1' −+=  with )1,0(~ Ntω . Using this last expression we can write the 

first equation of model (8) as: 

 

 *
1 2 , ,' ' ' 1 '        ~ (0,1)

t t t t tt t t t t t S S S S S t tx w v Nε εβ β ξ ρ σ ρ ρ σ ω ω= + + + −  (9) 

 

where tS S
t

)( 010 ρρρρ −+=  and tS  is the same indicator variable defined above. In this last 

equation the error of the model is independent of tv  and of *
tξ . Hence, the estimation generates 



 

parameters that are consistent. For the estimation, Kim (2004, 2006) proposes the following two-stage 

procedure. The first stage consists in estimating the model that instrumentalizes the endogenous variables 

using the maximum log-likelihood method based on the forecast of the error and the conventional Kalman 

filter, that is: 
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Then the standardized forecast error of 
tv  is calculated as )'( 1|

2/1
1|,

*
−

−
− −= ttttttt ZvQ δξ ξ  for all 

Tt ,...,2,1= . The second stage consists in using the forecast error calculated previously to estimate the 

following model using maximum log-likelihood techniques that combine the use of the Kalman filter and 

the EM algorithm proposed by Hamilton (1989, 1990)29: 
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Finally, the same author, in a previous paper (Kim, 1993)30 suggests a procedure, using the estimation 

of the specification (8), to decompose the conditional variance of the forecast error ( f ) into two 

components: 1f , the conditional variance due to changes (lack of knowledge) in the model parameters, or 

multiplicative uncertainty, and 2f , the conditional variance given the heteroscedasticity in the error term, 

or additive uncertainty. In this procedure, the Kim exploits the informational structure of the model related 

                                                           
29 The estimation algorithm is presented in appendixes A to D. A potential limitation of the methodology of Kim 
(2004, 2006) in the estimation of the behavioral equations of the economy is that he assumes that the shocks 
associated to each equation are independent from each other, and therefore, does not take advantage of the 
information contained in the correlations that could exist between each other (that is, common states). In other 
words, the methodology permits the estimation of each equation separately and, therefore, the different states of the 
shocks will not necessarily coincide for the three equations. As a matter of fact, Zhang and Semmler (2005) find very 
different occurrence probabilities for each state of the shocks depending on whether they are dealing with the 
aggregate demand or the Phillips curve, indicating that the states in the model do not coincide in the same time 
period. 
30 In his paper, Kim (1993) identifies the sources of uncertainty and its importance associated to the process of 
monetary creation in the United States. 



 

to the probability distributions in the different states. The conditional variance due to the multiplicative 

uncertainty depends on the state in a previous period, while the conditional variance due to additive 

uncertainty depends on the state in the current period. This decomposition is quite useful since it gives us 

the percentage of the total variance of the forecast error that is caused by each source of uncertainty. 

Formally, we have:31 
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where 
1

| 1 1 | 1
0

Pr[ | ] i

t t t t t t

i

S iβ ψ β− − −
=

= =∑ɶ  and i

ttP 1| −  is the variance-covariance matrix of 
i

tt 1| −β  at state i . 

 

4.2. Results 
To estimate (8) we use quarterly data for the period defined from the first quarter of 1990 to the last 

quarter of 2006. The output gap, 
ty , is the difference between the observed GDP and its trend, calculated 

using the HP filter. We use the HP filter since it is one of the most utilized in the literature and allows us 

to compare our results with those of other papers that estimate behavioral equations for Chile. Even 

though the Clark filter behaves best with real-time data, according to the results in the previous section, 

this does not imply that it is the best filter to estimate the “true” output trend. Additionally, given that the 

output series ends in 2006, our measure of the output gap is that which we consider as “final”. Thus, the 

uncertainty associated with data revisions is not included in the types of uncertainty analyzed in this 

section32. On the other hand, the quarterly inflation rate tπ  is measured as the quarterly variation of the 

underlying consumer price index (CPIX).33 As in Céspedes et.al. (2005), we use the CPI variation instead 

of the implicit deflator variation of the GDP since the latter, for the case of Chile, is measured with 

considerable noise and is strongly influenced by the variations in the terms of trade. Also, the Central 

Bank’s inflation target is expressed in terms of CPI variations. In the case of the real exchange rate, tq , 

we chose the bilateral exchange rate index with the United States. Finally, the foreign and domestic short-

                                                           
31 For details on the formal derivation of the decomposition of the conditional variance of the forecast error see Kim 
and Nelson (1999). 
32 The way in detrending is made may have effects on the estimations. Thus, we run a robustness analysis below. 
33 We chose the underlying index to avoid the influence of the regulated prices and of those that show significant 
variations. 



 

term interest rates, 
tr  and 

f

tr , are defined as the monetary policy rates of Chile and the United States, 

respectively. All the previous data were obtained from the Central Bank of Chile database. Table 5 shows 

the parameters estimated using Heckman’s two-stage procedure detailed in Kim (2004, 2006).34 The 

parameters presented in this table are not structural parameters of the model. 

 

Table 5: Estimation of the Behavioral Equations   

 

Aggregate Demand   Phillips Curve   Real Uncovered Interest Parity 

Param. Estimated S.D.  Param. Estimated S.D.  Param. Estimated S.D. 

p  0.6571 0.5267   p  0.6639 1.5101   p  
0.9479 3.2325 

q  0.6586 0.0644   q  0.8475 0.0501   q  
1.0000 0.0001 

θησ
1
 0.0697 0.2565   φησ

1
 2.4407 1.0338   γησ

1
 

0.0000 0.0026 

θησ
2
 0.0797 0.2441   φησ

2
 1.2700 0.8449   γησ

2
 

0.0007 2.3801 

θησ
3
 0.2942 0.2540   φησ

3
 0.0000 0.0001   

3
γη

σ  
0.0000 0.0029 

θησ
4
 0.0002 0.0002   φησ

4
 1.6518 0.9554      

0,εσ  0.0570 0.0098   0,εσ  0.0329 0.0084   0,υσ  
2.4467 0.2295 

1,εσ  0.4806 0.2347   1,εσ  0.5497 1.2718   1,υσ  
3.7539 0.1850 

0ρ  0.5123 0.1594   0ρ  0.0010 0.2473   0ρ  
0.4924 0.2057 

1ρ  0.6324 0.1892   1ρ  0.4705 0.1446   1ρ  1.0000 0.2750 

Loglike -64.026   Loglike -80.389   Loglike -109.64 

 

There are two interesting results that we would like to highlight. The first one is that variances of 

shocks confirm that there are two states in the three behavioral equations: a high volatility state and a low 

volatility state. For the aggregate demand estimations, the variance of shocks in the high volatility state is 

substantially greater than in the low volatility state (0.48 vs. 0.05). The difference between these variances 

for the Phillips curve is just as large (0.54 and 0.03 in the high and low volatility states, respectively). 

Similar results are obtained in the case of the UIP (3.75 vs. 2.45), even though the magnitude of the 

difference is not as large as in the previous two cases. Additionally, all the variances, except that 

                                                           
34 In the application of the Kalman filter for the evaluation of the likelihood function we eliminated 12 observations 
at the beginning of the sample due to the presence of non-stationary time series in the model; see Kim and Nelson 
(1999). 



 

associated with the high volatility state of the Phillips curve, are statistically significant. However, even 

though the difference between the variances of shocks for the UIP is not significant, the size of the 

variances is considerable compared to those found for the aggregate demand and the Phillips curve. The 

second element refers to the existing correlation between the shocks of the behavioral equations and the 

errors in the expectations of economic agents that also vary substantially with the states. In particular, the 

results suggest that in high volatility states of the shocks, agents tend to commit crucial errors in their 

forecasts. This fact is particularly true for the Phillips curve, where such correlation varies between 0.001 

and 0.47 for both states, and for the real uncovered interest parity condition (0.49 vs. 1). In the case of 

aggregate demand there is also an important correlation in the high volatility state. Nonetheless, the 

difference between the correlations of both states is less evident than in the previous two cases. Also, the 

correlation coefficients are highly significant for all cases except for the one associated to the low 

volatility state of the shocks in the Phillips curve. 

Figures 5 to 7 show the behavior over time of the structural parameters of the equations estimated in 

table 5. There are two series in each figure, which correspond to the relevant values of the parameters in 

each possible state of shocks in the model (i.e., high volatility and low volatility). In the case of the 

aggregate demand parameters (figure 5), there are two clearly defined periods. The first period, which 

ends in 1999, is marked by high instability and substantial differences between the parameters of the two 

states associated with the demand shocks. During this period, the average probability that the economy 

was in a high volatility state was 0.82 and the macroeconomic context was characterized by a substantial 

range of variation in the annual GDP growth rate (from 15% to below 6%) and by high inflation rates. The 

second period (from 1999 onward) saw a significant reduction in instability, as well as in the differences 

of the parameters with respect to the state of the shocks, with the exception of the parameter associated 

with the output gap’s degree of persistence. The average probability that the economy was in a high-

volatility state was only 0.10. These results suggest that the multiplicative uncertainty associated with the 

aggregate demand tends to decline over time. Also, the degree of persistence of the output gap (
t,1θ ) and 

the response of this to changes in relative prices ( t,4θ ) have declined over time, while the contrary has 

occurred with the degree of response to expectations ( t,2θ ) and the monetary policy interest rate ( t,3θ ). 

This is consistent with the logic of the inflation targeting framework.35 

Parameters of the Phillips curve (figure 6) show a significant dependence on the state of the supply 

shocks. In particular, during the periods of high volatility, parameters tend to show high instability and in 

periods of low volatility they are much more stable. As opposed to the results of the aggregate demand 

                                                           
35 This behavior intensified as of 1999 with the establishment of the full-fledged inflation targeting framework. 



 

parameters, this dependence was maintained throughout the entire period. Hence, the state of shocks is 

key in explaining greater or lower degrees of uncertainty in the Phillips curve parameters. During most of 

the 90s, a high volatility state of shocks prevailed (with an average probability of 0.9) and therefore the 

relevant parameters in that period were those of the high volatility state, while in the most recent period 

(1999 onward) the average probability was only 0.06. Figure 6 also reveals that when the economy 

experiences a relative calm period with respect to the supply shocks,  persistence of the inflation rate ( t,1φ ) 

and the importance of expectations in the determination of the inflation rate ( t,2φ ) are greater. This 

happens towards the end of the period of analysis. The trend is lower in the case of the response of 

inflation to the business cycle ( t,3φ ) and to variations in the real exchange rate ( t,4φ ). Contrary to this, 

when the supply shocks are highly volatile there is no a definite trend for the Phillips curve parameters.  

Finally, parameters associated to the UIP (figure 7) show substantial differences depending on the 

state of shocks. There is no defined tendency in any of the cases. Moreover, in the entire period of analysis 

they are more stable in the low volatility state than in the high volatility state. In this latter state there are 

two defined periods: one that covers the decade of the 90s, during which the parameters showed greater 

stability, and another, from the year 2000 onward, in which the parameters increased substantially their 

volatility, as well as their magnitude in comparison with the first period. This could be explained by the 

adoption of a completely flexible exchange rate scheme in 1999. Also, the estimations suggest that the 

economy was experiencing a high volatility state of shocks in the entire period since the occurrence 

probability of this state did not fall below 0.7 at any time. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5: Time-Varying Parameters Estimated for the Aggregate Demand 
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Figure 6: Time-Varying Parameters Estimated for the Phillips Curve 
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Figure 7: Time-Varying Parameters Estimated for the Real Uncovered Interest Parity  
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Based on the estimated parameters presented in table 5, we calculated the decomposition of the 

conditional variance of the forecast error. Figure 8 shows the decomposition for the set of equations 

associated with aggregate demand. Total uncertainty in the output gap (aggregate demand) equation has 

been relatively high throughout the entire period (the output gap is measured as the percentage deviation 

of output with respect to its trend). On average the forecast error variance was 0.021, of which 87.6% was 

explained by uncertainty in the demand shocks and 12.4% by instabilities in the model parameters (see 

table 6). Also, total uncertainty revealed significant spikes (almost twice the average) in the mid 90s and 



 

during the period of 1998-1999. However, after the year 2000, total uncertainty declined on average in a 

little over 30% with respect to the average observed between 1993 and 1999. Similar results are obtained 

with the contributions of additive and multiplicative uncertainty to total uncertainty. While parameter 

instability contributed approximately 15% to total uncertainty throughout the 90s, this contribution 

decreased to less than 10% in the period subsequent to the year 2000. 

 

Figure 8: Decomposition of the Conditional Variance of the Forecast Error of the Output Gap 
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Table 6: Decomposition of the Conditional Variance of the Forecast Error  

of the Output Gap 

 

  Conditional Variance of the Forecast Error   Percentage 
  TVP MARKOV TOTAL   TVP MARKOV 
              
1993-1999 0.00407 0.02173 0.02580   15.7% 84.3% 
2000-2006 0.00160 0.01535 0.01696   9.3% 90.7% 
Total Sample 0.00279 0.01842 0.02121  12.4% 87.6% 

 

The decomposition of the conditional variance of the forecast error for the inflation rate (Phillips 

curve) equation is shown in figure 9. Results in this case are similar to those found for the output gap with 

respect to magnitude and behavior (principally for the decade of the 90s). Total uncertainty associated to 



 

the inflation rate has been on average 0.015 for the entire period, of which 69.9% is explained by 

uncertainty in the supply shocks and 30.1% by parameter instability (see table 7). The two recurrent 

periods of high uncertainty, as in the case of the output gap, are in the mid 90s and during 1998-1999, 

where uncertainty reached levels more than twice the observed average for the entire period. Even though 

additive uncertainty explains a largest share of total uncertainty in the entire period, for a brief episode 

during the Asian crises the contribution pattern is reverted and it is uncertainty in the parameters that is 

most relevant. Total inflation uncertainty, as in the case of the output gap, has decreased over time, while 

the contribution of additive uncertainty increased with time. 

 

Figure 9: Decomposition of the Conditional Variance of the Forecast Error of the Inflation Rate 
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Table 7: Decomposition of the Conditional Variance of the Forecast Error 

 of the Inflation Rate 

 

  Conditional Variance of the Forecast Error   Percentage 
  TVP MARKOV TOTAL   TVP MARKOV 
              
1993-1999 0.00852 0.01235 0.02087  37.5% 62.5% 
2000-2006 0.00260 0.00818 0.01078  23.2% 76.8% 

Total Sample 0.00545 0.01019 0.01563  30.1% 69.9% 

 



 

Finally, figure 10 presents the decomposition of the conditional variance of the forecast error 

associated with the real exchange rate equation. Total uncertainty, measured by the variance, has been 

quite important throughout the period (approximately 4.1 on average) and basically explained (92%) by 

uncertainty in the shocks of the UIP or uncertainty in the risk premium that captures the effects of the 

unobservables of the exchange market sentiments. Also, total uncertainty has not shown a defined pattern 

over time (see table 8).  

 

Figure 10: Decomposition of the Conditional Variance of the Forecast Error of the  

Real Exchange Rate 
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Table 8: Decomposition of the Conditional Variance of the Forecast Error of the  

Real Exchange Rate 

 

  Conditional Variance of the Forecast Error   Percentage 
  TVP MARKOV TOTAL   TVP MARKOV 
              
1993-1999 0.32816 3.73569 4.06385  8.8% 92.3% 
2000-2006 0.32701 3.72663 4.05364  8.8% 92.1% 
Total Sample 0.32756 3.73099 4.05855  8.8% 92.2% 

 



 

Summing up, overall uncertainty is dominated by additive uncertainty in all three sets of equations 

(output gap, inflation and real exchange rate). Moreover, results of the estimations of the behavioral 

equations (aggregate demand and aggregate supply) suggest that the variance of shocks is state-dependent 

and that such states could be considered as high volatility periods in the shocks and low volatility periods. 

For these two sets of equations, total uncertainty has consistently declined during the current decade, 

bringing a rather long period of stability (so far) that coincides with the establishment of a full-fledged 

inflation targeting framework for the conduct of the Chilean monetary policy and an explicit rule for 

setting fiscal policy. On the other hand, in the 90s, total uncertainty showed substantial increases in the 

output gap and the inflation rate, identifying clearly the two states in the variance of shocks. This also 

indicates that during these periods the Chilean economy experienced a high volatility state of shocks. 

Finally, uncertainty in the real exchange rate is basically explained by the exchange market shocks and has 

not shown a decreasing pattern in time as in the case of inflation and the output gap. 

We use the Bootstrap methodology to verify whether the differences between the variance of the 

forecast error due to additive uncertainty and that due to multiplicative uncertainty are statistically 

significant and whether the assumption of Gaussian errors in the estimation introduces important biases.36 

The most important findings of this exercise can be summarized as follows (for details on the results see 

appendix E): (1) even though the bootstrap average estimations and those based on the assumption of 

Gaussian errors differ, the bias does not seem to be important in magnitude; and (2) the bootstrap 

estimations confirm the observed trends in total uncertainty (figures 8 to 10), as well as the statistical 

significance of the differences in the decomposition of the variance. 

To conclude this subsection we present a robustness analysis for the decomposition of the forecast 

error variance. In section 3 we found evidence of important differences in the estimation of the output gap 

when we consider five output detrending methods. Given that the aggregate demand and the Phillips curve 

equations contemplate an output gap measure for its estimation, measurement errors in the estimation of 

this variable will be part of the additive and multiplicative uncertainty without any possibility of 

discrimination.37 Tables 9 and 10 show the results of the decomposition of uncertainty in its two sources, 

additive and multiplicative, for these two equations and for each of the five filters used in section 3. The 

                                                           
36 The bootstrap re-sampling was done following the methodologies of Stoffer and Wall (1991) and Psaradakis 
(1998) for state-space models using the Kalman filter and for the sampling of errors with Markov regime changes, 
respectively. 
37 Recall that when the measurement error is associated to the dependent variable, as in the case of the aggregate 
demand, the estimated parameters will still be unbiased and consistent. The measurement error will be captured by 
the regression error. On the other hand, when the measurement error is associated with one or more independent 
variables, as is the case of the Phillips curve, the parameters will be biased and inconsistent. Even though the 
measurement error affects in different ways depending on the type of variable that it affects, this could have 
implications on the decomposition of uncertainty (through the error or the magnitude of the parameters).  



 

first row of both tables show the decomposition presented in the analysis of this subsection, where the gap 

was calculated using the HP filter, and hence, represents our benchmark. In the case of the output gap 

(table 9) it is observed that in general total uncertainty is quite similar for all filters and that differences, as 

is expected, arises in the contribution of each type of uncertainty to total uncertainty. However, all 

detrending methods keep additive uncertainty as the most important source of uncertainty (its contribution 

varies from a minimum of 84.7% with the BK filter and a maximum of 90% with the Clark filter). With 

respect to the inflation rate (table 10) the difference between filters can be observed in both the estimation 

of total uncertainty and the contributions of each type of uncertainty to total uncertainty. In the former 

case, the estimations are in the range of 0.01374 and 0.02274 calculated using the BK filter and the 

quadratic trend, respectively, while the contributions of the additive uncertainty vary between 66.6% 

obtained using the BK filter and 73.5% using the Clark filter. It is important to highlight that in this case 

additive uncertainty also explains total uncertainty of inflation, regardless of the method considered for the 

estimation of the output gap. These results strengthen the conclusions mentioned before regarding the 

importance of additive uncertainty for the Chilean economy.  

 

Table 9: Robustness Analysis for the Decomposition of the Conditional Variance of the Forecast 

Error of the Output Gap 

 

  Conditional Variance of the Forecast Error   Percentage 
  TVP MARKOV TOTAL   TVP MARKOV 
Hodrick-Prescott 0.00279 0.01842 0.02121  13.2% 86.8% 
Baxter-King 0.00314 0.01734 0.02048  15.3% 84.7% 
Christiano-Fitzgerald 0.00304 0.01733 0.02037  14.9% 85.1% 
Quadratic-Trend 0.00287 0.01901 0.02189  13.1% 86.9% 
Clark 0.00200 0.01803 0.02003  10.0% 90.0% 

 

Table 10: Robustness Analysis for the Decomposition of the Conditional Variance of the Forecast 

Error of the Inflation Rate 

 

  Conditional Variance of the Forecast Error   Percentage 
  TVP MARKOV TOTAL   TVP MARKOV 
Hodrick-Prescott 0.00545 0.01019 0.01563  34.8% 65.2% 
Baxter-King 0.00385 0.00988 0.01374  28.0% 72.0% 
Christiano-Fitzgerald 0.00393 0.01006 0.01398  28.1% 71.9% 
Quadratic-Trend 0.00761 0.01514 0.02274  33.4% 66.6% 
Clark 0.00504 0.01397 0.01901  26.5% 73.5% 

 

 



 

5. Final Remarks 
Macroeconomic policy in Chile is currently of world class quality. The Central Bank of Chile has 

been operating within a full-fledged inflation targeting framework since 1999-2000 while fiscal policy has 

been bounded by an explicit budget rule that takes away pro-cyclical influences since 2001. As a result, 

inflation has remained within the inflation target range most of the time and economic activity has grown 

steadily between 2 and 6% annually (with no recessions nor booms whatsoever). This rather stable period 

also appears in our findings in the sense that overall uncertainty concerning monetary policy has declined 

in the first seven years of the current decade. It has also implied a greater role for uncertainty attributed to 

shocks (and less to uncertainty linked to unstable parameters) in both the cases of inflation and the output 

gap, as it could be expected. However, the prominence of additive uncertainty is a hallmark for the entire 

period, including both the tranquil first decade of the 21st century and the more volatile 90s. This means 

that investigating the (stochastic) nature of shocks affecting the Chilean economy should be high in the 

research agenda of the Central Bank. 

The full-fledged inflation targeting scheme applied since 1999 came with a floating exchange rate and 

no explicit or implicit target for the exchange rate (as it was loosely the case during most of the 90s). This 

important policy innovation has left the exchange rate as the main adjustment variable – a sort of fuse –, a 

feature that shows in our results: parameters in the exchange rate equation are less stable in the current 

decade than they used to be in the 90s.  

It is important to note our findings assume that there is no model uncertainty and, thus, the only 

uncertainties relevant for the conduct of monetary policy are those in the shocks and parameters. Hence, 

they should be interpreted with caution. To analyze uncertainty in the model it could be possible to 

estimate the behavioral equations of the economy using the methodology presented in this paper but using 

different specifications. With this, it could be verified whether the decomposition of the uncertainty found 

here holds or not.38 We leave this exercise pending for future research.  

Finally, results on uncertainty about the quality and completeness of output gap data reveal that, 

among other things, using the Hodrick-Prescott filter based on real time data could be misleading. Hence, 

the Central Bank of Chile should consider a wide spectrum of filters for detrending real activity data39 and, 

more importantly, use an ample menu of proxy variables to check for the economy’s temperature when 

making its monetary policy decisions. The literature suggests monetary policy rules more “immune” to 
                                                           
38 This exercise was done only with the UIP under two specifications: the original equation of Svensson (2000) and 
Al-Eyd and Karasulu (2006) and the equation that includes the backward-looking term to allow deviations from the 
parity (presented here). We found that although the behavior of the parameters and the magnitude of total uncertainty 
change significantly, the decomposition of the uncertainty is not altered (additive uncertainty is maintained as the 
principal factor of uncertainty). 
39 And also use some alternative methodologies for estimating potential output, as it actually does,  



 

this type of uncertainty that consider, for example, output growth rates or unemployment level rates (as 

opposed to the output gap). 
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Appendix A: Robustness Test for Reliability of Real-Time Estimates 

using Non-Seasonally Adjusted Data and Seasonal Dummies. 

 

In the following tables we present the detail of the results obtained in the estimation of the output gap with 

real-time data using non-seasonally adjusted data and seasonally adjusted data through seasonal dummy 

variables.  

 

Descriptive Statistics of the Total Revisions in the Output Gap 

(Using Non-Seasonally Adjusted Data) 

 

  Mean Std Min Max AR 

Hodrick-Prescott -0.005 0.015 -0.036 0.031 0.331 
Baxter-King 0.006 0.007 -0.008 0.023 0.722 
Christiano-Fitzgerald -0.013 0.009 -0.029 0.005 0.836 
Quadratic-Trend -0.011 0.021 -0.050 0.033 0.676 

Clark 0.001 0.006 -0.014 0.010 0.023 

 

 

Descriptive Statistics of the Reliability Measures for the Alternative Distinct Filters 

(Using Non-Seasonally Adjusted Data) 

 

  Corr N/S Opsign Xsize 

Hodrick-Prescott 0.773 0.754 0.286 0.536 
Baxter-King 0.529 0.958 0.286 0.464 
Christiano-Fitzgerald 0.244 1.290 0.393 0.821 
Quadratic-Trend 0.846 0.642 0.179 0.393 

Clark 0.963 0.290 0.036 0.107 

 

 

 

 

 

 

 

 



 

Descriptive Statistics of the Total Revisions in the Output Gap 

(Using Seasonal Dummies) 

 

  Mean Std Min Max AR 

Hodrick-Prescott 0.002 0.017 -0.034 0.031 0.260 
Baxter-King 0.008 0.007 -0.002 0.019 0.874 
Christiano-Fitzgerald -0.011 0.010 -0.029 0.002 0.942 
Quadratic-Trend -0.004 0.024 -0.051 0.046 0.521 

Clark 0.005 0.007 -0.013 0.017 -0.063 

 

 

Descriptive Statistics of the Reliability Measures for the Alternative Distinct Filters 

(Using Seasonal Dummies) 

 

  Corr N/S Opsign Xsize 

Hodrick-Prescott 0.413 1.044 0.321 0.429 
Baxter-King 0.646 0.772 0.321 0.500 
Christiano-Fitzgerald 0.312 1.031 0.357 0.571 
Quadratic-Trend 0.745 0.771 0.179 0.321 

Clark 0.932 0.367 0.071 0.214 

 



 

Appendix B: Estimation based on the Kalman filter and the EM 

algorithm (Kim and Nelson, 1999) 

 

1. Kalman Filter 
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4. Loglikelihood function 
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Appendix C: Kalman filter with endogenous regressors (Kim, 2006) 
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Appendix D: Loglikelihood function (Kim and Nelson, 1999) 
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Appendix E: Bootstrap of the decomposition of the conditional 

variance of the forecast error. 

 

In the following Table we present the results obtained from the bootstrap of the decomposition of the 

conditional variance of the forecast error for the three models (mean estimation and 95% confidence 

intervals). Additionally, in the same table we present, for comparison purposes, the results found before 

under the assumption of the Gaussian errors in the estimation. The bootstrap re-sampling was done 

following the methodologies of Stoffer and Wall (1991) and Psaradakis (1998) for state-space models that 

use the Kalman filter and for the sampling of errors with Markov regime changes, respectively. 

 

Bootstrap Decomposition of the Conditional Variance of the Forecast Error 

 

  Gaussian ML   Bootstrap 

    TVP MARKOV TOTAL 
  

TVP MARKOV TOTAL 
  Mean [        CI 95%       ] Mean [        CI 95%       ] Mean [        CI 95%       ] 

Output Gap 

1993-1995 0.00424 0.02566 0.02990   0.00585 0.00572 0.00598 0.05667 0.05542 0.05790 0.06251 0.06119 0.06384 
1996-1998 0.00353 0.01881 0.02234   0.00548 0.00533 0.00564 0.02330 0.02264 0.02401 0.02878 0.02796 0.02961 

1999-2006 0.00208 0.01616 0.01824   0.00193 0.00188 0.00197 0.01807 0.01749 0.01870 0.02000 0.01938 0.02066 
Total Sample 0.00279 0.01842 0.02121   0.00342 0.00334 0.00351 0.02596 0.02524 0.02671 0.02938 0.02860 0.03020 

Inflation Rate 

1993-1995 0.01172 0.01428 0.02599   0.01204 0.01199 0.01207 0.06555 0.02062 0.15871 0.07758 0.03267 0.18638 
1996-1998 0.00612 0.01099 0.01711   0.00588 0.00586 0.00590 0.04010 0.01541 0.09914 0.04598 0.02129 0.09725 

1999-2006 0.00337 0.00869 0.01205   0.00289 0.00288 0.00291 0.02381 0.01130 0.04950 0.02670 0.01420 0.05276 
Total Sample 0.00545 0.01019 0.01563   0.00516 0.00514 0.00518 0.03479 0.01386 0.07986 0.03996 0.01903 0.08616 

Real Exchange Rate 

1993-1995 0.54577 10.54444 11.09022   0.81944 0.77777 0.86192 9.21296 9.02628 9.40670 10.03222 9.83458 10.24011 
1996-1998 0.37324 10.46275 10.83625   0.74982 0.70561 0.79519 9.20454 9.01600 9.39305 9.95438 9.75733 10.16217 
1999-2006 0.56164 10.58610 11.14777   0.91215 0.86287 0.96336 9.19028 8.99863 9.38625 10.10250 9.89786 10.31116 

Total Sample 0.51542 10.55042 11.06592   0.85864 0.81185 0.90699 9.19750 9.00743 9.39136 10.05616 9.85448 10.26448 

 




