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Abstract Studying the interactions between preference and capacity manipulation
in matching markets, we prove that acyclicity is a necessary and sufficient condition
that guarantees the stability of a Nash equilibrium and the strategy-proofness of truthful
capacity revelation under the hospital-optimal and intern-optimal stable rules. We then
introduce generalized games of manipulation in which hospitals move first and state
their capacities, and interns are subsequently assigned to hospitals using a sequential
mechanism. In this setting, we first consider stable revelation mechanisms and intro-
duce conditions guaranteeing the stability of the outcome. Next, we prove that every
stable non-revelation mechanism leads to unstable allocations, unless restrictions on
the preferences of the agents are introduced.

1 Introduction

The literature has studied preference and capacity manipulation separately and has
thus overlooked the interaction between the two. However, many hiring and admis-
sion procedures allow firms, hospitals and schools to state the number of their vacant
positions before candidates are assigned. This creates a possibility of capacity manip-
ulation before the matching process. Furthermore, ex-ante manipulation does not pre-
vent agents from misrepresenting their preferences during the matching process. In
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702 A. Romero-Medina, M. Triossi

this paper, we present a many-to-one matching model that allows for both capacity
and preference manipulation. Our objective is to understand whether a mechanism
that includes a capacity reporting stage can implement stable allocations.

Indeed, there exists a widespread opinion that markets producing stable outcomes
are more successful than those that do not produce such outcomes (see Roth and
Sotomayor 1990; Roth 2002). We begin our analysis by isolating the strategic options
at work in our settings. As a preliminary step, we concentrate solely on capacity
manipulation. We focus on the Nash equilibria (N E) of capacity reporting games.
First, we provide an equivalence result, that is, the N E of capacity reporting games
are stable if and only if the stable rule used is immune to capacity manipulation. Second,
we provide conditions under which capacity reporting games yield stable matchings
at the N E . For this reason, we introduce the concept that the agents’ preferences
are acyclical. A cycle in the preferences of hospitals (interns) occurs when there
is an alternating list of hospitals and interns “on a circle” such that every hospital
(intern) prefers the intern (hospital) on its clockwise side to the intern (hospital) on its
counterclockwise side and finds both acceptable. We say that preferences are acyclical
if there are no cycles. In addition, we say that a group of agents form a simultaneous
cycle if they form a cycle both in the preferences of interns and hospitals. Acyclicity
holds, in particular, when the preferences of the agents on one side of the market are
aligned. We prove that an absence of simultaneous cycles in the preferences of the
agents guarantees the stability of the N E of capacity reporting games when any stable
rule is used.

In addition, acyclicity is the minimal condition guaranteeing the stability of the
N E when the hospital-optimal stable rule is employed. However, acyclicity is not
necessary for the stability of N E outcomes under the intern-optimal stable rule. Thus,
the intern-optimal stable rule is less prone to capacity manipulation than the hospital-
optimal stable rule. We prove that the capacity reporting game can produce unstable
N E if and only if the preferences of the hospitals satisfy a complex cycle condition.
First, the preferences of the hospitals must be non-monotonic in population. Then,
the cycles in the preferences of hospitals must be linked in a particular way. These
findings extend the results of Konishi and Ünver (2006) and are related to the work of
Kesten (2012).

Third, we proceed to study what we call generalized games of manipulation
(GG M). GG M are two-stage extensive form games. In the first stage, each hos-
pital states its capacity. In the second stage, the agents play a general assignment
game. We do not specify a particular assignment game, but we consider two classes
of mechanisms: revelation stable and non-revelation stable mechanisms.

In stable revelation mechanisms, agents are asked to submit their preferences, and
stable matching is then implemented. This type of mechanism has been successfully
used in practice (see, for instance, Roth and Sotomayor 1990; Roth 2002) but can
be manipulated thorough the misrepresentation of both preferences (see Dubins and
Freedman 1981) and capacities (Sönmez 1997).1 prove that the iterated elimination of
weakly dominated strategies produces a stable matching if the intern-optimal stable

1 The under-reporting of capacities was a source of major concern in the school choice program in NYC
before it was redesigned (see Abdulkadiroğlu et al. 2005).
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rule is employed. Additionally, when the preferences of the hospitals are known, any
stable rule produces stable allocations if the preferences of the agents do not have
simultaneous cycles.

A stable non-revelation mechanism is any sequential game of complete information
such that the interaction of agents leads to stable allocations with respect to the stated
capacities (some examples of non-revelation stable mechanisms are presented in Kara
and Sönmez 1997; Alcalde and Romero-Medina 2000; Sotomayor 2003). We show that
there is no family of such games that implements stable matchings at every Subgame
Perfect Equilibrium (SPE). However, if only acyclical preferences are allowed, any
non-revelation mechanism implements stable allocations.

1.1 Related literature

The issue of preference manipulation has been widely discussed in the literature.
Roth and Sotomayor (1990) present detailed references. Additionally, most of the
mechanisms that scholars, such as Kara and Sönmez (1997) and Alcalde and Romero-
Medina (2000), have introduced to implement stable allocations in matching markets
do not include a capacity reporting stage.

Capacity manipulation has been studied in isolation as well. Sönmez (1997)
demostrates that every stable revelation mechanism is prone to manipulation via capac-
ities. Konishi and Ünver (2006) present the conditions under which capacity revelation
games have pure-strategy N E , and show that under the assumption of common pref-
erences, truthful capacity reporting is a dominant strategy for colleges. Mumcu and
Saglam (2009) consider sequential capacity allocation under an assumption of com-
mon preferences. Kesten (2012) studies capacity manipulation of the intern-optimal
stable rule and the top-trading cycle rule in school admission problems. Kesten (2012)
result proves that if a particular acyclicity condition holds, the intern-optimal stable
matching cannot be manipulated via capacities. Finally, Ehlers (2010) relates capacity
manipulation to two forms of preference manipulation.2 To our knowledge, the only
paper that considers both capacity and preference manipulation is that of Kojima and
Pathak (2008), and they find that the intern-optimal stable matching leaves little room
for manipulation in large markets.

The structure of this paper is as follows. Section 2 presents the model, Sect. 3
studies capacity manipulation, and Sect. 4 extends our analysis to generalized games
of manipulation. Finally, Sect. 5 concludes the paper. The proofs are presented in the
Appendix.

2 The model

There are two disjoint sets of agents, a set of interns I = (i1, . . . , in) and a set of hos-
pitals H = (h1, . . . , hm). Generic agents from the two sets are denoted, respectively,
as i and h, whereas a generic agent is denoted by x ∈ H ∪ I . Hospitals hire a set of

2 See also Kojima (2007).
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interns, and interns train in no more than one hospital. Each hospital has a capacity
qh ≥ 1, which denotes the maximum number of interns that hospital h can accept.
Each intern i ∈ I has a complete, transitive and strict preference ordering Pi over the
set of hospitals H ∪ {i}. Let Ri be the weak preference relation associated with Pi .
Each hospital h ∈ H has a complete, strict and transitive preference ordering Ph over
the set of interns I ∪{h}. Similarly, Rh denotes the weak preference relation associated
with Ph . Let PI = (

Pi1 , . . . , Pin

)
be the preference profile of interns over hospitals

and let PH = (
Ph1 , . . . , Phm

)
be the preference profile of hospitals over subsets of

interns. The quadruple (H, I, q, P), where P = (PH , PI ) and q = (q1, . . . , qm) is a
hospital-intern market. The problem consists of matching hospitals with subsets of
interns, allowing for the possibility that some agents remain unmatched.

Let I ′ ⊆ I be a subset of interns. The best group of interns for hospital h
among those belonging to I ′ is called the choice set from I ′ and is denoted by
Chh(I ′, Ph) or Ch f (I ′) when no ambiguity is possible. Formally, Chh(I ′, Ph) =
arg maxPh

{
I ′′ : I ′′ ⊆ I ′}. Let i ∈ I be an intern. If ∅Phi , hospital h prefers not to

employ any intern rather than employing i . In this case, i is unacceptable to h.3

Otherwise, i is acceptable to h. A (h) denotes the set of interns who are individu-
ally acceptable to h. Similarly, for every intern i ∈ I Pi is a strict preference order
defined on H ∪ {i}. Any hospital h such that i Pi h is unacceptable to i . Otherwise, h
is acceptable to i . A (i) denotes the set of hospitals that are acceptable to i .

We assume that the preferences of the hospitals over sets of interns are respon-
sive with respect to hospitals’ preferences over individual interns. A hospital h has
responsive preferences if, for any two assignments that differ in only one intern, it
prefers the assignment containing the most preferred intern. Formally, Ph is respon-
sive if for all I ′ ⊂ I and for all interns i, i ′ ∈ I : (1) I ′ ∪ {i} Ph I ′ ∪ {

i ′
} ⇔ i Phi ′

and (2) I ′ ∪ {i} Ph I ′ ⇔ i ∈ A (h). We say that hospitals’ preferences satisfy strong
monotonicity in population if every hospital h prefers a group of acceptable interns
of larger cardinality to sets of acceptable interns of smaller cardinality. Formally, if
for all h, for all J, K ⊂ A (h) |J | > |K | ⇒ J Ph K .4 A matching on (H, I, q, P) is a
function μ : H ∪ I → 2I ∪ H such that, for every (h, i) ∈ H × I : (1) μ(h) ∈ 2I , (2)
μ(i) ∈ H ∪ {i}, (3) μ(i) = h ⇔ i ∈ μ(h), and (4) |μ (h)| ≤ qh . Let Mq be the set of
matchings on (H, I, q, P). In other words, a matching is an assignment of interns to
hospitals such that no intern is hired by more than one hospital and no hospital hires
more interns than indicated by its capacity.

When there is no ambiguity, we use PH and PI to denote the following binary
relations within the set of matchings: for every μ, ν matchings, let μPH ν if and only
if μ (h) Rhν (h) for all h ∈ H and μ (h) Phν (h) for at least one h. Let μPI ν if and
only if μ (i) Riν (i) for all i ∈ I and μ (i) Piν (i) for at least one i . Analogously, we
write μPhν and μPiν if μ (h) Phν (h) and μ (i) Piν (i), respectively.

A matching μ is individually rational if (1) μ(h)⊆ A (h) for all h ∈ H , and
(2) μ(i) ∈ A (i) for all i ∈ I . In other words, a matching is individually rational
if each hospital is assigned acceptable interns and every intern prefers to join her

3 For all i, i ′ ∈ I i Phi ′, i Ph∅ and ∅Phi denote {i} Ph
{
i ′

}
, {i} Ph∅ and ∅Ph {i}, respectively.

4 The symbol |X | denotes the cardinality of the set X .
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assigned hospital rather than stay unemployed. A matching μ is blocked by the pair
(h, i) ∈ H × I if (1) h Piμ(i) and (2) i ∈ Chh (μ(h) ∪ {i}). A matching μ is sta-
ble in (H, I, q, P) if it is individually rational and no pair blocks it. Therefore, a
hospital-intern pair (h, i) blocks a matching μ if an intern i prefers joining a hospital
h over her match or not being matched at all and hospital h prefers i to one of its
interns or prefers to leave a position vacant. Otherwise, μ is unstable. �(H, I, q, P)

denotes the stable set, the set of matchings that are stable in market (H, I, q, P).
If the hospitals have responsive preferences, the stable set is not empty. There is a
stable matching, which is the hospital-optimal stable matching that is (weakly) pre-
ferred to any other stable matching by every hospital. Another stable matching, the
intern-optimal stable matching, is (weakly) preferred to any other stable matching
by every intern. The hospital-optimal deferred acceptance algorithm (Gale and
Shapley 1962) generates the hospital-optimal stable matching of (H, I, q, P), and the
intern-optimal deferred acceptance algorithm generates the intern-optimal stable
matching of (H, I, q, P). The hospital-optimal and the intern-optimal stable match-
ings of (H, I, q, P) are denoted by ϕH (H, I, q, P) and ϕ I (H, I, q, P), respectively.
When there is no ambiguity, ϕH (q) and ϕ I (q) are used rather than ϕH (H, I, q, P)

and ϕ I (H, I, q, P), respectively. Finally, we denote by ϕ (q) any stable matching of
market (H, I, q, P), and we call the function ϕ a stable rule.

Let ϕ be a stable rule. In a capacity reporting game, each hospital h simultaneously
reports a capacity qh , and the outcome is determined according to ϕ. Interns are
passive players, and information is complete. The capacity reporting game induced
by ϕ is a normal form game of complete information. The set of players is H , and
the strategy space of hospital h is Q (qh) = {1, . . . , qh}(see also Hurwicz et al.
1995). The outcome function is ϕ. The preferences of hospitals over outcomes are
generated by their preferences over the subsets of interns. Finally, a mechanism or
rule is manipulable via capacities if there is a hospital that is strictly better off by
under-reporting its capacity. Formally, the mechanism ϕ is manipulable by capacities
at (q, P) if there exists h ∈ H and q ′

h < qh such that ϕ
(
q ′

h, q−h
)

Phϕ (q). Given a
profile of preferences P and a mechanism ϕ, we will say that ϕ is capacity-proof if
stating the true capacities is a weakly dominant strategy under ϕ (P, ·).

3 A look at Nash equilibria

In this section, we concentrate on the stability of N E outcomes of capacity report-
ing games. The objective is to provide the necessary and sufficient conditions that
guarantee the existence and the stability of pure strategy N E .

Konishi and Ünver (2006) devote their attention to discovering sufficient conditions
for the existence of pure strategy N E in capacity reporting games. They also prove that
under the assumption of common preferences, stating the true capacities is a dominant
strategy for hospitals.

Our first result links the stability of N E outcomes and capacity manipulation.

Lemma 1 Let V ∈ {H, I }. Let q be a N E of the capacity revelation game induced
by ϕV at (H, I, q∗, P). If h belongs to a pair blocking ϕV (q) in (H, I, q∗, P), then
ϕV (q) PhϕV

(
q∗

h , q−h
)
.
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Lemma 1 shows that if a N E produces an unstable matching, then any hospital
belonging to some blocking pair is strictly better off by manipulating its capacity. We
employ this result throughout the paper.

3.1 The hospital-optimal rule

The literature on capacity reporting games has devoted attention to the property of
strong monotonicity. Every counterexample in Konishi and Ünver (2006) and in Sön-
mez (1997) uses preferences that are not strongly monotonic. Strong monotonicity
is intuitively linked to capacity manipulation. However, it is neither necessary nor
sufficient for the stability of N E outcomes, as the following example demonstrates.

Example 1 Consider the following 2 × 2 problem. The preferences of the hospital are
strongly monotonic such that Ph1 : {i1, i2} , {i1} , {i2} and Ph2 : {i1, i2} , {i2} , {i1}.
The preferences of the interns are Pi1 : h2, h1 and Pi2 : h1, h2. When the capacities
are (2, 2) , (1, 2) or (2, 1), the unique stable matching is

μ1 =
(

h1 h2
{i2} {i1}

)
.

where
h1
{i2} denotes that μ1(h1) = i2. When the capacities are (1, 1) the matching μ1

is the intern-optimal stable matching. The hospital-optimal stable matching is:

μ2 =
(

h1 h2
{i1} {i2}

)
.

When the capacities are (2, 2) the capacity revelation game induced by ϕH has two
N E (1, 1) and (2, 2). The former yields μ2 as an outcome, which is blocked by the
pair (h1, i2). The latter yields μ1 as an outcome.

When the hospitals state their true capacities, the interns receive offers from both
hospitals, along the deferred acceptance algorithm. Each intern can choose her favorite
hospital, and every hospital ends up hiring its least-preferred intern. However, both
hospitals would be willing to switch their interns because there is a “cycle” in their
preferences: i1 Ph1 i2 Ph2 i1. This can be accomplished if both hospitals understate their
capacity. In this way, each hospital only makes an offer to its favorite intern. Every
intern accepts her unique offer and each hospital ends up hiring its favorite intern.
Notice that this possibility arises because there is also a “cycle” in the preferences of
the interns, which moves in the opposite direction of the cycle for the preferences of
the hospitals: h2 Pi1 h1 Pi2 h2.

The findings of Example 1 are intrinsic to capacity manipulation. It is the pres-
ence of simultaneous cycles of preferences that allows for the possibility of capacity
manipulation under the hospital-optimal rule.

In general, a cycle in the preferences of the hospitals arises when there is a list
of hospitals and interns alternating “on a circle” such that every hospital in the cycle
prefers the intern on its clockwise side to the intern on its counterclockwise side but
finds both acceptable. We present this concept formally in the following definitions.
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Definition 1 A hospitals’ cycle (of length T + 1) is given by h0, . . . , hT with hl 
=
hl+1 for i = 0, . . . , T and distinct i0, i1, . . . , iT such that

1. i0 Ph0 iT PhT iT −1 . . . i1 Ph1 i0,
2. for every l, il ∈ A (hl) ∩ A (hl+1).5

The preferences of the hospitals are acyclical if they have no cycles of any length.

Assume that a cycle exists. If every il is initially assigned to hl+1, every hospital
is willing to exchange its assigned intern with its successor. If the preferences are
acyclical, in particular, there are no cycles of length 2. Thus, each pair of hospitals has
the same preferences over the set of mutually acceptable interns. Therefore, the notion
of acyclicity generalizes the notion of common preferences presented by Konishi and
Ünver (2006).

The notion of a cycle in the preferences of interns’ preferences is specular.

Definition 2 An interns’ cycle (of length T + 1) is given by h0, . . . , hT and
i0, i1, . . . , iT such that

1. h0 PiT hT PiT −1 hT −1 . . . sh1 Pi0 h0,
2. for every l, hl ∈ A (il−1) ∩ A (il).

The preferences of the interns are acyclical if there are no cycles of any length.

A simultaneous cycle arises when there is a list of hospitals and interns alternating
“on a circle” such that every hospital (intern) prefers the intern (hospital) on its clock-
wise side to the intern (hospital) on its counterclockwise side but finds both acceptable.
Formally:

Definition 3 A simultaneous cycle is given by hospitals h0, . . . , hT and interns
i0, i1, . . . , iT such that

1. iT PhT iT −1 PhT −1iT −2 . . . io Ph0 iT ,
2. h0 PiT hT PiT −1 hT −1 . . . h1 Pi0 h0,
3. for every l, il ∈ A (hl) ∩ A (hl+1),
4. for every l, hl ∈ A (il−1) ∩ A (il).

A simultaneous cycle naturally defines two “partial-matchings” μ1 and μ2 where
μ1 (it ) = ht and μ2 (it ) = ht+1. Every hospital in the cycle prefers μ1, and every
intern in the cycle prefers μ2. The intuition developed in Example 1 helps to state the
following lemma.

Lemma 2 Let V ∈ {H, I }. If ϕV (q) PhϕV
(
q∗

h , q−h
)

for some h and some qh < q∗
h ,

then there exists a simultaneous cycle.

From Lemmas 1 and 2, it follows that if no simultaneous cycle exists, stating the
true capacities is a dominant strategy for hospitals in both the hospital-optimal and the
intern-optimal stable matchings. From Proposition 1 in Romero-Medina and Triossi
(2012), it follows that this result extends to any stable rule.

5 From now on, indices are considered modulo T + 1.
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Proposition 1 Assume that no simultaneous cycle exists and let ϕ be any stable rule.
Then,

(1) ϕ is capacity-proof.
(2) For each q, the capacity revelation games induced by ϕ have a unique N E, that

is, the unique stable matching of (H, I, q, P).

Notice that requiring a profile of preferences not to have simultaneous cycles is
much less demanding than requiring acyclicity in the preferences of the hospitals or
of the interns. Assume for instance that hospital h prefers intern ik to intern il and
hospital h′ prefers intern il to intern ik . Assume that ik and il are acceptable to both
hi and h j . We have a cycle of length 2. However, if ik and il rank h and h′ in the
same way we do not have a simultaneous cycle. More precisely, let Hkl be the set
of hospitals that prefer intern ik to intern il and find both acceptable. If there are no
simultaneous cycles, then the preferences of ik and il must coincide on all pairs of
hospitals

(
h, h′) ∈ Hkl ×Hlk . In particular, the result holds when either the preferences

of the hospitals or the preferences of the interns are acyclical, and thereby generalizes
Theorems 6 and 7 in Konishi and Ünver (2006). Actually, acyclicity is the weakest
condition that guarantees that stating the true capacities is a dominant strategy and
that every N E yields a stable matching under the hospital-optimal stable rule.

Proposition 2 Assume that the preferences of the hospitals (interns) have a cycle.
Then, there exists a preference profile for the interns (hospitals) and a vector of capaci-
ties q such that the capacity reporting game induced by ϕH yields an unstable matching
at equilibrium at (H, I, q, P).

Thus, from Propositions 1 and 2 and Lemma 1 follows the following equivalence
result.

Corollary 1 Let PH and I be given. Then, ϕ (P, ·) is capacity-proof for any PI if and
only if PH does not contain any cycle.

It follows that the hospital-optimal stable matching is manipulable via capacities
under relatively weak conditions. Indeed, assume that all interns (hospital) are accept-
able to every hospital (intern). In this case, assuming acyclicity is equivalent to the
assumption that all hospitals (interns) have the same preferences for individual interns
(for hospitals) (see Romero-Medina and Triossi 2012).

3.2 The intern-optimal rule

The intern-optimal stable matching makes stating their true preferences a dominant
strategy for interns. Furthermore, Kojima and Pathak (2008) find that the intern-
optimal stable matching leaves little room for manipulation in large markets. Accord-
ing toPathak and Sönmez (2009) the intern-optimal stable matching is strongly more
manipulable via colleges preferences than the hospital-optimal stable matching. Nev-
ertheless, several matching procedures have been redesigned to use intern-optimal
stable matching. Examples of this include the NRMP and the school allocation method
currently used in Boston.
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In the case of manipulation via capacities, the evidence is inconclusive. Roth and
Peranson (1999) observed little evidence of differential manipulability via capacities
between the initial N RM P and the intern-optimal version of the same algorithm. We
find that the game induced by the intern-optimal stable matching is more resistant to
capacity manipulation.

First, to include capacity manipulation in the intern-optimal stable matching, at
least three interns are needed. Consider, for instance, a matching market with only
two interns and assume that at least one hospital has a capacity of two. If the two
interns are assigned to one hospital, this hospital cannot benefit from rejecting one of
them because the preferences are responsive. If the interns are assigned to two different
hospitals, reducing capacities does not affect the outcome of the game.

There is a second and more important difference between the manipulability of
the hospital-optimal and intern-optimal stable matchings. Under the hospital-optimal
rule, a hospital that understates capacities refrains from granting admission to some
interns in the deferred acceptance algorithm. In this way, it prevents potential cycles of
rejections of hospitals by interns. Under intern-optimal stable matching, the situation
is different. By understating capacities a hospital generates a chain of rejections of
interns by hospitals. Therefore, such a hospital might receive more applications from
interns, but it will be able to fill fewer positions. As we will later prove, a hospital
under the intern-optimal rule needs non-monotonic preferences to profit from capacity
manipulation. Notice that if there are only two interns, the capacity revelation game
induced by ϕ I yields the intern-optimal stable matching as a N E outcome, in contrast
to the case of ϕH . Example 2 provides the basic intuition that explains how the intern-
optimal stable rule can result in unstable matchings.

Example 2 Let I= {i1, i2, i3, i4} , H = {h1, h2}. Let Ph1 be such that Ph1 :{i1, i2, i3} ,

{i1, i2} , {i1, i3} , {i1}, {i2, i3} , {i2}, {i3}, {i4}, and let Ph2 be strongly monotonic in
population according to the following preference over individual interns Ph2 :{i4}, {i3},
{i2}, {i1}. Let Pi1 : h2, h1 Pi2 : h1, h2 Pi3 : h1, h2, and Pi4 :h2, h1. When the capacity
is (2, 2), the intern-optimal stable matching is

μ1 =
(

h1 h2
{i2, i3} {i1, i4}

)
.

When the capacity is (1, 2), the intern-optimal stable matching is

μ2 =
(

h1 h2 ∅
{i1} {i3, i4} {i2}

)
.

When the capacity is (2, 2), the unique N E under the intern-optimal rule is (1, 2),
which yields an unstable matching, μ2.

In Example 2, if h1 states its true capacity, it only receives applications from i2
and i3 and it never receives an application from i1 under the intern-optimal deferred
acceptance algorithm. If h1 understates its capacity, it rejects the application from
i3 in the first stage of the deferred acceptance algorithm. In the second stage of the
deferred acceptance algorithm, i3 applies to h2 and induces the rejection of i1 by h2.
Finally, h1 receives an application from i1 and rejects i2. The non-monotonicity of
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h1’s preferences is necessary to generate the instability. The cycle at h1 makes the
chain of rejections possible.

Assume that hospital h has capacity qh and fills the qth
h position at stage k of the

deferred acceptance algorithm for the first time. Let Ih be the set of interns employed
at h at stage k − 1. Stating capacity qh − 1 can be profitable to h only if some intern i
filling the qth

h position applies to hospital h′ and induces a chain of rejections such that
some interns must apply to and be accepted by h. In this situation, h ends up with a
new set of interns I ′

h with at most qh −1 interns. If capacity manipulation is profitable,
then I ′

h Ph(Ih ∪ {i}). Therefore, the preferences of h must not be strictly monotonic,
as |Ih ∪ {i}| >

∣∣I ′
h

∣∣.
To describe the appropriate chains of rejections, we show that a new notion of cycles

is necessary.

Definition 4 A generalized cycle (of length T +1) at h is given by a cycle in hospital’s
preferences h = h0, . . . , hT i0, i1, . . . , iT and by i−1 such that: i0 Ph0 i−1 Ph0 iT .

Notice that in Example 2, there is a generalized cycle at h1: i1 Ph1 {i2, i3} i1 Ph1 i3 Ph2

i2 Ph2 i1. If every hospital finds all interns to be acceptable, any generalized cycle can be
reduced to a generalized cycle of length 2 (see Ergin 2002). Assume that a generalized
cycle of length 2 at h exists. Let h0 be matched with two interns i−1 and i1. and let
h1 be matched with i0. Assume also that i0 Ph0 {i−1, i1}. Hospital h0 would be willing
to exchange its two interns for i0 only, and h1 would accept the proposal (potentially
only hiring i1). In general, non-monotonicity in the preferences of the hospitals and
the generalized cycles must be connected in a particular way for capacity manipulation
to be profitable under the intern-optimal rule.

Definition 5 A non-monotonic cycle at h is given by M, M ′ ⊆ I , with |M | <
∣∣M ′∣∣

such that

(1) M Ph M ′.
(2) Let M \ M ′ = {

i1, . . . , i s
}
. For k = 1, . . . , s there is a generalized cycle at h,

hk
0, . . . , hk

T k , i k−1, i k
0 , i k

1 , . . . , i k
T k , T k≥1 such that i k = i k

0 and i k−1, i k
T k ∈ M ′\M .

(3) For k 
= k′, i k
l 
= i k′

l ′ for all l = 0, . . . T k, l ′ = 0, . . . , T k′
.

The definition of a non-monotonic cycle is simple but demanding. It links non-
monotonicity with cycles of rejection. It requires that (1) h prefers some set of interns
containing fewer elements, M , to a set of interns containing more elements, M ′, and
(2) any intern who belongs to the set with more interns but not to the one with fewer
interns must be the starting point of a generalized cycle at h, for which the last intern
of the cycle and i k−1 belong to the larger set (M ′) but not to the smaller set (M); and
(3) all the cycles in (2) must be disconnected.

The main result of this section weakens the requirements of Proposition 1: the
intern-optimal stable matching is non-manipulable via capacities under relatively weak
conditions.

Proposition 3 Assume that no non-monotonic cycle exists. Then,

(1) ϕ I is capacity-proof, and

123



Games with capacity manipulation 711

(2) for each q, the capacity revelation game induced by ϕ I yields the intern-optimal
stable matching of (H, I, q, P) at every N E.

If the preferences of the hospitals satisfy strong monotonicity in population (see
definition in Sect. 2), no non-monotonic cycle exists and Proposition 3 implies and
extends Theorem 5 in Konishi and Ünver (2006), as we formally state in the following
Corollary.

Corollary 2 Assume that one of the following conditions holds: the preferences of the
hospitals satisfy strong monotonicity in population, there is no cycle of a length larger
than 2 in the preferences of the hospitals, and there are no generalized cycles. Then,
ϕ I is capacity-proof and the game yields the intern-optimal stable matching at every
NE.

The absence of non-monotonic cycles is the minimal condition required to prevent
capacity manipulation. If a non-monotonic cycle exists, there is a preference profile
for the interns and a vector of capacities q such that the capacity reporting game yields
an unstable matching in equilibrium. Additionally, if the preferences of the interns
have a cycle of length at least 3, there exists a preference profile for the hospitals
and a vector of capacities q such that the capacity reporting game yields an unstable
matching in equilibrium. The same applies to the preferences profile for those interns
with cycles of lengths less than 3. The following proposition shows which hospitals
might benefit from capacity manipulation.

Proposition 4 Assume that there exists a non-monotonic cycle at h or that the pref-
erences of the interns have a cycle length at least 3. Then,

(1) there is a preferences profile for the interns and a vector of capacities q such
that the capacity reporting game induced by ϕ I yields an unstable matching at
equilibrium, and

(2) there is a preferences profile for the interns and a vector of capacities q such that
hospital h can manipulate ϕ I at (q, P).

Notice that Theorem 1 in Kesten (2012) shows that given a vector of capacity
and preference (q, P), the intern-optimal stable matching cannot be manipulated via
capacities if and only if (q, P) has no cycles. In Kesten (2012) (see also Ergin 2002),
a priority structure contains a cycle if the following two conditions are satisfied: (1)
There is a generalized cycle of length 2 h0, h1 i0, i1, i−1. (2) There exist disjoint sets of
interns Nh0 Nh1such that i Ph0 i−1 for all i ∈ Nh0 i Ph1 i0 for all i ∈ Nh1

∣∣Nh0

∣∣ = qh0 −1
and

∣∣Nh1

∣∣ = qh1 −1. This definition of a cycle imposes a restriction on capacities that
is absent in ours. Furthermore, given a cycle of length 2, there always exists a capacity
vector such that condition (2) is satisfied with Nh0 = Nh1 = ∅ and qh0 = qh1 = 1.
Finally, our condition for a non-monotonic cycle in Definition 5 is more restrictive.
It requires the existence of non-monotonic preferences and, at least, a generalized
cycle.6

6 The example that proves the sufficiency of Kesten’s condition for capacity manipulation includes a non-
monotonic cycle.
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4 Generalized games of manipulation

In most real life mechanisms, the strategic possibilities of agents go beyond capacity
manipulation. For example, after hospitals have revealed their capacities, interns are
assigned to hospitals according to stated preferences (for instance, in the N RM P ,
the Boston and New York mechanisms). The game that follows the capacity reve-
lation stage has been modeled in different ways in the literature (see Alcalde and
Romero-Medina 2000; Abdulkadiroğlu et al. 2005; Sotomayor 2008). At this stage,
both hospitals and interns can manipulate the outcome by misrepresenting their pref-
erences. We now define a class of games that allows for the manipulation of both
capacities and preferences.

Definition 6 Let (H, I, q, P) be a hospital-intern market. A generalized game of
manipulation is

{
Gq ′

}
q ′≤q where Gq ′ = (

H, I, Mq ′ , gq ′
)

is a game form. The set
of players is H ∪ I , the strategy space is Mq ′ = ∏

i∈I Mq ′,i × ∏
h∈H Mq ′,h , and the

outcome function is gq ′ : Mq ′ → Mq ′ .

For every q ′ ≤ q Gq ′ describes the game played by the agents following the reve-
lation of a vector of capacities q ′.

In the remainder of this section, we consider games in which hospitals simul-
taneously reveal a capacity q in the first stage and agents play the game Gq =(
H, I, Mq , gq

)
in the second stage. We explore both revelation and non-revelation

GG M .

4.1 Revelation games

We assume that the game played after the capacity revelation stage is a revelation
game induced by a stable rule ϕ. Formally, Mq,x = Px for all x ∈ H ∪ I, gq (m) ∈
� (H, I, q, P) for all q. Such a generalized game of manipulation will be called
preference-capacity manipulation game.

It is well known that no stable capacity revelation game makes the revelation of both
every agent’s preferences and capacities a dominant strategy. Therefore, the concept of
a dominant strategy is too demanding for this framework. However, when the intern-
optimal stable matching is used, stating true preferences is always a dominant strategy
for interns. From Proposition 3, we also know that if the interns strategy PI is a vector
of acyclic preferences,7 then stating true capacities is a dominant strategy for hospitals.
In addition, the following result holds.

Proposition 5 Assume that the preferences of the interns are acyclical. When the
intern-optimal stable rule is used, the unique outcome that survives the iterated elim-
ination of weakly dominated strategies in the preference-capacity manipulation game
is the intern-optimal stable matching.

An analogous result does not hold when the hospital-optimal stable rule is employed
because truth-telling is not a dominant strategy for any agent.

7 Notice that acyclicity implies non-monotonic cycles
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However, there are situations in which the preferences of the hospitals can be
taken as given. This situation is due, for instance, to institutional constraints. In this
case, we can consider Mq,h = {Ph} for all h ∈ H Mq,i = Pi for all i ∈ I , and
gq (m) ∈ � (H, I, q, P) for all q. Sotomayor (2008) shows that, when capacities are
known, the game induced by the hospital-optimal rule implements the stable set in N E .
However, this is not enough to prevent capacity manipulation. Only the assumption
of acyclicity prevents the implementation of unstable allocations.

Proposition 6 Let V ∈ {H, I } and let gq (m) = ϕV (P, q) for all q. If the preferences
of either interns or hospitals have no simultaneous cycles, the preference-capacity
manipulation games induced by ϕV yield the unique stable matching of (H, I, q, P)

as a SPE outcome.

Proposition 6 follows from Sotomayor (2008) and Proposition 1.

4.2 Non-revelation games

In this section we consider capacity manipulation in non-revelation games, that are
games where the strategy space of each agent does not necessarily coincide with her
type space. Kara and Sönmez (1997) prove that the stable set is implementable in
N E through a non-revelation game. Alcalde and Romero-Medina (2000), Sotomayor
(2003), and Romero-Medina and Triossi (2010) present extensive form games capable
of implementing the stable set and the intern-optimal stable matching in SPE.

For the remainder of the section, we assume that every Gq ′ is an extensive form
game. Let S P E

(
Gq ′ , q ′, P

)
be the set of SPE outcomes of Gq ′ when the capacity-

preference vector is
(
q ′, P

)
. We assume that S P E

(
Gq ′, q ′, P

) 
= ∅ for all q ′ and
that all such SPE outcomes are stable with respect to the stated capacities, which
are ∅ � S P E

(
Gq ′ , q ′, P

) ⊆ �(H, I, q ′, P) for all q ′.8 We call the family
{
Gq ′

}
q ′ ,

stable.
Even if the family

{
Gq ′

}
q ′ is well behaved, adding a capacity manipulation stage

does not guarantee that the resulting GG M produces stable matching in every SPE.
In fact, the negative result is even stronger.

Proposition 7 Assume that there are at least two hospitals and three interns. There
is no family of stable non-revelation mechanisms

{
Gq ′

}
q ′ such that the associated

generalized game of manipulation yields stable SPE for all q.

Proof The proof is by means of an example, based on Sönmez (1997).
Let H ⊇ {h1, h2} and let I ⊇ {i1, i2, i3}. Let Ph1 : {i1, i2, i3}, {i1, i2}, {i1, i3}, {i1},

{i2, i3}, {i2}, {i3}, and let Ph2 : {i1, i2, i3}, {i2, i3}, {i1, i3}, {i3}, {i1, i2}, {i2}, {i1}. Let
Pi1 = h2, h1 Pi2 = h1, h2, and Pi3 = h1, h2. Finally, let q1 = q2 = 2 q ′

1 = q ′
2 = 1

be the possible capacities.
Assume that qhl = 1 for all l ≥ 3. Let PH be such that i j j = 1, 2, 3 is not

acceptable to hl l > 2 such that i j j > 3 is not acceptable to h1 or to h2 and such that

8 While restrictive, this condition is nonetheless necessary for the GG M to yield stable allocations.
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each i j j > 3 is acceptable to at most one hospital. Let μ be the unique stable matching
of the market

(
H \ {h1, h2} , I \ {i1, i2, i3}, qH\{h1,h2}, PH\{h1,h2}, PI\{i1,i2,i3}

)
.

Let μ0 =
(

h1 h2 ∅
{i1} {i3} {i2}

)
, μ1 =

(
h1 h2
{i2}

{
i1,i3

}
)

, μ2 =
(

h1 h2
{i1}

{
i2,i3

}
)

,

μ3 =
(

h1 h2
{i1, i2} {i3}

)
, and μ4 =

(
h1 h2
{i2, i3} {i1}

)
. Then:

�(1, 1, qH\{h1,h2})= {(μ0, μ
)}, �(1, 2, qH\{h1,h2})= {(μ1, μ

)
,
(
μ2, μ

)},
�(2, 1, qH\{h1,h2})= {(μ3, μ

)
,
(
μ4, μ

)}, �(2, 2, qH\{h1,h2})= {(μ4, μ
)}.

We prove that for every family
{
Gq ′

}
q ′ of stable mechanisms, the generalized game

of manipulation induced by
{
Gq ′

}
q ′ yields an unstable matching at some SPE when

the true capacity vector is (2, 2, qH\{h1,h2}).
Assume by contradiction that there is a family

{
Gq ′

}
q ′ of stable mechanisms such

that the generalized game of manipulation induced by
{
Gq ′

}
q ′ yields a selection of

the stable set in SPE for every q. When both capacities are equal to 2 the SPE out-
come is

(
μ4, μ

)
. There are two possibilities: either the SPE yielding

(
μ4, μ

)
includes

hospitals’ h1 and h2 true capacities or it does not.
From subgame perfection, it follows that when both hospitals have capacity

2
(
μ4, μ

)
must be the unique N E outcome of one of the following games or no

such games can have a pure strategy N E (without loss of generality, we disregard the
moves of hospitals hl , for l ≥ 3:

(1)
h1\h2 1 2

1 i1, i3 i2,
{
i1,i3

}

2 {i2, i3}, i1 {i2, i3}, i1

, (2)
h1\h2 1 2

1 i1, i3 i1, {i2, i3}
2 {i2, i3}, i1 {i2, i3}, i1

,

(3)
h1\h2 1 2

1 i1, i3 i2,
{
i1,i3

}

2 {i1, i2}, i3 {i2, i3}, i1

, (4)
h1\h2 1 2

1 i1, i3 i2,
{
i1,i3

}

2 {i1, i2}, i3 {i2, i3}, i1

,

where the table above presents the outcomes at matching μ4 as a result of the
capacities declared by h1 and h2. For example, μ4(h1 | (qh1, qh2) = (1, 1)) = i1 ,
μ4(h2 | (qh1 , qh2) = (1, 2)) = {

i1,i3
}

and so on. Games (1) and (2) have (1, 2) as
N E . Games (3) and (4) have (2, 1) as N E . None of the N E yields μ4, thus yielding
a contradiction. ��

However, if there are no simultaneous cycles, then any such mechanisms implement
the stable allocations.

Proposition 8 Assume that the family of non-revelation mechanisms
{
Gq

}
q ′≤q is

stable. Assume that the preferences of the agents P have no simultaneous cycles. Then
every SPE of the generalized game of capacity manipulation induced by

{
Gq

}
q ′≤q

yields the unique stable matching of (H, I, q, P).

5 Conclusions

In this paper, we study the interaction between preference and capacity manipulation
in many-to-one matching markets. This interaction, which has been largely overlooked
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in the literature, is relevant in determining the likelihood of finding stable allocations
in these markets. We first provide the necessary and sufficient conditions that guaran-
tee the stability of N E and the strategy-proofness of truthful capacity revelation under
the hospital-optimal and the intern-optimal stable rules. It turns out that the hospital-
optimal rule is more prone to capacity manipulation than the intern-optimal rule. This
result is in line with that of Kojima and Pathak (2008), who show how the intern-
optimal rule leaves little room for manipulation in large markets. Second, we study
generalized games of manipulation. A GG M is a multi-stage game in which hospitals
first state their capacities and then interns are assigned to hospitals using a sequential
mechanism. In the GG M , the agents develop the full extent of their strategic capa-
bilities in a setting in which both capacity and preference manipulation are allowed.
In this setting, we first present an impossibility result: none of the games can imple-
ment stable allocations in a general domain. However, if we restrict the preference
domain, implementation becomes feasible. We show that the absence of simultaneous
cycles guarantees the stability of N E outcomes when the preferences of hospitals
are known, i.e., in a stable revelation mechanism. Furthermore, in the case of stable
non-revelation mechanisms, we find that there is no possibility of implementing stable
matching, unless preferences are acyclical.

The previous results in GG M provide insight as to the reasons why capacity manip-
ulation may hinder the implementability of stable matching in some markets. First, the
choice of the rule to be implemented is determinant because the hospital-optimal rule
favors capacity manipulation. Moreover, the consequences of the previous choice dif-
fer depending on whether the GG M is designed with a revelation or a non-revelation
mechanism.
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acknowledges financial support from Fondecyt under project Nos. 11080132 and 1120974.

Appendix

Proof of Lemma 1 Let q be a N E when the capacity vector is q∗ and let μ = ϕV (q)

be the matching outcome. Assume μ is unstable in (H, I, q∗, P). Let (h, j) ∈ H × I
be a hospital-intern pair blocking μ and set μ∗ = ϕV

(
q∗

h , q−h
)
.

We next prove that μPhμ∗. We already know that μ (h) Rhμ∗ (h) because q is a
N E . First, notice that qh < q∗

h and |μ (h)| = qh , otherwise (h, j) would block μ in
(H, I, q, P). Consider the related one-to-one matching market. Let h′

c denote a copy
of hospital h′ ∈ H in that market. From Proposition 2 in Gale and Sotomayor 1985a
it follows that μ∗ RI μ and μRh′

c
μ∗ for every h′ 
= h and μRhcμ

∗ for every hc such
that μ (hc) 
= hc. Furthermore, μRhμ∗ because q is a N E and μ 
= μ∗ because
μ is unstable in

(
H, I,

(
q∗

h , q−h
)
, P

)
. Thus, μPH μ∗ and μ∗ PI μ. Finally, μPhμ∗,

otherwise (h, j) would block μ in (H, I, q, P). ��

Proof of Lemma 2 Let q be a vector of capacities. Let h ∈ H. Let qh < q∗
h and let

q−h be the vector of capacities for the other hospitals. Set μ = ϕV (q) and set μ∗ =
ϕV

(
q∗

h , q−h
)
. We prove that if μPhμ∗, then a simultaneous cycle exists. Proposition
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2 in Gale and Sotomayor 1985a (applied to the related one-to-one matching market)
implies that μ∗ PI μ and μPH μ∗. More precisely, it implies that i Ph′ j for all h′ such
that μ

(
h′) 
= μ∗ (

h′), for all i ∈ μ
(
h′) \ μ∗ (

h′) and for all j ∈ μ∗ (
h′) \ μ

(
h′). Set

I ′ = {i : μ∗ Piμ} 
= ∅. Let h0 ∈ μ
(
I ′), then μPh0μ

∗ and set i0 = maxPh0
μ (h0) \

μ∗ (h0) i0 ∈ I ′. For all l ≥ 1, set hl+1 = μ∗ (il) if hl+1 
= ht for every t < l + 1
and set hl+1 = hl otherwise. Observe that h0 
= h1. Let il = maxPhl−1

μ (hl−1) \
(μ∗ (hl−1) ∪ {i0, . . . , il−1}) if μ∗ (hl−1) ∪ {i1, . . . , il−1} � μ (hl−1), and set il+1=il
otherwise. The sequence is stationary because I ′ is finite. Let l̄ be the minimal number
l ≥ 1 such that hl = hl+1. Let k be such that hk = hl . Set jl = il+k and rl = hl+k

for every l ≤ l − k. The sequence satisfies μ ( jl) = hl = μ∗ ( jl−1) for 1 ≤ l ≤
l − k − 1, and μ∗ (

jl̄−k

) = r0 = μ ( j0). We have: (1) jl Prl jl+1 for all 1 ≤ l ≤
l − k and j0 Pr0 jl̄−k ; (2) rl+1 Pjl rl for all 0 ≤ l ≤ l − k − 1 and r0 Pjl̄−k

jl̄−k . Thus,
h0, . . . , hk, r0, . . . , rk constitute a simultaneous cycle. ��
Proof of Proposition 1 (1) From Lemma 2, ϕH cannot be manipulated through

capacities. From Proposition 1 in Romero-Medina and Triossi (2012) it follows
that if P has no simultaneous cycles, the set of stable matchings is a singleton
for every q, then ϕH (P, q) = ϕ (P, q) for every stable rule ϕ, for every q. It
follows that no stable rule ϕ can be manipulates through capacities.

(2) From (1) a N E yielding a stable matching exists. From Lemma 1 and (1) the
game does not yield unstable matchings at equilibrium. The rest of the claim
follows from Proposition 1 in Romero-Medina and Triossi (2012), which shows
that if there are no simultaneous cycles the set of stable matchings is a singleton.

��
Proof of Proposition 2 Assume that there is a hospitals’ cycle. Let h0, . . . , hT

and i0, i1, . . . , iT be defined as in Definition 1. We define a preference pro-
file for the interns as follows. Let hl+1 Pil hl and A (il) = {hl , hl+1} for l =
0, . . . , T . Let P I\{i0,...,iT } be any vector of preferences. Consider the market(
H \ {h0, . . . , hT } , I \ {i0, . . . , iT } , q−{h0,...,hT }, PH\{h0,...,hT }, P I ′\{i0,...,iT }

)
and let

μ′ be the hospital-optimal stable matching. Let PI\{i0,...,iT } such that A (i) = μ (i) for
every i ∈ I . When qhl = 2 for l = 0, . . . , T , the market (H, I, q, P) has a unique
stable matching: μ (i) = μ′ (i) for every i ∈ I ′ \ {i0, . . . , iT } and μ (il) = hl+1, for
l = 0, . . . , T . It is easy to see that when q = (

2, . . . , 2, q−{h0,...,hT }
)
, the message(

1, . . . , 1, q−{h0,...,hT }
)

is a N E . The matching outcome is μ∗, where μ∗ (i) = μ′ (i)
for every i ∈ I ′ \ {i0, . . . , iT } i 
= i1, i2 μ∗ (il) = hl+1, for l = 0, . . . , T . The match-
ing μ∗ is blocked by (h2, i1). The proof of the remainder of the claim is identical and
thus omitted. ��
Proof of Proposition 3 Claim (1). Let h ∈ H . Let qh < q∗

h and let q−h be a vector of
capacities for hospitals other than h. Set μ = ϕ I (q) and μ∗ = ϕ I

(
q∗

h , q−h
)
. We prove

that if μPhμ∗, a non-monotonic cycle exists. Proposition 2 in Gale and Sotomayor
1985b, applied to the related one-to-one market, implies that for every h′ ∈ H and
i, j ∈ I such that i ∈ μ

(
h′)\μ∗ (

h′) j ∈ μ∗ (
h′)\μ

(
h′) we have i Ph′ j . From μPhμ∗

it follows that μPH μ∗. Proposition 2 in Gale and Sotomayor 1985b also implies that
μ∗ P∗

I μ.
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There is no loss of generality in assuming that μ∗ (i) is i’s favorite hospital, for
every i ∈ I , because μPH μ∗ and μ∗ PI μ. Consider the deferred acceptance algorithm
where interns apply and the capacity vector is q. Let i be the first intern rejected by
μ∗ (i) = h′. When i is rejected, hospital h′ has all its qh′ positions filled; hence i
is rejected in favor of an intern in μ∗ (

h′). It follows that
∣∣μ

(
h′)∣∣ <

∣∣μ∗ (
h′)∣∣ and

h = h′, thus the preferences of h are not monotonic.
Set M = μ (h) and M ′ = μ∗ (h). Let M \ M ′ = {

i1, . . . , i s
}

and M ′ \ M ={
j1, . . . , jq

}
. Set r = ∣

∣M ′∣∣ − |M | . It has been assumed that μ∗ (i) is i’s favorite
hospital. Remember that M Ph M ′. Consider the deferred acceptance algorithm where
interns apply to hospitals and the capacity vector is q, which leads to μ. For every
i ∈ I , intern i applies to μ∗ (i) in the first stage of the deferred acceptance algorithm
leading to μ. It must be the case that exactly r interns are rejected by h in the first
stage of the deferred acceptance algorithm.

The remainder of the proof of Claim (1) is divided into two parts, where we find
the elements of the non-monotonic cycles at h that appear in Definition 5, separately

(a) First, we find i t−1, as in Definition 5, using the following algorithm.
Step 1. Consider i1. Let d0 > 1 be the stage of the deferred acceptance algorithm

leading to μ where i1 has been accepted by h, and let w1 ∈ I be an intern that has
been rejected by h in favor of i1. If w1 ∈ M ′, stop and set i1−1 = w1, otherwise at
step d1 1 < d1 < d0 w1 has been accepted and an intern w2 has been rejected in
favor of w1. For all k ≥ 2, if wk ∈ M ′, stop and set i1−1 = wk , otherwise at step
dk, 1 < dk < dk−1 wk has been accepted by h and an intern wk+1 has been rejected
by h in favor of wk . The sequence eventually stops at a wK 1 ∈ M ′ who has been
rejected by h in a step dK 1 > 1 of the deferred acceptance algorithm.9 Set i1−1 = wK 1

and W 1 = {
w1, . . . , wK 1

}
. Notice that i1−1 belongs to M ′ \ M . There is no loss of

generality in assuming that i1−1 = j1. We have i1 Ph j1.
Step t . 2 ≤ t ≤ s. Let d0 > 1 be the stage of the deferred acceptance algorithm

leading to μ where i t has been accepted by h and let w1 ∈ I \ ⋃t−1
l=1 W l be an intern

that has been rejected by h in favor of i t . This is possible because if a number of
interns are accepted by a college h̄ at the same stage t > 1 of the deferred acceptance
algorithm, the same number of interns who were previously employed at h̄ are rejected.
If w1 ∈ M ′, stop and set i t−1 = w1, otherwise at step d1 1 < d1 < d0 w1 has been

accepted and an internw2 ∈ I\⋃t−1
l=1 W l has been rejected in favor of w1. For all k ≥ 2,

if wk ∈ M ′, stop and set i t−1 = wk , otherwise at step dk, 1 < dk < dk−1 wk has been
accepted by h and an intern wk+1 has been rejected by h in favor of wk . The sequence
eventually stops at some wK t ∈ M ′ who has been rejected by h in a step dK t > 1 of
the deferred acceptance algorithm.10 Set i t−1 = wK t and set W t = {w1, . . . , wK t }.
Notice that i t−1 belongs to M ′ \ M . There is no loss of generality in assuming that
i t−1 = j t . We have i t Ph j t .

By construction i t−1 
= i l−1 for l 
= t .
(b) Next, for every k = 1, . . . , s we find the hk

0, . . . , hk
T k , i k

0 , i k
1 , . . . , i k

T k from
Definition 5 and conclude.

9 Every intern in the sequence is rejected because of the arrival of an application from another intern.
10 See footnote 9.
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For k = 1, . . . , s set i k
0 = i k .

Step 1.k. Let i k
1 be the intern in favor of which i k

0 has been rejected by μ∗ (
i k
0

) = hk
1.

Step t.k t ≥ 2. At a stage dt of the deferred acceptance algorithm leading to μ i k
t

has been rejected by hk
p+1 = μ∗ (

i k
t

) 
= hk
t in favor of an intern i k

t+1 /∈ μ∗ (
hk

t

)
.

If hk
t = hk′

l and dk
t = dk′

l for some k′ < k and for some lhk
t has received at least∣∣∣

{
k′ < k : hk

t = hk′
l for some l and dk

t = dk′
l

}∣∣∣+ 1 applications that are better than i k
t .

Hence we can choose a i k
t that is different from every other i k′

l 0 ≤ k′ < k. We
have hk

t+1 = μ∗ (
i k
t

)
for all k ik

t Phk
t+1

i k
t+1 and hk

t+1 Pik
t
hk

t .11 The sequence stops at

a T k where hk
T k = h rejects some interns in the first stage of the algorithm. By (a),

i k
0 Phik−1 Phik

T k . Therefore, there is a hospital h ∈ H and M, M ′ subsets of interns, that

satisfy |M | <
∣
∣M ′∣∣ M Ph M ′ and generalized cycles hk

0, . . . , hk
T k , i k−1, i k

0 , i k
1 , . . . , i k

T k

with T k ≥ 1 such that h = hk
0 and i k = i k

0 where i k−1, i k
T k ∈ M ′ \ M and i k−1 
= i k′

−1,
for k 
= k′. Therefore, there is a non-monotonic cycle at h.

Claim (2). By Claim (1) there exists a N E that yields a stable matching. By Lemma
1 there are no unstable equilibria; hence every equilibrium outcome is stable. By
contradiction, assume that the outcome is not the intern-optimal stable matching. It
must be the case that some hospital has misrepresented its true capacity. Let q be a N E
of the game and q∗ ≥ q be the true capacity vector. Set μ = ϕ I (q) and μ∗ = ϕ I (q∗).
From Claim (1) μ is stable in (H, I, q∗, P), so μPH μ∗ and μ∗ PI μ. There is no loss
of generality in assuming that μ∗ (i) is intern i’s favorite hospital. The matching μ is
obtained through the intern-optimal deferred acceptance algorithm. It must be the case
that at least one i is rejected by μ∗ (i) = h in the first stage of the deferred acceptance
algorithm. Every intern applies to her hospital under μ∗ at this stage because h has
misrepresented its true capacity. Hence h has fewer interns under μ than under μ∗.
This yields a contradiction because both matchings are stable in (H, I, q∗, P). ��
Proof of Proposition 4 Assume that there is a non-monotonic cycle at h. Using the

notation from Definition 5, let I ′ =
{

i1
T k : hk

l = h
}

∩ M ′ ∪ {
i1−1, . . . , i s−1

}
. Set M∗ =

M ′ ∩ M ∪ I ′. Notice that
∣
∣M ′∣∣ > |M | and M Ph M ′. Set the preferences of the interns

as follows. Let A
(
i k
l

) = {
hk

l , hk
l+1

}
and hk

l+1 Phk hk
l for all k and all l. Let A (i) =

{h} if i ∈ M ′ ∩ M . For all other interns, let A (i) = {h (i)} for a hospital h (i) /∈{
hk

l : k = 1, . . . , s; l = 1, . . . , T k
}
. Let qh0 = qh = ∣∣M*

∣∣ and q = 1 for all k, l
such that hk

l 
= h. Set all other capacities arbitrarily. We have ϕ I (q) = M∗. From
the property of the non-monotonic cycle at h, we know that ϕ I

(
q ′

h, q−h
)

Rh M Ph M∗.
Let q ′

h be h’s best response to q−h . We have q ′
h < qh . It is easy to see that

(
q ′

h, q−h
)

is a N E at (H, I, q, P). It yields a matching that is unstable because in any stable
matching of (H, I, q, P) h is matched to |M∗| > q ′

h interns. ��
Proof of Proposition 5 When the intern-optimal rule is used the revelation of true
preferences is a dominant strategy for interns. From Proposition 3 we have
ϕ I (qh, q−h, P) Rhϕ I

(
q ′

h, q−h, P
)

for all q ′
h, qh such that q ′

h ≤ qh and for all h. Thus,

11 Because ik
p first applies to hk

p+1in the deferred acceptance algorithm.
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to complete the proof of the claim it suffices to show that ϕ I (q, PH , PI ) Rh

ϕ I
(
q, P ′

h, P−h, PI
)

for all q, and P ′
h as well as for all h if the preferences of the interns

are acyclical. But this follows from Lemma 3 in Romero-Medina and Triossi (2012).
��

Proof of Proposition 6 The claim follows from Theorem 1 on Sotomayor (2008)
(pp. 631–632) and Proposition 1. ��
Proof of Proposition 8 The claim follows from Proposition 1. ��
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