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ABSTRACT

A computer-based system that automates sleep studies, including sleep deprivation paradigms, is described.
The system allows for total or REM-specific sleep deprivation and is based on a reliable, fast-responding, on-
line state detection algorithm linked to a dependable intervention device. Behavioral state detection is
achieved by dimension reduction of short-term EEG power spectrum. Interventions are made by serial outputs
to servomotors that move a cage with different patterns and variable intensity. The system can adapt itself to
individual characteristics and to changes in recording conditions. Customized protocols can be designed by
defining the states or stages to be deprived, including scheduling temporal patterns. A detailed analysis of the
relevant signals during and after deprivation is readily available. Data is presented from two experimental
designs in rats. One consisted of specific REM-sleep short-term deprivation and the other of 10-hour total
sleep deprivation. An outline of conceptual and practical considerations involved in the automation of
laboratory set-ups oriented to biosignal analysis is provided. Careful monitoring of sleep EEG variables
during sleep deprivation suggests peculiarities of brain functioning in that condition. A corollary is that sleep
deprivation should not be considered to be merely a forced prolonged wakefulness.
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INTRODUCTION

Digital technology has been of much
benefit to research and clinical laboratories
involved in the acquisition, display and
analysis of biosignals (van Bemmel and
Musen, 1997). Methodological standards
have been drastically influenced by the
increasingly widespread presence and
elaborate capabilities of microprocessors
incorporated into standard biomedical
equipment and of interface cards added to
inexpensive personal computers. Digital
human polysomnography (Doman et al.,
1995; Klosch et al., 2001; Penzel et al.,
2001; Agarwal and Gotman, 2002) and
automated sleep laboratory setups (Vivaldi,
et al., 1984; Witting, et al., 1996; Robert, et
al., 1999; Shaw, et al., 2002; Louis, et al.,
2004) are significant examples of this trend.

All these computer-based systems offer
quantitative analyses of relevant sleep
elements and the capability of scoring the
three states of the sleep wake-cycle, i.e.,
Wakefulness (W), NREM sleep (N),
including its stages, and REM sleep (R).

Besides acquisition, display and
analysis, computer-based systems also offer
the capability to intervene in the ongoing
processes that they monitor. Just as in
intensive care units where an on-line
electrocardiogram monitoring system will
send off an alarm when it detects an
arrhythmia, much more complex responses
can be automatically triggered as a result of
on-line signal analysis. Digital control
refers to the development of systems based
on computers that sense variables and
interact with processes in the real world. An
obvious application of such systems is the



design of feedback loops that maintain a
variable within a given range. Another
illustrative example is the automation of
operant conditioning paradigms (Garfield
and Vivaldi,  1983). More elaborate
applications may involve brain-computer
interfaces where, given the ability of a
patient with motor impairment to generate
specific brain waves, a computer will detect
and link them to outputs that will
meaningfully operate in the real world
(Birbaumer and Cohen, 2007).

Admittedly, sleep deprivation has been
considered throughout sleep research
history as a tool that is as controversial as it
is inevitable. Sleep deprivation can be
partial or total. It can affect all states and
stages of sleep, or be specific for REM
sleep or for the deepest stages of NREM
sleep (Rechtschaffen et al., 1989; Franken
et al., 1991; Rechtschaffen et al., 1999).
Observing the effects of sleep curtailment
seems to be a heuristically useful approach
to understand both the functions that it
subserves and the mechanisms that explain
its homeostatic rebound.

The present report has a dual objective.
It presents a detailed description of a
specif ic  computer-based system that
automates sleep studies, including sleep
deprivation, and it provides a general
outline of some major conceptual and
pract ical  decisions involved in the
automation of laboratory set-ups oriented
to biosignal analysis. The methods and
results sections aim particularly at the first
goal, while the appendix to the discussion
section aims at the second. An incentive to
the joint work of neuroscientists and
computer engineers in the design of
automated setups is less expensive, more
refined and bet ter  goal-oriented
infrastructure for research laboratories. An
additional issue to be briefly discussed is
how the careful monitoring of sleep EEG
variables during sleep deprivation may
shed light on peculiarities of the brain’s
working under that  condit ion.
Conceptually,  one may arrive to the
proposition that sleep deprivation, rather
than being merely a forced prolonged
wakefulness, may be considered as a
different and special state.

METHODS

Recording environment and data
acquisition

The main purpose of the present report is to
present an automated sleep deprivation
setup in rats. The data to be used to
illustrate the deprivation system come from
two sets of experiments. One set consists of
a short-term REM-sleep deprivation
experiment (Estrada and Vivaldi, 2007) in
which six male Sprague-Dawley rats
underwent a 5-day protocol, taking as
baseline the first and fifth days. In the
middle three days the animals were
subjected to a specific REM sleep
deprivation lasting 20, 40 or 60 minutes, in
a balanced design, with deprivation always
starting at hour 6 after lights-on. Data
analysis for this protocol is focused on the
REM sleep deprivation period and on the
two hours that follows it, i.e., the recovery
period. The second set of data comes from
six male Sprague-Dawley rats that
underwent 10-hour total sleep deprivation.
In both cases the animals were continuously
recorded during, before and after the
experimental paradigms. Experiments
conformed to the policies of the American
Physiological Society. The animals
weighed 250-300 g and were previously
implanted with chronic electrodes under
intraperitoneal chlornembutal 3 ml/kg
anesthesia. After surgery, rats were housed
in a 30x30x25 cm cage, placed within an
80x80x80 cm sound isolated cube, under a
light-dark schedule with lights-on,
approximately 500 luxes, from 0700 to
1900 local time; ambient temperature 21–
24ºC; water and food ad libitum.

Six epidural and four neck-muscle
stainless steel electrodes were implanted.
Two epidural electrodes were placed at 2.0
millimeter from midline close to the bregma;
two were placed at 2.0 millimeter from
midline close to lambda and two were placed
at 3.0 millimeter from the mid-line and 5.0
mm from the bregma (See Figure 4). Three
EEG and one EMG leads were selected,
amplified and wide-band filtered by a
GRASS model 15 LT Physiodata System
equipped with 15A54 quad amplifiers. For



EEG channels the amplification was by
approximately 2,000 for a 1 volt input and
the filtering encompassed the .1-30 range.
The setup was designed to simultaneously
record those four channels from four rats.
Data from those sixteen channels were
sampled at a 250 Hz rate and stored with 8-
bit resolution.

On-line analysis and state transition
detection

The automated sleep deprivation system
had to meet two requirements: a processing
speed that would allow a short latency
between a state transition and the
deprivation intervention, and some system
flexibility to adapt to different subjects or
to changing conditions through several days
of recording in the same subject.

To minimize state detection latency, a
short-time Fourier transform (Oppenheim
1999) is applied over three EEG channels
and one EMG channel using Hamming
windowed segments of 500 samples,
equivalent to 2.0 seconds at our sampling
rate. The spectral resolution is thus 0.5 Hz.
Running segments have a 75% overlapping,
i.e., every 0.5 seconds of the last 2.0
seconds are analyzed. Four variables are
assessed. Three of them correspond to the
activity of delta, theta and sigma bands,
each obtained from an EEG channel
appropriate for each band. The fourth
variable corresponds to muscle activity
from a low noise EMG band. Activities are
calculated as the mean log power spectra of
each band. Log power is preferred over raw
data because its distribution is closer to
normal and because ratios between
variables become simply level differences.
A time series of one data point every 0.5
second is obtained for each activity. Before
they become input features for the state
detection stage, these time series are
exponentially smoothed to reduce noise.
Figure 1A displays an EEG spectrogram
and Figure 1B displays under the same time
base the Fourier analysis EEG theta, delta
and sigma bands and of the EMG.

The state detection method is based on
the unsupervised clustering of a two-
coordinate reduction of the four original

variables, using up to 24-hour baseline
recording. The dimension reduction
consists of a 3-way axial projection over
the plane of the muscle activity, the mean
of delta and sigma activities, and theta
activity. The ensuing two-dimensional
projection, shown as a scatter plot in Figure
2A, expectedly configures three state
compact clusters.

The coordinates of the centroid of each
state are the parameters that will be used
for on-line decision making. A further
effort at standardization is performed to
obtain similar patterns from the recordings
of different animals. This goal is achieved
by a transformation defined in the original
coordinates that normalize the position of
the centroids so that their respective
coordinates become the vertices of an
equilateral triangle of unit side. A threshold
or perimeter around each centroid is
defined that will allow the detection of a
transition to that state.  During the
deprivation experiment each 2.0 second
segment is analyzed and becomes a data
point in a plane like the one presented in
Figure 2A; it then undergoes the previously
defined transformation to assess its distance
to the state centroids. When a point is found
inside the area of a forbidden state, a
transition is diagnosed that triggers the
deprivation mechanism process. Figure 1C
displays the data-point sequence of the two-
dimensional projection coordinates, while
Figure 1D displays the time course of the
normalized distances to each centroid.
Since the definition of a state is based on
proximity to its centroid, subdivisions can
be achieved by concentric rings around it,
as will be the case with results to be
presented below.

For the total sleep deprivation paradigm
the forbidden zones to be considered are
defined around the centroids N and R,
whereas for specific REM sleep deprivation
only R will be considered. In the actual
implementation of the system, a LabVIEW
graphic user interface allows for the setting
of the desired deprivation paradigm, the
time at which it starts and finishes, and the
values of the W, N and R centroids. In the
screen, in addition to the display of the raw
signals from each recording channel, the



actual value of the distances to each
centroid are continually monitored, so that
an observer can overview the whole
process.

Automated intervention system

As explained above, every 0.5 second the
result of the on-line analysis of the previous
2.0 seconds may or may not indicate that a
forbidden state is present in a given rat
recording. The detection of a forbidden
state is translated into output pulses at a
serial port that will arrive as control signals
at the corresponding cage. The pulses will
activate two servomotors provided with
drive shafts that will shake that cage and
wake up the rat.

As shown in Figure 3, the wake-up
system is based on two standard hobbyist
radio controlled servomotors (“RC servos”)
that have a rotation of about 160 degrees.
Drive shafts at two orthogonal axes link
these motors to the recording cage that
hangs within the isolation box.

An electronic board connected to the
computer through a standard serial port
controls the servomotors. Movements of
various intensity and topology can be
achieved, since each servo generates
displacements as defined by the amplitude
and direction of positional changes and by
the interval between them. This feature
provides several options for movement
patterns, from soft, uniform swinging, to
strong, irregular shakes.

Figure 1: The four panels display throughout a twenty-minute span the following variables. A:
spectrogram of anterior EEG channel. Ordinate covers from 0.5 to 20 Hz with 0.2 Hz resolution. B:
EEG bands activities codified as red for theta, dark blue for delta, light blue for sigma and EMG
activity codified as green. C: Two-dimensional projection of activities where a rise of the red
coordinate relates to REM sleep and a rise in the blue coordinate to NREM sleep. D: Normalized
distances to R, N and W centroids coded as red, blue and green, respectively, so that the higher a
given curve the closer it is to the corresponding centroid.



Pulse-width modulated signals drive the
servomotors and determine the position the
servo will try to reach and hold. The
servomotors do not reach the desired
position instantly, the delay going from a
few milliseconds to tenths of seconds,
depending on the actual position, the aimed
position and the load. This uncertainty
becomes a physical restriction for
controlling the velocity of displacement.
Finding the best movement patterns turns
out to be an empirical process, with short
and small movements being potentially
more effective than large movements.

The electronic boards within the cages
are based on an 8-bit microcontroller
running a program that receives commands
from the system computer and generates the
required pulse-width modulated signal for
the servos. Test buttons allow the checking
of the boards. In our four-cage setup, the
four boards are serially linked, only the first
one being connected to the computer,
although they are independently operated.

A command sequence consists of up to
12 bytes. The first byte is always 0 and
marks the start of the command. The second
and third bytes indicate the board and its
servomotor number, respectively. The
fourth byte establishes the delay between
position changes, and the remaining bytes
are interpreted as relative positions.

Two modules are provided to interface
with LabVIEW. The first one provides a
basic interface to generate low level
commands for the elementary movements
described previously. The second module
uses the first one to provide a set of
predefined movement patterns. This higher
level module uses as parameters the serial
port to which the system is linked, the
predefined board/cage number and the code
for a given predefined stimulus pattern.

RESULTS

The system operation will be exemplified
with data obtained from two sets of
experiments,  a 10-hour total sleep
deprivation paradigm and a 1-hour specific
REM sleep deprivation paradigm.

Figure 1 displays total sleep deprivation
data from the for a 20-minute period and
illustrates the stages of the overall
processing in its four panels. The animal is
mostly asleep throughout this lapse, with
two REM sleep segments starting at
approximately time 00:23 and 00:28.
Figures 1A represents an EEG spectrogram.
The theta band stands out during REM
sleep. Figure 1B displays the time course of
the four variables. Note that during REM
sleep the theta band is not necessarily much

Figure 2: A: Scatter plots of two-dimensional projection of all epochs from a baseline day. The
compact clusters correspond to the sleep behavioral states. Red, Blue and Red correspond to epochs
assigned to W, N and R, respectively. B: Density plot of a two-dimensional projection of 10-h total
sleep deprivation. Note the absence of the REM cluster and the displacement of the NREM cluster.
C. Superposition of the two panels to show that the single cluster in B, here replicated in bright
green, corresponds to W with some overlapping on N. (A partial version of this figure appeared in a
modified form in Vivaldi EA, Bassi A (2006) Frequency domain analysis of sleep EEG for
visualization and automated state detection. Conf Proc IEEE Eng Med Biol Soc 1:3740-3)



increased, but rather the outstanding feature
is its predominance over the other bands,
providing the visual contrast in the
spectrogram and the descent of the other
bands. As stated in methods, Figure 1C and
1D display, respectively, the two-
dimensional projection coordinates and the
normalized distances ‘to each state
centroid.

Figure 4 presents data from the REM
specific deprivation paradigm. Figure 4A
illustrates an actual 15-second raw
recording where a transition into REM is
detected and terminated by an intervention
that wakes up the rat. The recovery of
muscle tone evidences the success of the
intervention. Note that the intervention is
triggered by the appearance of theta activity
characteristic of REM sleep, i.e., regular in
frequency and amplitude. Typically, the
occurrence of theta activity lasts for 3 to 5
seconds before the state is interrupted. A
relevant issue for researchers during
deprivation experiments is to consider the
transitions attempts to the state to be
deprived as a point process, i.e., as discrete,
instantaneous events whose occurrence can
be visualized as points in a time-line. The
intervals between events can then be
analyzed, particularly their time course
throughout the deprivation protocol. Figure
4B provides a 60-minute specific REM
sleep deprivation experiment where the
occurrence of interventions and the
presence of the W and N are displayed.
This figure evidences the expected increase
in the frequency of transition attempts as
the protocol develops (Morden et al., 1967;
Benington et al., 1994).

Various prominent aspects of the 10-
hour total sleep deprivation paradigm are
shown in Figures 2, 5, 6 and 7. As
explained in the methods section, Figure 2A
displays three compact state clusters that
represent Wakefulness, NREM and REM
sleep. It is worth noticing that the presence
of three well defined clusters in the
projection additionally provides an
immediate visual assessment of the quality
of the baseline data. Furthermore, the points
classified as W, N and R, constitute,
respectively, 48.7, 45.0 and 6.3 % of the 24
hours.

The centroid of each state cluster in 2A
can be conceived as the archetype of the
state. The time courses of the distances to
the centroids of each state are displayed in
Figure 5. This is the same type of data
displayed in Figure 1D but here the ordinate
axis has been inverted so that a higher level
indicates that the variable is closer to the
centroid. In Figures 5A and 5B the abscissa

Figure 3: A: Diagram of the servomotor-based
set up linked to the hanging cage. The
transmission rods might be placed vertically or
horizontally. B: Linkage of motor arm to side of
cage using a transmission rod. C: Example of
control pulses generating an
arm movement.



Figure 4: A: 15-second recordings of two EEG and one EMG leads are displayed. The first and
second EEG leads have been filtered to enhance, respectively, delta and theta activities. The
beginning of a REM sleep episode is being detected and triggers an intervention that wakes up the
rat. Electrode positions are indicated by lower case letters in diagram on the right. B: Occurrence of
W and N with a 15-second epoch resolution, throughout a sixty minute recording. Ordinate level T
indicates interrupted REM state episodes. The epochs with interrupted episodes are also indicated
by dots to emphasize that their occurrence can eventually be treated as point process.

Figure 5: A: Time courses of the distance to the centroids of each state (W, NREM and REM
sleep) are displayed in separate panels for a 13-hour baseline recording. B: Same variables for 13
hours of total sleep deprivation, plus a fourth panel showing the incidence of interventions per
minute.



corresponds to a 13-hour lapse that starts 2
hours before lights-on. The data are
obtained from the preceding baseline day
for Figure 5A and from an experimental
day for Figure 5B. In the latter case, data
correspond to a 10-hour total sleep
deprivation lapse followed by a 3-hour
recovery lapse. In Figure 5B an additional
panel with the incidence of interventions
per minute is shown. The main features to
be highlighted are the closeness to the W
centroid throughout the deprivation period
with a sustained depression of the NREM
curve and, even more markedly, of the
REM curve.

Figure 6 condenses the information
conveyed by Figure 5 by showing the
hourly incidence of epochs assigned to
REM and NREM sleep. A total of 37 hours
are displayed, starting with the 13-hour
lapse corresponding to Figure 5A and
ending with the 13-hour lapse

corresponding to Figure 5B. The stack bars
indicate time assigned to REM sleep and to
two subdivisions of NREM sleep defined
according to whether they are closer (N1)
or farther (N2) from the N centroid. Figure
6 makes evident that in the ten-hour
deprivation lapse almost no REM nor N1
sleep are detected by the automated
analysis.

The deprivation effect can also be
illustrated by changes in the density plot of
a two-dimensional projection of epochs, as
in the comparison of Figures 2A and 2B,
corresponding to a 24-hour baseline and to
a 10-hour deprivation time, respectively.
Figure 2C further emphasizes the
comparison by superposing the deprivation
data over three-cluster data from the
baseline day. The most notable differences
are the absence of the REM sleep cluster
and the apparent displacement of the
NREM cluster toward the W centroid

Figure 6: Hourly incidence of REM and NREM sleep, the latter being subdivided into closer (N1)
or farther (N2) from the state centroid. Tick label “BL-05” indicates the beginning of the 13-hour
baseline block corresponding to the data shown in Figure 5A. Tick label “SD-05” indicates the
beginning of the 10-hour sleep deprivation lapse followed at tick label “RCV-15” by a 3-hour
recovery lapse, totaling the 13-hour deprivation-recovery block corresponding to Figure 5B. The
time when lights are turned on or turned off are indicated by tick labels “L ON 07” and L OFF 19”.



position during the deprivation experiment.
Figure 7 may help in clarifying the
biological meaning of this seemingly
displaced NREM cluster, by displaying the
same variables as Figure 5 with a much
higher time resolution. These 20-minute
close-ups compare baseline data with a time
segment representative of the displaced
NREM cluster. It should be noted that
during baseline the distances to the
centroids reach stability at a scale of
minutes. On the contrary, during
deprivation those variables unremittingly
oscillate between two poles that would
correspond to the centroids of Figure 2B.

DISCUSSION

The two main features of the automated
deprivation system that must be assessed
are the reliability of state detection and the
effectiveness of the deprivation
interventions. The time courses of both
features as a deprivation experiment
progresses are particularly relevant.

Automated state diagnosis is an obvious
prerequisite for automated state
deprivation. The existence of three
behavioral states controlled by specific
brain mechanisms subserving specific
functions has been a central notion in sleep
research. The definition of a state is based
on the presence of certain features, such as
EEG activities, eye movements and muscle
tone. The state concept is founded on the
configuration of those features and many
other physiological variables into discrete,
recurrent and consistent arrangements that
are stable over time. In the rat, the most
relevant variables to be detected in visual
state scoring are theta activity and muscle
atonia for REM sleep, delta and sigma
activities and low muscle tone for NREM
sleep, and high muscle activity or lack of
specific sleep indicators for W. Those are
the variables that an expert would use for
state scoring. Alternatively, more abstract,
unprejudiced variables may be generated by
principal component analysis. If the first
two components of the EEG spectrogram
are projected in a plane, three fairly

Figure 7: A. Time courses of the distance to the centroids of each state (W, NREM and REM
sleep) are displayed for a 20-minute lapse in baseline conditions. B. Same variables for a 20-minute
lapse during sleep deprivation plus a fourth panel showing the occurrence of interventions with a 5-
second resolution. This latter segment starts at 0800, three hours after deprivation began.



compact clusters emerge, one for each state
(Vivaldi and Bassi, 2006). The behavior of
the relevant variables that compose the
feature vector is critical for the outcome of
these statistical techniques. Besides the
obvious care for the quality of the recorded
raw signal, some mathematical principles
may become helpful. A notable example is
simply the log scaling of the variables that
highlights statistical modes.

In the computer-based system presented
here, the relevant variables are features
obtained by FFT analysis. A clustering
algorithm operating over the incidence of
these features defines centroids. The
distances of an epoch to these centroids
define the state diagnosis.  This
unsupervised machine learning technique
based on distances to centroids, has the
great advantage of being easily generalized
to different individuals, and is even capable
of adapting itself to changing recording
conditions in long-term studies. On the
other hand, supervised learning techniques
depend on large samples of case-specific
scoring from an expert (Crisler et al.,
2008). Nevertheless, the recurrent stable
clustering configuration evidences the
existence of states as emerging from data
analysis alone, independently of any
preconception, since having no other
information than the relevant variables, a
computer should operationally define the
three states.

The unsupervised learning approach
presented here standardizes the data so that
the system will not need case-specific rules
but will use instead general rules adapting
them to different subjects or to changing
recordings. This approach can also be
fruitfully extended beyond the main W, N
and R state classification to subdivisions
within the clusters. These subdivisions are
particularly relevant for NREM sleep, since
the concept of depth of this state, usually
associated with delta activity, is taken into
account in human as well as in animal
studies. This aspect is potentially applicable
to more refined deprivation paradigms in
terms of what will and will not be allowed
(and for how long) for the deprived subject
to express. These goals of sub-classifying
states may in some cases be better served

by time-domain techniques, e.g. zero-
crossing, if wave amplitude, duration, trains
or envelopes become more relevant.

Sleep deprivation has been historically
employed as an obvious tool to deduce the
function of sleep by observing the
consequences of its curtailment.  The
interest in this subject has been widespread
in human and animal studies, and it has
included attempts to link sleep deprivation
to areas as diverse as learning, hormone
secretion patterns or psychosis. Recently,
progressive attention has been paid to the
effects of chronic partial sleep deprivation
as opposed to continuous, uninterrupted
wakefulness maintenance, since the former
type of deprivation would be more relevant
to common real life situations, such as
shift-work or diseases that affect sleep
continuity (Jewett et al., 1999). Animal
models of sleep fragmentation (McKenna et
al., 2007) and chronic sleep restriction
(Machado et al., 2005) have also been
developed. Besides sleep function,
monitoring the recovery from sleep
deprivation may help in understanding
sleep homeostatic mechanisms. The
hypothesis that delta waves correspond to
the restorative function of sleep has gained
support by their rebound after sleep
deprivation in humans and after short-term
deprivation in rats (Borbely 1982; Dijk et
al., 1990). On the other hand, long term
deprivation in rats is followed only by
massive REM sleep rebound (Rechtschaffen
et al. ,  1999). Some more elaborate
experimental designs have compared the
effects of sequential combinations of
different types of derivation (Endo et al.,
1997; Ocampo-Garcés et al., 2000) or its
timing within the light-dark cycle
(Vyazovskiy et al., 2007).

A major issue concerning sleep
deprivation has been whether it is possible
at all  to isolate it  as a variable
uncontaminated of fatigue or stress
(Mendelson et al., 1974a). In this respect,
the importance of methodological issues
was appropriately emphasized from the
outset. In sleep research in rats, some early
methods were forced locomotion by placing
the rat in rotating cylinders (Levitt, 1966;
Stefurak et al., 1977), and monitoring



vigilance state to interrupt attempts at sleep
transition (Vyazovskiy et al., 2007). It is
obvious that after a very long time, the first
method will be contaminated by fatigue and
the second may become impractical. A third
method, the disk-over-water, was designed
by Rechtschaffen (Bergmann et al., 1989)
and presented in a landmark series of
papers on sleep deprivation. Earlier, a
specific REM sleep deprivation method was
proposed, the flowerpot technique, that
consisted of placing the rat in a small
platform surrounded by water (Morden et
al., 1967; Mendelson et al., 1974b; Hicks et
al., 1977). It should also be noted that
methods based on monitoring vigilance and
manually or automatically acting when the
deprived state is observed, must inherently
allow for the occurrence of some actual
expression of the state that is being
deprived. A less obvious issue is to what
extent the sleep deprivation state should be
equated to wakefulness. After some time
the functioning of the brain may be
different from normal wakefulness, and it
can even be claimed that some normally
sleep-specific functions may appear in
apparently awake animal (Rechtschaffen et
al., 1999).

It is admittedly difficult to maintain rats
under deprivation for long term. The
mechanical system presented here is able to
generate a range of intensity and patterns of
movements given by the force and length of
torques and the geometric disposition of the
drive shafts, allowing thus for a great
assortment of stimuli. A scale of increasing
strength can be devised and programmed so
that when many transitions separated by
short intervals are detected, the stimulus
can be changed and intensified. The issue
of the state not being entirely suppressed
because it must first be detected as present,
can be at least ameliorated by testing
shorter latencies and, eventually, by better
characterizing the pre-transition EEG
patterns.

A major advantage of a technique that
closely analyses the EEG signals during
deprivation is that it can detect changes in
the waking state due to prolonged
deprivation. As stated above in reference to
Figure 7, the distances to the centroids

during deprivation oscillate between two
poles that would correspond to the
centroids of Figure 2B. This lack of
stability questions an aspect inherent to the
concept of behavioral state, the persistence
in a given configuration, and reinforces the
suggestion that peculiar dynamics, different
from normal functioning, operate during
deprivation. A sleep deprivation setup with
the properties of the system presented here
offers ample possibilities of customized
protocols for defining what, how much and
for how long it is going to be deprived, plus
a detailed analysis of brain functioning
during and after deprivation.

Appendix: Computers, biosignals and sleep
studies

Computers handle biosignals as a sequence
of data points or samples. Data acquisition
by computers is based on analog-to-digital
conversion. A continuous signal is sampled
at a given rate and each sample is
represented as a binary number. The
precision of that representation depends on
the bit length of the binary number. The
temporal and amplitude resolutions depend,
respectively, on those two parameters.
Since longer and more frequent data points
imply higher demands on data handling and
storage, a trade-off must be sought.

Digital data visualization offers
enormous advantages over analog ink-over-
paper systems. Montages for display can be
selected after recording time and new
differential signals can be generated from
stored leads. The time base can be changed
so that,  for example, when visually
inspecting polysomnography signals the
screen width may cover 15 seconds for
observing EEG waves or 5 minutes for the
appraisal of respiratory patterns. Gain
modification, digital filtering and signal
conditioning can all be applied off-line.
Stored data facilitates comparison of
recordings made at different times.

Beyond acquisition, display and storage,
computers can also be used to automate
data analysis. In the context of sleep
studies, data analysis algorithms emulate
firstly, the human detection of relevant
graphoelements and, secondly, they apply



these features to assign each epoch, as
recording time units are denominated, to a
given behavioral state.  In humans,
Rechtschaffen and Kales sleep scoring
criteria allow for the diagnosis of W, R and
N, and of the four stages of NREM sleep.
The scoring is typically done for 30-second
epochs, based on the incidence of well
defined elements in the EMG and EOG, and
of specific EEG frequency bands
(Rechtschaffen and Kales, 1968).

In the rat, the main relevant elements in
sleep recordings are EMG amplitude and the
presence of waves of certain frequency and
amplitude in the EEG. These bands are delta
(approximately 0.5-4 Hz) and sigma
corresponding to sleep spindles
(approximately 12-16 HZ) in N and theta
(approximately 5-9 Hz) in R. These wave
activities are defined mainly by frequency
and amplitude. Two main approaches can be
followed to detect them (Geering et al.,
1993). In the time-domain, a simple
technique is zero-crossing, where the
detection of the start and end of each wave
as they cross the baseline yield its period,
and the detection of the minimal and
maximal value that they reach yield its
amplitude. The requirement of trains of
waves as opposed to isolated ones improves
detection of true sigma and theta activities.
In the frequency-domain, the most popular
technique is Fast Fourier Transform (FFT)
that provides the power that each frequency
contributes to the signal. Short-term FFT
treats the signal as a sequence of analysis
windows so that their time course can be
assessed. The frequency range extends to
half the sampling rate and the frequency
resolution is the reciprocal of the time length
of the analysis window. The ratio between
bands may be more important than their
absolute values, as is the case with REM
sleep where the increase in theta/delta ratio
is more informative than the actual amount
of theta power. There are more sophisticated
techniques such as wavelets and specific
feature-extraction algorithms that may have
a better performance in detecting
graphoelements related to sleep EEG, but the
availability of very powerful algorithms
makes FFT a very efficient alternative when
rapid on-line processing is needed.

Whether counting waves and trains of
waves by zero-crossing or establishing
absolute or relative power by FFT, the
relevant-element-detection stage will end
up with a matrix where rows are epochs and
columns are the incidence of detected
relevant elements. In the case of the rat, an
epoch is usually predefined as a time bin
between 5-15 seconds (Trachsel, 1991;
Robert et al., 1999). A row containing the
value of each relevant element for a given
epoch is called a feature vector. A human
expert could add a new column with his
visual state-by-epoch scoring. Another
column could then be generated consisting
of an automated state-by-epoch scoring,
obtained by the definition and application
of classification rules. These rules would
use as input the incidence of the relevant
elements in the feature vector. A simple
case may consist of setting thresholds for
EMG, delta, sigma and theta activities and
applying the following algorithm: if EMG
activity is higher than its threshold, the
epoch is assigned to W; if that is not the
case and theta activity is higher than its
threshold, the epoch is assigned to R; if that
is not the case and delta or sigma activities
are higher than their threshold, the epoch is
assigned to N; if none of those three
alternatives is true, the epoch is assigned to
W (Roncagliolo and Vivaldi, 1991). More
detailed algorithms have been proposed for
better resolving bins with ambiguous
profiles (Costa-Miserachs et al., 2003).

In the previously described strategy the
expert must set thresholds for relevant
variables to generate the

automated diagnosis, and, by comparing
those results with his own, he can optimize
by trial and error the sensitivity and
specificity of the process. The goal of the
expert would be to make the visual and the
automated diagnosis columns as similar as
possible. The same optimization can be
achieved by statistical pattern recognition
techniques (van Bemmel et al., 1997).
Supervised machine learning would take as
input, on the one hand, the feature vectors
containing the relevant elements, and on the
other, the expert diagnosis, and it would
then infer by statistical techniques such as
discriminant analysis,  support vector



machine (SVM) or neural networks the
optimal classification rules. Alternatively,
unsupervised machine learning does not
require the human expert diagnosis since it
is based only on the distribution of relevant
elements. This is possible because, as
implied in the concept of state, data points
will be naturally grouped in clusters
reflecting the common properties of the
relevant variables within a state. One could
envision that if  clusters obtained by
unsupervised computer analysis and
projected into a plane were cross-matched
with actual expert scoring by some type of
coding such as using state-specific colors,
each computer-generated cluster would
display epochs of very much the same code,
thus validating the reliability of
unsupervised learning (Vivaldi and Bassi,
2006).

In studies designed for off-line analysis
only, the computer burden at recording time
is limited to data acquisition and storage.
On the contrary, control and intervention of
processes require, in addition to those two
tasks, accomplishing on-line data analysis,
decision making and command execution.
These tasks must be met in real time,
placing obvious constraints on the time
available for algorithm execution. The
interaction of the computer with the outside
world is achieved by sending control
signals to external devices. This can be
done through standard serial or parallel
output ports or through a digital-to-analog
converter and one-bit output line
capabilities implemented in interface cards.
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