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a b s t r a c t

High-dimensional spectroscopy data are increasingly common in many fields of science.
Building classification models in this context is challenging, due not only to high dimen-
sionality but also to high autocorrelations. A two-stage classification strategy is proposed.
First, in a data pre-processing step, the dimensionality of the data is reduced using one of
two distinct methods. The output of either of these methods is then used to feed a classifi-
cation procedure that uses a multivariate density estimate from a Bayesian nonparametric
mixture model for discrimination purposes. The model employed is based on a random
probability measure with decreasing weights. This nonparametric prior is chosen so as to
ease the identifiability and label switching problems inherent to these models. This simple
and flexible classification strategy is applied to the well-known ‘meat’ data set. The results
are similar or better than previously reported in the literature for the same data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spectroscopy data are increasingly common in many fields of science. Spectroscopy is the study of the interaction
between radiation and matter as a function of wavelength. It measures the reflectance or absorbance values mainly in the
visible and near-infrared region of the electromagnetic spectrum. The values of reflectance are produced by vibrations in
the chemical bonds in the substance analyzed. Of particular interest in this work are the spectroscopies corresponding to
different types of meats. Fig. 1 shows p = 1050 wavelength points, reporting reflectance measurements for 110 samples of
homogenized meat: n1 = 55 samples of chicken (gray lines) and n2 = 55 samples of turkey (green lines). Reflectance
measurements were taken in the range 400–2498 nm at 2 nm intervals. These data were first reported and analyzed
by McElhinney et al. (1999) with the purpose of classification between different types of meats in the context of food
authentication. Authentication is the process by which food or beverages are verified to match their label description
(Winterhalter, 2007).

Indeed, statistical methods for spectroscopy data are appealing in a variety of fields. See, for example, the recent
statistical and computational methods for spectroscopy data in Lee and Cox (2010) and Chakraborty (2012) in the context
of smoothing spectra and multiple response kernel regression with spectroscopy predictors, respectively. Spectroscopy is
the source of information inmany biomedical and pharmaceutical research such as cardiovascular radiology, brain imaging,
quality/process control and clinical trials, among others. In particular, in the context of food authentication, discriminant
analysis methods constitute a key tool (Brown et al., 1999; Dean et al., 2006; Toher et al., 2007; Gutiérrez et al., 2011).
However, as is evident from Fig. 1, these data feature high autocorrelation and non-linearity, hence requiring a robustmodel
able to capture such behavior (Murphy et al., 2010).

∗ Corresponding author.
E-mail address: luisgutierrez@med.uchile.cl (L. Gutiérrez).

http://dx.doi.org/10.1016/j.csda.2014.04.010
0167-9473/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2014.04.010
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2014.04.010&domain=pdf
mailto:luisgutierrez@med.uchile.cl
http://dx.doi.org/10.1016/j.csda.2014.04.010


L. Gutiérrez et al. / Computational Statistics and Data Analysis 78 (2014) 56–68 57

Fig. 1. Spectra curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In a nutshell, high dimensional spectroscopic data are characterized by: (1) the number of samples n is typically much
smaller than the number of variables or measurements p (n ≪ p); (2) the curve trajectories are non-linear; (3) the data are
evenly spaced as a function of wavelength, usually every 2 nanometers; (4) the data exhibit high positive autocorrelation;
(5) due to this autocorrelation, the curve trajectories tend to be smooth.

There are two common approaches to deal with the high dimensionality of data in classification contexts. The first one
is to use a dimension reduction technique such as principal component analysis (Jollife, 1986), and then use only the first
p∗ components to assign units to groups by means of a classification method for p∗ < n. The second approach is to first
select a subset of p∗ variables, useful for discrimination, and then perform the classification with a method for p∗ < n. In
both approaches, the classification method for p∗ < n commonly used is linear or quadratic discriminant analysis; see, for
example, Fearn et al. (2002); Datta (2008); Murphy et al. (2010) and Stingo et al. (2012). However, linear and quadratic
discriminant methods are based on the assumption of normality and hence are not always robust.

Motivated by the above data set, generated for food authentication purposes, a Bayesian nonparametric classification
approach for spectroscopy data is proposed. The proposal is based on a two-stage procedure: first, a dimension reduction
of the spectroscopy curves, from p ≫ n to p∗ < n dimensions, is conducted. Second, with the selected p∗ variables, a
robust version of quadratic discriminant analysis is used. In the first stage, two approaches for dimension reduction are
explored: principal component analysis and a simple variable selection algorithm. The latter is based on a Gaussian process
with random effects which jointly models the spectra in order to identify wavelength regions that are informative about the
group membership.

In stage two, a flexible discrimination procedure based on a multivariate Bayesian nonparametric mixture model with
geometric weights is used (Fuentes-García et al., 2010; Mena et al., 2011; Mena, 2013). An appealing feature of this non-
parametric prior is its ordered weights construction, which leads to a more adequate distribution of the latent allocation
variables reducing also some identifiability issues (Mena and Walker, 2013). Furthermore, as discussed in Fuentes-García
et al. (2010), such a feature results in better posterior density estimates and therefore in better discrimination results.

Indeed, for one dimensional density estimation problems, this model has proved to bemore efficient than stick-breaking
based mixture models such as the Dirichlet process mixture (DPM) model (Fuentes-García et al., 2010). Hence, as a by-
product of the present analysis, the efficiency of this model in multivariate settings is validated, which to the best of our
knowledge has not been done elsewhere.

When thismixture is based on a Gaussian kernel, the proposed classificationmodel can be seen as a robust generalization
of Quadratic Discriminant Analysis (QDA) since it allows for asymmetries and multimodality in the distribution of the
responses. Supervised classification based on mixtures of Dirichlet process has been discussed by De la Cruz-Mesía et al.
(2007) in a biomedical context, and by Gutiérrez and Quintana (2011) in food authentication. The present proposal has the
advantage that it is considerably simpler than other approaches based on finite mixtures or DPMs, and at the same time
does not compromise any of the appealing nonparametric features.

This work is organized as follows. In Section 2, a general Bayesian classification approach is presented. This section also
develops the classification equations and decision rules employed in the sections that follow. In Section 3, the dimension
reduction strategy is described. Section 4 discusses the nonparametric prior distribution employed and also contextualizes
it within the flexible multivariate classification model. Section 5 presents an example with a real spectroscopy data set in
the context of food authentication. Finally, Section 6 contains some concluding remarks.
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2. Bayesian classifier

In a classification context, it is common to have a training data set comprising n units {(yi, xi, gi), i = 1, . . . , n}. Here yi =

(yi1, . . . , yip)′ ∈ Rp is the observed response vector for the ith unit (reflectance for spectroscopy data), xi = (xi1, . . . , xiq)′ ∈

Rq is a vector of covariates for the ith unit (wavelengths for spectroscopy data) and gi denotes the known group label or class
for the ith unit, gi ∈ {1, . . . , u}. For themeat spectroscopy data set, gi is the type of meat (Chicken, Turkey, Pork, Beef, Lamb).
Let y(tra)

= (y1, . . . , yn, x1, . . . , xn, g1, . . . , gn) denote the training data set. Let y(new)
= (yn+1, xn+1) be the observed data

vector of a new future unit for which the corresponding label gn+1 is unknown. Assuming a predictive approach to classifica-
tion, the focus is on inference about gn+1 i.e. the interest is in estimating P(gn+1 = k | y(tra), y(new)), k = 1, . . . , u. Following
De la Cruz-Mesía and Quintana (2007), it is useful to consider an augmented model with marginal prior P(gi = k) = πk for
k = 1, . . . , u. For instance, the πk’s could be taken as the empirical group proportions if these were representative of the
relevant population, or they could be taken as πk = 1/u when there is no prior information about these quantities. Let θ
denote the vector of all possible parameters and hyperparameters. The classification probabilities are obtained byweighting
the posterior group probabilities, conditional on θ, with respect to the posterior distribution p(θ | y(tra)). Specifically, the
classification probability that a new unit y(new) belongs to the k-th group is

P(gn+1 = k | y(new), y(tra)) =


πkp(yn+1 | θk, xn+1)
u

l=1
πlp(yn+1 | θl, xn+1)

p(θ | y(tra))dθ, (1)

for details see Gutiérrez et al. (2011). In practice, direct evaluation of (1) is impossible so it is necessary to resort to poste-
rior simulation methods. Given a sample {θ(c), c = 1, . . . , C} from the posterior distribution p(θ | y(tra)), Eq. (1) is then
approximated by

P(gn+1 = k|y(new), y(tra)) ≈
1
C

C
c=1

πkp(yn+1|θ
(c)
k , xn+1)

l
πlp(yn+1|θ

(c)
l , xn+1)

. (2)

Thus, it is common to classify a future unit, y(new), using

ĝn+1 = argmax
k

P(gn+1 = k|y(new), y(tra)), (3)

i.e. assigning the label to the category that maximizes the classification probability (Hastie et al., 2001).
The classification equation (1) is based on a probability model for the response y given the covariates x and the unknown

parameters θ. Thus, in the above general Bayesian classification approach, the effort needs to focus on an adequate model
for the responses, namely p(y|θk). As pointed out before, for spectroscopy data we need a flexible model able to capture
different distributional features. Such will be the case of the nonparametric model described in Section 4.

3. Data pre-processing

The high-dimensional aspects of spectroscopy data demand strategies for dimension reduction. Here two approaches
are proposed, namely principal component analysis (PCA) (Jollife, 1986) and a simple variable selection algorithm. PCA is
widely used in high-dimensional classification problems. Illustrations of the use of PCA formass spectrometry data are given
in Fearn (2008) and Hoefsloot et al. (2008). Examples of dimension reduction using variable selection as a pre-processing
step prior to classification can be found in Datta (2008) and Heidema and Nagelkerke (2008).

3.1. Dimension reduction with variable selection

The variable selection algorithm uses three criteria for identifying and selecting informative wavelengths for classifi-
cation purposes: (a) a candidate wavelength to be selected should be informative about the group membership; (b) the
correlation between the selected wavelengths should be as low as possible; (c) the resulting number of variables p∗ (wave-
lengths) should be less than the number of samples (p∗ < n). Criterion (a) is obvious and necessary. Criterion (b) is desirable,
because if the algorithm selects highly correlated wavelengths, the resulting information is redundant and the dimension-
ality of the multivariate classification model is unnecessarily increased. Criterion (c) is required to get stable estimations of
the covariances in the multivariate classification model.

Tomeet criterion (a), the classification for eachwavelength (1, . . . , p) is obtained separately using a univariate approach
(at eachwavelength)with a relatively simplemodel. In principle, such a procedurewould demand p univariate classification
models (e.g. p univariate LDAs). To avoid this, we propose to build a joint model with common parameters among
wavelengths, and then use this model in a univariate way as requested by criterion (a). The simple joint model is given
as follows:

Suppose that each data unit (reflectance, wavelengths) {yi, xi : i = 1, . . . , n} is generated from the model yij =

f (xij) + ϵij, j = 1, . . . , p, where f (·) is some real-valued function of the wavelengths xij. With a slight abuse of notation, the
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model is written as

yi = f (xi) + ϵi,

where the {ϵi} are independent, normally distributed randomvectors. Considering the special characteristics of spectroscopy
data (smoothness, high autocorrelation, non-linear trajectories, evenly spaced data points) the proposed joint model is:

Yip×1 = Pq(xi) + δ(xi) + Zip×mbim×1 + ϵip×1 , (4)

δ(xi) ∼ GP(0, Σδ(xi)
), (5)

bi ∼ Nm(0, 6b) and 6b = σ 2
b Im,

ϵi ∼ Np(0, σ 2Ip), i = 1, . . . , n.

Here, Yi ∈ Rp is the response vector, xi ∈ Rp is the vector of evenly spaced wavelengths, Pq(xi) is a penalized spline
function of wavelength xi, i.e. Pq(xi) = Xiβ, with Xi = X̃iΦ

−1/2
q and β = Φ

1/2
q u. Also, Φq is a penalty matrix with

(r, s)th entry given by |ℓr − ℓs|
3, where ℓ1, . . . , ℓq are fixed knots, and X̃i is a matrix with jth row (j = 1, . . . , p) given

by {|xij − ℓ1|
3, . . . , |xij − ℓq|

3
}. Finally, u is a parameter with E(u) = 0 and cov(u) = σ 2

u Φ−1
q . Thus σ 2

u controls the degree
of penalization of the fixed matrix Φq. With this specification, E(β) = 0 and cov(β) = 6β = σ 2

u Iq. For further details,
see the Bayesian analysis for penalized spline regression described in Crainiceanu et al. (2005). An important concern that
ariseswith splines functions is how to determine the optimal number of knots and their corresponding locations. To simplify
these choices, a formulation with two nonparametric functions is proposed. Pq(xi) is intended to capture gross features, and
thus a relatively small number of knots can be used, choosing their locations to correspond to evenly-spaced percentiles of
the wavelengths. In order to capture more refined aspects of f (·), the term δ(xi) which follows a Gaussian process is added
(Blight and Ott, 1975). Finally, simple linear adjustments to Pq(xi)+ δ(xi) are used. These linear adjustments are given by the
parameters bi with Zi its corresponding p × m design matrix. These parameters are introduced into the model as random
effects. Random effects allow for specific features for each curve, and induce a heteroscedastic covariance structure when
integrated out of the model. In order to reduce the number of parameters, a simple structure for the covariance matrix of
the random effects in (5) is proposed. Other structures could be used, e.g.6−1

b ∼ Wishm(df , S), which would be useful when
the intercept and slope are expected to be correlated a priori.

A key aspect of Gaussian process described in (5) is the variance–covariance matrix 6δ(xi), whose entries are selected to
have the form

σrs = τ 2ρ∥xir−xis∥2 , r, s = 1, 2, . . . , p,

where τ 2 > 0 is a scale parameter and ρ ∈ (0, 1). The above choice is infinitely differentiable everywhere and thus yields
smooth estimates of f (·). The Bayesian formulation of model (4) is completed assuming that

β ∼ Nk(0, 6β),

σ−2
∼ Ga(α0, γ0), (6)

σ−2
b ∼ Ga(λ0, δ0).

Here, Ga denotes the gamma distribution with expected value given by α0/γ0. To avoid identifiability problems due to
the multiple variance components (σ 2, 6b, 6δ(xi)

), the parametric space of the scale parameter τ 2 can be restricted. One
simple strategy consists in fixing τ 2 at a suitable value. Another strategy is to use an informative prior distribution for τ 2;
see Section 5 for further details.

Posterior inference for model (4) is based on Gibbs sampling. The analysis is conjugate except for ρ. In order to reduce
the serial correlation in the sampling algorithm the parameters are updated in blocks (Chib and Bradley, 1999). Details of
the Gibbs sampling algorithm are given in the Appendix.

To obtain the classification for each wavelength using the joint model, Eq. (4) is used after integrating out the random
effects, that is

[ Yi | β,Xi, δ(xi), 6b, σ
2
] ∼ Np(µ, �), (7)

whereµ = Xiβ+δ(xi) and� = Zi6bZt
i +σ 2Ip. Note thatµ and� are invariant across i = 1, . . . , n because, for spectroscopy

data, the wavelengths are the same for all curves. Model (7) provides a reasonable estimation of the mean curve and also it
captures possible heteroscedastic covariance structures. The univariate distributions derived from (7) are given by

[ Yij | β,Xi, δ(xj), Ωjj ] ∼ N1(µj, Ωjj), j = 1, . . . , p, (8)

where Ωjj, j = 1, . . . , p are the elements of the main diagonal of �. With (8) and (1), the classification is performed at each
wavelength using (3). The identification of informativewavelengths for classification purposes is then straightforward, since
for each j = 1, . . . , p the classification performance is available (that is, the proportion of correctly classified samples) for
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each category k = 1, . . . , u. To meet criteria (b) and (c), the variable selection algorithm has the following steps:
• select the wavelengths that attain the best classification for each category or group under consideration;
• compute the sample correlation φ between the wavelengths selected in the previous step and discard those variables

that have higher correlation (φ > 0.99, say).

The last step of the algorithm considers the computation of correlations. The Pearson correlation coefficient is proposed
for this step. The decision about which wavelength needs to be discarded depends on the specific classification problem.
The idea is to keep the wavelengths that give more information for those populations that are more difficult to differentiate.
For a specific example, see the discussion in Section 5.1.1.

The final result of this stage is a subset of p∗ variables useful for discrimination, which in turn will be the input for the
multivariate flexible classification model of stage two.

3.2. Dimension reduction with PCA

A standard approach in Chemometrics is to apply the principal component analysis to reduce dimensionality. Given a
data matrix Yn×p, the principal component analysis is carried out by calculating the eigenvalues and the corresponding
eigenvectors of the sample covariance matrix Sp×p, which is estimated from the data. Further details concerning PCA can be
found in Jollife (1986) and in classical textbooks of multivariate analysis such as Mardia et al. (1979). The key idea behind
the PCA is to summarize the data, losing as little information as possible in the process. The first p∗ components (linear
combinations of the original variables) are chosen to explain a large proportion of the original variability of the data and,
in most cases, are subsequently used as input for other statistical methods. In our case, this procedure will produce p∗ < n
components that we will use in the next section to feed our robust classification model.

4. A multivariate nonparametric mixture model

In this section, a flexible multivariate classification model is proposed. The model uses as input the p∗ variables or p∗

components selected by means of one of the methods discussed in the previous section.
Classificationmethods for p∗ < n such as LDA andQDA do not allow for asymmetries ormultimodality in the distribution

of the responses Y . Indeed, the possibilities are varied and unlikely to be captured by a parametric model. One way to
overcome this issue is by considering Bayesian nonparametric mixture models (Lo, 1984), i.e. through random densities of
the type

f (y) =


f (y | θ)P(dθ), (9)

where P denotes a suitably chosen random probability measure. In particular, if P is an almost-surely discrete random
probability measure having full support and f (· | θ) is a Gaussian density, the random mixture (9) will be able to replicate
any possible density with positive probability.

The benchmark model for P is the Dirichlet process (Ferguson, 1973); however, currently there is a vast literature
concerning alternative priors, see Lijoi and Prünster (2010) for an up-to-date account. A particularly appealing model, due
to its relative simplicity and good performance in density estimation, is the geometric-weights prior, GWP(a, b), introduced
by Fuentes-García et al. (2010). This model can be represented as

P(·) =

∞
i=1

λ(1 − λ)i−1δθi(·), (10)

with θi
i.i.d.
∼ P0 independent of λ ∼ Be(a, b), a, b > 0. Here P0 := E[P] is chosen to be a non-atomic probability measure

and Be(a, b) denotes the Beta distribution with mean a/(a + b). P0 is an important component in the specification of (10)
and is sometimes referred to as the prior guess at the shape of P or as the baseline measure.

Model (10) is considerably simpler than the Dirichlet process, since the weights have only one source of randomness,
i.e. through λ, instead of an infinite number of Beta random variables. Surprisingly, such a simplification does not
compromise the full-support property. Furthermore, another appealing feature of the random probability measure (10)
is the ordered-weights property, a feature that allows the underlying MCMC algorithms to converge much faster than those
available for other models such as the Dirichlet process. This is due to the fact that having ordered weights reduces the
impact of the typical identifiability and label switching issues as seen in Mena and Walker (2013) and deduced from Yao
and Lindsay (2009)

A more detailed account of geometric-weights priors can be found in Mena (2013). In what follows, the algorithm for
posterior inference is briefly reviewed.

First, notice that the random probability measure (10) can be embedded in a wider class of models given by

P(·) = Eπ


1
η

η
i=1

δθi


,
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where the expectation is taken with respect to η ∼ π and, as before, θi
i.i.d.
∼ P0. Choosing π := Neg-Bin(2, λ), 0 < λ < 1,

leads back to (10). Therefore, using this representation of the random probability measure (10), the random density (9) can
be written as

f (y) =

∞
η=1

1
η

η
i=1

f (y | θi)π(η | λ),

where π(η | λ) denotes the density of π := Neg-Bin(2, λ). As shown in Fuentes-García et al. (2010), posterior inference
based on the above representation can be carried out via a Gibbs sampler algorithm based on a slice sampler. Specifically, to
avoid the internal summation, a latent variable d (which, givenη, indicates the component f (· | θd) that better represents the
mass at y) can be introduced. With this in mind, a hierarchical representation for the random variable Yi modeled through
the nonparametric mixture model is given by

Yi | θn, di, ηi
ind
∼ f (yi | θdi),

di | ηi
ind
∼ U{1, . . . , ηi},

ηi
i.i.d.
∼ Neg-Bin(· | 2, λ),

λ ∼ Be(a, b).

Therefore, for a sample Y(n)
:= (Y1, . . . , Yn) inference can be performed via a Gibbs sampler algorithm based on the

following full conditional distributions

f (θj | . . .) ∝ P0(θj)

di=j

f (yi | θj), for j = 1, . . . ,M (11)

P(di = l | . . .) ∝ f (yi | θl)I(l ∈ {1, . . . , ηi}),

P(ηi = j | . . .) = λ(1 − λ)j−1I(j ≥ di),

f (λ | . . .) = Be


λ | a + 2n, b +

n
i=1

ηi − n


,

for i = 1, . . . , n, where M = max{η1, . . . , ηn}. Clearly, when f and P0 are a conjugate pair the full conditional (11)
can be simplified. In particular, within the context of the application in Section 5, f is defined as f := Np∗(·|θj, 6j)
and P0 := Np∗(·|θ0, 6θ)IWp∗(·|ν,A), where, IWp∗ denotes the inverse-Wishart distribution with expected value given by
E(6j) = (ν − p∗

− 1)−1A. Hence, under these considerations the full conditional posterior distributions simplify as

Np∗(θ̃j, 6̃θ) IWp∗(κ, ξ),

where

6̃θ = [nj6
−1
j + 6−1

θ ]
−1, θ̃j = 6̃θ


6−1

j


i:di=j

yi + 6−1
θ θ0


, κ = ν + nj and

ξ =


i:di=j

(yi − θj)(yi − θj)
t
+ A, with nj =

n
i=1

1{di=j}.

As pointed out before, this model together with Eq. (1) can be regarded as a robust Bayesian nonparametric version of the
Quadratic Discriminant Analysis.

5. Illustration

In this section, the proposed two-stage classification strategy is illustrated in the context of food authentication men-
tioned in the introduction. A data set previously discussed by McElhinney et al. (1999) is considered. The data consists of
reflectance values for p = 1050wavelengths (400–2498 nm at 2 nm intervals) for five types of homogenizedmeat (Chicken,
n1 = 55; Turkey, n2 = 55; Pork, n3 = 55; Beef, n4 = 32; and Lamb, n5 = 34). The purpose of the analysis is to classify
among different types of meat using the spectroscopy information as input. For details about the data collection process see
McElhinney et al. (1999).

5.1. Data pre-processing

5.1.1. Dimension reduction with variable selection
Here, the variable selection algorithm of Section 3 is applied to the meat data set. First, model (4) is fitted independently

for each type of meat. When a joint model for all meat types is considered, the model must share some parameters between
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Fig. 2. Posterior mean ± standard deviation (Chicken).

Table 1
Maximum classification performance by wavelength for each category.

Category Wavelength % Classification

Chicken w582 60.0%
Turkey w638 78.2%
Pork w796 81.8%
Beef w1056 96.9%
Lamb w632 82.4%

meats, implying that some aspects of the distribution for each meat are the same. Although this assumption reduces the
number of parameters, it is not a good strategy in classification problems because, in the discriminant analysis, the aim
is to discover those aspects of the distribution that highlight the differences between the populations to be classified. A
spline termwith q = 11 knots was employed, choosing the location of the knots to correspond to evenly spaced percentiles
of the wavelengths. The random effects bi were defined as bi = (b0i, b1i)t , where b0i is the intercept and b1i is the slope
for the ith curve. The values of the hyperparameters were set to 6β = 106Iq, and α0 = γ0 = λ0 = δ0 = 10−6,
implying proper but vague prior distributions and representing lack of genuine prior information about the parameters.
The (discretized) prior distribution for ρ (see Appendix) is given by a uniform discrete distribution with support on the set
{0.1, . . . , 0.9, 0.99, 0.999, 0.9991, 0.9992, . . . , 0.9999}. Different values for τ 2 (0.001, 0.1, 0.25, 1, 5, 10) were tested and it
was found that values between 0.1 and 1 worked well. Informative Gamma priors for τ 2 around each of these values were
also tried out. Small values of τ 2 generated excessively smooth estimates, while very large values produced rather rough
estimates. In summary, and mostly for simplicity, the value of τ 2 was fixed at 0.25. Finally, the values of πk were fixed at
1/5 for all k ∈ {1, . . . , 5}, that is, the same prior probability for all types of meat.

Fig. 2 shows the spectra curves for Chicken together with the posterior mean and standard deviations. The joint model
produces a reasonable estimation of the mean curve; also, the heteroscedastic effect is captured by the variance measure.

The classification for each wavelength was obtained using (8) as well as the classification rule (3), as described in
Section 3. Fig. 3 shows the classification performance (that is, the proportion of correctly classified samples for each type
of meat) for each wavelength. The red arrows indicate the most informative regions for each type of meat. For instance,
for Chicken the most informative region for classification is between wavelengths 574 and 584. Similarly, Turkey has an
informative region between wavelengths 636 and 642, while the informative region for Pork is between wavelengths 794
and 800. Although there is a high classification rate between wavelengths 1098 and 1100 for Pork, this region corresponds
to a sudden jump in the spectra, which may be due to instrumental noise. Finally, informative regions for Beef and Lamb are
wavelengths 1056–1080, and 636–640, respectively.

Considering the identified regions for each case, the most informative wavelength for each type of meat was selected,
that is the wavelength that reached the highest classification rate. The selected wavelengths by type of meat are shown in
Table 1.

For illustrative purposes, the classification using the joint model of Eq. (7) together with the classification rule (3) was
explored. The results are shown in Table 2. The joint model shows good performance for red meats (Beef and Lamb). Note
also that white meats are not confused with red meats, but the classification between white meats (Chicken, Turkey and
Pork) leaves a lot to be desired. The highest miss-classification rate appears between Chicken and Turkey.
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Fig. 3. Percentage of meat samples correctly classified at each wavelength. Arrows indicates the most informative regions for each type of meat.

Table 2
Classification matrix for the joint model.

Chicken Turkey Pork Beef Lamb % Class.

Chicken 33 15 7 0 0 60.0%
Turkey 15 40 0 0 0 72.7%
Pork 3 10 42 0 0 76.4%
Beef 0 0 0 32 0 100.0%
Lamb 0 0 0 1 33 97.1%

% Total class. 77.9%

Continuing with the variable selection algorithm, Table 3 shows the correlations between the selected wavelengths of
Table 1. Following the algorithm of Section 3.2, wavelength 632 was discarded because its correlation with wavelength 638
is larger than 0.99. Furthermore, from Table 2 it follows that Turkey was more difficult to differentiate from other types of
meat compared with Lamb. For this reason, the wavelength that provides classification information for Turkey instead of
Lamb was retained. In summary, the selected wavelengths for the next step were: w582, w638, w796 and w1056.

5.1.2. Dimension reduction with PCA
APCAanalysis of themeat data setwas performed. The first p∗

= 4 components explain 99.2% of the total variability of the
data. Recall that, when the variable selection algorithm was applied, 4 variables were selected. For the sake of comparison,
the first 4 components were retained as input for the classification model. Thus, in both cases (PCA and variable selection)
the classification model has four dimensions.
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Table 3
Correlations.

w582 w632 w638 w796 w1056

w582 1.00
w632 0.96 1.00
w638 0.96 >0.99 1.00
w796 0.76 0.79 0.79 1.00
w1056 0.76 0.80 0.80 0.94 1.00

(a) Chicken. (b) Turkey.

(c) Beef. (d) Lamb.

Fig. 4. Posterior predictive densities for wavelengths w582 and w638.

5.2. Model-based classification

5.2.1. Classification based on variable selection
The flexible classification model described in Section 4 was applied to the p∗

= 4 wavelengths selected in 5.1.1. The
values of the hyperparameters were fixed at θ0 = 0, 6θ = 105I4,A = 0.001I4, ν = 8, a = b = 1 and πk = 1/5 for all
k ∈ {1, . . . , 5}. These hyperparameter values imply proper but vague prior distributions, specially for θ and λ. The prior
expected value for the variance matrix Σ was taken to be diagonal. The Gibbs sampling algorithm was implemented in
R (R Development Core Team, 2012). 10,000 iterations were generated. After a burn-in of 2000 iterations, samples were
collected every 8 iterations so as to obtain uncorrelated samples. Finally, C = 1000 samples were considered for calculating
the posterior summaries of interest.

Fig. 4 shows the joint posterior predictive densities (for wavelengths w582 and w638) for various types of meat. Note
that, the nonparametric model with geometric weights is able to capture the multimodality as well as the asymmetries of
the data.

Similarly, Fig. 5 shows the joint posterior predictive densities for wavelengths w582 and w1100. In order to facilitate
the comparison, the posterior densities for all five types of meat were included in the same graph. The red meats (Beef and
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Fig. 5. Posterior predictive densities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 4
Classification matrix for the flexible model based on variable selection. The values in brackets were obtained using the leave-
one-out cross-validation approach.

Chicken Turkey Pork Beef Lamb % Class rate.

Chicken 47 (45) 7 (9) 1 (1) 0 (0) 0 (0) 85.5% (81.8%)
Turkey 4 (5) 50 (49) 1 (1) 0 (0) 0 (0) 90.9% (89.1%)
Pork 0 (0) 2 (3) 53 (52) 0 (0) 0 (0) 96.4% (94.5%)
Beef 0 (0) 0 (0) 0 (0) 32 (31) 0 (1) 100% (96.9%)
Lamb 0 (0) 0 (0) 0 (0) 1 (1) 33 (33) 97.1% (97.1%)

% Class rate. 93.1% (90.9%)

Lamb) are well apart from the white meats. Also, Beef and Lamb are well separated from each other. On the other hand,
Chicken and Turkey overlap, while Pork is closer to the Chicken–Turkey group than the redmeats. The above configurations
are reasonable because the composition of Chicken is similar to that of Turkey (both are poultry) and Pork is more similar
to poultry than to red meats. Finally, Lamb and Beef are similar to each other and different from white meats.

Table 4 shows the classification obtained by applying the classifier to the same data from which it was computed as
well as a leave-one-out cross-validation (LOOCV) approach. The latter values are within brackets. The LOOCV was chosen
because the data set is relatively small. For moderately large data sets, a series of random partitions of the data into two
components could be considered: one set reserved for deriving the classification rule (the training sample) and the other to
assess the rule’s performance (the test sample). The estimated classification ratewas 93.1% based on the training sample and
90.9% with LOOCV. For the sake of comparison, LDA and QDA were also applied to the same wavelengths. The classification
rates were 85.7% (84.4%) for LDA and 88.7% (85.7%) for QDA, based on the training sample and with LOOCV respectively.
The flexible classification model performs better with the same data. The improvement is due to its ability to capture the
multimodality and the asymmetries which are typical of this kind of data. When the classification results of Tables 4 and
2 are compared, it is possible to conclude that the inclusion of too many variables that are not informative about group
membership increases the complexity of the analysis and may degrade the overall classification performance.

5.2.2. Classification based on dimension reduction with PCA
The flexible classificationmodel described in Section 4was applied to the four selected principal components. The values

of the hyperparameter used here were the same as in Section 5.2.1 except for A (here Awas fixed to A = 0.1I4). Fig. 6 shows
the joint posterior predictive densities for the first and second principal components. From Fig. 6 it can be seen how the
model also captures asymmetries and bimodality of information.

Table 5 shows the classification of the flexible model based on the four principal components. The results for Pork, Beef
and Lamb are very similar to those reported in Table 4 with variable selection. Turkey got better classification here and the
Chicken classification rate is lower than that reported in Table 4. For the sake of comparison, LDA and QDAwere also applied
to the four principal components as is the standard approach in Chemometrics. The overall classification rates were 85.3%
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Fig. 6. Posterior predictive densities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 5
Classification matrix for the flexible model based on PCA. The values in brackets were obtained using the leave-one-out cross-
validation approach.

Chicken Turkey Pork Beef Lamb % Class rate.

Chicken 46 (41) 7 (10) 2 (4) 0 (0) 0 (0) 83.6% (74.5%)
Turkey 3 (11) 52 (44) 0 (0) 0 (0) 0 (0) 94.5% (80.0%)
Pork 1 (1) 0 (2) 54 (52) 0 (0) 0 (0) 98.2% (94.5%)
Beef 0 (0) 0 (0) 0 (0) 32 (31) 0 (1) 100% (96.9%)
Lamb 0 (0) 0 (0) 0 (0) 1 (1) 33 (33) 97.1% (97.1%)

% Class rate. 93.9% (87.4%)

(83.9%) for LDA and 87.0% (84.8%) for QDA, based on the training sample and with LOOCV respectively. Again, the proposed
flexible model performs better with the same information, the classification rate being 93.9% (87.4%).

6. Discussion

A general classification strategy for high-dimensional spectroscopy data was proposed. The strategy is based on
dimension reduction togetherwith a flexible classificationmodel. The results show that the inclusion of variables that are not
informative about groupmembership increases the complexity of the analysis and degrades the classification performance.

Two approaches for dimension reduction were compared: PCA (which is a standard method in Chemometrics) and a
simple variable selection algorithm. Both approaches reached similar overall rates of classification. If the user is interested
only in classification, then PCA is a reasonable method for dimensionality reduction. On the other hand, if the user is also
interested in identifying regions of the electromagnetic spectrum that provide useful information for classification, then the
proposed variable selection algorithm is a simple alternative. In either case, a flexible classificationmodelmust then be used.

The nonparametricmodelwith geometricweights employed here constitutes a novel alternative to othermixturemodels
widely used in the literature, such as those based on Dirichlet processes or generalizations thereof. In particular, since the
model is based on a randomprobabilitymeasurewith geometric (i.e. ordered)weights, it results in good and efficient density
estimations (Mena, 2013) which come at a relatively small computational cost and without compromising the appealing
full-support property of nonparametric priors. Indeed, having good density estimations is of prime importance for Bayesian
classifiers. Within the context at issue, such a classification approach can be regarded as a robust Bayesian version of the
Quadratic Discriminant Analysis. The flexible classification model performs better than LDA and QDA with the same data,
and could be useful in other multivariate classification problems.

When these results are compared with other proposals for the same data set, it can be seen that the proposed strategy
performs better than or similar to the proposals of McElhinney et al. (1999) (86.1%–92.7%) and Murphy et al. (2010) (90.7%)
(Variable selection only). The results of Dean et al. (2006) (94.4%), Murphy et al. (2010) (Variable selection and updating)
(93.9%) (variable selection (greedy) and updating) (94.9%) and Stingo et al. (2012) (96.5%) are slightly better than ours, but
their proposal considers more complex algorithms for variable selection. In fact, the proposal of Murphy et al. (2010) builds
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a discriminant rule in a stepwise manner by considering the inclusion of extra variables into themodel and also considering
removing existing variables as in Raftery andDean (2006) based on the Bayesian Information Criterion (BIC); the algorithm is
iterated until no further variables are added or removed. The proposal of Stingo et al. (2012) is based onwavelet transforms,
variable selection and discriminant analysis in the wavelet domain. Our dimension reduction methods are straightforward;
PCA is a standard method, and the variable selection algorithm needs to be applied only once because it uses as input the
classification of the joint model at each wavelength. Thus, all the information in the spectra is explored.
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Appendix. Gibbs sampling algorithm for model (4)

Due to the conditional Gaussian structure of model (4) we have

Yi | β, 6δ(xi), 6b, σ
2

∼ Np(Xiβ, �1), (12)

Yi | β, δ(xi), 6b, σ
2

∼ Np(Xiβ + δ(xi), �2), (13)

Yi | β, δ(xi), bi, σ
2

∼ Np(Xiβ + δ(xi) + Zibi, �3), (14)

where �1 = 6δ(xi) + Zi6bZt
i + σ 2Ip, �2 = Zi6bZt

i + σ 2Ip and �3 = σ 2Ip. Following Chib and Bradley (1999) we update β,
δ and {bi} in one block as follows:

Algorithm 1. 1. sample β, δ and {bi} from [β, δ, {bi} | y, σ 2, 6b, 6δ(xi)] by sampling
(a) β from [β | y, σ 2, 6b, 6δ(xi)]

(b) δ from [δ | y, β, σ 2, 6b, 6δ(xi)]

(c) b from [b | y, β, δ, σ 2, 6b, 6δ(xi)];
2. sample σ 2

b from [σ 2
b | y, β, δ, b, σ 2

];
3. sample σ 2 from [σ 2

| y, β, δ, b, σ 2
b ];

4. sample ρ from [ρ | y, β, δ, b, σ 2, σ 2
b ];

5. repeat steps 1–4 using the most recent values of the conditioning variables.

Using (12)–(14), together with the prior distributions (6), we find that the full conditional posterior distributions for step
(1) of Algorithm 1 are given by

β | y, σ 2, 6b, 6δ(xi) ∼ Nq(β̃, 6̃β),

where 6̃β = [
n

i=1 X
t
i�

−1
1 Xi + 6−1

β ]
−1 and β̃ = 6̃β [

n
i=1 X

t
i �

−1
1 Yi];

δ | y, β, σ 2, 6b, 6δ(xi) ∼ Np(δ̃, 6̃δ),

where 6̃δ = [n�−1
2 + R−1

]
−1, R = {τ 2ρ∥xi−xj∥} and δ̃ = 6̃δ[

n
i=1 �−1

2 (Yi − Xiβ)];

bi | y, β, δ, σ 2, 6b, 6δ(xi) ∼ N(b̃i, 6̃bi),

where 6̃bi = [Zt
i�

−1
3 Zi + 6−1

b ]
−1 and b̃i = 6̃bi [�

−1
3 (Yi − Xiβ − δ)]. The full conditionals for steps 2 and 3 are given by

σ−2
| y, β, δ, b, σ 2

b ∼ Ga


1
2
np + α0,

1
2

n
i=1

(Yi − Xiβ − δ − Zibi) + γ0


,

and

σ−2
b | y, β, δ, b, σ 2

∼ Ga


1
2
nq + λ0,

1
2

n
i=1

bt
ibi + δ0


.

Generating ρ from [ρ | y, β, δ, b, σ 2, σ 2
b ] = [ρ | δ, τ 2

] (step 4) is quite difficult because the form of [ρ | δ, τ 2
] can change

dramatically from one iteration to the next, and each iteration involves inverting and calculating the determinant of a p× p
matrix. A simple, yet useful approximation is obtained by discretizing [ρ | δ, τ 2

] over the (0, 1) interval (Gutiérrez-Peña and
Smith, 1998). This approximation is appropriate for bounded parameter spaces. With the above strategy the computational
effort is significantly reduced. A recent efficient approach for Gaussian process estimation can be found in Banerjee et al.
(2013).
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