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Humans and other primates move their eyes several times per second to foveate at
different locations of a visual scene. What features of a scene guide eye movements in
natural vision? We recorded eye movements of three monkeys during free exploration of
natural scenes and propose a simple model to explain their dynamics. We use the spatial
clustering of fixation positions to define the monkeys' subjective regions-of-interest (ROI)
in natural scenes. For most images the subjective ROIs match significantly the computed
saliency of the natural scene, except when the image contains human or primate faces.
We also investigated the temporal sequence of eye movements by computing the probabil-
ity that a fixation will be made inside or outside of the ROI, given the current fixation posi-
tion. We fitted a Markov chain model to the sequence of fixation positions, and find that
fixations made inside a ROI are more likely to be followed by another fixation in the same
ROI. This is true, independent of the image saliency in the area of the ROI. Our results
show that certain regions in a natural scene are explored locally before directing the
focus to another local region. This strategy could allow for quick integration of the visual
features that constitute an object, and efficient segmentation of objects from other objects
and the background during free viewing of natural scenes.
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1. Introduction
Early studies by Stratton (1902, 1906) showed that free explora-
tion of natural scenes is performed through a spatiotemporal se-
quence of saccadic eye movements and ocular fixations. This
sequence indicates the focus of spatial attention (Biedermann,
1987; Crick andKoch, 1998;NotonandStark, 1971a), and is guided
by bottom–up and top–down attentional factors. Bottom–up
factors are related to low-level features of the objects present
in the scene being explored (Itti and Koch, 1999, 2001; Koch and
Ullman, 1985; Treisman and Gelade, 1980) while top–down
factors depend on the task being executed during exploration of
a scene (Buswell, 1935; Just and Carpenter, 1967; Yarbus, 1967),
the context in which those objects are located (Torralba, et al.,
2006), and the behavioral meaning of the objects being observed
(Guo et al., 2003; Guo et al., 2006). For example, traffic lights can
attract attention and eye movements both by bottom–up and
top–down factors: they are very salient in virtue of their low-
level, intrinsic properties (color and intensity), and also very
meaningful to the driver (behavior and context).

Several computationalmodels have been proposed to explain
guidance of eye movements and attentional shifts during free
viewing of natural scenes (e.g., Itti et al., 1998; Milanse et al.,
1995; Tsotsos et al., 1995;Wolfe, 1994). Themost common strate-
gy includes the computation of saliencymaps to account for bot-
tom–up factors and defines the regions-of-interest (ROIs) that
attract eye movements. The saliency maps are then fed into a
winner-take-all algorithmtoaccount for the top–downattention-
al contribution (Itti et al., 1998; Milanse et al., 1995). During the
.
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Fig. 1 – Time course of the experiment. Images (IMAGE), blank sc
(FIXATION CUE) were presented in an interleaved manner, with
themonkeys had to keep their gaze within the limits of the screen
to fixate the cue for 1 s. Successful behavior was rewarded with
different images (out of 11, randomly selected) were presented in
screen (30×40 cm), which corresponded to a visual angle of 30×4
execution of specific visual search tasks, the nature of the task it-
self canbeused toestimate contextual, task-relevant scene infor-
mation that will add up to the saliency model (Torralba et al.,
2006). However, during free viewing of natural scenes, where no
particular task is executed, it is more difficult to estimate the ap-
propriate context. Furthermore, although meaningful objects
populate natural scenes, there are currently no computational
tools that allow to link behaviorally relevant images and explora-
tion strategies solely based on local or global features.

We hypothesize that the spatial clustering of ocular fixa-
tions provides a direct indication of the subjective ROIs in a
natural scene during free viewing conditions. It is very likely
that subjective ROIs include both top–down and bottom–up
attentional factors, thereby potentially providing a framework
to formally understand the guidance of eye movements and
spatial attention by studying the transitions between and
within regions. The approach presented here provides several
advantages: first, the use of monkeys additionally allows the
recording of single neurons (cmp. Maldonado et al., 2008). Sec-
ond, it presents a tool to classify fixations that enables to re-
late neuronal activity to natural behavior (see Discussion),
without making assumptions about the meaning of the im-
ages to the observer. Third, our approach can be generalized
to eye movements of humans. We find that in most cases,
the subjective ROIs match well both the objects in the scene
and the ROIs defined by their saliency maps. Exceptions are
scenes containing human or primate faces.

Wemade use of a Markov chain (MC) analysis to investigate
the sequences of visited ROIs (assumed to be the states of a ran-
dom walk) and extract their probabilities. Our approach of the
.
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scanpath analysis differs from Feng (2006) (reading task experi-
ment), Van Der Lans et al. (2008) (search task), and Simola et al.
(2008) (word search task) in that we feed theMC algorithmwith
the extracted ROIs. Such an investigation of fixation sequences
shows that during free viewing of natural scenes a fixation is
most likely to occurwithin the sameROIwhere theprevious fix-
ation occurred, suggesting that local object exploration is exe-
cuted before directing the focus to a new ROI.
2. Results

2.1. Fixations on natural images are spatially distributed
in clusters and define subjective regions-of-interest

Three monkeys (D, M, and S) participated in an electro-
physiological experiment over many sessions, in which they
were exposed to different natural images for 3–5 s, interleaved
with blank screens or blank screens with a fixation spot (see
Fig. 1, and Section 4.1 for details). Their eye movements were
recorded with a scleral search coil, while the animals were
allowed to freely explore the monitor screen with self-initiated
eye movements (see Fig. 2A as an example of one image over-
laid by an exemplary scanpath and the respective fixations).

An automatic algorithm extracted the fixations and sac-
cades performed by the monkeys from the vertical and
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Fig. 2 – Statistics of the durations of fixations and saccades. A. Exa
(white lines) during one single image presentation. The red dots
sequence. B. Time course of the eye positions during the image
Fixations are marked in red, saccades in green, and unclassifiab
durations (bin width: 25 ms) and D. saccade durations (bin width
for each of the three monkeys.
horizontal eyemovements (Fig. 2B, see Section 4.2. for details),
and derived the distributions of fixation and saccade dura-
tions (Figs. 2C, D). The distributions of fixation durations de-
rived from all sessions and for all images (Fig. 2C) of
monkeys D andM have very similar shapes, themean fixation
durations being 310 ms and 240 ms, respectively. These
values correspond well to average fixation durations reported
for humans during exploration of natural scenes, found to be
in the range between 260 and 330 ms (Castelhano and Hender-
son, 2007; Ossandon et al., 2010). However, the distribution of
fixation durations of monkey S (Fig. 2C, red) differs from the
distributions of the two other monkeys: it is broader, less
skewed and has a heavy tail, and exhibits a much longer
mean fixation duration (420 ms). Interestingly, the distribu-
tions of saccade durations of the threemonkeys (Fig. 2D) differ
only little (mean saccade durations: 32.1 ms, 31.0 ms, and,
33.8 ms for monkeys D, M, and S, respectively).

In a next step we investigated how the eye movements of
the three monkeys were spatially distributed on the viewed
images, and if these also show differences between monkeys
D and M, and S. The spatial distribution on one specific
image was derived from eye movements across all presenta-
tions of the image. We observed that the spatial distributions
of fixations of monkeys D and M exhibit dense spatial clusters
that are related to conspicuous objects in the underlying im-
ages (see examples for four different images in Fig. 3). The
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positions of the clusters are qualitatively similar for both
monkeys for the same image, but are qualitatively different
for each individual image (Fig. 3, columns 1, 2).

However, the spatial fixation distributions of monkey S are
unique: more than 90% of his fixations are evenly distributed
inside a large cluster in the lower left quadrant of the images.
This pattern is conserved across different images, and seems
independent of the content of the images (Fig. 3, column 3),
indicating that the eye movements of this monkey were not
related to the images. It is unlikely that the differences in fix-
ation duration and of the exploration patterns of monkey S
were due to a physiological dysfunction of his oculomotor
system, since his saccade durations were very much in agree-
ment with the other monkeys (Fig. 2D), indicating an intact
saccade generation mechanism. Inspection of the fixations
on images containing only a fixation spot, routinely presented
just before each natural image to detect potential artifacts and
eye calibration issues, shows that monkey S did fixate on the
fixation spot within the required limits. Therefore we con-
cluded that the monkey adopted an unusual strategy to get
rewarded, deliberately gazing over the images without paying
attention to the images contents. We include data from this
animal both as a comparison to the other monkeys, and as a
potential methodological issue for further studies.
Fig. 3 – Spatial distribution of fixations on four example images.
only the fixation positions, and in the right the fixation positions
positions in each subfigure were collected from all presentations
Bottom row: Merged fixation positions for each monkey on all p
For monkeys D and M, we assume that each of the spatial
fixation clusters represents a subjective ROI. The position of
subjective ROIs on an individual image is likely to depend on
at least two factors: a bottom–up image feature driven compo-
nent and a top–down attentional factor. To explore the contri-
bution of the bottom–up component on the spatial positions
of the subjective ROIs, we compare in a next step the similar-
ity of the map of the fixations with the saliency map of the re-
spective image.

2.2. Fixation and saliency maps diverge for images
containing faces

We computed the saliency maps of the images based on the
model described by Walther and Koch (2006) (see examples
in Fig. 4A). Simultaneously we computed the fixation maps
for each image and monkey by down-sampling the original
800×600 pixels-images to 30×40 pixels-images and normal-
ized correspondingly the original fixation distribution (details
in Section 4.4). The similarity of each fixation map and its cor-
responding saliency map was derived by computing the sym-
metrized Kullback–Leibler divergence (KLD) (Kullback and
Leibler, 1951) between the two distributions (Rajashekar
et al., 2004, details in Section 4.5). The smaller the KLD, the
For each monkey we show two columns, the left illustrates
are overlaid onto the presented image. The displayed fixation
of the respective image, over all experimental sessions.

resented images from all sessions.
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higher the similarity between the two distributions, with its
lower bound at zero, if the two are identical. To evaluate the
significance of KLDact of the actual, measured data, we calcu-
lated the probability distribution of KLDind values derived
from the same saliency map but with fixation maps resulting
from a random viewer, i.e., randomly (homogeneously) dis-
tributed fixation points on the image (Parkhurst et al., 2002,
for details see Section 4.5). This procedure implies the as-
sumption of independence between the two maps, and
allowed us to test if the monkeys' viewing behavior deviates
significantly from a non saliency-related behavior (Figs. 4A, B).

The results for all monkeys and all images are shown in
Fig. 4C. For visualization purposes we show for each image
the difference of the actual KLDact and the mean 〈KLDind〉 of
the KLDind-distribution, ΔKLD=〈KLDind〉−KLDact (color bars in
Fig. 4C). In 8 out of 11 images explored by monkey D
(Fig. 4C, blue bars) we find significant positive ΔKLD values
(i.e., KLDact<< 〈KLDind〉) (p<0.01, marked by asterisks), and
similarly for monkey M (significant: 3 out of 4 images;
Fig. 4C, green bars), indicating that formonkeys D andM the sa-
liencymaps of these imageswere goodpredictors of the fixation
positions. However, in the remaining 25% of images, the ΔKLD
was significantly negative (i.e., KLDact>>〈KLDind〉) when com-
pared to a random viewer, i.e., the fixation map differs signifi-
cantly (p>0.01) from the saliency map, leading to the
conclusions that here a) the saliency maps were not predictors
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Fig. 4 – Correlations between saliency and fixation maps. A. Sali
with the corresponding fixations of monkey D (green dots) from
saliency maps and fixation maps of the same data as in A.). The
lines, the KLDind- distributions of random fixation positions (100
mark the three example images shown in A. C. Differences (ΔKL
actual KLDact shown for the different images (below). Colors of th
mark Δ KLDs that deviate significantly from random viewers (p<
monkey M.
of the fixation positions, and b) the viewing behavior differed
from random viewing, indicating the presence of a distinct
viewing strategy for these images. Interestingly, this holds
true for all images that differ in content from the other images
in that they show faces of human or non-human primates, and
not for the other images,which containedonlynon-primate an-
imals. Performing the same analysis only on fixations that
belonged to ROIs did not alter the significance of our results
(cmp. Experimental procedures, Section 4.5).

The analysis of the previous section already hinted at dif-
ferences of the viewing behavior of monkey S as compared
to monkeys D and M. Our quantitative analysis of the similar-
ities of the saliency and fixation maps additionally showed
marked differences between monkey S to the other two mon-
keys: the fixation patterns of monkey S never deviates signif-
icantly from a random viewer (Fig. 4C, brown bars), thus
confirming our hypothesis that this monkey did not actively
explore the images. In fact, it seems that he just kept his
gaze within the lower left part of the screen, independently
of the presented image (Fig. 3, column 3).

In summary, we find that low-level image features drove
the fixations performed by the monkeys that actively explore
the natural scenes if the images did not show faces of pri-
mates. For the remaining images, most of the eye movements
relate to faces, i.e., regions that are typically of low saliency
value and thus have a low bottom–up impact.
image 11
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ency maps of three example images shown in combination
all sessions. B. KLDs resulting from correlating the
KLDact derived from the original data are marked by vertical
0 repetitions) are shown as histograms. The different colors
D) between mean KLDind of random fixation positions and
e bars refer to the Δ KLDs of the different monkeys. Asterisks
0.01). Green X mark images that had not been presented to
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2.3. Consecutive fixations are likely to stay inside the same
fixation cluster

Our analysis of the fixation positions (Section 2.1) revealed that
these are not evenly distributed across the images, but rather
tend to occur clustered in space (Fig. 3). Our interpretation
was that these clusters represent ROIs. Thus, our next aim is to
gain insight on the temporal sequences of visiting these ROIs.
Therefore we explored the scanpaths of the image explorations
by applying a Markov chain (MC) analysis to the eye movement
trajectories (see details in Section 4.5). Thereby we assume
each of the significantly identified fixation clusters on a particu-
lar image as a Markov state, and estimate the probabilities for
consecutive fixations to either stay in the same cluster, to switch
to a different cluster, or end up in the background. In this analy-
sis the assumption of a MC enters in that the next state will be
reached only depending on the current state, but does not de-
pend on past states (see details in Section 4.5).

The cluster analysis of the fixation positions typically
revealed 3 to 5 significant clusters per image for monkeys D
and M, however, not a single significant cluster could be
extracted for monkey S. Thus this monkey seems not to ex-
press subjective ROIs, and we had to conclude that this mon-
key is not actively exploring the images. Since the MC analysis
is based on ROIs, monkey S had to be excluded from the sub-
sequent analysis of the sequence of fixation positions.

Fig. 5A shows examples of eye movement sequences (4 out
of 33) of monkey D during presentations of the same image.
The fixation positions of monkey D on the image during all
its presentations were grouped into three significant clusters
(Fig. 5B, color coded). Fixation positions that do not belong to
any identified cluster (small blue dots) are pooled together
and assigned to the background cluster (see Sections 4.6 and
4.7). The result of the MC analysis on these data is shown in
Fig. 5C as a transition graph. Each identified significant clus-
ter, as well as the background cluster, represents a state of
the model, whereas the transitions between the states
(whose probabilities are indicated in black) are marked by di-
rected arrows. The statistical significance was evaluated by
comparing the transition probabilities of the empirical data
to uniform probabilities (Fig. 5C, numbers in gray; details see
Section 4.7). The probabilities (across all images) of staying
within the significant clusters are 87% (40/46) for monkey D
and 95% (19/20) for monkey M, thus significantly higher than
expected by chance (Fig. 5D). In contrast, the probabilities of
moving between significant clusters (Fig. 5E) are significantly
lower than chance (in 62% of the transitions for monkey D
(60/97) and in 62% for monkey M (83/134)). (Note, that for the
latter analyses the background state was discarded.) This
also holds true separately for monkeys D and M (Wilcoxon
test, p<0.001).

As for saccade durations (Fig. 2D), the distributions of sac-
cade lengths are skewed, thus showing a tendency for shorter
with respect to longer saccades. In order to avoid any bias due
to the skewness of the distribution, we performed a second
test, which, instead of uniform probabilities, took into account
the actual saccade amplitude distributions. The expected tran-
sitionswereweighted by the actual probabilities of saccade am-
plitudes (see Experimental procedures, Section 4.7 for details).
The results confirmed the previous analysis, i.e., a significant
larger probability of staying within a cluster and a significant
lower probability of switching between clusters than expected
(Figs. 5D, E in green).

Overall, the Markov chain analysis revealed that the mon-
keys preferentially move their eyes within the same ROI be-
fore saccading out to another ROI or to the background.
These results did not show any dependence on the contents
of the images, in particular with respect to primate faces.
Thus, the viewing strategy of the monkeys seems to be com-
posed of sequences of local explorations of regions-of-
interest, but not of random eye movements between ROIs.
3. Discussion

The present work shows that during free viewing of natural
images, Cebusmonkeys follow a strategy that involves periods
of local exploration, characterized by consecutive fixations
that stay inside the same regions-of-interest. These periods
of local exploration are typically followed by longer saccades
into a new ROI, where a new period of local exploration be-
gins. ROIs were defined as areas containing clusters of fixa-
tions performed by the monkeys over several presentations
of an image. For most of the images, the locations of the fixa-
tion clusters correlate well with saliency maps, suggesting
low-level features as the driving force for the eye movements.
Images containing faces are an exception, in that faces attract
most of the fixations despite their very low saliency. There-
fore, as hypothesized, subjective ROIs reflect both bottom–up
and top–down factors. Our approach based on subjective
ROIs is robust with respect to content and semantic meaning
of the images, because it relies on the spontaneous sequences
of eye movements performed by the subject. Similar ap-
proaches have been used in humans, showing conserved clus-
ters of fixations in the same image for different subjects (Judd
et al., 2009).

Our analysis of eyemovement sequences during free view-
ing is based on the finding that fixations are not evenly dis-
tributed on an image, but rather define clusters, on top of
conspicuous objects. This was the case for two out of three
subjects studied (monkeys D and M). However, the third mon-
key (S) used a completely different viewing strategy. His fixa-
tions were always restricted onto the lower left half of the
images and were evenly distributed therein. No significant
clusters could be extracted from his fixations, and did not
show any significant correlation between fixation maps and
saliency maps, which corresponds to a random viewing be-
havior. Given that the distributions of saccade durations of
the three monkeys were undistinguishable (Fig. 2D), we con-
cluded that it is unlikely that this monkey had any deficiency
in the oculomotor system. We rather assume that monkey S
did not actively explore the images. Our experimental design
could not prevent this to happen, because the monkeys were
only required to keep their gaze within the limits of the screen
to be rewarded. It is very likely, that this monkey did not only
learn to keep his gaze within the limits of the screen, but ad-
ditionally within a specific region therein while ignoring the
images. Our explanation relates to the process of training.
During many weeks the monkeys needed to be trained to fix-
ate on the central point. Initially the window to get a reward
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was large and was progressively downsized. Monkey S may
have learned that natural images were no different than fixa-
tion images and that by trying to keep his gaze in some specif-
ic area of the screen, he will get a reward (which he did). This
strategy enabled this animal to get rewarded only by trying to
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The visual fixations of monkeys D and M cluster on loca-
tions of the images that appear to be relevant to the monkeys,
and thuswe interpret these clusters as subjective ROIs. Similar
viewing behavior has been found in humans that were freely
exploring natural images: most of the fixations were made in
the same regions of an image across observers. In fact, fixation
locations from one observer can be used to predict the loca-
tions where other observers will fixate (Judd et al., 2009).
Therefore, the images can be segmented into informative
and redundant regions both formonkeys and humans (Krieger
et al., 2000; Mackworth and Morandi, 1967; Yarbus, 1967). A
common way to segment natural images is to apply saliency
analyses. In our study we were interested in isolating the con-
tribution of low-level features – such as orientation, color and
intensity – and to relate it to the locations of the fixation clus-
ters. In order to extract this relation we used the saliency
model of Walther and Koch (2006). Saliency turned out to be
a good predictor for the fixation positions. This suggests that
during free viewing the eye movements are mainly driven by
low-level features. Images containing primate faces are an ex-
ception (for monkeys and humans), in that the fixation posi-
tions cluster in regions containing no salient features. The
mismatch between saliency and positions of fixation clusters
can be attributed to the influence of top–down mechanisms,
where attention to meaningful details of the objects deter-
mines the location of gaze. This result fits well with data from
human studies where the choice of fixation positions has been
shown to be either driven by bottom–up (exogenous) or by
top–down (endogenous) factors (Cerf et al., 2008; Mackworth
and Morandi, 1967). It has also been shown that the saliency
model does not account for fixations that were directed to the
eyes of humans (Birminghamet al., 2009). Thereby, faces appear
to play a particular role, being probably the most important vi-
sual stimuli in primate social communication (Bruce and
Young, 1998), as they can provide significant cues to intention
andmental state of other individuals (Anderson, 1998; Andrew,
1963; Bruce andYoung, 1998; Emery, 2000). Similar observations
were found in non-human primates: monkeysmake longer fix-
ations on faces (Guo et al., 2006), and respond appropriately to
the expressions of other individuals (Mendelson et al., 1982),
andare able to recognize their faces (Rosenfeld andVanHoesen,
1979).

Psychological studies have shown that the sequences of sac-
cades and fixations are relevant for perception (Noton and
Stark, 1971b). In humans, during free viewing of still images
for long time periods (i.e., >10 s) saccade amplitudes decrease
Fig. 5 – Transition probabilities between clusters of fixations of m
trajectories during 4 different presentations of the same image (d
extracted by the mean shift algorithm. The fixation points in the
C. Transition graphs between the identified clusters, now interp
Fixations that do not fall into any of the identified clusters are co
transition probabilities are indicated in black, transition probabil
refers to eye movements exceeding the image presentation time
cluster for experimental (black), random viewer (red), and predict
for the same data as shown in A.–C. E. Distributions of probabilit
random viewer (red), and predicted on the basis of the saccade a
A.–C.
exponentially (Antes, 1974; Unema et al., 2005). Pannasch et al.
(2008) showed that fixation durations increase after the first
2 s of exploration, revealing a global image exploration that
spans the first 2 s, followed by a local, feature exploration
phase, evident after 4 s of exploration. The maximum explora-
tion time in our study was 5 s, which could suggest that the
higher probability of staying inside a cluster is a consequence
of the late, local exploration phase. However, examination of
the raw data (see for example Figs. 2A and B, and 5A) reveals
that someconsecutive fixations are separatedby short saccades
even during the first seconds of exploration.

We find that the monkeys fixate preferably at certain re-
stricted locations on the images (identified as clusters of fixa-
tions), and that the eye movements between these clusters are
not random. TheMarkov chain analysis revealed that themon-
keys primarilymake short saccadeswithin a cluster of fixations.
These short saccades are likely to be followed by a larger sac-
cade that directs the gaze to a new position inside a different
cluster. This finding is consistent with the hypothesis that
large saccades to new areas are followed by local, short sac-
cades to nearby positions for refinement of the percept (Körner
et al., 1999; Ullman, 1995). Further studies showed that applying
a Markov model to humans freely viewing advertisements has
revealed similar local vs. global exploration modes (Wedel
et al., 2008), and that humans and monkeys attend to relevant
social stimuli when viewing short movies (Shepherd et al.,
2010). Thus our results indicate that the monkeys use a similar
strategy for scanning natural images as humans do.

Experiments including active vision, i.e., without the re-
quest that eyes fixate on a pre-defined position, are infre-
quently included in studies that involve electro-physiological
recordings, as they do not contain repetitive, identical trials
and thus are harder to analyze. This study provides new ap-
proaches to data from free viewing animals and thus opens
new routes for experiments that aim to relate neuronal activ-
ities to natural behavior. The Markov chain model appears to
be a natural way to compress complex and variable data sets
such as eye movements made on natural images. Clusters
can be labeled and further grouped into different categories
by saliency analysis or image segmentation methods, and
the eye movements can be represented as a Markov state
graph, which assigns probabilities to the transitions between
states (as shown in Fig. 5). Such a procedure offers the possi-
bility of summarizing an otherwise very disparate data set.
Neurophysiological data could be subsequently analyzed in
the context of the different categories of fixation clusters.
onkey D viewing image no. 2. A. Example of eye movement
ifferent colors). B. Spatial clusters (3) of fixation positions
respective clusters are colored in blue, cyan, and magenta.

reted as the states of the MC model (same colors as in B.).
llected into the background state (black box). Experimental
ities assuming a random viewer are indicated in gray. STOP
. D. Distributions of probabilities of staying within the same
ed on the basis of the saccade amplitude distribution (green),
ies to switch between clusters for experimental (black),
mplitude distribution (green), for the same data as shown in
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Electro-physiological studies that involve the presentation
of natural stimuli, either during free viewing or fixed gaze, al-
ready showed that the perspective of a simple stimulus–re-
sponse relation explains only partially the neural activity
observed in natural vision (Yen et al., 2007). In these situations,
neuronal activity appears much more complex, which cannot
be simply related to the stimulus features, where higher-order
brain areas and attentional effects obviously play a crucial
role. Active vision includes self-initiated eye-movements and
thus naturally involves a combination of internal and external
driving forces. Active vision is fast: within the duration of a fix-
ation (about 200 ms) visual input enters the system, visual in-
formation is processed and the next new eye movement is
initiated. This requires fast processing and leaves to every indi-
vidual stage of the nervous system only very limited time for
computation (Thorpe et al., 1996). This limited time can be bet-
ter used if some consecutive fixations are made close to each
other, serially grouping object features (Houtkamp and Roelf-
sema, 2010).

Thus, electro-physiological studies of active vision need to
include the dynamics of processing, as suggested by some of
the models of the visual system (Körner et al., 1999; Van Rullen
et al., 1998), which predict temporal coordination of neuronal
activities. Recently, we found that spike synchrony is involved
early in the processing in the visual system (Maldonado et al.,
2008) and that a signal activating large populations of neurons
of the visual system (local field potential) occurs locked to sac-
cade onset, thereby providing an internal reference signal for
the coordination of neuronal activity induced by visual input
(Ito et al., 2011). It is highly likely that this signal is modulated
along the scanpath or has an attentional function thus provid-
ing the ground for context-dependent neuronal processing.
4. Experimental procedures

4.1. Animals and surgery

All experiments followed the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were in
accordance with University of Chile guidelines. All surgical
and recording procedures are described in Maldonado et al.
(2008). Three adult, male capuchin monkeys (Cebus apella)
weighing 3–4 kg served as subjects for this study. Henceforth,
these animals are referred to as monkeys D, M, and S. Under
sterile conditions, each animal was implanted with a scleral
search coil for monitoring eye position (2 kHz sampling rate,
DNI Instruments, Resolution: 1.2 min of arc; for details see
Judge et al., 1980), and a cranial post for head fixation. During
the experiment, the animals were seated in a chamber dimly
lit at a low scotopic level (1–2 lx, LX-110 Lux Meter). They were
presentedwith a collection of 11 (monkeysD and S) and 4 (mon-
keyM) pictures of different natural scenes (consisted of pictures
of animals, faces and landscapes, 800×600 pixel resolution;
taken from Corel® photo library). The pictures were displayed
on a CRT computer monitor (frame rate: 60 Hz) located 57 cm
in front of the animals, subtending 40°×30° of visual angle. As
a control, for every third stimulus presentation, a blank frame
with black background was presented instead of a natural
image. We refer to the trials with natural image stimuli as
image condition trials and those with the blank frame as
blank condition trials. In order to maintain the alertness of the
animals, and to control eye coil precision, they were trained to
perform a fixation task before every trial, in which a black
frame with a single fixation spot was presented and they had
to fixate it (1° window) for 1 s in order to be rewarded (referred
to as fixation cue). Then, a natural image or the blank frame
was presented for 3 or 5 s formonkeyD or S andM, respectively
(free viewing trials) (Fig. 1). In the free viewing trial, the animals
were allowed to freely explore the monitor screen with self-
initiated eye movements while the experimental protocol re-
quired the animals to maintain their gaze within the limits of
the monitor for the whole presentation period, to be rewarded
with a dropof juice. A sessionwas composedof image condition
trials and blank condition trials alternating with fixation cues.
Before each session we calibrated the coil with a series of fixa-
tion cues, referred to as fixation epoch. If the monkeys were
willing to continue to work after a session we ran a further ses-
sion starting with a fixation epoch, followed by a new set of im-
ages. This process was repeated as long as the animals were
motivated to continue the task. Only the data collected during
the presentation of fixation cues and natural images served
for the following analyses and defined an experimental session.

4.2. Detection and statistics of eye movements and fixations

We developed an automatic algorithm to extract different
types of eye movements from the eye traces (Maldonado et
al., 2008). Eye movements were categorized in two different
groups (saccades and fixations) (cf. Figs. 2A, B), according to
the following criteria: Saccades were defined as eye move-
ments with an angular velocity higher than 150°/s and lasting
for at least 5 ms, and exhibit aminimumacceleration of 170°/s2.
Fixation periods were defined as gaze positions lasting at least
100ms within 1° of the gaze location, following a saccade.
Data that could not be assigned into one of the two categories
(e.g., drifts) were not taken into account for further analysis.
Only pairs of unambiguous saccade–fixation (S–F) sequences
were considered for further analysis. Basic statistics of fixation
and saccade durations pooled per monkey over all sessions
are shown in Figs. 2C, D.

4.3. Computation of saliency maps

In order to relate the visual foci of themonkeys as expressed by
the fixation positions to the features of the images, we comput-
ed maps of fixation points (‘fixationmaps’; see Section 4.4) and
separately, maps of salient features of the images (‘saliency
maps’), and correlated the two (cf. Section 4.5). A saliency map
is a topographically arrangedmap that represents visual salien-
cy of a corresponding visual scene. Koch and Ullman (1985) pro-
posed to combine different visual features that contribute to
attentive selection of a stimulus (e.g., color, orientation, move-
ment, etc.) into one single topographically orientedmap (salien-
cy map), which integrates the normalized information from
individual featuremaps into one globalmeasure of conspicuity.
We concentrated here on a saliencymapmodel byWalther and
Koch (2006) that ignores the motion aspect, but uses color, in-
tensity, and orientation (implementation freely available at
http://www.saliencytoolbox.net/). Thereby, the images were

http://www.saliencytoolbox.net/
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segregated into three separate feature maps: one for intensity,
one for color, and one for orientation. In a second step, each fea-
ture was re-organized into a center-surround arrangement
characteristic of receptive field organization (Hubel andWiesel,
1962), and highlights the parts of the scene that strongly differ
from their surroundings. This was achieved by computing the
differences between fine and coarse scales applied to the fea-
ture maps to extract locally enhanced intensities for each fea-
ture type. In the last step these resulting conspicuity maps
were normalized to the total number of maps and added to
yield the final saliency map s(x, y) (see examples in Fig. 4A).

4.4. Computation of fixation maps

Asameasure of the regions of the images that preferably attract
the interest of the monkeys we computed a fixation map for
each image and monkey. All fixations performed by a monkey
on a particular image were pooled across different sessions
and trials (see examples in Fig. 3A) to calculate a two-
dimensional probability distribution of the fixations f(x, y).
Such a distribution was derived by discretizing the images into
two dimensional bins of 30×40 pixels (original resolution was
600×800 pixel), counting the fixation positions in each of them
and normalizing the counts to the total number of fixations on
that image to yield a probability distribution. This resolution
corresponds to approximately 1° of viewing angle in x- and y-
dimension (1° corresponds to 1 cmon the screenwhich is locat-
ed 57 cm in front of themonkey), which was also chosen as the
tolerance for the definition of a fixation.

4.5. Similarity of saliency and fixation maps

To quantify the similarity between the saliencymapof an image
and the respective fixationmap we calculated the symmetrized
Kullback–Leibler divergence (KLD) (Kullback and Leibler, 1951)
between the two (Rajashekar et al., 2004). The Kullback–Leibler
divergence is an information theoretical measure of the differ-
ence between two probability density functions (pdfs), in our
case s(x, y) and f(x, y):

D s x; yð Þ; f x; yð Þð Þ :¼ D s;fð Þ ¼ ∑
x
∑
y
s x; yð Þ log s x; yð Þ

f x; yð Þ

D is always non-negative, and is zero, if and only if s(x, y)=
f(x, y). The smaller D, the higher the similarity between the
two pdfs, with its lower bound at zero, if the two pdfs are
identical. The so defined divergence happens to be asym-
metric, that is D(s,f )≠D( f,s), for s≠ f. To circumvent an asym-
metry of the measure for s≠ f, we chose the normalization
method proposed by Johnson and Sinanovic (2001):

KLD s x; yð Þ; f x; yð Þð Þ ¼ KLD s; fð Þ ¼ 1
1

D s;fð Þ þ 1
D f ;sð Þ

The smaller the KLD, the higher the similarity between the
two pdfs, with its lower bound at zero, if the two pdfs are
identical.

We defined KLDact as the divergence between the saliency
map and the fixations map. Under the experimental hypothe-
sis this divergence should be small. To evaluate the
significance of the measured, actual KLDact we calculated the
KLD-distributions under the assumption of independence of
the two maps. One entry in this distribution was calculated
as the distance KLDind between the original saliency pdf s(x, y)
and a fixation map f(x, y)ind derived from randomly (homoge-
nously) distributed fixation points on the image (same number
as were present in the original viewing, Parkhurst et al., 2002).
This procedure was repeated 1000 times to yield the KLDind-dis-
tribution that served for testing whether the original viewing
behavior measured by the actual KLDact deviates significantly
from a viewing behavior that is not related to the saliency
map (Fig. 4B shows three examples).

For visualization purposes (Fig. 4C) we show for each image
the difference of the actual KLDact value and the mean 〈KLDind〉
of the 〈KLDind〉-distribution: ΔKLD=〈KLDind〉−KLDact. Positive
values of ΔKLD (i.e., KLDact<〈KLDind〉) denote a higher similarity
between the actual fixation and saliency map than expected
by a random viewer, indicating that the saliency map is a
good predictor for the eye movements. On the contrary, nega-
tive values of ΔKLD (i.e., KLDact>〈KLDind〉) signify that the dis-
tance between the actual fixation map and the saliency map
is larger than assuming random viewing. Significant devia-
tions from random viewing are marked by an asterisk.

In a further test, we repeated the whole above analysis
considering fixations within ROIs only, and fed their number
to the generator of random fixations (random viewer). The
previous results were confirmed, i.e., significantly smaller
KLDact values for non-primate images, and significantly larger
KLDact values for primate images than expected (not shown).

4.6. Spatial clustering of fixation positions

In order to investigate the existence of regions-of-interests
(ROIs), defined as areas with high density of fixation positions,
we identified spatial clusters of fixations by use of the mean
shift algorithm (Comaniciu and Meer, 2002; Funkunaga and
Hosteler, 1975) adapted for eye movement data (Santella and
DeCarlo, 2004). This is an automatic, entirely data-driven
method that derives the number and arrangement of clusters
deterministically.

The algorithm starts from the set of N fixation positions
→vi;j ¼ xi;j

yi;j

� �
, with i ∈ (1,…, N) being the index of the fixation po-

sitions, and j=1 the original fixation positions on the 2D screen.
The clustering algorithm proceeds iteratively, while moving at
each iteration each of the points to its new position→v i; jþ1, in de-
pendence on the weighted mean of proximity and density of

points around the reference point, →vi; jþ1 ¼
∑
i
K Vij−Vk;j
� �

Vk;j

∑
i

Vij−Vk;j
� �

with j≠k. The kernel K was defined as a 2D-Gaussian with

mean and variance of 0:K →v
� �

¼ e
x2þy2ð Þ
σ2 . σwas the only parame-

ter of the clustering algorithm and defined the attraction radius
of the points. We varied its value and found 2.5 to yield satisfy-
ing results, i.e., the algorithm did not lead to over fitting or to
coarse clusters. We used this value to perform all of our ana-
lyses. At each iteration the positions were moved into denser
configurations, and the procedure was stopped after conver-
gence. Thereby fixationswere assigned to a clusterwhose refer-
ence points lay within a diameter of 1° apart, referred to as
experimental cluster. Robustness to extreme outliers was
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achieved by limiting the support of points at large distances as
defined by the kernel K →v

� �
.

In order to discard outlier clusters, we additionally applied a
significance test to disregard clusters containing only a very
small fraction of the data that deviate from expectation of inde-
pendence.As a significance test on the experimental clusters,we
proceeded as follows: we assigned n random locations on the
screen by drawing n pairs of uniformly distributed numbers,
with n being the total number of fixations on a specific image.
This random fixationmapwas fed into themean shift clustering
algorithm, leading to a set of simulated clusters. Repeating this
procedure 100 times, we obtained two distributions: one of fixa-
tion numbers per cluster and one of cluster point density. An ex-
perimental cluster of fixation positions was identified as
significant when both its number of fixations and their density
exceeded the mean plus two standard deviations of the mean
cluster point number and density obtained from simulated clus-
ters, respectively. All fixations that did not belong to a significant
cluster were pooled into a special cluster, referred to as back-
ground state. The background state was crucial for the correct
calculation of the transition probabilities to and from significant
clusters, i.e., in order to account also for the transitions that are
neither within a cluster, nor between two clusters. Further de-
tails are described in the next section.

4.7. Transition probabilities between fixation clusters

The statistical properties of the scanpaths a monkey chose to
explore an image were analyzed by a Markov chain (MC) anal-
ysis (Markov, 1913). A MC is a sequence of random variables
that propagate through a chain of states in accordance with
given transition probabilities. These were estimated from
the data as normalized frequencies of transitions from a spe-
cific state sj to any particular other state sk or to itself. The for-
merly identified clusters (compare previous section) of
fixation points (including the background cluster) defined
the states sj. The transition probabilities from any one state
to any other state (including the same state) were represented
in matrix form. The state of the system at step t with t=1,…,T
−1, with T being the total number of fixations on an imagewas
derived via P(St+1=s|St=si,…,S1=s1)=P(St+1=s|St=si) for all n
states si ∈ s1, …, sn, thereby assuming that the scanpaths of
the monkeys satisfy the Markov property, i.e., the present
state is independent of the past states.

For better intuition, we visualized the results of theMC anal-
ysis by a transition graph (see example shown for monkey D in
Fig. 5), inwhich the vertices are the states, i.e., the identified fix-
ation clusters. The graph is composed of oriented edges con-
necting vertices, weighted with the transition probabilities
between the respective states. In addition, each vertex also con-
tains an edge to itself weighted by the probability of staying
within the same state in the subsequent step. In the following
two cases no edges were drawn between the two vertices:
first, whenever the transition probability Pjk equals zero; sec-
ond, for transitions originating in the background state. For bet-
ter visualization we represented the transition probabilities by
the thickness of the edges (Fig. 5C) (thereby deviating in the
graphical display from conventional transition graphs).

In order to interpret the transition probabilities derived by
the MC analysis we compared them to the transition
probabilities obtained assuming homogeneous chance proba-
bilities of the transitions between any two states sj and sk,
P expected Stþ1 ¼ skð jSt ¼ sjÞ ¼ P expected Stþ1 ¼ skð Þ ¼ nk

T , with nk being
the number of fixations in state sk and T the total number of
transition steps. As illustrated in Fig. 5C, we typically observed
large differences in the transition probabilities in the viewing
behavior of the monkeys (numbers in black) as compared to
random transitions (numbers in gray). Themonkeys' behavior
displays a larger probability to stay within a significant cluster
(Fig. 5D), and a lower probability of moving to another signifi-
cant cluster (Fig. 5E) than a ‘random viewer’. (Note, that the
transition probabilities within and from the background clus-
ter do not enter in the latter analysis.) This result holds true
for both monkeys, and for images both containing and not
containing faces.

In a second statistic we compared the transition probabili-
ties obtained with the MC analysis with expected probabilities
of staying within or switching between clusters weighted by
the actual saccade length probabilities. This was obtained by
multiplying the latter probabilities with the expected relative
probability of transition (Fig. 5D, E shown in green).

The expected transition probability between state sj and sk
is: P expected Stþ1 ¼ skð jSt ¼ sjÞ ¼ ∑

d
Pact Stþ1 ¼ skð jSt ¼ sj;dÞ⋅ρj→k

d ,with

d being the saccade length and ρdj→k defined for cluster j as

ρj→k
d ¼ Ptheor

d Stþ1 ¼ skð jSt ¼ sj;dÞ
∑
i
Ptheor
d Stþ1 ¼ sið jSt ¼ sj; dÞ

, ∑
k
ρj→k
d ¼ 1;∀ d; jð Þ. The above

probability that a saccade of length d leads to a state transi-
tion sj → sk, Pdtheor(St+1=sk|St=sj ;d), was calculated from the
obtained fixation clusters by numerically computing all possi-
ble saccades of length d that stay within the same cluster sj or
land into another cluster sk.
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