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Cancer Therapy: Clinical

Heat-Shock Induction of Tumor-Derived Danger Signals Mediate
Rapid Monocyte Differentiation into Clinically Effective Dendritic Cells

Raquel Aguilera1, Carlos Saffie1, Andr�es Tittarelli1, Fermín E. Gonz�alez1,2, Marcos Ramírez1, Diego Reyes1,
Cristi�an Pereda1, Daniel Hevia1, Tamara García1, Lorena Salazar1, Arturo Ferreira1, Marcela Hermoso1,
Ariadna Mendoza-Naranjo4, Carlos Ferrada3, Paola Garrido1, Mercedes N. L�opez1,3, and Flavio Salazar-Onfray1

Abstract
Purpose: This study characterizes, biologically and clinically, a novel type of dendritic cells (DC)

produced in the short term and called tumor antigen–presenting cells (TAPCells). In particular, we

identified factors present in a lysate derived from heat-shocked allogeneic melanoma cells (TRIMEL) that

are associated with TAPCells’ enhanced capability to induce CD8þ T-cell responses in vitro and in

vaccinated melanoma patients.

Experimental Design: First, extensive phenotypic and functional characterization of TAPCells was

performed, followed by vaccination of 45melanoma patients with four doses of TAPCells over a period of 2

months. Specific delayed-type hypersensitivity (DTH) reaction was analyzed posttreatment and correlated

with overall survival rates. Furthermore, heat-shock (HS)-induced factors present in TRIMEL and their

effects on DC activation were identified and studied.

Results: TRIMEL induced a committed, mature, DC-like phenotype in TAPCells and effectively activated

melanoma-specific CD4þ and CD8þ T cells. Clinically, 64% of vaccinated patients showed positive DTH

reaction against TRIMEL, and this was associated with improved overall survival. HS treatment of tumor

cells increased calreticulin (CRT) plasmamembrane translocation and induced the release of high-mobility

group box 1 proteins (HMGB1). Both CRT and HMGB1 mobilization were associated with enhanced

TAPCells’maturation and antigen (Ag) cross-presentation, respectively. DTH infiltration analysis revealed

the presence of CD8þ/CD45ROþ T cells, thus confirming TAPCells’ ability to cross-present Ags in vivo.

Conclusions:Our results indicate that lysates derived fromheat-shocked tumor cells are anoptimal source

of tumor-associated Ags, which are crucial for the generation of DCs with improved Ag cross-presentation

capacity and clinically effective immunogenicity. Clin Cancer Res; 17(8); 2474–83. �2011 AACR.

Introduction

The activation of T lymphocytes against tumor cells
requires antigen (Ag) presentation by dendritic cells
(DC), which are strategically located within peripheral
tissues in an immature state (1). After the interaction with
pathogens or other inflammatory stimuli, DCs mature,

upregulating several surface markers associated with Ag
presentation, costimulation, and cell–cell adhesion (1).
Maturation partly results from activation through pattern-
recognition receptors (PRR; ref. 2) suchas Toll-like receptors
(TLR), which recognize well-conserved, pathogen-asso-
ciated, molecular patterns (3). In a noninfectious context,
certain endogenous factors, originating from necrotic or
stressed cells induced by trauma, ischemia-related injuries,
chemical insults, radiation, or excessive heat, can act as
"danger signals," thus inducing an inflammatory response
via PRRs onDCs (4). These signals include "eat-me signals,"
such as calreticulin (CRT) and damage-associated molecu-
lar patterns (DAMP) as heat-shock (HS) proteins, cellular
nucleic acids, and the high-mobility group box 1 (HMGB1),
recognized by TLRs, integrins, or scavenger receptors (5–7).

Given their low frequency in blood, DCs produced in
vitro are differentiated from CD14þ monocytes cultured
with cytokines (8, 9). These immature DCs require addi-
tional stimuli, which is provided by TNF-a or lipopolysac-
charide (LPS), to achieve a mature DC (maDC)-like
phenotype (9).

Until now, DC vaccines have shown encouraging immu-
nologic results, althoughonly a fewhavebeen accompanied
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by durable clinical responses, which has caused disappoint-
ment in the medical and scientific communities (10–13).
Therefore, over the past 5 years, a major emphasis has been
placed on improving the design of DC vaccines to induce
proper activation, better Ag presentation, and increased
immunogenicity.
Optimal delivery of a wide-ranging pool of tumor-asso-

ciated Ag (TAA) is critical for DC-based immunotherapy.
Therefore, autologous tumor cell lysates, whole tumor
cells, mRNA (10, 14–16), and allogeneic melanoma cell
lysates (17–19) are valuable alternatives as TAA providers,
with the latter representing a standardized applicable
source of melanoma-associated Ag (MAA) that is useful
in high-risk tumor-free patients. CTLs are crucial for tumor
rejection and control of dissemination (20, 21). Because
metastatic melanoma cells marginally express MHC class I
(MHC-I), and not MHC-II, molecules (22, 23), their recog-
nition requires an efficient Ag cross-presentation by DCs
(24–26). DC cross-presentation is regulated by cytokines
and TLR ligands during inflammation (24).
Recently, we demonstrated the effectiveness of standard

DC immunization for improving long-term survival in
patients with late-stage melanoma (17, 19). In the present
article, we propose that a lysate of heat-conditioned allo-
geneic melanoma cells, named TRIMEL, provides a unique
strategy to obtain, within 48 hours, efficient tumor Ag–
presenting cells (TAPCells) with an maDC-like phenotype.
In particular, HS treatment of tumor cells induces DAMPs,
which provide activation signals that trigger a fast mono-
cyte differentiation into maDCs.
Furthermore, tumor-associated DAMPs may be respon-

sible for an efficient Ag cross-presentation by TAPCells,

thus mediating an optimal immune response in vaccinated
patients. Overall, our results provide new insights into the
design of more potent and clinically effective vaccines for
treatment of melanoma.

Materials and Methods

Patients
Forty-five melanoma patients were vaccinated with

TAPCells and followed up from September 2006 until
July 2010, in accordance with the described protocol
(19). The study was performed in agreement with the
Helsinki Declaration and approved by the Bioethical
Committee for Human Research of the Faculty of Med-
icine, University of Chile. All patients signed an informed
consent.

Cell lines and cell lysate preparations
TRIMEL is a cell lysate derived from 3 allogeneic mela-

noma cell lines—Mel1, Mel2, and Mel3—prepared as
described (19). Briefly, each cell line was HS-treated at
42�C for 1 hour and then incubated for 2 hours at 37�C.
Cells obtained were mixed in equal amounts and lysed
through repeated freeze–thaw cycles in liquid nitrogen.
Thereafter, the cell lysate was sonicated and irradiated with
a 60-Gy dose. The protein concentration was estimated by
Bradford’s method using a biophotometer (Eppendorf).
Cell lysates from peripheral blood lymphocytes (PBL) and
prostate and colon cancer cells were prepared following the
same protocol, using commercial available cell lines. Two
allogeneic primary renal cancer cell lines, established at the
University of Chile, were used for renal cancer cell lysate
preparation. The melanoma cell line FM3D was kindly
provided by Dr. J. Zeuthen (Cancer Society, Copenhagen,
Denmark). THP-1 monocytic/macrophagic cells, K-562
myelogenous leukemia cells, and T2 cells (T-cell leuke-
mia/B-cell hybrid) were all purchased from the American
Type Culture Collection. The CD40L-transfected mouse
embryonic fibroblast NIH3T3 was kindly provided by
Dr. Eduardo Villablanca (San Raffaele Institute, Milan,
Italy).

TAPCells generation
Adherent monocytes isolated from peripheral blood

mononuclear cells (PBMC) of melanoma patients were
cultured in serum-free AIM-V medium (Invitrogen), with
recombinant human interleukin 4 (rhIL-4: 500 U/mL;
US-Biological), and recombinant human granulocyte-
macrophage colony-stimulating factor (rhGM-CSF:
800 U/mL; Shering Plough) for 22 hours and then
stimulated for 24 hours with TRIMEL (100 mg/mL) alone
or with rhTNF-a (20 U/mL; US-Biological; TAPCells), or
with medium only [activated monocytes (AM)]. In
some experiments, TRIMEL was additionally incubated
with anti-CRT monoclonal antibody (mAb), 1.75 mg
(BD Biosciences), anti-HMGB1 polyclonal Ab (pAb),
10 mg (Sigma-Aldrich), or an isotype control pAb (BD
Biosciences).

Translational Relevance

Dendritic cell (DC)-based anticancer vaccines have
shown an extraordinary ability to induce immunity, but
this has low correlation with clinical effects. This con-
straint is probably due to tumor escape caused by
dominant single antigens (Ag), absence of immunologic
danger signals during immunization, or deficiencies in
Ag-presentation by injected DCs. Optimal delivery of a
wide-ranging pool of Ags coupled with the presence of
factors promoting Ag cross-presentation to CTLs is cri-
tical for DC vaccine success. In this article, we describe
the effect of an allogeneic melanoma cell lysate (TRI-
MEL) on the rapid differentiation of human monocytes
into tumor antigen-presenting cells (TAPCells). In par-
ticular, heat-conditioned tumor lysate triggers the
induction of calreticulin (CRT) and high-mobility
group box 1 proteins (HMGB1), both of which act as
danger signals, mediating an optimal Ag-presenting cell
maturation and Ag cross-presentation. Importantly,
TAPCells induce cellular responses in 64% of vaccinated
patients, associated with a prolonged survival. These
findings provide new insights into the design of potent
and clinically effective DC-based tumor vaccines.

Conditioned Tumor Lysate Induces Effective DC Vaccines
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Generation of MAA-specific T cells
PBL or naive CD4þ T cells were cocultured with auto-

logous TAPCells (20:1) in RPMI 1640 medium (Invitro-
gen) containing 10% FBS (Invitrogen) and nourished every
2 days with rhIL-6 (5 ng/mL; eBioscience) and rhIL-2
(100 U/mL; ProSpec-Tany TechnoGene). T cells were
restimulated with autologous Ag-presenting cells (APC;
30:1), and maintained with rhIL-2 (100 U/mL) for an
additional 10 days. CdL43-1 is a human leukocyte antigen
(HLA) A2þ-restricted T-cell clone, which is Melan-A/
MART-127–35 specific (26).

Flow cytometry
The following antibodies (Ab) were used for cell stain-

ing: anti-HLA-ABC, HLA-DR, CD80, CD83, DC-SIGN,
DEC-205, CD11c, CD86, CCR7, CD4, CD8, and CD45RO
(eBioscience); and CD14 (BD Biosciences). The anti-MICA
mAb (R&D Systems) were used together with a secondary
fluorescein isothiocyanate (FITC)-conjugated goat anti-
mouse immunoglobulin G (IgG; R&D Systems). Samples
were acquired on a FACSCalibur (BD Biosciences) and
analyzed using WinMDI 2.8 software.

ELISpot and proliferation assay
T cells (2 � 104) were cocultured overnight with APCs at

different effectors/target ratios. IFN-g secretionwas testedby
the enzyme-linked immunosorbent spot (ELISpot) assay, as
described (19).MHC-I andMHC-IIblockingwasperformed
using mAbW6/32 (eBioscience) and mAb TÜ39 (BD Phar-
mingen), respectively. Proliferation response wasmeasured
by [3H]-thymidine uptake at 24 hours according to stan-
dard methods (Topcount NXT; PerkinElmer).

Immunofluorescence staining
For intracellular and surface staining, melanoma cells

were fixed with 70% cold methanol or 4% paraformalde-
hyde, respectively, and this was followed by incubation
with purified mouse anti-human CRT mAb, amino acids
270–390 (BD Biosciences; Transduction Laboratories) and
a secondary FITC-conjugated goat anti-mouse Ab (Invitro-
gen). Confocal image stacks were captured with a Zeiss
LSM-5, Pascal 5 Axiovert 200 microscope, using LSM 5 3.2
software and a Plan-Apochromat 63�/1.4 oil objective.

Western blot
Cell pellets from APCs or tumor cells were suspended at

4�C in radioimmunoprecipitation assay (RIPA) lysis buffer
with added protease and phosphatase inhibitors. Equal
amounts of protein were separated by 12% SDS-PAGE,
followed by Western blotting and then evaluated using
anti-phospho-p65 (Cell Signaling), anti-IkBa (Santa Cruz
Biotech), anti-HMGB1 (BD Biosciences), and anti-MART-1
(Invitrogen) Abs. The anti-b-actin (Sigma-Aldrich) and
anti-GAPDH (Cell Signaling) Abs were used as controls.
Bands were visualized using enhanced chemiluminescence
(ECL; Amersham Biosciences), and the ratio protein of
interest/internal control was determined by densitometry
(ImageJ software).

Skin test and T-cell isolation
All patients were assessed for in vivo delayed-type hyper-

sensitivity (DTH) reactions to TRIMEL 1 month after the
last immunization. Furthermore, 10 patients were tested
prior to vaccination. Skin tests were performed by intra-
dermal injection of 150 mL TRIMEL (2 mg/mL), 150 mL of
MULTITEST cell-mediated immunity (Pasteur-M�erieux),
and 150 mL of saline solution at different sites. Positive
reaction was defined as skin induration of 5 mm or greater
at 48 hours after injection.

In 3 DTHþ patients, an 8-mm excision at the DTH
reaction was made, using a disposable biopsy punch
(Delasco). Half of the tissue sample was fixed in paraf-
ormaldehyde 1%, and paraffin-embedded specimens
were immunostained with primary Abs against CD4,
CD8, and CD45RO (Dako). T cells were isolated from
the other half by mechanical disruption and incubated
with IL-2 (250 U/mL) for 3 weeks and then analyzed by
flow cytometry.

Statistical analysis
Student’s t-, Dunn’s multiple comparison, and Kruskal–

Wallis tests were used for comparison of continuous vari-
ables. Survival curves were analyzed by the Kaplan–Meier
method and log-rank test using Stata 7.0 software (Stata
Corp). Differences were considered significant when P�
0.05.

Results

TRIMEL induces differentiation of activated
monocytes into DCs with a mature phenotype

The expression of the most common MAA, such as
MART-1, gp100, tyrosinase, NY-ESO1, MAGE1, MAGE3,
MC1R, MCSP, survivin, and Her2/neu (27, 28), was
detected in the melanoma cell lines constituting TRIMEL.
Mel1 and Mel3 expressed 9, and Mel2 8, out of 10 MAA
(data not shown). The addition of TRIMEL to AM, in the
presence or absence of TNF-a, mediated up to 3-fold
induction of maturation markers associated with DC
maturation such as MHC-I, MHC-II, CD80, CD86, and
CD83 (Fig. 1A and B). In addition, TAPCells showed
increased expression of DC-associated endocytic receptors
DEC-205 and DC-SIGN and enhanced surface expression
of MICA and CCR7 (Fig. 1C). In contrast, CD14 expression
was marginal on TAPCells when compared with PBMC and
THP-1 cells (Fig. 1C).

Mature DCs are phenotypically stable (1); therefore, we
investigated whether TAPCells maintain their phenotypic
properties after additional stimuli. TAPCells remained
insensitive to stimulations with proinflammatory (LPS
and Pam3Cys) or inhibitory (IL-10 and dexamethasone)
factors, thus demonstrating their committed mature phe-
notype (Supplementary Fig. S1A). Furthermore, reduced
phagocytic capacity (Supplementary Fig. S1B) and
increased release of IL-6, TNF-a, and IL-10 (Supplementary
Fig. S1C–E) confirmed maDC properties. Stimulation of
TAPCells with CD40L-expressing fibroblasts induced
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augmented levels of the Th1-polarizing cytokine IL-12
(p70; Supplementary Fig. S1F).

TAPCells activate melanoma-specific CD8þ T cells by
cross-presenting MAA
Thereafter, we evaluated TAPCells’ capacity to elicit

MAA-specific T lymphocytes from autologous PBL. Elicited
T cells released IFN-g after being challenged with autolo-
gous TAPCells, or with 3 allogeneic melanoma cell lines
(Mel1, Mel2, and FM3D), thus supporting their ability to
induce the activation of T cells (Fig. 2A). Neither the NK-
sensitive cell line K-562 nor the murine cell line NIH3T3
induced IFN-g release (Fig. 2A). Elicited T-cell populations
were 80% CD4þ and 20% CD8þ, and their activity was
blocked with anti MHC-I or anti MHC-II mAbs (Fig 2A). In
addition, TAPCells, but not AM, induced autologous naive
CD4þ T-cell proliferation (Fig. 2B).
Furthermore, TAPCells induced IFN-g release by an HLA-

A2–restricted/MART-1–specific CD8þ T-cell clone (CdL43-
1; Fig. 2C; Supplementary Fig. S2), demonstrating their
ability to cross-present MHC-I–restricted MAA (Fig. 2C). In
fact, MART-1-, but not TRIMEL-, loaded, T2 cells activated

the CdL43-1 clone (Fig. 2D), ruling out the possibility that
TRIMEL contains soluble peptides that exogenously bind to
MHC-I.

TAPCells induce MAA-specific immune response in
patients

Based on our previous findings using TRIMEL-loaded
standard DCs (19), a major issue to be evaluated was
whether TAPCells induce MAA-specific cellular immune
responses in patients. To this end, 45 melanoma patients
were immunized with TAPCells, producing no significant
adverse reactions (Supplementary Table 1). In this evalua-
tion, 64% of patients (29/45) developed TRIMEL-specific
DTH reaction (Fig. 3A), indicating CD4þ T-cell activation.
Significantly, CD8þCD45ROþ memory T cells were
detected by immunohistochemistry in DTHþ skin biopsies
(Fig. 3B), which was further confirmed after expansion of T
cells isolated from these biopsies (Fig. 3C). The majority of
the patients showed a DTHþ reaction against control Ags
(MULTITEST), and only 1 patient, out of 10 tested,
displayed a weak, spontaneous DTH response prior to
treatment (data not shown).

Figure 1. TRIMEL induces an
maDC phenotype on TAPCells.
Expression of surface markers on
APCs treated under different
conditions was assessed by flow
cytometry (CD11cþ cells gated).
A, representative dot plots of AM
and TAPCells of at least 5
independent experiments;
numbers refer to the mean
fluorescence intensity (MFI). B and
C, MFI average increase in relation
to AM or monocytes of AM treated
with different stimuli, fresh
monocytes, PBMC, THP-1 cells,
and TAPCells. Data represent at
least 3 independent experiments;
bars indicate SD; *, P < 0.05; **,
P < 0.01.
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The median follow-up of stage IV patients (n ¼ 32) was
33.6 months (range: 13–47), with an overall median
survival of 15.4 months (Fig. 3D). Stage IV/DTHþ patients
(19/32) had a prolonged median survival compared with
nonresponders (stage IV/DTH�). Indeed, while stage IV/
DTH� patients had a median survival of 9.5 months,
57.9% of stage IV/DTHþ patients survived during the
follow-up period (Fig. 3D). Importantly, 81.1% of stage
III patients (9/11) remained metastasis free during the
follow-up (Supplementary Table S1).

Tumor-cell lysates mediate monocyte differentiation
to maDCs

We investigated the capacity of TRIMEL to activate
transduction signals associated with phenotypic changes
in APCs. TRIMEL induced higher phosphorylation levels
of NF-kB p65 than LPS (Fig. 4A). In addition, TRIMEL
and TNF-a, but not a conditioned allogeneic PBL lysate,
induced degradation of IkBa (Fig. 4B). Moreover, TRIMEL,
but not autologous or allogeneic PBL cell lysates, prepared
under the same conditions, induced CD86 and CD83
surface expression on CD11cþ DC populations, even in
the presence of TNF-a (Fig. 4C). Tumor lysates derived
from conditioned prostate and colon cancer cells, but not
conditioned allogeneic PBL cell lysates, significantly
increased MHC-I, CD80, and CD83 expression in CD11cþ

cells (Fig. 4D).

CRT and HMGB1 are involved in TAPCells’ phenotypic
maturation and cross-presentation, respectively

Recently, the mobilization of CRT to the cell membrane,
induced by cell stress, has been associated with increased
endocytosis of stressed cells by APCs as well as with
improved tumor immunogenicity in a murine model (5).
HS treatments induced robust CRT translocation from
intracellular compartments to the cell membrane in all
TRIMEL melanoma cell lines (Fig. 5A). In addition, HS
induced the release of HMGB1 by cell lines composing
TRIMEL, but not by PBL (Fig. 5B and C). HS-treated mel-
anoma cell lines were negative for Annexin V staining, thus
ruling out positive HMGB1 supernatant detection due to
cell destruction or attrition (Supplementary Fig. S3A andB).

To evaluate the role of tumor-derived CRT and HMGB1
in APC activation, we stimulated AM with TRIMEL pre-
incubated with anti-CRT- or anti-HMGB1–specific Abs.
CRT blockage inhibited TRIMEL-mediated induction of
MHC-II, CD80, and CD86 (Fig. 5D, top panel). In contrast,
MHC-I and CD83 expressions were not affected in these
cells (Fig. 5D, top panel). TRIMEL pretreatment with a
HMGB1-neutralizing Ab reduced MHC-I expression on
APCs, but the expression of other surface markers was
not affected (Fig. 5D, bottom panel). Furthermore, the
involvement of CRT and HMGB1 in DC-mediated Ag
cross-presentation was assessed. Stimulation of APCs from
3 melanoma patients with TRIMEL induced a 5-fold

Figure 2. TAPCells induces an antimelanoma T-cell response in vitro. A, PBL-derived T cells, prestimulated with autologous TAPCells, were cocultured with
autologous TAPCells, allogeneic melanoma (Mel1, Mel2, and FM3D), or with control cells (K-562 and NIH3T3). Specific mAbs against MHC-I and MHC-II were
used for blocking CD8þ and CD4þ T cells, respectively. IFN-g release was measured by ELISpot. B, naive CD4þ T cells, prestimulated with autologous
TAPCells, were cocultured with autologous AM or TAPCells at different ratios. The proliferative response was determined by [3H]-thymidine incorporation in 2
different donor samples (MT76 and MT65). Data represent counts per minute (cpm); n ¼ 3 experiments. C, the HLA-A2þ–restricted MART-1–specific clone
(CdL43-1) was cocultured with HLA-A2þ TAPCells, AM, or AM loaded with a lysate of HS-conditioned prostate cancer cells plus TNF-a (Prostate-L). IFN-g
releasewasmeasured by ELISpot. TheWestern blot showsMART-1 expression in the respective lysates (TRIMEL and prostate). D, HLA-A2� TAPCells (A2�) or
T2 cells incubated with TRIMEL, MART-1, or with gp100 peptides were cocultured with the CdL43-1 clone. IFN-g release was measured by ELISpot. A, C, and
D, data represent mean spots/1 � 104 effectors cells of at least 3 independent experiments; bars indicate SD; *, P < 0.05; **, P < 0.01.
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increase of IFN-g release by the CdL43-1 clone, compared
with APCs stimulated with a non–HS-treated melanoma
cell lysate (Fig. 6A). No differences in endocytosis rates
were detected in HS-treated (TRIMEL) versus non–HS-
treated cell lysates (melanoma lysate; Supplementary
Fig. S4). Interesting, pretreatment with an anti-HMGB1–
specific Ab attenuated TRIMEL-mediated IFN-g release by
the CdL43-1 clone (Fig. 6B). Moreover, supernatant from
HS-treatedmelanoma cells (TRIMEL), when added to non–
HS-treated melanoma lysate, restored and improved Ag
recognition by the clone CdL43-1 (Fig. 6B). This effect was
blocked when supernatants were pretreated with an anti-
HMGB1 Ab, and this suggests a role for the released
HMGB1 in the induction of Ag cross-presentation
(Fig. 6B). Finally, HS-treated Mel2 cells that were treated
with an anti-CRT mAb significantly reduced IFN-g release
by the CdL43-1 clone (Fig. 6C; P < 0.01), indicating that
HS induction of CRT translocation improved the ability of
DCs to activate T cells.

Discussion

To date, several DC vaccine studies have shown
encouraging data on induced immunity, but only a few
have correlated with clinical improvements (29). This
constraint is probably due to the induction of tolerance
by dominant single tumor peptides, the absence of immu-
nologic danger signals during immunization, or deficien-

cies in Ag processing and presentation by injected DCs
(30, 31). In the present study, APCs obtained by an
original procedure were phenotypically and functionally
characterized in vitro and clinically tested. We showed that
short-term culture of monocytes loaded with TRIMEL
generated a committed maDC-like phenotype with high
levels of costimulatory and Ag-presenting molecules, as
well as release of proinflammatory cytokines. The rapid
timing (48 hours) for TRIMEL-induced in vitro monocyte
differentiation into maDCs is closer to the physiologic
differentiation process (32, 33) than standard 7-day DC
standard protocols. In addition, TAPCells released the
Th1-associated cytokine IL-12, a process dependent on
CD40 stimulation. Synchronized IL-12 production by
DCs in vivo is crucial because IL-12 synthesis ends
24 hours after exposure to maturation factors, thus
becoming refractory to further activation (34). In this
regard, we hypothesize that TAPCells might receive
CD40-mediated signals by T cells in vivo, thus favoring
the Th1 polarization of the immune response. Moreover,
the CCR7 surface expression indicates that TAPCells can
migrate to the lymph nodes, an essential requirement for
the activation of adaptive immunity (35).

Functionally, TAPCells elicit MAA-specific T cells in
vitro by inducing CD4þ T-cell proliferation and activation
of MART-1–specific CD8þ T cells, indicating that they
cross-present Ags, an important asset in DC-based immu-
notherapy.

Figure 3. TAPCells vaccine triggers TRIMEL-specific DTH response, which is associated with improved survival among melanoma patients. One month after
the last dose of TAPCells, vaccinated patients were intradermally challenged with 150 mL of TRIMEL, MULTITEST (positive control), or with saline solution
(negative control). The DTH reaction was evaluated after 48 hours. A, representative photographs of DTHþ reaction (patients MT94, MT102, and MT127) are
shown. CD4þCD45ROþ and CD8þCD45ROþ memory T cells were detected in TRIMEL-DTHþ biopsies obtained from patients MT62, MT76, and MT103 by
immunohistochemistry (B) and flow cytometry (C). D, Kaplan–Meier survival curves of stage IV melanoma patients after TAPCells vaccination protocols,
grouped according to their DTH response. Statistical difference between survival curves, P < 0.001.
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TAPCells, tested in 45 patients with stage I, III, and IV
melanoma, proved to be well tolerated, and, except for the
presence of vitiligo in 2 cases, no major side effects were
observed (Supplementary Table S1). The DTHþ reaction,
detected in 64% of TAPCells-vaccinated patients after chal-
lenge with TRIMEL, reflects the induction of a powerful
cellular response against the lysate and constitutes an
excellent prognostic marker for clinical outcome, reflecting
a break of tolerance that correlates with prolonged survival
of responder patients. The lack of response observed in a
36% cohort seems to be more associated with tolerance
against TRIMEL Ags than with immunosuppression
because most of the patients developed DTH reactions
against a positive control (MULTITEST). In fact, as we
previously demonstrated, DTH� patients accumulate reg-
ulatory TGF-b producing CD4þ T-cell populations (19).
Alternatively or concomitantly, these patients may have a
genetic predisposition that limits their antitumor immune
response.

Although the DTH reaction has been associated mainly
with memory CD4þ T-cell–mediated response (36), our in
vivo data also showed CD8þ memory T-cell infiltration in
DTHþ biopsies. This finding may be very important
because CTL-mediated immune responses are closely

related to tumor clearance and patient survival (20, 21,
37). TRIMEL-specific DTH is associated with in vivo CD4þ/
CD8þ memory T-cell accumulation at the reaction site,
together with reduced rates of progression and prolonged
patient survival, thus linking ex vivo events with clinical
antitumor responses.

The capability of APCs to activate CD8þ T cells depends
on Ag cross-presentation mechanisms. In this process,
exogenous Ags captured by endocytosis are released to
the cytoplasmic compartment of DCs and routed to the
MHC-I Ag-presentation pathway (24, 25, 38). In the pre-
sent study, TAPCells activated MART-1–specific CD8þ T
cells, thus demonstrating their cross-presentation capacity.
The cross-presentation process is regulated by external
factors, including danger signals provided by tumor cells,
which may act through TLR ligands and other receptors on
DCs (24, 39–41).

In this experiment, we demonstrated that TRIMEL not
only provides a broad panel of shared Ags to DCs but also is
essential for the acquisition of TAPCells’ functional phe-
notype. Thus, TRIMEL but not a conditioned allogeneic
PBL lysate, activates transduction signal pathways on APCs,
in particular, the transcription factor NF-kB associated with
phenotypic changes. Furthermore, neither autologous nor

Figure 4. Lysates from conditioned tumor cells, but not from normal cells, induce a rapid differentiation of monocytes into maDCs. A, total and phosphorylated
p65 expression and (B) IkBa and GAPDH (glyceraldehyde 3-phosphate dehydrogenase) expression were analyzed by Western blot. The graph shows IkBa
levels normalized versus GAPDH. C, CD86 and CD83 expression was analyzed by flow cytometry in AM, AM stimulated with TNF-a, TRIMEL, TRIMEL
plus TNF-a (TAPCells), or with a lysate from conditioned autologous (Aut) or allogeneic (Allo) PBLs (with or without TNF-a). Data show the average percentages
of mean fluorescence intensity (MFI) in relation to TAPCells. D, CD80 and CD83 expression was evaluated by flow cytometry in AM, AM incubated with
TRIMEL, or with HS-conditioned cell lysates (from PBL, colon cancer, prostate cancer, and renal cancer cells). Data represent the average increase of MFI in
relation to AM. C and D, CD11cþ gated. A–D, data from at least 3 independent experiments; bars indicate SD; *, P < 0.05; **, P < 0.01.
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allogeneic conditioned, nontumor cell lysates induced sur-
face expression of maturation markers, suggesting that
factors present in the tumor cells induce the differentiation
process. This may be a general property of some tumors
because lysates derived from prostate and colon cancer cells
significantly increase expression of MHC and costimula-
tory molecules in DCs. Although unexplained, tumor cells,
but not primary cells, induce DCmaturation after necrosis,
which may be associated with overexpression of DAMPs by
human neoplasms (40, 41).
Interestingly, APCs loaded with a lysate composed of

nonstressed melanoma cells showed a reduced capacity to
activate MAA-specific CTLs as compared with HS condi-
tioning, prior to the cell lysis. In this regard, DCs primed
with a HS-treated tumor cell lysate, followed by an in situ
boost with radiofrequency thermal ablation, prevent local
tumor recurrence in a murine model (42). The use of cell
lysates as Ag source produces clinical responses in several
tumor models (43–46), suggesting that our tumor cell
conditioning may have an impact on the design of more
optimal protocols.
HS treatment prior to the tumor cell lysis causes CRT

translocation (most probably, from the endoplasmic reti-
culum) to the plasma membrane and HMGB1 release to
the extracellular media. We showed that HS-induced CRT

translocation to the plasma membrane directly contributes
to maturation of TAPCells. Specific blockage of CRT not
only inhibited surface expression of MHC-II and costimu-
latory molecules but also reduced the capacity of CTLs to
recognize MAA on TAPCells associated with the induction
of a deficient DC phenotype. Although CRT translocation
caused by cytostatic drugs, or other stresses, increases both
the phagocytic capacity and immunogenicity of DCs in a
murine model (5), we could not detect differences in the
endocytic capacity mediated by CRT-membrane mobiliza-
tion (Supplementary Fig. S4). Because murine bone mar-
row–derived DC precursors are different from human
monocyte–derived DCs, perhaps, they react differently to
similar stimulus (47). In addition, our results show that
tumor cells, but not normal PBL, release HMGB1 after HS
treatment. Interestingly, the lack of released HMGB1 in HS-
treated PBL supernatants and their low expression in renal
tumor lysate (Supplementary Fig. S2B) indicate that HS-
treated tumor cell lysates preferentially induce HMGB1
release related with APC maturation, thus suggesting a role
for released HMGB1 in activation of DCs.

Simultaneously, blocking of HMGB1 inhibited MHC-I
surface expression and Ag cross-presentation by TAPCells.
Cross-presentation reconstitution by the addition of super-
natant from HS-treated melanomas to nonstressed lysate

Figure 5. HS preconditioning of cells composing TRIMEL is crucial for DAMP induction. A, HS-treated (42�C) or untreated (37�C) melanoma cells were
analyzed for CRT expression by intracellular (IC) or extracellular (EC) immunofluorescence staining. Arrows indicate CRT accumulation at the plasma
membrane. PC, phase contrast; scale bar, 70 mm. B, supernatants (collected prior to the cell lysis) or cell lysates obtained from melanoma cells (Mel1, Mel2,
and Mel3), HS-treated or not, were analyzed by Western blot for HMGB1. C, supernatants (Sup) or cell lysates (CL) from HS-treated melanoma cells were
analyzed by Western blotting for HMGB1. A–C, data are representative of at least 3 independent experiments with similar results; b-actin and albumin were
used as controls. D, surface expression of anmaDCmarkers was analyzed by flow cytometry on AM incubated with TRIMEL or with TRIMEL preincubatedwith
an anti-CRT mAb (anti-CRT; top) or with an anti-HMGB1 pAb (bottom). Isotype pAb was used as IgG control. Data represent the average increase of mean
fluorescence intensity in relation to AM, n ¼ 3 independent experiments; bars indicate SD; *, P < 0.05.
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indicates that released HMGB1, but not the intracellular
protein, is essential for activation of APCs. In this regard,
HMGB1 suffers posttranslational modifications that may
allow its release, augmenting the interaction and APC
activation (48), and this may increase cross-presentation
through interaction with TLR4 (5).

Altogether, the findings presented here provide new
insights into the design of more potent and clinically
effective DC-based tumor vaccines. Importantly, we have
shown, for the first time in a human model, that HS
preconditioning of a tumor cell lysate triggers the induction
of danger signals such as CRT and HMGB1 that are closely
related with an optimal APC activation. In fact, TRIMEL
works as a potent Th1 response mediator, favoring the
induction of DC maturation, the release of proinflamma-
tory cytokines, and the improvement of Ag cross-presenta-
tion, which are essential for the priming and activation of a

CD8þ T-cell–mediated immune response resulting in anti-
tumor clinical effectiveness.
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