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Abstract

Down syndrome (DS) in humans, or trisomy of autosome 21, represents the hyperdiploidy that most frequently survives gestation,
reaching an incidence of 1 in 700 live births. The condition is associated with multisystemic anomalies, including those affecting the cen-
tral nervous system (CNS), determining a characteristic mental retardation. At a neuronal level, our group and others have shown that
the condition determines marked alterations of action potential and ionic current kinetics, which may underlie abnormal processing of
information by the CNS.

Since the use of human tissue presents both practical and ethical problems, animal models of the human condition have been sought.
Murine trisomy 16 (Ts16) is a model of the human condition, due to the great homology between human autosome 21 and murine 16.
Both conditions share the same alterations of electrical membrane properties. However, the murine Ts16 condition is unviable (animals
die in utero), thus limiting the quantity of tissue procurable. To overcome this obstacle, we have established immortal cell lines from
normal and Ts16 mice with a method developed by our group that allows the stable in vitro immortalization of mammalian tissue, yield-
ing cell lines which retain the characteristics of the originating cells. Cell lines derived from cerebral cortex, hippocampus, spinal cord and
dorsal root ganglion of Ts16 animals show alterations of intracellular Ca2+ signals in response to several neurotransmitters (glutamate,
acetylcholine, and GABA). Gene overdose most likely underlies these alterations in cell function, and the identification of the relative
contribution of DS associated genes on such specific neuronal dysfunction should be investigated. This could enlighten our understand-
ing on the contribution of these genes in DS, and identify new therapeutic targets.
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1. Introduction

Aneuploidy is an adverse condition for development,
and generally results in death in utero (Epstein, 1986a).
In the case of trisomies, the disruption of homeostasis is
determined by an increased genetic material and the conse-
* Corresponding author. Tel.: +562 678 6559; fax: +562 737 2783.
E-mail address: pcaviede@med.uchile.cl (P. Caviedes).
quent effects of gene dosage excess (Epstein, 1986b). The
development of therapies has diminished the incidence of
mental retardation by causes such as trauma or connatal
infection, and has enhanced the importance of genetic
alterations in the genesis of this type of pathologies
(Oster-Granite, 1986). In humans, the best known cause
of mental retardation that most frequently survives gesta-
tion is the trisomy of chromosome 21 or Down syndrome
(DS) which occurs in 1 of every 700 live births (Reeves
et al., 1986), representing 30% of all cases of mild to severe
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mental retardation (Brousseau and Brainerd, 1928; Puls-
ifer, 1996). The condition also determines muscle hypoto-
nia, increased frequency of cardiovascular malformations,
immunological defects, a greater incidence of leukemia,
and a relation with Alzheimer’s disease represented by
the early onset of similar and typical neuropathology by
the fourth decade of life: presence of senile plaques, amy-
loid deposits, neurofibrillary tangles and gliosis (Ault
et al., 1989a; Cárdenas et al., 1999; Epstein, 1986a,b;
Reeves et al., 1986).

Human chromosome 21 has been mapped (Hattori
et al., 2000), and 127 genes and 98 possible new genes have
been identified, all of which can potentially be overexpres-
sed (Epstein, 1986a). It is currently known that for the
development of DS requires at least the presence of a def-
inite portion of the chromosome 21 (bands 21q22.1 to
qter), termed the DS region. The syndrome is clearly not
based on mutations, deletions or connatal pathology, but
in the excess of gene normal products. Nevertheless, the
specific implications to function at the cell level by this gen-
eralized overexpression remain obscure.

2. Mental retardation: A problem of development and

structure vs function

The basis of mental retardation in DS remains unknown
(Epstein, 1986b; Haxby, 1989; Pulsifer, 1996; Schapiro
et al., 1989). Post-mortem studies suggest the existence of
cerebral atrophy (Marin-Padilla, 1972, 1976), but axial
computerized tomography studies in young DS patients
do not show atrophy or developmental alterations (Schap-
iro et al., 1987). Further, the reduction of the total volume
of the brain observed in these subjects is matched by their
characteristic low height, giving an equivalent cerebral/
height relation to that of normal subjects (Dekaban,
1978; Schapiro et al., 1987). On the other hand, more
recent studies with magnetic nuclear resonance (NMR)
have shown reduction in the volume of cerebral and cere-
bellar hemispheres (Raz et al., 1995), pons, mamillary
bodies and hippocampus (Aylward et al., 1999), after cor-
rection by size. The same study also revealed an enlarged
parahippocampal gyrus. Functional studies, using positron
emission tomography (PET), have reported normal regio-
nal cerebral glucose utilization levels in young DS subjects
(Horwitz et al., 1990). Nevertheless, the correlation among
regional levels of metabolism is reduced, suggesting a func-
tional decrease of interactions among different regions of
the brain and alterations in the neuronal circuits (Horwitz
et al., 1990). The latter appears particularly clear in lan-
guage areas, a function deeply affected in DS (Azari
et al., 1994).

Morphological studies have yielded contradictory evi-
dence of alterations in DS brains. Studies in fetal brains
reveal neuronal morphology and dendritic spines numbers
that are comparable to those of age-matched normal
fetuses. However, young and adult patients present shorter
dendrites, reduction in number and altered shape of den-
dritic spines, and alterations in cortical layers (Schmidt-
Sidor et al., 1990; Takashima et al., 1981). At the same
time, other studies show delayed myelinization (Mito
et al., 1991; Schmidt-Sidor et al., 1990) and dendritic alter-
ations in post-mortem brains of both newborn and young
adults DS patients (Marin-Padilla, 1972, 1976; Wisniewski
et al., 1985). However, the latter findings also exist in
mentally retarded subjects which lack chromosomal anom-
alies (Purpura, 1974), suggesting that these alterations
are non-specific. All this contradictory morphological
evidence reported for brains of fetuses, young and adult
DS subjects, has led to believe that CNS dysfunction in
DS is a reflection of functional alteration rather than a
structural one (Galdzicki et al., 2001), particularly in early
phases of the development. The alteration(s) can exist at
multiple levels, and can certainly affect development
subsequently.

Some of these anomalies can be encountered at the fol-
lowing levels:

1. Electrical membrane properties of individual neurons
and their interaction with other cells.

2. Synaptic plasticity, also including coupling to signal
transduction mechanisms and gene transcription
regulation.

3. Formation and destruction of synapses.
4. Altered intracellular signaling mechanisms.
5. Altered development and integrity of neuronal circuits

(Koch, 1997; Llinas, 1988).

Regarding neuronal function, several alterations in neu-
rotransmitter systems exist in DS, all of which can contrib-
ute to the multiple neurological and neuromuscular
alterations (hypotonia) (Cárdenas et al., 2002a; Colling-
ridge et al., 1983) that characterize the syndrome. Indeed,
these patients present electroencephalographical altera-
tions related to age (Gibbs and Gibbs, 1964), and deficits
in visual and auditory sequential memory (Luria, 1963;
Marcell and Armstrong, 1982). Also, platelets and post-
mortem brains show decreased serotonin content (Boullin
and O’Brien, 1971; McCoy and England, 1968; Tu and
Zellweger, 1965). Further, there are altered noradrenalin
contents in the hypothalamus and decreased choline acetyl
transferase activity in the brain (Yates et al., 1983).
Regarding electrical membrane properties, studies in
normal and trisomic human dorsal root ganglia neurons
in primary culture have demonstrated specific alterations
in DS cells, namely at the action potential and ionic current
level (Ault et al., 1989b; Caviedes et al., 1990; Nieminen
et al., 1988). Briefly, trisomic neurons exhibit accelerated
rates of depolarization and repolarization of the action
potential, yielding a shortened duration of the spike.
The accelerated depolarization could be explained by in a
differential sensitivity to potential of the inactivation gate
of two populations of Na+ channels, one TTX-sensitive
and another TTX-resistant. This displacement was esti-
mated in 10 mV towards more depolarized potentials in
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the trisomic condition, determining that, at resting poten-
tial levels, there is a greater quantity of Na+ channels avail-
able for activation (non-inactivated) (Caviedes et al., 1990).
At the same time, the TTX-resistant Na+ current presents
prolonged time-dependent kinetics in the trisomic condi-
tion, resulting in a persistent Na+ current after the action
potential that reduces the refractory period. The latter
could be related to the greater excitability observed in gan-
glionic and spinal trisomic neurons (Orozco et al., 1987;
Scott et al., 1981). Finally, at the same time, an accelerated
temporal kinetics in the activation of K+ currents in DS
neurons could explain the greater acceleration in the rate
of repolarization (Nieminen et al., 1988). These alterations
can alter the critical sequence of events in the processing of
information in CNS neuronal networks, determining a gen-
eralized dysfunction (Caviedes et al., 1990) and limitations
in the cell phenomena that are dependent of electrical mem-
brane stimulation (i.e.: Reduction of intracellular Ca2+ and
neurotransmitter release) (Ault et al., 1989a; Caviedes
et al., 1990; Nieminen et al., 1988).

3. Murine trisomy 16 and others, cell lines

Ethical and practical problems are clear issues in the
procurement and use of human tissues to carry out cellu-
lar pathophysiological studies in any given genetic alter-
ation (Fig. 1). Fortunately, an animal model of human
trisomy 21 does exist, which is the trisomy 16 in the mouse,
whose triplicated chromosome presents great genotypi-
cal homology with the human condition (Epstein et al.,
1985).

More recently, partial trisomies have been developed
(Davisson et al., 1990; Davisson et al., 1993; Sago et al.,
1998), that only have an extra copy of segments of the
DS region in chromosome 16. Using cultured neurons of
the complete trisomy, our group and others have described
essentially the same electrophysiological alterations found
in the human condition (Caviedes et al., 1990; Nieminen
et al., 1988), along with altered Ca2+ currents and central
cholinergic function (Fiedler et al., 1994). These results
have essentially validated the animal model for the study
of DS pathophysiology. Indeed, the trisomic condition in
both man and mouse determines comparable alterations
in mechanisms intimately related to the cell membrane:
(a) Electrical membrane properties (increased rates of
depolarization, repolarization and reduced spike duration;
determined by altered density and kinetics of Na+, K+ and
Ca2+ channels) (Caviedes et al., 1990, 1995; Nieminen
et al., 1988), (b) Neurotransmitter function (altered ampli-
tude and kinetics of intracellular Ca2+ responses to ago-
nists) (Allen et al., 2002; Cárdenas et al., 1999, 2002a,b;
Schuchmann et al., 1998), and (c) Cholinergic dysfunction
(reduced choline uptake, reduced expression and activity of
choline acetyltransferase—ChAT, and alterations of frac-
tional choline release after external stimulation) (Allen
et al., 2000, 2002; Cárdenas et al., 1999, 2002a,b; Fiedler
et al., 1994). However, these alterations differ quantita-
tively and qualitatively in different regions from the ner-
vous system. In the septum, spinal cord and ganglion
neurons, there is increase in the rate of depolarization
and repolarization, with shortened spike duration (Acev-
edo et al., 1995; Ault et al., 1989a,b). Nevertheless, in cul-
tured hippocampal neurons the situation is inversed, and
trisomic neurons exhibit slower depolarization of the
action potential and increased duration, possibly due to
decreased Na+ current density (Galdzicki et al., 1993).
Conversely, ganglionic neurons exhibit an increased Na+

current density, which agrees with the enhanced depolar-
ization phase previously noted (Orozco et al., 1988). Fur-
ther, Galdzicki et al. (1998) showed an increase of type L
Ca2+ current density in hippocampal Ts16, while our group
showed reduction in such currents in ganglionic neurons.
In this regard, Schuchmann et al. (1998) reported that cul-
tured hippocampal neurons of Ts16 mice exhibit slower
inactivation kinetics in response to glutamatergic stimula-
tion. Finally, our studies of cholinergic function in cultured
brain a spinal cord neurons indicated that Ts16 cells have
reduced high affinity choline uptake (Na+ dependent, sen-
sitive to hemicolinium-3) in both territories compared to
control cultures. Fractional choline release was diminished
in trisomic brain cultures, whereas spinal cord cells exhib-
ited no differences between two conditions (Fiedler et al.,
1994). Also, abnormalities have been described in path-
ways involving protein kinase A (PKA) and C (PKC)
(Rapoport and Galdzicki, 1994), which could be related
to elevated myo-inositol levels in trisomic brains (Huang
et al., 2000; Shetty et al., 1996). The findings detailed above
reinforce the notion that trisomy in both humans and mice
determine different membrane-related effects in diverse ter-
ritories of the central nervous system (CNS). It is therefore
necessary to carry out functional studies in nerve cells of
different territories along with DS-related gene expression,
in order to relate overexpression with specific regional
dysfunctions.

Unfortunately, the murine model has certain draw-
backs. An important limitation is the impossibility to carry
out cognitive or behavioral studies, because the hyperdip-
loid condition in the mouse is inviable, with death occur-
ring in utero around 14–16 days of gestation. Strategies
used to circumvent this obstacle have been of an additive
nature, starting with transgenic mouse models for individ-
ual DS-related genes, and later with the use of partial Ts16
animals (Ts65Dn, Ts1Cje) (Davisson et al., 1990, 1993;
Sago et al., 1998). Although these models survive gestation
and develop into adulthood, they necessarily renounce to
genes of the definite portion of murine chromosome 16 that
bears homology with the critical distal segment of the long
arm of human autosome 21. This can compromise the
interactions of all gene products involved in the full tri-
somy, and thus compromise conclusions related to the
pathology.

Why establish cell lines? Being the Ts16 condition invi-
able in the mouse, and considering the limitations of
primary culture techniques (variability, limitations in



Fig. 1. Synteny between human chromosome 21 (HSA21) and mouse chromosomes (MMUs) 16, 17 and 10. Three partial trisomy mouse models of
human trisomy 21 are shown, all trisomic for a portion of MMU16. The gene content of these partial trisomies is shown on the right. Reproduced by
permission from (Antonarakis et al., 2004).
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quantity of procurable tissue, in vitro senescence), the
establishment of immortalized cell lines appears as an
excellent alternative to preserve the trisomic condition
indefinitely in vitro, and thus generate immortal models
that are clonable, easy to access and manipulate, and that
provide unlimited amounts of cells. In this regard, attempts
to immortalize Ts16 mouse tissue using oncogene transfec-
tion methods have not been successful (Frederiksen et al.,
1996; Kim and Hammond, 1995), fundamentally due to
viability problems or poor stability of neuronal traits after
transformation. As previously mentioned, our laboratory,
using an original procedure (Caviedes et al., 1993), has
managed to successfully establish neuronal cell lines in per-
manent culture from diverse origins of the CNS of normal
and trisomic mice, which after six years retain neuronal sta-
bly (Caviedes et al., 1993; Liberona et al., 1997). Briefly,
the immortalization procedure consists in maintaining neu-
ronal primary cultures in the presence of media condi-
tioned by the rat thyroid cell line UCHT1. This
treatment induces tissue immortalization in variable peri-
ods of time (Caviedes et al., 1993). With this procedure,
we have been the first group to establish continuously
growing cell lines that express stable neuronal phenotypes
and lack glial characteristics. Our experience with these
and other lines so established indicates us that with this
procedure the lines generated retain differentiated traits,
some for decades (Allen et al., 2000; Cárdenas et al.,
1999; Caviedes et al., 1995; Liberona et al., 1997). In this
fashion, mouse Ts16 cell lines were established from the
cerebral cortex (named CTb), hippocampus (HTk), spinal
cord (MTh) and dorsal root ganglion (GTl). Simulta-
neously, cell lines from the same territories were established
from normal, age-matched littermates, that have served as
controls. All these lines retain neuronal markers (Neural
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specific enolase—NSE, Choline acetyl transferase—ChAT,
synaptophysin, microtubule associated protein 2—MAP-2)
and lack glial traits (GFAP, galactocerebroside, S-100).
Our prior studies have also shown that these cells express
functional neurotransmitter receptors, as shown by intra-
cellular Ca2+ responses to neurotransmitter agonists
(Cárdenas et al., 1999), and also cholinergic function (Allen
et al., 2000, 2002; Cárdenas et al., 2002a,b), and present
alterations of the aforementioned functions in a manner
similar to that observed in similar tissues kept in primary
culture conditions.

4. Gene overdose in the cell membrane

The evaluation of any therapy in the DS requires the
precise definition of the multisystemic alterations and their
specific relation with the trisomy itself. Therefore, the
knowledge of the action of genes specifically located
between bands 21q22.1 to qter of chromosome 21 is of cap-
ital importance. The alterations in DS probably result from
the overexpression of a group of genes that alter the inte-
gration of gene expression (Rapoport, 1988). Among the
genes that are likely to affect CNS function if overexpressed
we can mention: Cu/Zn superoxide dismutase (Sod1), amy-
loid precursor protein (App); kainate receptor subunit
(Grik1); cytokine receptor, family 2 (Crfb4), a and b inter-
feron receptor (Ifnar1), Drosophila single-minded homo-
logue (Sim2); Drosophila minibrain homologue (Mnb);
inward rectifying K+ channels (Kcnj6/Girk2 and Kcnj15/
IRKK); Na+/myo-inositol cotransporter (Slc5a3), and syn-
aptojanin-1 (SYNJ1). In spite of the critical contribution of
the mapping of human chromosome 21 and murine 16, the
specific cellular and physiological implications of the excess
gene products in the overall syndrome remains obscure.
Our group has made fundamental contributions to clarify
cell membrane-related mechanisms in both human and
murine trisomic neurons, which currently apply to pro-
cesses related to mental retardation and muscle hypotonia
(Ault et al., 1989a,b; Caviedes et al., 1990, 1991, 1995;
Fiedler et al., 1994). At present, there is documented evi-
dence that relates the overexpression of certain DS-related
genes to these and other membrane-related mechanisms.
Among these, Sod1, App and Scl5a3 relate to general
cellular mechanisms that can affect diverse membrane
function, whereas Grik1 would primarily alter glutama-
tergic transmission. A detailed discussion is presented
below.

(A) Sod1: It is certainly one of the most thoroughly
studied. This gene encodes for the enzyme Cu/Zn superox-
ide dismutase (Sod1) (Epstein et al., 1985; Heizmann and
Braun, 1992), which catalyzes the conversion (dismutation)
of superoxide radicals to H2O2 and O2. This gene is report-
edly overexpressed at the mRNA level by 1.4 fold in Ts16
(Stoll and Galdzicki, 1996) and in the murine partial tri-
somy, Ts65Dn (Holtzman et al., 1996). This agrees with
our previous results in the cortical trisomic line, CTb
(Arriagada et al., 2000; Mendoza et al., 2002) and trisomic
spinal cord, MTh (Cárdenas et al., 2002a), who overexpress
Sod1 mRNA by similar proportion, compared to normal
lines. An overexpression of Sod1 could determine greater
production of H2O2, which in turn is a precursor of hydro-
xyl radicals (Brooksbank and Balazs, 1984; Brooksbank
et al., 1988). Such radicals are capable of altering the
function of a vast number of biomolecules (Double et al.,
2000; Matarredona et al., 1997; Mohanakumar et al.,
1998). At the cell membrane, hydroxyl radicals induce lipo-
peroxidation in the cell membrane, altering the function of
membrane molecules (i.e. ionic channel kinetics, neuro-
transmitter receptor function) (Cox et al., 1980; Yoshikawa
and Kuriyama, 1980), and directly activate guanylate
cyclase (Epstein et al., 1985; Yoshikawa and Kuriyama,
1980). The latter could affect a-adrenergic, cholinergic,
histaminic (Snider et al., 1984) and glutamatergic metabo-
tropic membrane receptor function (Siarey et al., 1997).
Nevertheless, it should be noted that our studies in a genet-
ically modified mouse model, which overexpresses this gene
by 50%, revealed normal action potentials of action in neu-
rons cultured from these animals (Ault et al., 1989b).
Again, this reaffirms the notion that the overexpression
of a single gene in a normosomic subject is not sufficient
to produce the alterations described, and that the effect
of this and other genes must be evaluated in a new
‘‘steady-state’’, where potentially all genes of the DS region
are in triplicate and can exercise mutual interactions that
can trigger the syndrome.

(B) App: This gene encodes for the amyloid precursor
protein, App, a protein that is linked to Alzheimer’s disease
neurodegenerative mechanisms, and whose gene is present
in human autosome 21, and which is reportedly overex-
pressed in DS (Busciglio et al., 2002; Hartmann et al.,
1997; Hosoda et al., 1998). The progressive cerebral dys-
function observed in DS and Alzheimer’s disease is mani-
fested by (i) the formation of extracellular amyloid
deposits in the form of senile plaques in brain regions with
greater neurodegeneration (Finch and Cohen, 1997), (ii)
diffuse aggregates in regions with little or no degeneration
and (iii) microvascular amyloid deposits (Finch and
Cohen, 1997; Haass et al., 1992a,b). The amyloid fibrils
are composed of a protein of 39–43 residues called b amy-
loid (Ab), a fragment derived from App processing (Selkoe
et al., 1996). App is a type I integral membrane protein that
possesses a short intracellular carboxyl intracellular frag-
ment (Figueiredo-Pereira et al., 1999) and a large extracel-
lular fragment (Sisodia and Price, 1995). In the region
spanning the transmembrane segment and the first 17–18
extracellular aminoacid residues is the so called Ab seg-
ment, which undergoes b-pleated sheet conformation when
completely released by enzimatic cleavage. The processing
of App is made by enzymes called secretases that are ubiq-
uitously situated in different subcellular compartments.
These enzymes produce a secretable peptide (sAppa or
sAppb) which varies in length depending of the secretase
involved in the intracellular processing. These enzymes
cleave App in different portions, in relation to the App
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segment involved in the generation of the Ab peptide. In
this way, a-secretase cleaves APP between the residues
17–18 of the bA4 sequence (Esch et al., 1990), b-secretase
in the amino terminal end of the bA4 sequence and
the c-secretase in the transmembrane region comprising
the carboxyl terminal end of the bA4 sequence (Fu et al.,
1998; Kowall et al., 1992; Fukuchi et al., 1992; Louzada
et al., 2001; Pike et al., 1991a,b; Price et al., 1992;
Shoji et al., 1992; Yankner et al., 1990). These enzymes
have discrete intracellular localizations: a-secretase is
mainly located in cell surface while b-secretase have been
located in compartments corresponding to the endo-
somal–lysosomal pathway, trans-Golgi Network etc. The
amyloidogenic processing refers to the generation of Ab
peptide and secreted APP (sAppb) by the action of the b-
and c-secretase, whereas the non-amyloidogenic pathway
is referred to the action of a-secretase and the generation
of secreted, soluble Apps (sAppa) and carboxyl terminal
fragments associated to the plasma membrane. When
App is overexpressed, a potential overload of the endo-
somal–lysosomal pathway, where enzymes responsible of
the amyloidogenic pathway are referentially located, could
result in excess Ab production and toxicity. In the mouse,
previous studies have shown 2–2.5 times App mRNA over-
expression in both Ts16 and Ts65Dn models (Holtzman
et al., 1996) compared to normal controls. Also, Ts16
exhibits overexpression of App (Fisher and Oster-Granite,
1990). Again, this agrees with our previous results in the
CTb line (Arriagada et al., 2000; Mendoza et al., 2002),
which overexpresses this protein and accumulates it in
intracellular, vacuole-like compartments, where important
metabolic pathways have been described (Cole et al.,
1989; Cook et al., 1997; Coughlan and Breen, 2000; Hart-
mann et al., 1997; Hartmann, 1999; Koo et al., 1996; Scott
Turner et al., 1996; Skovronsky et al., 1998; Tomita et al.,
1998). Relating its effects on membrane function, increased
APP in DS neurons has been also linked to lipoperoxida-
tion (Begnia et al., 2003). Pollard et al. (1995) described
that the Ab peptide forms Ca2+ channels in artificial bilay-
ers, with conductances in the order of 400–4000 pS (Arispe
et al., 1993; Arispe et al., 1994; Kawahara et al., 2000). A
channel of such conductance would be capable of dissipat-
ing the Ca2+ gradient quickly, altering the intracellular
homeostasis of the cation, which can deeply impair cell
function. Interestingly, our cortical trisomic line CTb pre-
sents high intracellular basal Ca2+ levels compared to nor-
mal controls (Cárdenas et al., 1999). It is then tempting to
speculate that this mechanism could be operating in CTb
cells, a hypothesis which deserves attention. Also, altered
APP metabolism in DS impairs mitochondrial function,
which could render cell more susceptible to oxidative stress
and alter Ca2+ homeostasis (Busciglio et al., 2002). Fur-
ther, the protein reportedly has a role in cholinergic dys-
functions (Giovannini et al., 2002; Hunter et al., 2003;
Kar et al., 1996, 1998), which appear similar to those doc-
umented in Ts16 central neurons in primary culture (Fie-
dler et al., 1994) and in our CTb and HTk cell lines
(Allen et al., 2000; Cárdenas et al., 2002b). This postulates
App overexpression as another potential target to study in
our CNS lines. Finally, recent results indicate that the use
of phenol-derived compounds diminish the accumulation
of extracellular amyloid (De Felice et al., 2001), and also
in the vacuoles of CTb cells (Paula Lima et al., 2002). This
presents these cells as a possible model to evaluate thera-
peutic agents that reduce the amyloid content in the cell.

(C) Slc5a3: Encodes for the Na+/myo-inositol cotrans-
porter. Its overexpression determines increased myo-inosi-
tol content in the cell, which has been described in brains of
Ts16 and Ts65Dn mice, and in human DS. The latter also
has increased myo-inositol content in the cerebrospinal
fluid (Huang et al., 2000; Shetty et al., 1996). Myo-inositol
is a precursor of the phosphatidylinositol (IP) and 4,5-
phosphatidylinositol diphosphate (PIP), which participates
in the phosphoinositide cycle. PIP is hydrolyzed by phos-
pholipase C to produce diacylglycerol (DAG) and inositol
1,4,5-triphosphate (IP3). DAG is activated by the protein
kinase C (PKC) and is a substrate of the DAG lipase that
generates araquidonic acid. On the other hand, IP3 induces
Ca2+ release from intracellular stores, which in turn regu-
lates various kinases and phosphatases. Therefore, the
presence of high levels of myo-inositol in the nervous sys-
tem can modify the phosphoinositide cycle and stimulate
PKC and Ca2+/calmoduline kinase II by excess DAG
and IP3, respectively. This could deeply alter the kinetic
properties of ionic channels such as Na+ and Ca2+, which
are subject to PKC regulatory mechanisms (Costa and Cat-
terall, 1984; Rossie et al., 1987). Other cell processes linked
to metabotropic glutamate, glutamate triggered intracellu-
lar Ca2+ release) (Kirischuk et al., 1999) and cholinergic
function (Harvey et al., 2002; Yao et al., 2000) may also
be affected by Slc5a3 overexpression. In this regard, preli-
minary results in our laboratory indicate that the lines
CTb and HTk possess an increase of PKC phosphoryla-
tion. Considering the deregulation of basal Ca2+ levels
present in the CTb line, the contribution of this transporter
in DS related neuronal dysfunction certainly deserves
study.

(D) Grik1: In human chromosome 21 and murine 16,
there is one gene that encodes for a glutamatergic receptor
subunit, which is reportedly overexpressed. This gene,
named Grik1, encodes for subunit 5 of the kainate receptor
(Bettler et al., 1990; Gregor et al., 1993), which is important
in the activation of NMDA receptors. Glutamate is the
most widely distributed excitatory neurotransmitter in the
CNS, and acts on ionotropic and metabotropic receptors.
In the hippocampus of adult DS subjects, a significant def-
icit of glutamate has been described (Reynolds and War-
ner, 1988), and receptors are overexpressed in various
territories of the brain (Arai et al., 1996; Oka and Taka-
shima, 1999). Among them, the N-methyl-D-aspartate
ionotropic receptor (NMDA) is important in mechanisms
related to synaptic plasticity and long term potentiation
(LTP) (Collingridge et al., 1983), two cell mechanisms that
are key in learning and memory. Grik1 has a role in noci-
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ception (Simmons et al., 1998), which is reportedly altered
in the Ts65Dn partial trisomy mouse model (Martı́nez-Cué
et al., 1999). An overexpression of this protein can alter the
response of these receptors to their specific agonists, and
also affect the expression of Na+ and K+ channels, which
would alter the action potential (Ishikawa et al., 1999).
In this regard, our cell lines derived from trisomic animals
manifest responses to glutamatergic stimuli that differ from
those derived from normal animals (Allen et al., 2002;
Cárdenas et al., 1999, 2002a,b). Briefly, our CTb line, pre-
sented with stimulation by glutamate, shows a greater
amplitude and slower decay in intracellular Ca2+ increases
in comparison to normal CNh cells (Cárdenas et al., 1999).
At the same time, our line derived from trisomic hippocam-
pus HTk line, also exhibits slower decay kinetics in
response to glutamate when compared with the H1b nor-
mal control line (Cárdenas et al., 2002b), in a manner sim-
ilar to that observed in Ts16 hippocampal neurons kept in
primary culture conditions (Schuchmann et al., 1998). This
suggests that the pathophysiological mechanism that alters
the function of these receptors is reproduced in our triso-
mic lines. Grik1 overexpression could alter membrane
excitability by increased sensitivity to glutamate in brain
and spinal cord (Martı́nez-Cué et al., 1999), which would
contribute to the alterations described.

5. Conclusion

Due to the above, we believe that the study of the rela-
tionship of these genes and others with glutamatergic and
cholinergic dysfunction is of great relevance to the neuronal
pathophysiology in DS. Further, with the use of antisense
or siRNA techniques, we have a unique opportunity to ver-
ify the specific contribution of individual genes in these
models in a context of a generalized overexpression, which
could provide very pertinent information at the moment of
proposing therapies and identifying potential drug targets.
Each of the aforementioned models offers significant poten-
tial for evaluation of therapeutic candidates.
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