
ORIGINAL RESEARCH ARTICLE
published: 02 November 2012

doi: 10.3389/fgene.2012.00229

Frequencies of 23 functionally significant variant alleles
related with metabolism of antineoplastic drugs in the
Chilean population: comparison with Caucasian and Asian
populations

Ángela Roco1,2,3, Luis Quiñones1*, José A. G. Agúndez 4, Elena García-Martín5,Valentina Squicciarini 1,
Carla Miranda1, Joselyn Garay 1, Nancy Farfán1, Iván Saavedra1, Dante Cáceres1,6, Carol Ibarra1,7 and
Nelson Varela1,8

1 Center of Pharmacological and Toxicological Research (IFT), Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine,
University of Chile, Santiago, Chile

2 School of Pharmacy, Faculty of Medicine, Andrés Bello University, Santiago, Chile
3 San Juan de Dios Hospital, Santiago, Chile
4 Department of Pharmacology, University of Extremadura, Cáceres, Spain
5 Department of Biochemistry, University of Extremadura, Cáceres, Spain
6 School of Public Health, Faculty of Medicine, University of Chile, Santiago, Chile
7 Santo Tomás University, Santiago, Chile
8 School of Medical Technology, University of Chile, Santiago, Chile

Edited by:
Kathrin Klein, Dr. Margarete
Fischer-Bosch-Institute of Clinical
Pharmacology, Germany

Reviewed by:
Guilherme Suarez-Kurtz, Instituto
Nacional de Cancer, Brazil
M. Isabel Lucena, Universidad de
Malaga, Spain

*Correspondence:
Luis Quiñones, Laboratory of
Chemical Carcinogenesis and
Pharmacogenetics IFT, Molecular and
Clinical Pharmacology Program,
ICBM, Faculty of Medicine, University
of Chile, Santiago, Chile.
e-mail: lquinone@med.uchile.cl

Cancer is a leading cause of death worldwide. The cancer incidence rate in Chile is
133.7/100,000 inhabitants and it is the second cause of death, after cardiovascular dis-
eases. Most of the antineoplastic drugs are metabolized to be detoxified, and some of
them to be activated. Genetic polymorphisms of drug-metabolizing enzymes can induce
deep changes in enzyme activity, leading to individual variability in drug efficacy and/or toxic-
ity. The present research describes the presence of genetic polymorphisms in the Chilean
population, which might be useful in public health programs for personalized treatment
of cancer, and compares these frequencies with those reported for Asian and Caucasian
populations, as a contribution to the evaluation of ethnic differences in the response to
chemotherapy. We analyzed 23 polymorphisms in a group of 253 unrelated Chilean vol-
unteers from the general population. The results showed that CYP2A6∗2, CYP2A6∗3,
CYP2D6∗3, CYP2C19∗3, and CYP3A4∗17 variant alleles are virtually absent in Chileans.
CYP1A1∗2A allele frequency (0.37) is similar to that of Caucasians and higher than that
reported for Japanese people. Allele frequencies for CYP3A5∗3(0.76) and CYP2C9∗3(0.04)
are similar to those observed in Japanese people. CYP1A1∗2C (0.32), CYP1A2∗1F (0.77),
CYP3A4∗1B(0.06), CYP2D6∗2(0.41), and MTHFR T(0.52) allele frequencies are higher than
the observed either in Caucasian or in Japanese populations. Conversely, CYP2C19∗2
allelic frequency (0.12), and genotype frequencies for GSTT1 null (0.11) and GSTM1 null
(0.36) are lower than those observed in both populations. Finally, allele frequencies for
CYP2A6∗4(0.04), CYP2C8∗3(0.06), CYP2C9∗2(0.06), CYP2D6∗4(0.12), CYP2E1∗5B(0.14),
CYP2E1∗6 (0.19), and UGT2B7∗2(0.40) are intermediate in relation to those described in
Caucasian and in Japanese populations, as expected according to the ethnic origin of the
Chilean population. In conclusion, our findings support the idea that ethnic variability must
be considered in the pharmacogenomic assessment of cancer pharmacotherapy, especially
in mixed populations and for drugs with a narrow safety range.

Keywords: polymorphisms, biomarkers, CYP450, MTHFR, antineoplastic, biotransformation, pharmacogenetics,
pharmacogenomics

INTRODUCTION
Cancer is a leading cause of death worldwide and the total num-
ber of cases globally is increasing. The number of cancer deaths
is projected to increase 45% from 2007 to 2030 (from 7.9 million
to 11.5 million deaths), influenced in part by an increasing and
aging global population. The estimated rise takes into account
expected slight declines in death rates for some cancers in high

resource countries. New cases of cancer in the same period are
estimated to increase from 11.3 million in 2007 to 15.5 million in
2030 (WHO, 2011). In Chile cancer have a rate of 133.7× 100,000
inhabitants, is the second cause of death after cardiovascular dis-
eases with a sustained increase in the time both, in the rates and in
proportion of deaths. Chile has a number of 30,000 new cases
and 36,000 hospitalizations per year. The first cause of cancer
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death in Chilean population is gastric cancer for both genders,
with a rate of 19.8× 100,000 inhabitants, followed by lung cancer
(15× 100,000 inhabitants), prostate (10.4× 100,000 inhabitants),
and gallbladder (8.1× 100,000 inhabitants; DEIS, 2011).

Though the principal achievements in the fight against cancer
has been those related to preventive measures, the success in the
treatment of an established cancer depends on the cancer stage
when detected, on the type of cancer, and on its location. It is
quite infrequent to find patients considered as “therapeutical suc-
cess” because there is always a possibility that a tumor process may
appear back (Arrastoa, 1998).

Chemotherapy for cancers has progressed from its introduc-
tion to clinical practice and constitutes the mainstay modality of
therapy in these pathologies. Nevertheless, its use is limited by the
inability to predict the response. In most cases the therapy choice
is empirical. Nowadays there are more than 100 antineoplastic
drugs, which are used either alone or combined. A combined ther-
apy allows that drugs with different mechanism of action work
together to destroy the larger possible amount of tumor cells, in
order to reduce the possibility of resistance to a particular anti-
neoplastic drug. The therapy to select, the dose, the method of
administration and the frequency, and duration of the treatment,
will depend on the type of cancer, its location, the rate of growth,
how it is affecting the normal functions of the body, as well as
on the patient’s general health condition. Usually therapies can be
managed by means of cycles that alternate drug administration
with washout periods that allow healthy cells to recover from the
effect of the medication.

The biotransformation of drugs, including antineoplastic
agents, is done basically in two phases: phase I, catalyzed mainly
by the cytochrome P450 system and phase II, by transferases that
catalyze reactions of conjugation of xenobiotics with diverse mol-
ecules of endogenous nature as glucuronic acid, sulfates, acetate,
glutathione, or some amino acids. The final outcome of both
phases is to increase the hydrophilicity of chemicals facilitating
the excretion through urine or bile (Rooney et al., 2004).

There is limited information available in human beings regard-
ing the metabolism and pharmacokinetics interaction of antineo-
plastic drugs. Nevertheless, it is well known that clinical significant
interactions exist between drugs that can render them less efficient
if used simultaneously, and in some cases, produce unexpected
effects.

The cytochrome P450 (CYP) system is the most important
metabolic system responsible for the oxidation of numerous
chemotherapeutic agents, and it is responsible to a great extent
for the variability observed in response to drugs. For example,
some enzymes of the CYP3A family play an important role in
the metabolism of epidophilotoxin, ifosfamide, tamoxifen, taxol,
and vinca alkaloids. Cytochrome P450 enzymes are also of great
importance in the study of chemotherapy resistance. (Kivisto et al.,
1995; Yao et al., 2000; Lin and Yu, 2001; García-Martín et al., 2006a;
Quiñones et al., 2008).

Genetic polymorphisms of CYP enzymes can produce deep
changes in enzyme activity, thus determining the individual
response to a certain drug leading to poor, intermediate, exten-
sive, or ultrarapid metabolizer phenotypes (Ingelman-Sundber,
2005; Jin, 2005). On the other hand, the glucuronidation of drugs

is carried out by the UDP Glucuronyl transferases (UGT), which
are also polymorphic in human beings, adding to the diversity of
this reaction. In this respect, UGT2B7 has unique specificity for
3,4-catechol estrogens and estriol, suggesting that it may play an
important role in regulating the level and activity of these potent
estrogen metabolites. It is also able to conjugate major classes
of drugs such as analgesics (morphine), carboxylic non-steroidal
anti-inflammatory drugs (ketoprofen), anticarcinogens (all-trans
retinoic acid), and tamoxifen. 802C/T mutation leads to UGT2B7
variants UGT2B7∗1 (Y268) and UGT2B7∗2 (H268) which has
been suggested to increase the activity of the enzyme (Ritter et al.,
1990; Coffman et al., 1997; Barre et al., 2007; Lazarus et al., 2009).
Similarly, the human glutathione-S-transferases (GSTs), are poly-
morphic isoenzymes which show a wide subcellular distribution.
GST alpha (α), kappa (κ), mu (µ), pi (π), omega (ω), sigma (σ),
theta (θ), and zeta (Z are being studied as possible genetic biomark-
ers of cancer and its chemotherapeutic treatment (Guengerich
et al., 1992; Quiñones et al., 1999; Bredschneider et al., 2002).
These enzymes are fundamental in the oxidative processes and
detoxification of a wide variety of xenobiotics, including many
chemotherapeutic drugs (Massad-Massade et al., 1997; Sargent
et al., 1999; Clapper, 2000; Bredschneider et al., 2002; Petros et al.,
2005). These polymorphisms have been postulated also as bio-
markers for susceptibility to diverse types of cancer (IARC, 1999;
Clapper, 2000; Au, 2001; Quiñones et al., 2001; Acevedo et al., 2003;
Keshava et al., 2004; Lee et al., 2006; Cordero et al., 2010; Singh
et al., 2011) showing marked interethnic differences (Stephens
et al., 1994; Muñoz et al., 1998; Garte et al., 2001; Yasuda et al.,
2008).

Another relevant enzyme is methylene tetrahydrofolate reduc-
tase (MTHFR) which converts 5,10-methylene tetrahydrofolate to
5-methyl tetrahydrofolate. This reaction is required for the multi-
step process that converts the amino acid homocysteine to another
amino acid, methionine. Polymorphisms of this enzyme predis-
pose to serious bone marrow toxicity during treatment with agents
that inhibit folate synthesis (e.g., methotrexate; Chiuslo et al., 2002;
Yang et al., 2012).

Because of enzymes CYP1A1, CYP1A2, CYP2A6, CYP3A4/5,
CYP2C8, CYP2C9, CYP2C19, CYP2E1, CYP2D6, GSTM1, GSTT1,
UGT2B7, and MTHFR take part in the metabolism of oncological
drugs (Table 1), the main goal of this study was to determine the
allele frequencies of variants of these enzymes in a group repre-
sentative of the Chilean population in order to describe genetic
polymorphisms that might be useful in public health programs,
and to compare these frequencies with other populations, as the
first approximation to the evaluation of ethnic differences in the
response to chemotherapies.

MATERIALS AND METHODS
STUDY POPULATION
Blood samples were obtained from 253 unrelated volunteers liv-
ing in Santiago of Chile (both sexes, 27–55 years old). The study
group has a 37% Amerindian-Caucasian admixture, as determined
by ABO blood group distribution (Valenzuela, 1988). The research
was authorized by the Ethics Committee of the Faculty of Medi-
cine of the University of Chile. All subjects signed an authorized

Frontiers in Genetics | Pharmacogenetics and Pharmacogenomics November 2012 | Volume 3 | Article 229 | 2

http://www.frontiersin.org/Pharmacogenetics_and_Pharmacogenomics
http://www.frontiersin.org/Pharmacogenetics_and_Pharmacogenomics/archive


Roco et al. Variant alleles and antineoplastic drugs

informed consent. Table 1 shows general characteristics of the
studied population.

DNA EXTRACTION
Extraction of genomic DNA was done by a standard procedure
from whole blood using a commercial kit (High Pure PCR Tem-
plate Preparation Kit, Roche Diagnostics®) and DNA samples were
stored at -20˚C until further analysis.

GENOTYPING
Genomic DNAs from peripheral blood were amplified by PCR
using specific primers for detection of the specific allelic variants in
study. For detection of polymorphisms CYP1A1∗2A, CYP1A1∗2C,
CYP1A2∗1F, CYP2E1∗5B, CYP2E1∗6, CYP2A6∗2, CYP2A6∗3,
CYP2A6∗4, CYP2D6∗2, CYP2C9∗2, CYP2C19∗2, CYP3A4∗1B,
CYP3A4∗17, CYP3A5∗3, and UGT2B7∗2, amplicons were surren-
dered to digestion with the appropriate restriction enzyme to be
analyzed through electrophoresis, in agarose gel (2%) or poly-
acrylamide gel (16%) according to methods previously reported
(Hayashi et al., 1999; Kitagawa et al., 1999; Quiñones et al.,
1999; Cavalli et al., 2001; LEE et al., 2005; Lin et al., 2005).
CYP2D6∗3 and CYP2D6∗4 were analyzed by means of allele-
specific PCR (Heim and Meyer, 1990; Amrithraj et al., 2006).
CYP2C9∗3, CYP2C19∗3, and CYP2C8∗3 polymorphisms were
analyzed with Taqman probes in an ABI 7500 Real Time PCR
system, using specific probes previously described (Agúndez et al.,
2009). Deletions of GSTM1 and GSTT1 were analyzed through
PCR using β-globin gene as control (Quiñones et al., 1999;
Rebbeck et al., 1999). Heterozygous and homozygous non-null
individuals could not be differentiated, therefore double null geno-
types (−/−) are the null genotypes reported. Finally, to detect
MTHFR C677T polymorphism we use a commercial Real Time
kit (Roche Diagnostics®).

RESULTS AND DISCUSSION
Pharmacogenetic research is directed to identify genes or gene
products associated with diseases and, especially, allelic variants in
enzymes of biotransformation that alter the individual response
to drugs. These variants can modify the magnitude of the pharma-
cological effect, the threshold of toxicity, the efficacy of the drug,
side effects, and drug–drug interactions. In this respect, it is par-
ticularly important at the time, to define pharmacogenetic profiles
of patients with cancer to determine suitable dosages, to improve

Table 1 | General characteristics of the studied population.

Sex Women Men Total

Number 155 98 253

Age (years)* 33.6±13.6 28.7±10.8 31.7±12.8

Weight (kg)* 61.8±9.1 74.9±10.1 66.8±11.4

Height (m)* 1.60±0.06 1.73±0.07 1.65±0.09

BMI (Kgm−2)* 24.1±3.3 25.0±2.9 24.5±3.2

AA–C: 37%**

*Information is expressed as averages ± SD; BMI: body mass index.
**Amerindian-Caucasian Admixture (%).

efficacy, to avoid adverse reactions of the traditionally used drugs,
and to develop new drugs according to the genetic – metabolic pro-
file of the patients (Wilkinson, 2000). Moreover, ethnicity plays an
important role in pharmacokinetics and pharmacodynamics of
drugs (Ling and Lee, 2011; Kurose et al., 2012) giving rise a more
complex situation in “mestizo” populations as South American
people. In this sense, Chilean population is a genetic admixture
originated primarily between Caucasian (mainly Spaniards) and
native-American (mainly Mapuches) from a first single migration
of Asians from Siberia 15,000 years ago through Beringia (Reich
et al., 2012) and secondly from immigration, mostly from Ger-
many, Croatia, France and Italy. This is a restriction to extrapolate
the dosage of drugs with clinical studies performed in other ethnic
groups. Another restriction is the poor information about the bio-
transformation enzyme polymorphisms in Chilean population.
According to this, we have studied genetic polymorphisms of sev-
eral enzymes, in a sub-group of the Chilean population, which
metabolize mainly antineoplastic drugs used for chemotherapy in
health institutions of Chile (Table 1). General characteristics of the
analyzed population are shown in Table 2. The mean age identifies
a young adult population which has, in average, a normal mean
weight, height, and body mass index and are a representative sam-
ple of the middle class Chilean population, which is supported by
the Amerindian-Caucasian admixture (37%).

The allele and genotype frequencies for metabolic enzymes
included in this research are shown in the Table 3. Due to DNA
shortage, not all DNA samples were analyzed for all polymor-
phisms. In Table 4 we compare allele frequencies found in this
study in relation to Caucasian and Asian populations.

Our results show the absence of variant alleles CYP2A6∗3,
CYP2C19∗3, and CYP3A4∗17 such as it was also observed
for Caucasians. In Japanese people CYP2A6∗3 and CYP3A4∗17
are also absent, but the CYP2C19∗3 allele has a frequency of
0.11. CYP1A1∗2A and CYP2A6∗2 allele frequencies are simi-
lar to Caucasians but higher than the reported for Japanese
people. CYP3A5∗3 and CYP2C9∗3 frequencies are similar to
those in Japanese people, but different to the Caucasian people.
CYP1A1∗2C, CYP1A2∗1F, CYP3A4∗1B, and CYP2D6∗2 allelic fre-
quencies are higher than those observed either in Caucasian or
Japanese populations. MTHFRT allele frequency is higher than
the observed in Caucasian and Japanese population, but also than
the frequency reported previously by Nitsche et al. (2003) in other
group of the Chilean population. We suggest that this differ-
ence could be explained by different genetic composition of the
previously studied group, which could be more similar to Cau-
casians. Unfortunately, Nitsche et al. no reported the Amerindian-
Caucasian admixture percentage to evaluate this point.

On the other hand, CYP2C19∗2, GSTT1 null and GSTM1 null
frequencies are lower than those reported in Caucasian or Japanese
population. Finally for CYP2C8∗3, CYP2C9∗2 and ∗3, CYP2D6∗3,
CYP2D6∗4, CYP2E1∗5B and ∗6, as well as for UGT2B7∗2 the fre-
quencies described for Chileans are intermediate in relation to
those described for Caucasian and Japanese population (Sullivan-
Klose et al., 1996; Nasu et al., 1997; Chen et al., 1998, 1999;
Chida et al., 1999; Paris et al., 1999; Sachse et al., 1999; Bhasker
et al., 2000; Matsuo et al., 2001; Murata et al., 2001; Roy et al.,
2005; Skarke et al., 2005; Nakajima et al., 2006; Krishnakumar
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Table 2 | Some antineoplastic drugs, substrates of polymorphic

enzymes analyzed in this research (http://www.

pharmacologyweekly.com/content/pages/cytochrome-cyp-p450-

enzyme-medication-herbs-substrates; Quiñones et al.,

2008).

Drugs Enzyme Cancer

Cisplatin GSTM, GSTT Breast

Cyclophosphamide CYP2B6, CYP2C19,

CYP3A4

Leukemia, lymphoma

Dacarbazine CYP1A1, CYP1A2,

CYP2E1

Melanoma, sarcoma,

lymphoma

Docetaxel CYP2C8, CYP3A,

CYP1B1

Breast, lung, stomach

Doxorubicin CYP3A4 Sarcoma

Ellipticine CYP3A4, CYP1A Leukemia, myeloma,

lymphosarcoma

Etoposide CYP3A4, CYP2E1,

CYP1A2

Testicle, lung, breast,

leukemia, lymphoma

Ifosfamide CYP2B6, CYP3A4 Sarcoma, testicle

Imatinib CYP3A4, CYP3A5 Leukemia

Irinotecan CYP3A4/5 Colon and rectum

UGT1A1

Methotrexate MTHFR Leukemia

Mitoxantrone CYP3A4, CYP1B1 Leukemia, lymphoma

Paclitaxel CYP2C8, CYP3A4 Breast, lung, ovary

Phortress

(2-(4-aminophenyl)-

benzotiazol)

CYP1A1, CYP1B1 Ovary, breast

Procarbazine CYP1A1, CYP2B6 Lymphoma, brain, lung,

melanoma, testicle

Tamoxifen CYP3A4, CYP2D6,

CYP2C9, CYP2C19,

CYP1B1, UGT2B7

Breast

Tegafur CYP2A6, CYP2C8,

CYP1A2

Colon, rectum, stomach

Teniposide CYP2C19, CYP3A4/5 Leukemia, lung, brain,

bladder, myeloma

Thiotepa CYP2B6, CYP3A4 Bladder

Topotecan CYP3A4/5 Ovary, lung

Vinblastine CYP3A4/5 Lymphoma, osteosarcoma

Vincristine CYP3A4/5 Lymphoma

Vindesine CYP3A4/5 Lung

Vinrelbine CYP3A4/5 Lung

et al., 2012; Kurose et al., 2012), which is expected because
Chilean population is considered a mixed ethnicity between both
races.

Some limitations in this study should be pointed out. Only
some polymorphism of the many (>80) CYP2D6 known were
genotyped. We select only CYP2D6 polymorphisms that have
shown better reported relationship with plasma levels of antineo-
plastic drugs and those that have higher allele frequencies, based
on a previous pilot study in Chilean subjects (Dr. Monica Acuña,
Personal Communication). Similarly, same criteria were used for

choosing the other studied polymorphisms, based on both litera-
ture and our own previous research. Nevertheless, some potentially
relevant CYP variants are currently under investigation in our
laboratory (CYP2D6∗2xN, CYP2D6∗5, CYP2D6∗10, CYP2C8∗3,
and CYP2C8∗4), to complement the results shown in this paper.

Additionally, we have no data for other relevant polymorphic
enzymes, such as for example, CYP1B1 and CYP2B6, responsi-
ble for the metabolism of several antineoplastic drugs (Quiñones
et al., 2008) and UDP Glucuronyl transferase 1A1, involved in
metabolism of irinotecan (Dias et al., 2012). We did not ana-
lyze thiopurine S-methyltransferase (TPMT), a cytosolic phase
II enzyme involved in the metabolism of azathioprine, thiopurine,
and thioguanine (Zhou, 2006). However the frequency of four
allelic variants of this gene (∗2, ∗3A, ∗3B, and ∗3C) were analyzed
previously in Chilean population by Alvarez et al. (2009) show-
ing that the presence of ∗3A allele is the most prevalent, which
is similar to Caucasians, giving a first approach to the use of this
polymorphism in clinical practice in Chilean patients.

Another limitation of the present research is the use of Japan-
ese population as proxy of the ancestral Asians of Chilean people.
We use this population as reference due to two main facts: (a)
there is very good and complete information about these polymor-
phisms in Japanese people and (b) recently, have been reported no
great differences among Japanese and other Asian populations,
particularly with respect to Chinese population (Kurose et al.,
2012).

On the other hand, drug–drug pharmacological interactions,
some epigenetic and environmental factors, and alternative meta-
bolic routes should not be excluded to describe response to anti-
neoplastic agents, which is per se a multifactorial event. Thus,
the research in this area must identify these factors and potential
gene – environment interactions that modulate response to these
drugs.

Some polymorphisms have been studied in other South Amer-
ican countries (Isaza et al., 2000; Gaspar et al., 2002; Fernán-
dez et al., 2004; Gattas et al., 2004; Vianna-Jorge et al., 2004;
Almeida et al., 2005; Lizcano Fernández, 2005; Rossini et al.,
2006; Schlawicke et al., 2007; Canalle et al., 2008; Rodríguez
et al., 2008; Castaño-Molina et al., 2009; Dorado et al., 2011),
but the comparison with Chilean Mestizo population is very diffi-
cult because of the divergent origin of these populations. Chilean
population is different from other South American countries,
from Brazilian people for example, which have African and Por-
tuguese contribution with great pharmacogenomic diversity, or
from Argentina and Uruguay populations, which are multiethnic
countries, with Amerindian-European admixture, but mostly with
Italians (Lizcano Fernández, 2005). In this respect, in South Amer-
ica, the region one of the most diverse genetic background in the
world, four main components have contributed to the present-day
population: Amerindians (pre-Columbian inhabitants); Iberians
(conquerors) who dominated the continent until the nineteenth
century, Africans (imported as slaves by the colonizers); and post-
independence immigrants from overseas (mostly Italy and Ger-
many but also from France, South Asia, and Japan). Therefore, we
suggest that studies of these pharmacogenes in Chileans should be
used to develop pharmacogenetic tools for this specific population,
rather than extrapolating results obtained to other populations.
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Table 4 | Comparison of allelic frequencies of CYP1A1, CYP1A2, CYP2A6, CYP3A4, CYP3A5, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1,

GSTM1, GSTT1, UGT2B7, and MTHFR in Caucasian, Japanese, and Chilean populations.

Alle Frequencies

Enzyme Allele rs Gene change

(protein change)

Enzyme

activity

Chilean Caucasian Japanese Reference

CYP1A1 *2A rs4646903 T3801C Increased 0.37 0.36 0.09 Murata et al. (2001)

*2C rs1048943 A2454G (I462V) Decreased 0.32 0.22 0.05 Murata et al. (2001)

CYP1A2 *1F rs762551 C-163A Higher

inducibility

0.77 0.68 0.61 Sachse et al. (1999), Skarke

et al. (2005), Chida et al.

(1999)

CYP2A6 *2 rs1801272 T479A (L160H) None 0.02 0.02 0.00 Nakajima et al. (2006), Chen

et al. (1999)

*3 rs56256500 CYP2A6/CYP2A7 hybrid Decreased? 0.00 0.00 0.00

*4 rs3892097 Deletion None 0.04 0.00 0.19

CYP3A4 *1B rs2740574 A-392G Decreased 0.06 0.04 0.00 Paris et al. (1999)

*17 rs4987161 T15615C Decreased 0.00 0.00 0.00

CYP3A5 *3 rs776746 A6986G Splicing defect Decreased 0.76 0.70 0.75 Kurose et al. (2012), Roy et al.

(2005)

CYP2C8 *3 rs10509681 G2130A, A30411G

(R139K, K399R)

Decreased 0.06 0.16 0.00 Agúndez et al. (2009)

CYP2C9 *2 rs1799853 C3608T (R144C) Decreased 0.06 0.08 0.00 Agúndez et al. (2009),

Sullivan-Klose et al. (1996),

Nasu et al. (1997)

*3 rs1057910 A42614C (I359L) Decreased 0.04 0.06 0.03

CYP2C19 *2 rs28399504 G19154A Splicing

defect

None 0.12 0.14 0.23 Kurose et al. (2012)

*3 rs4986893 G17948A W212X None 0.00 0.00 0.11

CYP2D6 *2 rs16947 C2850T (R296C) Normal 0.41 0.32 0.13 Kurose et al. (2012)

*3 rs35742686 del2549A(259 Frame

shift)

None 0.01 0.02 0.00

*4 rs3892097 G1846A Splicing defect None 0.12 0.21 0.00

CYP2E1 *5B rs2031920/

rs3813867

G-1293C/C-1053T Decreased 0.15 0.04 0.20 Krishnakumar et al. (2012)

*6 rs6413432 T7632A Decreased 0.22 0.08 0.29 Krishnakumar et al. (2012)

GSTM1 null SNP500Cancer

ID – GSTM1-02

Null deletion None 0.20 0.45 0.55 Kurose et al. (2012)

GSTT1 null SNP500Cancer

ID – GSTT1-02

Null Deletion None 0.11 0.52 0.20 Kurose et al. (2012)

UGT2B7 *2 rs7439366 C802T (H268Y) Decreased 0.40 0.49 0.27 Bhasker et al. (2000)

MTHFR T rs1801133 C677T (A222V) Thermolabile

enzyme

0.52 0.41 0.32 Matsuo et al. (2001), Chen

et al. (1998)

The frequencies observed in metabolic polymorphism stud-
ied in Chilean population were distinct from paternal races.
These results contribute to better understanding of the basis of
ethnic variation in drug metabolism and response (Agúndez, 2004;
García-Martín et al., 2006b;Yasuda et al., 2008), and suggest a com-
plex genetic profile of this “mestizo” population, which should be
considered in pharmacotherapy, especially for drugs with a narrow
safety range, particularly in cancer chemotherapy (García-Martín,
2008; Quiñones et al., 2008). These established genotype frequen-
cies may be used for studying the phenotype variation in further
studies. Thus, it may be a good contribution for further studies on
the clinical application of pharmacogenomics in Asian-Caucasian
mixed races.

CONCLUSION
Profound variation in polymorphisms of metabolizing enzymes
have been described in diverse populations, including enzymes
that take part in the metabolism of chemotherapeutics drugs
(50). In this sense, our results agree with these observations when
we compare the analyzed sub-group with Asian and Caucasian
populations (Table 4).

As Chilean population represents a mixed ethnicity mainly
between native-Americans and Caucasians (mostly Spaniards) the
data obtained might help to understand inter ethnic differences
not only for single polymorphisms, but also the function of simul-
taneous polymorphisms in metabolic genes in each subject, to
explain differences in response to chemotherapy.
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This investigation contributes to have a first pattern of sev-
eral relevant polymorphisms in metabolizing enzymes (CYP1A1,
CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6,
CYP2E1, CYP3A4/5, GSTM1, GSTT1, UGT2B7, and MTHFR) in
Chilean people, which can give course for a genetic – population
investigation of these polymorphisms helping to the understand-
ing of susceptibility to drugs and pathologies in this population,
which already has been suggested by our group of research for
some specific genes (Quiñones et al., 1999, 2001, 2008; Acevedo
et al., 2003; Lee et al., 2006; Cordero et al., 2010).

The knowledge of genetic variants involved in the metabolism
of the antineoplastic drugs in the Chilean population will help to
the prediction of their clinical efficacy and/or toxicity, and there-
fore, will help us to the design personalized cancer treatments
to improve therapeutic response and diminish the adverse effects
improving cost-efficacy of treatments.

Finally, based on scientific literature and our experience, we
believe that, at least in Chilean population, MTHFR/methotrexate,
GST/cisplatin, and CYP2D6/tamoxifen are the potential more

relevant gene/drug pairs which are closer for monitoring use in
clinical practice.
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