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Abstract: A variety of neurological diseases including Huntington’s disease (HD), Alzheimer’s disease and 

Parkinson’s disease share common neuropathology, primarily featuring the presence of abnormal protein 

inclusions containing specific misfolded proteins. Mutations leading to expansion of a poly-glutamine track in 

Huntingtin cause HD, and trigger its misfolding and aggregation. Recent evidence indicates that alterations in 

the secretory pathway, in particular the endoplasmic reticulum (ER), are emerging features of HD. Although it 

is not clear how cytoplasmic/nuclear located mutant Huntingtin alters the function of the ER, several reports 

indicate that mutant Huntingtin affects many essential processes related to the secretory pathway, including 

inhibition of ER-associated degradation, altered ER/Golgi vesicular trafficking and axonal transport, disrupted 

autophagy and abnormal ER calcium homeostasis. All these alterations are predicted to have a common 

pathological outcome associated to disturbance of protein folding and maturation pathways at the ER, 

generating chronic ER stress and neuronal dysfunction. Here, we review recent evidence involving ER stress 

in HD pathogenesis and discuss possible therapeutic strategies to target organelle function in the context of 

disease. 

Keywords: Huntington's disease, ER stress, protein misfolding, Unfolded protein response, Huntingtin, 
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INTRODUCTION 

Huntington's disease (HD) is a late-onset autosomal 
dominant neurodegenerative disease causing 
progressive motor abnormalities and cognitive defects. 
The onset of psychiatric symptoms and dementia occur 
during early to mid-adult life, and continue in a 
relentless downhill course with death usually occurring 
twelve to fifteen years after the appearance of the 
disease symptoms [1, 2]. Currently, it is not clear what 
molecular events trigger the onset of HD and there is 
no effective treatment for this pathology.  

HD is characterized by a widespread neuronal 
dysfunction and selective neurodegeneration in the 
central nervous system, particularly in the striatum [2]. 
An expansion of a polyglutamine stretch (poly(Q)) 
within the N-terminal region of Huntingtin (Htt) above 
~40 repeats confers dominant toxic properties to the 
protein that are deleterious to neurons and possibly 
detrimental to normal Htt biological activities [2, 3]. HD 
represents one of a growing number of poly(Q)-related 
diseases that cause region-specific neuronal 
degeneration, including spinobulbar muscular atrophy, 
spinocerebellar ataxias, Machado-Joseph Disease [4, 
5]. The human population exhibits an average poly(Q) 
of ~18 glutamines on the Huntingtin gene, which does 
not confer neurotoxic activity, yet expansions 
exceeding 35 glutamines result in disease development  
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in most cases. A direct correlation is observed between 
the length of the poly(Q) and the average age of 
disease onset [6], where increased poly(Q) length 
accelerates disease onset, and individuals with more 
than 60 tandem glutamines usually develop the 
disease before the age of twenty [6].  

Since identification of the htt gene mutations in HD 
patients, multiple murine genetic models have been 
generated to study the mechanisms involved in HD 
pathogenesis and to evaluate potential therapies in 
preclinical trials [7]. These models include the 
generation of transgenic mice expressing N-terminal 
fragments of mutant Htt, full length human Htt with 
artificial chromosomes or knock-in mouse models with 
an expanded poly(Q) track inserted into the mouse htt 
gene. Due to the complexity and high degree of 
variability in the phenotypes of these animal models in 
terms of survival, motor impairment and kinetics of 
histological alterations, it is difficult to consolidate most 
HD-related experimental findings. For a comprehensive 
understanding of the data discussed in this review, we 
summarize the fundamental characteristics of the HD 
animal models in Table 1. 

One of the major histopathological features 
observed in HD is the co-localization of Htt inclusions 
with ubiquitin [8-10]. In many cases, the formation of 
intracellular Htt inclusions precedes neuronal loss [11, 
12] and increasing evidence suggests that abnormal 
Htt oligomerization (from small soluble oligomers to 
large aggregates) is one of the key events leading to 
neurotoxicity [11-13]. Nevertheless the pathological 



2    Current Molecular Medicine,  2011, Vol. 11, No. 1 Vidal et al. 

mechanisms underlying neurodegeneration in HD still 
need further research. Different models have been put 
forward to explain the detrimental effects of mutant Htt 
expression. These models include (i) excitotoxicity [14-
16], (ii) mitochondrial dysfunction/oxidative stress [17-
21], (iii) transcriptional disturbances [22-27], (iv) 
proteasome dysfunction [28-30], and (v) altered axonal 
transport [31-34]. Besides, increasing evidence in 
different HD models suggests that alteration in the 
function of the secretory pathway and protein folding 
stress at the ER may contribute to the pathogenesis of 
HD. Of note, ER stress has also been suggested as a 
relevant factor in many other protein conformational 
disorders associated with abnormal protein aggregation 
(see examples in [35]). In this review we analyze the 
key mechanisms related to adaptation of ER stress or 
the elimination of irreversible damaged cells by 
apoptosis, and then summarize the specific evidence 
linking ER stress to HD pathogenesis. Possible 
therapeutic interventions to revert these subcellular/ 
molecular perturbations are discussed in the 
concluding remarks. 

THE UNFOLDED PROTEIN RESPONSE (UPR) 

Correctly folded proteins that pass the quality 
control are transported through the ER to reach their 
final destination including the ER itself, the Golgi 
apparatus, lysosomes, the endosomal system, the 
plasma membrane or the extracellular space. 
Perturbing ER function can trigger abnormal 
accumulation of unfolded proteins, a condition referred 
to as ER stress. ER stress activates the unfolded 
protein response (UPR), an integrated signal 
transduction pathway that relays information regarding 
the protein folding status at the ER lumen to the 
nucleus by controlling the expression of specialized 
transcription factors. Three distinct types of stress 
sensors are located at the ER membrane, namely 
double-stranded RNA-activated protein kinase (PKR)-

like endoplasmic reticulum kinase (PERK), activating 
transcription factor 6 (ATF6)  and , and inositol 
requiring kinase 1 (IRE1 ) (reviewed in [36]).  

Activation of PERK leads to the phosphorylation 
and inhibition of eukaryotic translation initiation factor 
2  (eIF2 ), attenuating protein translation in the ER 
and thus decreasing unfolded protein load [37-39]. In 
addition, eIF2  phosphorylation augments the specific 
translation the mRNA of Activation of Transcription-4 
(ATF4), a UPR transcription factor essential for the 
upregulation of many UPR-associated genes that 
function in amino acid metabolism and redox 
homeostasis [40]. IRE1  and its downstream target, X-
Box-binding protein 1 (XBP-1), initiate the more 
conserved adaptive response of the UPR. IRE1  is a 
Serine/Threonine protein kinase and endoribonuclease 
that upon activation initiates the unconventional 
splicing of the mRNA encoding the transcription factor 
XBP-1 [41-43]. Unconventional splicing leads to the 
expression of a stable protein, XBP-1s (XBP-1 spliced), 
which is targeted to the nucleus and controls the 
upregulation of a subset of UPR-related genes, 
including genes linked to folding, protein quality control, 
folding, ER-associated degradation (ERAD) system, 
and ER/Golgi biogenesis [38]. Activation of ATF6 leads 
to its translocation from the ER to the Golgi where it is 
proteolytically processed. This event releases its 
cytosolic domain which is then translocated to the 
nucleus where it functions as a transcription factor that 
upregulates several ER chaperones and ERAD-related 
genes [44, 45]. In transcriptional control of ERAD 
genes, ATF6 heterodimerizes with XBP-1s to form an 
active transcription factor [46]. In addition to catalyzing 
XBP-1 mRNA processing, IRE1  has other functions in 
cell signaling. The cytosolic domain of activated IRE1  
binds to the adaptor protein TRAF2 (TNFR-associated 
factor 2), triggering the activation of the Apoptosis 
Signal-regulating Kinase 1 (ASK1) and cJun-N terminal 
kinase (JNK) pathway [47-49]. The amplitude and 
kinetics of IRE1  signaling are modulated by the 

Table 1. Summary of the Most Common Animal Models for the Study of HD 
 

HD Model 
Transcript 

Length 
Glutamine 
Repeats 

Onset Date Death Date Striatum Characteristics  Motor Phenotypes Neuronal Loss 

R 6/2 
Exon 1 

(human) 
148 - 153 5-6 weeks 

12-14 weeks 
(premature 

death) 

Early volume reduction. 
Rapid Htt aggregation. 

Progressive 
abnormalities 

Striatum, cortex 
and hipocampus 

YAC128 
Full length 
(human) 

128 3 months No lethality 

15% volume reduction (9 
months). Slow and 

progressive Htt aggregation. 
Inclusions evident after 10 

months of age  

Slight abnormalities 
from 3-4 months 

onwards 
Striatum 

HdhQ111 
HdhQ92 

knock-in 111 - 92 4 months No lethality 

Slight degeneration and 
increased gliosis. 

Intranuclear inclusions after 
12 months of age  

Gain deficits from 
24 months of age 

Striatum 

Hdh(CAG)150 knock-in  150 4 months No lethality 
Increased gliosis (14 
months) and nuclear 

inclusions 

Gain and rotarod 
deficits, clasping, 
hypoactivity (4-10 

months) 

Striatum 
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formation of a protein complex referred as the 
UPRosome (reviewed in [36, 50, 51]). Thus, the UPR is 
a signaling mechanism that orchestrates adaptive 
processes against ER stress to recover cellular 
homeostasis, and it is mediated by specialized stress 
sensors and transcription factors that allow 
transcriptional reprogramming to maintain protein 
folding efficiency. 

CHRONIC ER STRESS, THE APOPTOSIS 
PHASE 

Under chronic ER stress, different pro-apoptotic 
factors trigger cell death by apoptosis [52]. At the 
mitochondria activation of pro-apoptotic BCL-2 family 
members, BAX and BAK, initiate intrinsic apoptosis 
through the release of cytochrome c and assembly of 
the apoptosome [53]. Engagement of BAX/BAK is 
mediated by the activation of a subgroup of pro-
apoptotic BCL-2 family members termed BH3-only 
proteins [54]. Two BH3-only proteins, PUMA and 
NOXA, are strongly induced at the transcriptional level 
in cells undergoing prolonged ER stress [55, 56]. In 
addition, activation of BIM at the transcriptional and 
post-translational level is essential to trigger apoptosis 
under chronic ER stress in cellular and animal models 
[49, 57]. Activation of ASK1 and its downstream target 
JNK have been proposed to partially mediate 
mitochondrial-mediated apoptosis under irreversible 
ER stress in an analogous fashion to TNF receptor 
signaling [58, 59]. 

Sustained PERK signaling may also have pro-
apoptotic effects under prolonged ER stress conditions 
[60]. Expression of ATF4 and possibly ATF6 regulate 
the induction of pro-apoptotic genes such as the 
CCAAT/enhancer binding protein (C/EBP) homologous 
(CHOP), also identified as a growth arrest and DNA 
damage-inducible gene (GADD153). The mechanism 
by which CHOP leads to cell death is not completely 
understood, but it may trigger apoptosis by down 
regulating anti-apoptotic BCL-2 [61], inducing the 
transcription of BIM [57], and by transcriptional control 
of GADD34, which interacts with protein phosphatase I 
to catalyze eIF2  dephosphorylation to promote the 
resumption of protein synthesis in a cell already 
burdened by unfolded proteins in the ER [62]. In murine 
cells, the proteolytic processing of the ER-resident 
caspase-12, and its human homologue caspase-4, are 
well accepted markers of ER stress, however their role 
in apoptosis is under debate [63, 64]. Recent evidence 
suggests that caspase-12 participates in inflammatory 
responses and may not operate as a pro-apoptotic 
protease like caspase-3 or caspase-9 [64, 65]. Other 
components involved in the ER stress-apoptosis 
response have been reviewed elsewhere [66, 67]. 

ER STRESS IN HD MODELS  

Htt is expressed in most cell types, and 
experimental data suggest that it has essential 
functions in brain development in mice [68]. Current 

attempts to understand the function of wild type htt 
gene indicate that inhibition of its expression with small 
interfering RNAs drastically alters the structure of the 
ER network and ER trafficking [69], suggesting that the 
physiological function of Htt may be related to the 
morphogenesis of this organelle. The occurrence of 
UPR downstream responses was recently described in 
post-mortem brain samples from HD patients by 
observing the transcriptional upregulation of three 
UPR-responsive genes, Chop, BiP and Herp [70]. The 
17 amino terminal region of Htt forms an amphipathic 

-helical membrane-binding domain that can reversibly 
associate with the ER [3, 71]. The Htt/membrane 
interaction is dynamic because it is affected by ER 
stress [71, 72]. A single point mutation in Htt N-terminal 
region predicted to disrupt the -helical structure 
displayed a striking phenotype of complete inhibition of 
poly(Q)-mediated aggregation. This phenotype was 
associated with increased Htt nuclear accumulation 
and higher mutant Htt toxicity in a striatal-derived 
mouse cell line [71, 72]. Atwal and co-workers 
proposed the hypothesis that Htt has a physiological 
function as an ER-associated protein that alternates 
between the nucleus and the ER in response to 
cellular/organelle stress [72]. 

An early report from Ichijo and co-workers 
demonstrated that ER stress activates ASK1 in models 
of HD, and cells lacking this protein are protected from 
the toxicity of poly(Q)79 peptides [47]. Similarly, the 
levels of ASK1 protein and ER stress markers are 
increased in the striatum and cortex in HD (R6/2) 
transgenic mice [73] (Fig. 1). Remarkably, inhibition of 
ASK1 prevents the translocation of Htt fragments to the 
nucleus and improves motor dysfunction in mice. At the 
molecular level, a physical interaction between of ASK1 
and mutant Htt fragments was detected, which 
prevented the translocation of the Htt fragments to the 
nucleus, correlating with improved motor function and 
reduced neuronal atrophy [73]. Therefore, experimental 
strategies to modulate the activity of ASK1 may have 
therapeutic benefits in HD patients. 

Additional studies in cellular models of HD support 
the concept that chronic ER stress contributes to HD-
related neurodegeneration. Expression of expanded 
poly(Q) peptides resembling the mutations observed in 
Htt triggers the activation of the stress sensors IRE1  
and PERK, and activation of UPR downstream targets 
including JNK, ASK1, upregulation of Grp78/Bip, 
CHOP, and caspase-12 processing [47, 74, 75]. 
Induction of the proapoptotic protein BIM has been also 
linked to neuronal loss in cellular and animal models of 
HD [57, 76-78].  

A recent study described the occurrence of 
spontaneous ER stress on a striatal cell line derived 
from Htt knock-in mice, showing increased basal 
expression of BiP, CHOP and PDI [79]. These cells are 
strongly sensitized to apoptosis triggered by ER stress-
inducing agents [79]. SCAMP5 was recently identified 
as a novel regulator of the accumulation of mutant Htt. 
Expression of SCAMP5 is markedly increased in the 
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striatum of HD patients and it is induced in cultured 
striatal neurons by ER stress or by the expression of 
mutant Htt [80] (Fig. 1). Moreover, down-regulation of 
SCAMP5 alleviates ER stress-induced by mutant Htt 
expression. Remarkably, intra striatum injection of the 
ER stress agent tunicamycin increases mutant Htt 
aggregation in two different HD mouse models [80]. 
Expression of Rrs1 is also involved in HD and ER 
stress [70]. The induction of Rrs1 expression is an 
early event observed in knock-in HD mouse models, 
and persists over the course of the disease. Rrs1 is 
localized both in the nucleolus and the ER and its 
expression is induced by ER stress [70] (Fig. 1). More 
importantly, increased expression of Rrs1 was reported 
in post mortem brain samples derived from HD patients 
[70]. 

Until now, only three reports are available 
describing the engagement of ER stress responses in 
vivo in animal models of HD [70, 73, 80]. Besides, the 

majority of these studies are correlative and no 
functional data exists to demonstrate a functional role 
of ER stress/UPR signaling in the progression of 
disease in vivo. Genetic or pharmacological 
manipulation of the UPR will contribute to understand 
how ER stress is regulated in HD and the cellular 
consequences of this process. 

WHAT CAUSES ER STRESS IN HD? 

Although different research groups have provided 
evidence for the occurrence of ER stress in HD, the 
actual causes of disturbances on the homeostasis of 
the ER remain poorly understood. Solving this issue is 
particularly relevant since mutant Htt has not been 
described inside the ER lumen, although it interacts 
with the cytosolic surface of organelle membranes. 
This contrasts with observations in other neurological 
diseases where mutant misfolded proteins directly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Alterations of the secretory pathway function in HD: Mutant Htt (mHtt) alters the function of the secretary pathway 

at different stages, which may all led to a common alteration of the protein folding status at the ER lumen, triggering chronic ER 

stress and neuronal apoptosis. For example (1) mHtt expression increases the levels of ER stress associated with activation of 

UPR stress sensors PERK and IRE1 , leading to the upregulation of CHOP, ATF6 , Rrs1 and SCAMP5 and the activation of 

pro-apototic protein such as caspase-12 and JNK/ASK. ER stress induced by mHtt may be triggered by (2) ERAD dysfunction 

due to a direct interaction with components of this pathway, blocking ERAD activity and accumulation of abnormally folded 

protein at the ER. (3) mHtt also alters ER to Golgi apparatus trafficking, which may lead to accumulation in immature protein at 

the ER. (4) mHtt disrupts the exit of clathrin coated vesicles from the Golgi apparatus and lysosomal degradation and general 

trafficking of several proteins through the secretary pathway. (5) mHtt expression also impairs cargo recognition by 

autophagosomes and also the initiation of the autophagy pathway possibly by inhibiting Beclin-1 expression, leading to a 

general disturbance in protein homeostasis. (6) mHtt also affects the activity of the ER calcium channels IP3R, which may lead 

to perturbed ER calcium homeostasis and abnormal chaperon activity at the ER lumen.  
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accumulate and interact with ER components (see 
examples in [35, 81, 82]). Converging evidence 
highlights the relevance of the secretory pathway in HD 
models, including perturbations at the level of 
ERAD/protein quality control mechanisms, ER/Golgi 
trafficking, endocytosis, vesicular trafficking, ER 
calcium homeostasis, and autophagy/lysosomal-
mediated protein degradation (Table 2). All these 
defects are predicted to impact the protein folding 
status at the ER, generating ER stress. In the following 
sections we summarize emerging alternatives to 
explain the causes of protein folding stress at the ER in 
HD. 

i. Altered ERAD Generates ER Stress 

ERAD is a major mechanism employed by the ER 
protein quality control system and the calnexin cycle to 
eliminate misfolded or unassembled proteins generated 
during the folding process at the ER lumen and 
alterations on this process are predicted to trigger ER 
stress [83]. The ERAD machinery includes chaperones, 
transmembrane proteins and ubiquitin-associated 
enzymes that select, target, and retrotranslocate 
misfolded proteins to the cytoplasm for degradation by 
the proteasome system [39, 84, 85]. Susan Lindquist’s 
laboratory reported that expression of mutant Htt leads 
to a fast defect in ERAD in yeast and mammalian 
models of HD [79] (Fig. 1). This was associated with an 
entrapment of essential ERAD proteins by mutant Htt in 
yeast, including Npl4, Ufd1, and p97. Ectopic 
expression of ERAD components ameliorates mutant 
Htt pathogenesis, and significantly reduced the 
induction of ER stress in the model [79]. This is the first 
report that provides a mechanism to explain the 
occurrence of ER stress in HD. The role of ERAD 
impartment on Htt pathogenesis has been recently 
confirmed [86]. Mutant Htt interacts with gp78 in 
mammalian cells. Gp78 is an ER membrane-anchored 
ubiquitin ligase (E3) involved in ERAD. This physical 
interaction negatively alters the function of gp78, 
inhibiting ERAD and resulting in ER stress [86]. 
Besides, mutant Htt inhibits proteasome function [87, 
88], which also precludes the degradation of ERAD 

substrates. Currently, ERAD is the most direct 
mechanism described to cause ER stress in HD 
cellular models. Of note, another report suggests that a 
similar mechanism of disease pathogenesis and ER 
stress induction might operate in models of familial 
amyotrophic lateral sclerosis [89, 90]. 

ii. Impairment of Vesicular Trafficking Leads to 
Accumulation of Immature Proteins at the ER 

The disruption of vesicular trafficking at different 
stages, especially between the ER and the Golgi 
apparatus, causes the accumulation of cargo vesicles 
and may directly affect ER function. Vesicle trafficking 
alterations are predicted to trigger the accumulation of 
immature proteins at the ER, generating a traffic jam in 
the secretory pathway [36, 91]. In fact, a classical 
experimental paradigm of ER stress is the treatment of 
cells with brefeldin A, which interferes with the 
trafficking between the ER and the Golgi apparatus. 

An important checkpoint in the secretory pathway is 
the vesicular trafficking between the ER and the Golgi 
apparatus. Cellular studies have demonstrated that 
mutant Htt expression perturbs ER/Golgi trafficking 
[92]. Alterations of ER/Golgi trafficking is observed in 
Parkinson’s disease models where mutant -Synuclein 
blocks the exit of vesicles from the ER through 
interactions with Rab1, triggering ER stress [86, 93]. Of 
note, mutant Htt expression diminishes the ER/Golgi 
trafficking of Val-BNDF in striatal mutant Htt knock-in 
cell lines [92]. Mutant Htt also perturbs the post-Golgi 
trafficking of epidermal growth factor receptor and atrial 
natriuretic factor [92] (Fig. 1). Furthermore, the post-
Golgi trafficking of clathrin-coat vesicles to lysosomes 
is impaired in cells expressing mutant Htt [94] (Fig. 1). 
In addition, alterations in the intracellular trafficking and 
distribution of the excitatory neurotransmitter receptors 
of N-methyl-D-aspartate receptor (NMDAR) subunit 2B 
(NR2B) has been reported in models of HD, which may 
reflect a general disturbance in secretory pathway 
function (Fig. 2) [95-101]. Moreover, evidence for 
abnormal trafficking of inhibitory neurotransmitter 
receptors also is available in HD models (Fig. 2). A key 
mediator of pathological alterations in protein trafficking 

Table 2. Summary of the Evidence Describing a Perturbation on the Secretory Pathway Function in Different HD 
Models 

 

Secretory Stage Cellular Animal model  Human Postmortem 

UPR-ER stress    

Apoptosis     

ERAD     

ER-Golgi Trafficking     

Endocytosis     

Axonal Transport    

Autophagy    

ER calcium homeostasis     
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produced by mutant Htt is the inhibition of HAP1 [102-
106]. HAP1 operates as an adaptor that links 
GABAARs to the KIF5 kinesin motor, forming a motor 
protein complex for rapid delivery of GABAARs to 
synapses. 

Htt also interacts with Rab5, an early endosomal 
protein [107]. Similarly, one of the Htt interacting 
partners, Htt-interacting protein 1 (HIP1), functions as 
an endocytic adaptor protein that plays a role in 
clathrin-mediated endocytosis and the ligand-induced 
internalization of AMPA receptors (AMPARs) [108, 
109]. As mentioned before, SCAMP5 is induced in HD 
models, and regulates the accumulation of mutant Htt 
aggregates [80]. Additionally, SCAMP5 expression 
impairs endocytosis, and knocking down SCAMP5 
recovers endocytic levels and alleviates ER stress-
induced by mutant Htt. This data suggest a functional 
role of endocytosis impairment on the occurrence of 
ER stress in HD. It remains to be determined whether 
or not reversion of the trafficking defects observed in 
HD models attenuates ER stress as shown for 
Parkinson’s disease [93]. 

Alteration in axonal transport has been consistently 
reported in models of HD [110-112], which may also 
lead to traffic jam in earlier secretory compartments 
(Fig. 2). For example, several studies suggest that wild-
type Htt plays a role in axonal transport and that 
disease associated mutations interfere with this 
function [103, 113-122]. Loss of Htt expression or the 
expression of mutant Htt affect the axonal transport of 
BDNF and the amyloid precursor protein (APP) [123]. 
Interestingly, Htt and its interacting partner HAP1 have 
been reported to physically associate and alter the 
function of components of both the anterograde and 

retrograde transport machinery [105, 124-126]. 
Alternatively, mutant Htt may inhibit fast axonal 
transport through a mechanism involving activation of 
JNK3 and phosphorylation of kinesin-1 [127]. A direct 
contribution of axonal transport defects to the 
engagement of ER stress responses in HD has not 
been provided yet. 

iii. Defects in Autophagosomal Vesicular 
Compartments Lead to Accumulation of Abnormal 
Protein Aggregates 

Lysosomal-mediated degradation can be viewed as 
the final stage of the secretory pathway, responsible for 
removing proteins that traffic through the secretory and 
endocytic pathways [128-130]. Macroautophagy, here 
referred as autophagy, is a major mechanism for the 
lysosomal-mediated catabolism of cytoplasmic 
components including damaged or superfluous 
organelles, toxic protein aggregates and intracellular 
pathogens, and also operates as a survival pathway 
against ER stress [36]. Alterations in autophagy are 
predicted to trigger the accumulation of misfolded 
proteins and ER stress as recently shown in vivo [131]. 
Autophagy is characterized by the encapsulation of 
cargo on a double-membrane vesicle to form the 
autophagosome, in a process controlled by a large 
family of autophagy-related genes (termed ATGs). 
Autophagy was initially described as an adaptive 
cellular mechanism triggered during metabolic stress 
conditions, providing nutrients by recycling cellular 
components. Recent studies, however, indicate a 
crucial role of autophagy as a protein quality control 
mechanism in the brain, based on the fact that 
selective genetic inactivation of autophagy in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Vesicle trafficking impairment in HD. mHtt disrupts the protein complex formation between the molecular motors 

kinesin and dynein, adaptor proteins and cargo vesicles, inhibiting transport. This alteration in cargo trafficking may generate a 

traffic jam during early steps of the secretary pathway triggering ER stress. Altered trafficking of protein such as APP, NMDAR, 

BDNF, and GABAR has been reported in HD models. 
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nervous system triggers spontaneous neurodegenera-
tion associated with the accumulation of abnormal 
protein inclusions in the brain [132, 133].  

Yuan and co-workers demonstrated that mutant Htt 
inclusions recruit an essential autophagy regulator, 
Beclin-1, possibly impairing Beclin-1 pro-autophagy 
activity. Beclin-1 exhibits inclusion-like distribution in 
HD-derived post-mortem brain samples, co-localizing 
with Htt [134] (Fig. 1). The authors speculated that this 
event might lead to enhancement of mutant Htt 
accumulation and general alterations of protein 
homeostasis. Interestingly, Ana Maria Cuervo’s group 
recently reported that mutant Htt expression leads to a 
defect in the recognition of cargo by macroautophagy 
in cellular and mouse models of HD [135] (Fig. 1). This 
data was confirmed in lymphoblasts from patients 
affected with HD and also in post mortem striatal 
samples from HD-affected individuals [135], suggesting 
a general alteration in protein degradation in the 
disease.  

Another recent report indicated that the expression 
of full-length Htt lacking its poly(Q) stretch region in a 
knock-in mouse model for HD reduces significantly 
mutant Htt aggregates, ameliorates motor deficits and 
extends lifespan in comparison to an HD mouse model 
[136]. This phenotype correlates with enhanced 
autophagy by the expression Htt lacking the polyQ 
region. Moreover, mice lacking the Htt polyQ region live 
significantly longer than wild-type mice [136], 
suggesting that autophagy upregulation may be 
beneficial both in diseases caused by toxic intracellular 
aggregate-prone proteins and also as a lifespan 
extender in normal mammals. Finally, in addition to 
accumulation of abnormally folded proteins by inhibiting 
autophagy, damaged or non-functional organelles, 
including ER [137], may also accumulate in HD due to 
impaired autophagy-mediated degradation. In 
summary, increasing evidence suggests that inefficient 
autophagy in HD may lead to abnormal accumulation 
of substrates, leading to altered protein homeostasis 
and possibly to secretory pathway stress. 

iv. Deregulation of ER Calcium Homeostasis Alters 
ER Protein Folding  

Sustained calcium release from the ER negatively 
affect the activity of different ER-resident chaperons, 
leading to ER stress due to deficiency of protein folding 
(reviewed in [138, 139]). ER calcium homeostasis is 
primary controlled by different components including 
inositol 1,4,5-triphosphate receptors (IP3R), ryanodine 
receptors (RyR), the sarco-endoplasmic reticulum 
calcium ATPase pump (SERCA) and components of 
BCL-2 family proteins [140, 141]. It is interesting to 
mention that one of the classical experimental 
paradigms of ER stress is the treatment of cells with 
thapsigargin, a SERCA inhibitor, which leads to 
decreased ER luminal calcium levels.  

Expression of mutant Htt also drastically affects 
calcium homeostasis both at the level of the 
cytosol/plasma membrane and the ER [142]. The N-
terminal membrane targeting sequence of mutant Htt 
disrupts cytosolic calcium levels in glutamate-
challenged cell cultures [3]. In addition, cultured 
neurons expressing mutant Htt show increased 
susceptibility to apoptosis triggered by P2X7-receptor 
stimulation [143]. P2X7 are ATP-gated cation channels 
known to modulate neurotransmitter release from 
neuronal presynaptic terminals. Cultured striatal 
neurons derived from full-length mutant Htt transgenic 
mice lead to altered calcium signaling and apoptosis 
[144, 145]. A yeast two-hybrid screen revealed that 
mutant Htt interacts with the IP3R. Further studies 
confirmed this interaction in vivo, and showed 
enhanced IP3R activity upon interaction with mutant Htt 
[146]. These examples, which constitute a small 
sample of a large body of literature relating mutant Htt 
expression with calcium homeostasis disturbances 
[147, 148], suggest a relevant role of disrupted calcium 
homeostasis in HD models. Of note, a recent report 
indicated that modulation of calcium homeostasis 
actually has a clear impact on protein homeostasis on 
the context of diseases [149]. 

v. Other Possible Mechanisms of ER Stress in HD 

In addition to the mechanisms described in the 
previous sections, other interesting possibilities remain 
to be tested to explain the occurrence of ER stress in 
HD. One of the well-documented pathological effects of 
mutant Htt in the nucleus is the entrapment of 
transcription factors, altering gene expression patterns 
[22, 23, 150, 151]. It remains to be determined whether 
or not mutant Htt interacts with UPR transcription 
factors (i.e. XBP-1, ATF4, ATF6, CHOP). Remarkably, 
a recent report suggested that processing of ATF6  is 
impaired in both animal models and HD patients [152], 
which may diminish the ability of neurons to adapt to 
ER stress. Besides, wild type Htt may operate as a 
stress sensor at the ER membrane since its distribution 
is modulated by ER stress [71]. It may be also 
interesting to test the possibility that wild type and/or 
mutant Htt interacts with UPR stress sensors regulating 
their activity. Of note, this mechanism has been shown 
to operate in familial ALS models [153]. Another 
interesting hypothesis to explore could be related with 
the observation that knocking down wild type Htt 
specifically disrupts the ER network pattern [69, 154]. 
Mutant Htt may lead to loss of function of wild-type Htt, 
altering the morphogenesis of this organelle and its 
broad physiological functions.  

Taken together the evidence reviewed above 
suggests that mutations in Htt lead to impairment of 
protein transport and processing at different stages of 
the secretory pathway, possibly resulting in 
accumulation of immature proteins at the ER. 
Therefore, multiple abnormal activities of mutant Htt 
may converge to generate ER stress, a common 
pathological outcome in the disease process. 
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CONCLUDING REMARKS: THERAPEUTIC 
STRATEGIES TO DECREASE PROTEIN-
FOLDING STRESS 

HD is a fatal neurodegenerative disease with no 
effective treatment. Most clinical trials of drugs 
designed and validated in HD mouse models have 
failed to alleviate disease progression in HD patients. 
This may be explained because they have often 
focused in targeting truncated forms of mutant Htt with 
high levels of expression or have been tested in 
experimental mouse models with a pure genetic 
background, a condition far removed from the scenario 
observed in humans. The literature addressing the 
molecular mechanism of HD is complex and diverse in 
terms of possible targets and mechanisms of the 
pathology. The key strategy toward designing new 
therapeutic strategies may rest on molecular events 
that are transversal to different cellular and animal HD 
models, with a clear correlate in human HD-derived 
samples.  

In this review, we have attempted to perform a 
systematic analysis to uncover a common molecular 
feature observed in different cellular and animal HD 
models. The data discussed here support an emerging 
concept suggesting that secretory pathway-related 
processes are major cellular events affected in HD. 
Defects in HD neurons are observed almost at every 
stage of the secretory pathway, including chaperone-
mediated protein folding, ERAD and related quality 
control mechanisms, vesicular transport, ER network 
patterning and lysosome-mediated degradation. Most 
of these events may generate alterations in the protein 
folding process, leading to chronic ER stress. Surely in 
vivo and human post-mortem studies are needed to 
help define the impact of secretory pathway stress in 
HD. However, taken together these data suggest that 
experimental strategies to alleviate ER stress or 
improve secretory pathway function may benefit HD 
patients. 

Therapeutic strategies to alleviate ER stress may be 
achieved by the use of pharmacological approaches 
that include treatments with chemical chaperons, small 
molecules to activate UPR components, or gene 
therapy approaches to deliver key folding mediators 
(i.e. chaperones and foldases) to express modulators 
of the UPR or quality control mechanisms. In this line, 
administration of chemical chaperones, including 4-
PBA and TUDCA [155, 156], delay HD progression in 
animal models, and both drugs are efficacious in 
decreasing ER stress levels in other disease models 
[157-160]. Secondly, secretory pathway stress may be 
reduced by targeting degradation or clearance 
pathways of misfolded proteins such as ERAD or 
autophagy, alleviating the load of unfolded proteins at 
diverse stages or sub-compartments of the secretory 
pathway. Increasing evidence indicates that mutant Htt 
aggregates have a high dependency on autophagy for 
their clearance, while wild-type species do not rely on 
autophagy for their degradation [161], and different 
pharmacological manipulations to enhance autophagy 

increases the clearance of Htt aggregates and delays 
the progression of HD in cellular and animal models 
[134, 161-166]. Since protein misfolding and ER stress 
is an emerging feature of diverse neurological 
disorders with high incidence in the human population 
including Parkinson and Alzheimer’s disease, it is 
predicted that interesting new drug candidates will 
emerge to improve progression of disease in HD 
patients. 
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